

DRAFT - PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

590 Argus Road, Oakville, Ontario

Client

Mr. Clarence Zichen Qian 590 Argus Developments Inc. 1-90 Wingold Avenue Toronto, Ontario M6B 1P5

Project Number

BIGC-ENV-554D

Prepared By:

B.I.G. Consulting Inc. 12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4 T: 416.214.4880 www.bigconsultinginc.com

Date Submitted

September 28, 2023

Executive Summary

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of 590 Argus Developments Inc. (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 590 Argus Road, in Oakville, Ontario (the Site).

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04 (O.Reg.153/04), as amended.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in April 2023; and, to obtain soil and groundwater data to characterize the Site to support the filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consists of asphalt or topsoil followed by sand and gravel, silty sand and silty clay/clayey silt fill material, underlain by native clayey silt/silty clay and shale complex underlain by shale bedrock.
- 2. Based on the stratigraphy observed on the borehole logs, coarse textured standards were applied.
- 3. The groundwater depths in the shallow aquifer ranged between approximately 2.48 m and 4.32 m bgs and groundwater depths within the deep aquifer ranged between approximately 2.83 m and 20.49 m bgs, on May 5, 2023.
- 4. The soil analytical results indicated that select parameters were detected at concentrations above the applicable MECP (2011a) Table 2 Full Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soils including:

Parameter	MECP (2011a) Table 2 SCS (µg/g)	Number of Soil Samples Submitted ⁽¹⁾	Number of Soil Samples Exceeding the applicable SCS ⁽¹⁾	Maximum concentration detected (µg/g)
PHCs				
PHC F2	98	5	2	1,400
PHC F3	300	5	2	1,000
PAHs				
Benzo(a)pyrene	0.30	24	1	0.52
Fluoranthene	0.69	24	1	1.60
Metals				
Copper	140	27	4	360

(1) Excluding duplicate samples

5. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Conclusions and Recommendations

The COCs present at the Site are comprised of PHC F2, PHC F3, benzo(a)pyrene, fluoranthene, and copper in soil. Based on the former activities on-Site, the PAH and copper impacts are associated with fill material of unknown quality. Based on the historical records available for review, the source of the PHC impacts in soil is unknown.

In order to proceed with the Record of Site Condition (RSC), the following is recommended:

- 1. Complete delineation of copper and PHCs in soil.
- 2. Excavate the impacted soil and dispose of off-Site at a registered landfill facility.
- 3. Conduct confirmatory sampling.
- 4. Prepare a report documenting remedial activities.
- 5. Update the Phase Two ESA.
- 6. File the RSC.

Table of Contents

1	Introduction	1
1.2	Legal Description and Property Ownership	1
1.3	Current and Proposed Future Uses	2
1.4	Applicable Site Condition Standards	2
2	Background Information	4
2.1	Physical Setting	4
2.2	Past Environmental Investigations	4
3	Scope of the Investigation	6
3.1	Overview of Site Investigation	6
3.2	Media Investigated	6
3.3	Phase One Conceptual Site Model	6
3.4	Deviations from Sampling and Analysis Plan	10
3.5	Impediments	10
4	Investigation Method	11
4.1	General	11
4.2	Borehole Drilling	11
4.3	Soil Sampling	11
4.4	Field Screening Measurements	12
4.5	Groundwater: Monitoring Well Installation	12
4.6	Monitoring Well Development	13
4.7	Groundwater Monitoring	13
4.8	Monitoring Well Purging	13
4.9	Field Measurements of Water Quality Parameters	14
4.1	0 Groundwater Sampling	14
4.1	1 Sediment Sampling	14
4.1	2 Analytical Testing	14
4.1	3 Elevation Survey	16
4.1	4 Quality Assurance and Quality Control Measures	18
5	Review and Evaluation	20
5.1	Geology	20
5.2	Groundwater Elevations and Flow Direction	21
5.3	Soil Texture	22
5.4	Soil Field Screening	22
5.5	Soil Quality	22
5.6	Groundwater Quality	24
5.7	Sediment Quality	25
5.8	Quality Assurance and Quality Control Measures	25
5.9	Phase Two Conceptual Site Model	26
6	Summary of Findings	41
7	Conclusions and Recommendations	42
8	General Limitations	43
9	References	44

List of Appendices

Appendix A: Site Sampling and Analysis Plan (SSAP)
 Appendix B: Analytical Tables
 Appendix C: Borehole Logs
 Appendix D: Conceptual Site Models
 Appendix E: Survey Plan
 Appendix F: Laboratory Certificates of Analysis

List of Attached Tables

Table 1: Areas of Potential Environmental Concern (APEC)

- Table 2: Summary of Soil Samples Submitted for Chemical Analyses
- Table 3: Monitoring Well Installation Details

Table 4: Water Level Depths and Elevations

 Table 5: Summary of Groundwater Samples Submitted for Chemical Analyses

List of Figures

Figure 1: Site Location Plan Figure 2: Site Layout and Utilities Plan Figure 3: Phase Two Study Area and Potentially Contaminating Activities (PCAs) Figure 4: Borehole/Monitoring Well Location Plan Figure 5: Borehole/Monitoring Well Location Plan with Areas of Potential Environmental Concern (APECs) Figure 6A: Shallow Groundwater Contour Plan Figure 6B: Deep Groundwater Contour Plan Figure 7A: Geological Cross Section A-A' Figure 7B: Geological Cross Section A-A' with PHC Impacts in Soil Figure 7C: Geological Cross Section A-A' with PAH Impacts in Soil Figure 7D: Geological Cross Section A-A' with Metals, As, Sb, Se, Cr(VI), Hg, B-HWS and CN- Impacts in Soil Figure 8A: Geological Cross Section B-B' Figure 8B: Geological Cross Section B-B' with Metals, As, Sb, Se, Cr(VI), Hg, B-HWS and CN- Impacts in Soil Figure 9A: Geological Cross Section C-C' Figure 9B: Geological Cross Section C-C' with PHC Impacts in Soil Figure 9C: Geological Cross Section C-C' with PAH Impacts in Soil Figure 10: PHC Impacts in Soil Figure 11: BTEX Concentrations in Soil Figure 12: VOCs Concentrations in Soil Figure 13: PAH Impacts in Soil Figure 14: PCB Concentrations in Soil Figure 15: Metals, As, Sb, Se, Cr(VI), Hg, B-HWS and CN- Impacts in Soil Figure 16: EC and SAR Concentrations in Soil Figure 17: PHC (including BTEX) Concentrations in Groundwater Figure 18: VOC Concentrations in Groundwater Figure 19: PAH Concentrations in Groundwater Figure 20: Metals, As, Sb, Se, Cr(VI), Hg and CN- Concentrations in Groundwater

Figure 21: Sodium and Chloride Concentrations in Groundwater

1 Introduction

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of 590 Argus Developments Inc. (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 590 Argus Road, in Oakville, Ontario (the Site).

The objective of the investigation was to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (O.Reg.153/04), as amended. It is BIG's understanding that the Client is planning on redeveloping the Site with three (3) condominium buildings which is expected to have seven (7) levels of underground parking in the future, which would require a land use change and a Record of Site Condition (RSC). Contact information for the Client is provided in Section 1.2.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in April 2023 and, to obtain soil and groundwater data to characterize the Site to support the preparation of the filing of an RSC on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

1.1 Site Description

The Site is located south of South Service Road East, and north of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 15,500 m² in size and is currently occupied by a six-storey commercial building (Site building). The Site building has a footprint of approximately 3,300 m² and occupies approximately 23 % of the Site. The Site building was reportedly constructed prior to 1960. The Site building is currently used as a hotel and is occupied by the Holiday Inn Oakville. The areas surrounding the Site building are covered with asphalt paved parking with landscaping along the southern, eastern and northern property boundaries. The nearest surface water body is Sixteen Mile Creek, located approximately 470 m southwest, and Lake Ontario is located approximately 2.30 km southeast of the Site. A Site layout plan is shown on Figure 2.

The Site is bound to the north by South Service Road East followed by the QEW, to the east by commercial land use followed by South Service Road East, to the south by Argus Road followed by commercial properties, and to the west by commercial properties. The surrounding properties are shown on Figure 3.

1.2 Legal Description and Property Ownership

Site Details	
Municipal Address	590 Argus Road, Oakville, Ontario
Current Owners	590 Argus Developments Inc.
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5
Owner Contact Information	Mr. Emil Toma
	Lot 15, Plan 1333; part lots 13 and 14, concession 3 Trafalgar
Legal Description	South of Dundas Street as in 82493 S & E parts 6, 7, 9 and 10,
	20R15677; Town of Oakville
Property Identification Number (PIN)	24816-0113
Property Size	15,500 m ²
	Zone: 17
Approximate Universal Transverse	Easting: 606332.34
Mercator (UTM) coordinates	Northing: 4812516.62
	(1m, NAD83, QGIS)

Refer to the table below for the Site identification information.

1.3 Current and Proposed Future Uses

At the time of the Phase Two ESA investigation, the Site was occupied by a multi-storey commercial building (Site building). The Site will be redeveloped for residential purposes with three (3) condominium building towers which is expected to have seven (7) levels of underground parking. Section 168.3.1 of the *Environmental Protection Act* does not prohibit the proposed future use of the Property. Current surrounding land uses is included in Figure 3.

1.4 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act'*, ("SGWS" Standards), (MECP). Tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites are provided in MECP. The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP are summarized as follows:

- a) Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- b) Table 2 applicable to sites with potable groundwater and full depth restoration;
- c) Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- d) Table 4 applicable to sites with potable groundwater and stratified restoration;
- e) Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- f) Table 6 applicable to sites with potable groundwater and shallow soils;
- g) Table 7 applicable to sites with non-potable groundwater and shallow soils;
- h) Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- i) Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e., surface and subsurface soil), thickness and extent of overburden material, (i.e., shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium/fine textured soil conditions.

For assessment purposes, BIG selected the MECP Table 2 Full Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soil. The selection of this category was based on the following factors:

- a) More than two-thirds of the Site has an overburden thickness greater than 2 m.
- b) The Site is not located within 30 m of a surface water body or an area of natural significance.
- c) The soil at the Site has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.
- d) The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.
- e) The Site is supplied by the City of Oakville municipal drinking water system; however the Site is considered potable.

- f) The future land use of the Site is residential.
- g) Coarse textured soils were used as part of the Phase Two ESA.
- h) There was no intention to carry out a stratified restoration at the Site.

2 **Background Information**

2.1 **Physical Setting**

The following physiographic, geological and soil maps were reviewed as part of this Phase Two ESA:

- a) Atlas of Canada Toporama Topographic Map, 2012 (Toporama).
- b) Ontario Base Map (OBM).
- c) Ontario Ministry of Northern Development and Mines website, Bedrock Geology of Ontario, 2011 MRD 126; and Paleozoic Geology of Southern Ontario, 2007 – MRD 219 (KML format).
- d) Ontario Ministry of Northern Development and Mines website, Surficial Geology of Southern Ontario, 2010 (KML format).
- e) Ontario Ministry of Northern Development and Mines website, Physiography of Southern Ontario 2007 (KML format).

The following information was obtained from these maps:

- a) The Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the northwest are generally at higher elevation than the Site.
- b) No water bodies are located on the Site. The nearest water body is Sixteen Mile Creek located approximately 470 m southwest and Lake Ontario is located approximately 2.30 km southeast. The inferred groundwater flow direction is likely towards the south/southeast.
- c) The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member.
- d) The surficial geology of the Site is described as Paleozoic bedrock.
- e) The physiography of the Site is within the Iroquois Plains characterized as shale plains.

2.2 Past Environmental Investigations

Previous environmental investigations have been conducted at the Site. The following environmental investigations were reviewed in support of this Phase Two ESA report:

- 1. Pinchin (2016) Phase I Environmental Site Assessment, 590 Argus Road, Oakville, Ontario. Dated July 15, 2016, prepared by Pinchin Ltd.
- 2. BIG (2022a) Phase I Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated October 3, 2022, prepared by B.I.G. Consulting Inc.
- 3. BIG (2022b) Phase II Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated October 4, 2022, prepared by B.I.G. Consulting Inc.
- 4. BIG (2023) Phase One Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated April 28, 2023, prepared by B.I.G. Consulting Inc.

A brief summary of the investigations is included below:

Pinchin (2016) Phase I Environmental Site Assessment			
Objective	Identify former and existing potential environmental concerns at the Site.		
Potential	None identified at the Site.		
Environmental			
Concerns			
Identified			

BIG (2022a) Phase I Environmental Site Assessment			
Objective	Identify former and existing potential environmental concerns at the Site.		
Potential	 Potential fill material of unknown quality at the Site. 		
Environmental			
Concerns			
Identified			

BIG (2022b) Phase	e II Environmental Site Assessment
Objective	Investigate soil and groundwater quality at the Site.
Program	 Advancement of eight (8) boreholes (BH1 to BH8) up to a maximum depth of approximately 7.7 m below ground surface (bgs). Installation of five (5) monitoring wells (MW1, MW3, MW4, MW6, and MW8). Soil samples submitted for the analysis of polycyclic aromatic hydrocarbons (PAHs), and metals and inorganics. Groundwater samples submitted for petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX), and volatile organic compounds (VOCs).
Site Condition	MECP (2011) Table 6 Generic SCS for Shallow Soils in Potable Groundwater Condition
Standards	for Residential/Parkland/Institutional property with and coarse textured soil.
Soil	 The stratigraphy consists of asphalt followed by silty clay/clayey silt or sand & gravel fill material, underlain by weathered shale bedrock. Shale bedrock was encountered between 0.8 to 1.5 m bgs.
Groundwater	• Depth = 2.92 m bgs to 4.55 m bgs (May 4, 2021).
Soil Conditions	 Copper was detected at a concentration of 190 μg/g which is in exceedance of the SCS of 140 μg/g. All other parameters were either non-detect or below the SCS.
Groundwater Conditions	• All groundwater samples submitted were either non-detect or were detected below the applicable SCS.

BIG (2023) Phase One Environmental Site Assessment			
Objective	Identify existing or former potential sources of environmental concerns at the Site.		
Areas of	• Fill material of unknown quality at the exterior portions Site.		
potential	 Usage of de-icing salts at the exterior portions of the Site. 		
environmental	• Current transformer at the western portion of the Site.		
concerns	• Previously identified metals exceedance at the eastern portion of the Site.		
identified			

3 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the APECs identified in BIG's Phase One ESA; and, to obtain soil and groundwater data to characterize the Site to support the filing of an RSC on the MECP's BESR.

3.1.1 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- a) Request public utility locating companies (e.g., cable, telephone, gas, hydro, water, sewer and storm water) to mark any underground utilities present at the Site;
- b) Advance a total of twenty-two (22) boreholes (BH101 BH113 and BH201 BH209) up to a maximum depth of 30.8 m bgs;
- c) Instrument eleven (11) boreholes as monitoring wells (MW102, MW105 MW113, and MW203);
- d) Collect representative soil samples for laboratory chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and inorganics.
- e) Develop the newly installed groundwater monitoring wells;
- f) Collect groundwater levels from both the newly and previously installed monitoring wells;
- g) Collect groundwater samples from both the newly and previously installed monitoring wells for laboratory chemical analysis of PHCs, BTEX, VOCs, PAHs, metals and inorganics;
- h) Complete an elevation survey of all newly installed monitoring wells to determine the groundwater flow direction in the overburden aquifer beneath the Site;
- i) Analyze the data and prepare a report of the findings.

3.2 Media Investigated

The focus of the Phase Two ESA was on the environmental conditions of the surficial topsoil, overburden materials and groundwater beneath the Site. As there was no surface water body on the Site, no sediment sampling was required.

A copy of the Site Sampling and Analysis Plan (SSAP) prepared for the Site is provided in Appendix A.

3.3 Phase One Conceptual Site Model

This section presents the Phase One Conceptual Site Model (P1CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, and the presence and distribution of potential contaminants of concern. These components are discussed in the following sections.

The Site is located south of South Service Road East, and north of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 15,500 m² in size and is currently occupied by a six-storey commercial building (Site building). The Site building has a footprint of approximately 3,300 m² and occupies approximately 23 % of the Site. The Site building was reportedly constructed prior to 1960. The Site building is currently used as a hotel and is occupied by the Holiday Inn Oakville. The areas surrounding the Site building are covered with asphalt paved parking with landscaping along the southern, eastern and northern property boundaries. The nearest surface water body is Sixteen Mile Creek, located approximately 470 m southwest, and Lake Ontario is located approximately 2.30 km southeast of the Site. A Site layout plan is shown on Figure 2.

The legal description of the Site as obtained from the PIN abstract is "Lot 15, Plan 1333; part lots 13 and 14, concession 3 Trafalgar South of Dundas Street as in 82493 S & E parts 6, 7, 9 and 10, 20R15677; Town of Oakville". The Property Identification Number (PIN) is 24816-0113 (LT).

The approximate Universal Transverse Mercator (UTM) coordinates for the Site centroid was NAD83 17-4812516.62m N, 606332.34 m E. The UTM coordinates are based on measurements obtained from QGIS. The accuracy of the centroid is estimated to be 1 m.

Potentially Contaminating Activities

The Phase One ESA conducted by BIG in 2023 identified PCAs based on a groundwater flow direction towards the south/southeast. The water levels collected from across the Site during the BIG Hydrogeological Investigation and BIG Phase Two ESA determined that the shallow groundwater flow direction is flowing towards the southeast and the deep groundwater flow is towards the southwest. The shallow groundwater flow direction was used to determine PCAs contributing to APECs on-Site in the Phase One ESA. Four (4) PCAs in total were determined to be contributing to an APEC.

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
1.		Importation of Unknown Fill (PCA#30 – Importation of Fill Material of Unknown Quality)			
2.		Usage of de-icing salts (PCA"Other" – Usage of de- icing salts)			
3.	590 Argus Road	Current transformer (PCA#55 – Transformer Manufacturing, Processing and Use)	On-Site	Yes	On-Site
4.		Previously Identified Soil Exceedance (PCA"Other" – Previously Identified Metals Exceedance in Soil)			
5.	226 South Service Road East	Historic PCB Storage (PCA#55 – Transformer Manufacturing, Processing and Use)	Off-site (north adjacent)	No	PCBs are immobile
6.	234 South Service Road East	Current Transformer Use (PCA#55 – Transformer Manufacturing, Processing and Use)	Off-Site (east adjacent)	No	PCBs are immobile
7.	570 Trafalgar	Private fuel tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site	No	Inferred
8.	Road	Current Autobody Shop (PCA#10 – Commercial Autobody Shops)			transgradient
9.	580 Argus	Former Autobody Shop	Off-Site	No	Down gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
	Road	(PCA#10 – Commercial	(45 m		
		Autobody Shops)	southeast)		
10.	570 Argus Road	Current Autobody Shop (PCA#10 – Commercial Autobody Shops)			
11.	570 Argus	Sheet Metal Workshop (PCA#34 – Metal Fabrication)	Off-Site (90 m	No	Down gradient
12.	(Formerly 572 Argus Road)	Sheet Metal Workshop (PCA #33 - Metal Treatment, Coating, Plating and Finishing)	southeast)		
13.	187 Cross Avenue (Formerly 185 Cross avenue)	Leather Tanning Facility (PCA#53 – Tannery)	Off-Site (135 m southeast)	No	Down gradient
14.	155 North Service Road East	Historic Gasoline Spill (PCA"Other" – Gasoline Spill)	Off-Site (145 m northwest)	No	Significant distance
15.		Auto Service Facility (PCA#10 – Commercial Autobody Shops)			
16.	562 Trafalaar	Underground Fuel Storage Tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site	No	Tuono cuodiont
17.	Road	Gasoline Service Station (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	east)	NO	Trans-gradient
18.		Current Transformer (PCA#55 – Transformer Manufacturing, Processing, and Use)			
19.	125 Cross Avenue	Underground Fuel Storage Tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (180 m southwest)	No	Down gradient
20.	238 Cross Avenue (Formerly 218 Cross Avenue)	Fuel Storage Tanks (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (200 m south)	No	Down gradient
21.	312 Davis	Autobody Shop	Off-Site	No	Trans-gradient

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
	Road	(PCA#10 – Commercial	(225 m		
		Autobody Shops)	east)		
22.	547 Trafalgar	Paint Manufacturing (PCA#39 – Paint Manufacturing, Processing, and Bulk Storage)	Off-Site (230 m	No	Trans-gradient
23.	Road	Underground Storage Tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	east)		
24.	148 Cross Avenue	Steel Foundry (PCA#32 – Iron and Steel Manufacturing)	Off-Site (235 m South)	No	Down gradient

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.

The identification of the PCAs both on-Site and off-Site within the Phase One study area are shown on Figure 3. Based on the rationale provided, it is the opinion of the Qualified Person (QP) that four (4) PCAs are considered APECs at the Site. Further discussion is provided below.

Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, four (4) APECs were identified, as presented below:

APEC	Location of APEC on Phase One Property	PCA	Location of PCA (On-Site or Off-Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Importation of fill material	Exterior portion of the Site	#30 – Importation of Fill Material of Unknown Quality	On-Site	PAHs, metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 2: Use of de- icing salts	Exterior portion of the Site	"Other" – Usage of De-icing Salts	On-Site	Electrical Conductivity and SAR	Soil
APEC 3: Current Transformer	Western portion	#55 – Transformer Manufacturing, Processing and Use	On-Site	PCBs	Soil
APEC 4: Previously Identified Soil Exceedance	Eastern portion east of the Site building	"Other" – Previously Identified Metals Exceedance in Soil	On-Site	Metals	Soil and Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; As = arsenic, Sb = antimony, Se = selenium; Cr (VI) = chromium hexavalent; Hg = mercury; B-HWS = boron hot water soluble; CN- = cyanide; SAR = sodium adsorption ratio

The surficial geology of the Site is described as Paleozoic bedrock. The physiography of the Site is within the Iroquois Plains characterized as shale plains. The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member.

Based on the review of the OBM and Toporama map, the Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the northwest are generally at higher elevation than the Site.

There are no water bodies located on the Site. The nearest water body is Sixteen Mile Creek located approximately 470 m southwest and Lake Ontario is located approximately 2.30 km southeast. The inferred groundwater flow direction is likely towards the south/southeast.

Based on the review of available resources from the Ministry of Natural Resources and Forestry (MNRF) on March 15, 2023, no areas of natural significance were identified at the Site or within the Phase One Study Area.

The Site utilities and services that were identified at the Site based on the relevant utility infrastructure observed during the Phase One ESA conducted by BIG in 2023 are summarized in the table below. It is noted that the precise underground location of the utilities cannot be determined without professional locate services.

Utility	Source	Location	Site Entry
Storm Sewer	Municipality – Town of Oakville	North, east, south, west	Catch basins are located along Argus Road and surrounding the Site building.
Sanitary Sewer	Municipality – Halton Region	South	Manholes are located along Argus Road and in the on-Site parking lot.
Water	Municipality – Halton Region	South	Given that the Site is located in a mixed commercial area, the water lines are anticipated to run along Argus Road.
Natural Gas	Enbridge Gas	South	Given that the Site is located in a commercial area, the natural gas lines are anticipated to run along Argus Road.
Electricity	Oakville Hydro	South	Overhead hydro lines were observed along Argus Road.

3.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the SSAP, shown in Appendix A. No deviations from the SSAP were reported, which affected the sampling and data quality objectives for the Site.

3.5 Impediments

The entire Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.

4 Investigation Method

4.1 General

The Site investigative activities consisted of the drilling of twenty-two (22) boreholes to facilitate the collection of soil samples for geologic characterization and chemical analysis; and, the installation of monitoring wells for hydrogeologic property characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the surficial fill, overburden soils and bedrock by a licensed drilling company under the full-time supervision of BIG staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities. Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg.903) using manufactured well components (i.e., riser pipes and screens) and materials (i.e., sand pack and grout) from documented sources.

4.2 Borehole Drilling

Prior to the commencement of drilling activities, the locations of underground utilities including cable, telephone, natural gas, electrical lines, as well as water, sewer, storm water and sanitary lateral conduits were marked out by public locating companies. In addition, a private utility locating service was also retained to clear the individual borehole locations.

The fieldwork for the soil investigative portion of the Phase Two ESA was carried out between February 10 and March 1, 2023, and April 20, 2023.

The boreholes were advanced by Davis Drilling and Whittle's Drilling under full-time supervision of BIG staff using a truck mount power operated hollow and solid stem continuous flight augers to a maximum depth of 30.8 m bgs to sufficiently assess the APECs identified in the Phase One ESA. The approximate locations of the boreholes and monitoring wells are shown on Figure 4.

BIG continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered at regular intervals using a stainless-steel split spoon sampler in all boreholes.

4.3 Soil Sampling

Soil samples for geologic characterization and chemical analysis were collected on a discrete basis in the overburden materials using 5 cm diameter, 60 cm long, split spoon samples advanced into the subsurface using a track mounted power probe. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by BIG field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory Bureau Veritas (BV) of Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to BV following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. Drill cuttings were placed in labeled, sealed drums upon completion of sampling. Eleven (11) of the boreholes that were advanced were installed with monitoring wells (MW102, MW104 – MW113, and MW203).

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, sample location and depth interval.

Geologic details of the soil cores recovered from the boreholes advanced at the Site are provided in boreholes logs presented in Appendix C.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH101-SS1	DUP10101	Metals, As, Sb and Se
BH102-SS1	DUP10201	Metals, As, Sb, Se, Cr (VI), B- HWS, Hg, CN- and Inorganics
BH102-SS2	DUP10202	Metals, As, Sb and Se
BH105-SS3	DUP10503	BTEXand VOCs
BH106-SS1	DUP10601	PAHs
BH107-SS1	DUP10701	PAHs
BH109-SS1	DUP10901	PAHs
BH201-SS1	DUP20101	PAHs
BH203-SS3	DUP20303	PHCs and BTEX
BH206-SS1	DUP20601	Metals, As, Sb and Se
BH208-SS1	DUP20801	PCBs

Eleven (11) duplicate soil samples were collected for QA/QC purposes as summarized below.

4.4 Field Screening Measurements

A portion of each soil core was placed in a sealed "Ziploc[®]" plastic bag and allowed to reach ambient temperature prior to field screening using a MiniRae 3000 Photo Ionization Detection (PID) instrument, calibrated with isobutulene gas. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis.

The field screening measurements, in parts per million (ppm) isobutylene equivalents, are presented on the borehole logs in Appendix C.

Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling.

4.5 Groundwater: Monitoring Well Installation

Eleven (11) boreholes were instrumented with groundwater monitoring wells at the Site (MW102, MW105 – MW113, and MW203). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903/90 - amended to O.Reg.128/03 and were installed by a licensed well contractor.

All monitoring wells consisted of a 3 m length, 50 mm diameter PVC screen, and an appropriate length of PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O.Reg.128/03. Monitoring well completion details are summarized in Table 3.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- a) The use of well pipe components (e.g., riser pipe and well screens) with factory machine threaded flush coupling joints;
- b) Construction of wells without the use of glues or adhesives;
- c) Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces;
- d) Cleaning of augers between sampling locations; and,
- e) The use of hollow stem augers to prevent loose and potentially contaminated material in overlying layers from sloughing into the boreholes and coming into contact with groundwater.

4.6 Monitoring Well Development

Upon completion of monitoring well installation, the new monitoring wells were developed to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The monitoring wells were developed on February 28, May 5, and July 27, 2023, using dedicated Waterra tubing to disturb the water column and recover groundwater containing dislodged sediment particles.

4.7 Groundwater Monitoring

Groundwater monitoring activities, which consisted of measuring the depths to groundwater in each monitoring well, were conducted on newly installed monitoring wells so that groundwater flow and direction below the Site could be assessed and groundwater samples can be collected. These groundwater monitoring activities were conducted on March 3 and May 5, 2023. Water levels were measured with respect to the top of casing by means of an electronic water level meter. The water level measurements were recorded on water level log sheets or in a bound field notebook. The water level meter probe was decontaminated between monitoring well locations.

4.8 Monitoring Well Purging

Monitoring wells were purged prior to groundwater sample collection. Approximately three (3) wetted well volumes of water were purged from each well to remove standing water and draw in fresh formation water. Water levels and wetted well volumes were determined by means of an electronic water level meter.

Well purging was monitored by taking field measurements of turbidity, redox, pH, specific conductance and temperature and water level for every standing well (i.e., wetted casing) volume removed. Well purging continued until the purged water had chemically stabilized as indicated by field parameter measurements, and the water was of sufficient clarity as indicated by turbidity measurements. The groundwater was considered to be chemically stable when the pH measurements of three (3) successive purge well volumes agreed to within \pm 1 pH units, the specific conductance within \pm 10%, and turbidity \pm 10% of the average value of the three readings with the temperature within \pm 3%. Field parameters including pH, conductivity and temperature were monitored during monitoring well purging using a Horiba U-52 multiparameter water quality meter. All development water was collected and stored on-Site in labeled, sealed containers.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were documented on a log sheet or in a bound hard cover notebook.

4.9 Field Measurements of Water Quality Parameters

Field parameters including pH, conductivity and temperature were monitored during well development using a Horiba U-52multiparameter water quality meter.

4.10 Groundwater Sampling

Upon completion of purging, the newly installed monitoring well MW102 was sampled on March 3, 2023, monitoring well MW112 was sampled on May 16, 2023, and monitoring wells BH/MW3, BH/MW108 and BH/MW203 were sampled on July 27, 2023. Recommended groundwater sample volumes were collected into laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. The groundwater samples were transported to BV under Chain of Custody protocols, within 24 hours of sample collection or approved holding times.

4.11 Sediment Sampling

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA.

4.12 Analytical Testing

All analytical testing was performed by BV, which is accredited under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. 15025) in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories".

4.12.1 Soil Sampling

Representative soil samples from each borehole were selected for laboratory analysis based on field screening results, sample location and depth interval. The requested laboratory analysis was based on the identified contaminants of concern. The representative soil samples selected for laboratory analysis, the rationale for each sample and the requested analyses are summarized below.

Soil Sample ID	Rationale	Requested Analyses	Consultant	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-	PIC (2022b)	
DU1-221	characterization	HWS, CN- and Inorganics	BIG (2022b)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-	PIC (2022b)	
DU7-221	characterization	HWS, CN- and Inorganics	ыб (2022b)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-		
DL2-221	characterization	HWS, CN- and Inorganics	ыб (2022b)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-		
BH4-331	characterization	HWS, CN- and Inorganics	BIG (2022b)	
BH5-SS1	APEC 1 characterization	PAHs	BIG (2022b)	
	APECs 1 and 2	Metals, As, Sb, Se, Cr (VI), Hg, B-HWS,		
DID-22	characterization	CN- and Inorganics	ыб (2022b)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-		
DL0-221	characterization	HWS, CN- and Inorganics	BIG (2022D)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-		
DU1-221	characterization	HWS, CN- and Inorganics	ыб (2022b)	
	APECs 1 and 2	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-	PIC (2022b)	
DL0-221	characterization	HWS, CN- and Inorganics	ы <u>ы</u> (20220)	

Table 2: Summary of Soil Samples Submitted for Chemical Analyses

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH101-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH102-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH102-SS2	Vertical delineation	Metals, As, Sb, and Se	BIG (2023)
BH103-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH104-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH104-SS2	Site characterization and vertical delineation	BTEX, VOCs, Metals, As, Sb, and Se	BIG (2023)
BH105-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH105-SS3	High PID value	BTEX and VOCs	BIG (2023)
511200 000	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	510 (2020)
BH106-SS1	characterization	HWS, CN- and Inorganics	BIG (2023)
	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	
BH107-SS1	characterization	HWS_CN- and Inorganics	BIG (2023)
	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	
BH108-SS1	characterization	HWS CN- and Inorganics	BIG (2023)
BH108-SS2	High PID value	BTEX and VOCs	BIG (2023)
51100 002	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	510 (2020)
BH109-SS1	characterization	HWS CN- and Inorganics	BIG (2023)
	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	
BH110-SS1	characterization	HWS_CN- and Inorganics	BIG (2023)
BH110-SS3	High PID value	BTEX and VOCs	BIG (2023)
51110 000	APECs 1 and 2	PAHs Metals As Sh Se Cr (VI) Hg B-	510 (2020)
BH111-SS1	characterization	HWS_CN- and Inorganics	BIG (2023)
BH112-SS1	APEC 1 characterization	PAHs	BIG (2023)
	APECs 1 and 2		
BH112-SS2	characterization and vertical	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B-	BIG (2023)
	delineation	HWS, CN- and Inorganics	
BH112-SS3	High PID value	BTEX and VOCs	BIG (2023)
	APECs 1 and 2	PAHs. Metals. As. Sb. Se. Cr (VI). Hg. B-	
BH113-SS1	characterization	HWS. CN- and Inorganics	BIG (2023)
BH113-SS2	High PID value	BTEX and VOCs	BIG (2023)
BH201-SS1	Horizontal delineation	PAHs	BIG (2023)
BH201-SS2	Horizontal delineation	PHCs and BTEX	BIG (2023)
BH202-SS1	Horizontal delineation	PAHs	BIG (2023)
	Horizontal and vertical		
BH202-SS2	delineation	PHCs, BTEX and PAHs	BIG (2023)
BH203-SS1	Horizontal delineation	PAHs	BIG (2023)
BH203-SS2	PHC odour and black staining	PHCs and BTEX	BIG (2023)
BH203-SS3	High PID value	PHCs and BTEX	BIG (2023)
BH204-SS1	Horizontal delineation	PAHs	BIG (2023)
	PHC odour. black staining and		
BH204-SS2	vertical delineation	PHCs, BTEX and PAHs	BIG (2023)
BH205-SS1	Horizontal delineation	Metals, As, Sb. and Se	BIG (2023)
BH206-SS1	Horizontal delineation	Metals, As, Sb. and Se	BIG (2023)
BH207-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH208-SS1	APEC 3 characterization	PCBs	BIG (2023)
BH209-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)

4.12.2 Groundwater Sampling

Representative groundwater samples were submitted for specific chemical analysis based on the identified contaminants of concern. The representative groundwater samples selected for lab analysis, the rationale for each sample, and the required analyses are summarized below.

Monitoring Well ID	Sampling Date	Rationale	Requested Analyses	Consultant
	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW1	September 30, 2022	Site characterization	VOCs	
	May 5, 2023	Site characterization	PHCs and BTEX	BIG (2023)
	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW3	July 27, 2023	Site characterization	Metals, As, Sb, Se, Cr (VI), Hg, CN- and Inorganics	BIG (2023)
BH/MW4	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW6	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW8	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW102	March 3, 2023	APEC 4 characterization	Metals, As, Sb, Se, Cr (VI), Hg, CN- and Inorganics	BIG (2023)
BH/MW108	July 27, 2023	APEC 4 characterization	Metals, As, Sb, Se, Cr (VI), Hg, CN- and Inorganics	BIG (2023)
BH/MW112	May 16, 2023	Site characterization	PHCs and BTEX	BIG (2023)
BH/MW203	July 27, 2023	Site characterization	PHCs, BTEX, VOCs, and PAHs	BIG (2023)

Table 3: Summary of Groundwater Samples Submitted for Chemical Analyses

4.13 Elevation Survey

An elevation survey was conducted to obtain vertical control of the newly installed borehole and monitoring well locations. The ground surface elevations of each newly installed monitoring well and borehole locations were surveyed relative to the geodetic benchmark. The ground surface elevations were surveyed by BIG personnel and referenced to previously surveyed wells. A summary of groundwater levels and elevations is provided below.

Monitoring Well ID	Ground Surface Elevation	Groundwater Level (m bgs)	Groundwater Elevation (m ASL)	Groundwater Level Monitoring Date
		3.90	100.55	May 31, 2022
	104.45	3.36	101.09	March 3, 2023
	104.45	3.58	100.87	May 5, 2023
		3.69	100.76	July 27, 2023
BH2	105.02	-	-	-
	104.04	3.37	101.47	May 31, 2022
		2.88	101.96	March 3, 2023
	104.84	4.01	100.83	May 5, 2023
		3.00	101.84	July 27, 2023
		3.44	101.61	May 31, 2022
BH/MW4	105.05	3.08	101.97	March 3, 2023
		3.53	101.52	May 5, 2023
		3.12	101.93	July 27, 2023

Table 4: Summary of Groundwater Levels and Elevations

Monitoring Well ID	Ground Surface	Groundwater	Groundwater	Groundwater Level
	Elevation	Level (m bgs)	Elevation (m ASL)	Monitoring Date
BH5	105.13	-	-	_
		2.92	102.44	May 31, 2022
	105.26	We	Il not accessible on Ma	rch 3, 2023
סחיזייס	105.50	2.50	102.86	May 5, 2023
		2.60	102.76	July 27, 2023
BH7	105.08	-	-	-
		4.55	100.57	May 31, 2022
	105 10	We	ell not accessible on Ma	rch 3, 2023
DIT/IVIVO	105.12	4.32	100.80	May 5, 2023
		4.43	100.69	July 27, 2023
BH101	105.00	-	-	-
		3.52	101.52	March 3, 2023
BH/MW102	105.04	3.37	101.67	May 5, 2023
		3.62	101.42	July 27, 2023
BH103	104.90	-	-	-
BH104	104.90	-	-	-
		4.20	100.76	March 3, 2023
BH/MW105	104.96	4.30	100.66	May 5, 2023
		4.49	100.47	July 27, 2023
		2.41	102.72	March 3, 2023
BH/MW106	105.13	2.48	102.65	May 5, 2023
		2.60	102.53	July 27, 2023
		We	Il not accessible on Ma	rch 3, 2023
BH/MW107	104.65	3.65	101.01	May 5, 2023
		3.18	101.48	July 27, 2023
		3.45	101.06	March 3, 2023
BH/MW108	104.51	3.58	100.93	May 5, 2023
		3.70	100.81	July 27, 2023
		23.09	82.00	March 3, 2023
BH/MW109	105.09	11.47	93.62	May 5, 2023
		11.64	93.45	July 27, 2023
		3.66	101.64	March 3, 2023
BH/MW110	105.30	4.82	100.48	May 5, 2023
		3.82	101.48	July 27, 2023
		6.84	98.24	March 3, 2023
BH/MW111	105.08	7.76	97.32	May 5, 2023
		6.92	98.16	July 27, 2023
		5.04	99.81	March 3, 2023
BH/MW112	104.85	5.25	99.60	May 5, 2023
		5.27	99.58	July 27, 2023
		23.84	81.24	March 3, 2023
BH/MW113	105.08	20.49	84.59	May 5, 2023
		20.06	85.02	July 27, 2023
BH201	104.86	_	-	-
BH202	104.89	-	-	-
	104.04	2.83	102.11	May 5, 2023
вп/10100203	104.94	3.02	101.92	July 27, 2023
BH204	104.76	-	-	-

Monitoring Well ID	Ground Surface Elevation	Groundwater Level (m bgs)	Groundwater Elevation (m ASL)	Groundwater Level Monitoring Date
BH205	104.97	-	-	-
BH206	104.89	-	-	-
BH207	104.91	-	-	-
BH208	105.24	-	-	-
BH209	104.99	-	-	-

The elevation survey was completed using BIG's own Sokkia B40. The survey equipment was calibrated by BIG personnel prior to use.

4.14 Quality Assurance and Quality Control Measures

Quality Assurance/Quality Control (QA/QC) measures, as set out in the Sampling and Analysis Plan, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision and trip blanks were included to evaluate the potential for sample cross-contamination during handling and transport.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH101-SS1	DUP10101	Metals, As, Sb and Se
BH102-SS1	DUB10201	Metals, As, Sb, Se, Cr (VI), B-
B11102-551	D0710201	HWS, Hg, CN- and Inorganics
BH102-SS2	DUP10202	Metals, As, Sb and Se
BH105-SS3	DUP10503	BTEX and VOCs
BH106-SS1	DUP10601	PAHs
BH107-SS1	DUP10701	PAHs
BH109-SS1	DUP10901	PAHs
BH201-SS1	DUP20101	PAHs
BH203-SS3	DUP20303	PHCs and BTEX
BH206-SS1	DUP20601	Metals, As, Sb and Se
BH208-SS1	DUP20801	PCBs

Eleven (11) duplicate soil samples were collected for QA/QC purposes as summarized below.

Two (2) duplicate groundwater samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group
MW102	DUP1020	Metals, As, Sb, Se, Cr (VI), Hg, CN- and Inorganics
MW203	DUP2030	PHCs, BTEX, VOCs and PAHs

There were no significant deviations from the SSAP.

5 Review and Evaluation

5.1 Geology

The soil investigation conducted at the Site consisted of the advancement of twenty-two (22) boreholes into the surficial soil, the underlying native and bedrock materials to a maximum depth of 30.8 m bgs. Borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix C. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as revealed in the borehole logs, consists of asphalt or topsoil followed by sand and gravel, silty sand/sandy silt and silty clay/clayey silt fill material, underlain by native clayey silt/silty clay and shale complex underlain by shale bedrock.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections (Figures 7A, 8A and 9A).

5.1.1 Surficial Material

An asphalt layer was encountered at all boreholes except for BH208. The asphalt ranged in thickness from 40 mm to 100 mm and was underlain by granular material ranging in thickness from 100 mm to 400 mm. A layer of crushed asphalt in 140 mm thickness was encountered at BH111. A layer of topsoil was encountered at BH208 with a thickness of 300 mm.

5.1.2 Fill Material

Fill material comprised of sand and gravel, silty sand/sandy silt and silty clay/clayey silt was encountered in all boreholes advanced at the Site except for BH205, BH206, and BH209 and extended to depths ranging between 0.91 m to 2.29 m bgs. The fill material contained trace to some gravel and limestone fragments.

5.1.3 Native Material

Silty Clay/Shale Complex

Below the fill material, a native deposit of silty clay/shale complex was observed in boreholes BH101, BH/MW102, BH103, BH104, BH/MW105 to BH/MW113, BH201, BH202, BH/MW203, and BH204 and below the asphalt at BH205 and BH209. The silty clay/shale complex layer extended to depths ranging from 0.6 m to 2.6 m bgs. Within this layer, occasional shale and limestone fragments were encountered.

Clayey Silt/Silty Clay

Below the asphalt, a native deposit of clayey silt/silty clay was observed in BH206 and BH207. The silt layer extended to a depth of 2.1 m bgs. Within this layer, trace sand, trace gravel and trace to some limestone were encountered.

5.1.4 Bedrock

Below the silty clay/shale complex, a highly weathered reddish brown and/or grey shale bedrock was encountered in all boreholes with the exception of shallow boreholes BH201, BH202, BH205 to BH209. The shale bedrock unit was encountered at depths ranging from 1.5 m to 2.6 m bgs, with more than two-thirds (2/3) of the Site consisting of soil equal to or greater than 2 m in depth before the bedrock was encountered.

Refer to the geological cross sections in Figures 7A, 8A and 9A for an overview of the Site stratigraphy.

5.2 Groundwater Elevations and Flow Direction

The on-Site monitoring well network consists of a total of sixteen (16) monitoring wells advanced by BIG screened within the bedrock. Monitoring well screens were installed to assess both the shallow and deep aquifers present at the Site with ten (10) monitoring wells installed within the shallow aquifer and six (6) monitoring wells installed within the deep aquifer.

Groundwater depths in the shallow aquifer ranged between approximately 2.48 m and 4.32 m bgs and groundwater depths within the deep aquifer ranged between approximately 2.83 m and 20.49 m bgs, on May 5, 2023.

Based on the topography and the distance of the Site to Lake Ontario, the inferred groundwater flow direction was considered to be to the south/southeast in the Phase One ESA. Based on the static water levels observed, the interpreted shallow groundwater flow was towards the southeast and the interpreted deep groundwater flow was towards the southwest. The interpreted shallow groundwater flow was used to determine if any off-Site PCAs were to be considered as APECs. The interpreted shallow groundwater flow direction is presented on Figure 6A and the interpreted deep groundwater flow direction is presented on Figure 6B.

5.2.1 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

i = Ah/As

Where,

i = horizontal hydraulic gradient;

Ah (m) = groundwater elevation difference; and,

As (m) = separation distance.

The horizontal hydraulic gradient in groundwater in the shallow aquifer, based on groundwater measurements collected on May 5, 2023 was 0.053 m/m between BH/MW106 and BH/MW8 and 0.017 m/m between BH/MW6 and BH/MW105 with a geomean of 0.030 m/m. The horizontal hydraulic gradient in groundwater in the deep aquifer, based on groundwater measurements collected on May 5, 2023 was 0.054 m/m between BH/MW110 and BH/MW111 and 0.012 m/m between BH/MW108 and BH/MW112 with a geomean of 0.025 m/m.

The vertical hydraulic gradient in groundwater, based on groundwater measurements collected on May 5, 2023 was 0.005 m/m in a downward direction (between BH/MW1 and BH/MW108).

5.2.2 Groundwater: Hydraulic Conductivity

Single Well Response Test (SWRT) analyses were conducted by BIG at select monitoring wells within the shallow and deep aquifers. In the deep aquifer, BH/MW108 to BH/MW113 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the deep aquifer ranged from 1.52×10^{-8} m/s to 4.07×10^{-6} m/s, with a geometric mean of 3.65×10^{-7} m/s. In the shallow aquifer, BH/MW1, BH/MW3, BH/MW4, BH/MW6, BH/MW102 and BH/MW106 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer ranged from 5.87×10^{-8} m/s to 2.71×10^{-5} m/s, with a geometric mean of 3.41×10^{-6} m/s.

5.3 Soil Texture

The fill materials encountered were comprised of sandy silt, silty sand, sand and gravel, silty clay and clayey silt and the native materials encountered, are comprised of clayey silt/silty clay and shale complex. Coarse textured standards were applied as part of this Phase Two ESA.

5.4 Soil Field Screening

All soil samples were submitted for chemical analyses based on field observations, location and depth.

5.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix F.

5.5.1 PHCs

The soil samples submitted for PHCs analysis indicated that select parameters were detected at concentrations above the applicable MECP Table 2 SCS:

Parameter	MECP (2011a) Table 2 SCS (µg/g)	Number of Soil Samples Submitted	Number of Soil Samples Exceeding the applicable SCS	Maximum concentration detected (µg/g)
PHC F2	98	5	2	1,400
PHC F3	300	5	2	1,000

The remaining parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Table B.1 for a summary of the soil results analyzed for PHCs.

5.5.2 BTEX

The soil samples submitted for BTEX analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.2 for a summary of the soil results analyzed for BTEX.

5.5.3 VOCs

The soil samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.2 for a summary of the soil results analyzed for VOCs.

5.5.4 PAHs

The soil samples submitted for PAHs analysis indicated that select parameters were detected at concentrations above the applicable MECP Table 2 SCS:

Parameter	MECP (2011a) Table 2 SCS (µg/g)	Number of Soil Samples Submitted	Number of Soil Samples Exceeding the applicable SCS	Maximum concentration detected (µg/g)
Benzo(a)pyrene	0.30	24	1	0.52
Fluoranthene	0.69	24	1	1.60

The remaining parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Table B.3 for a summary of the soil results analyzed for PAHs.

5.5.5 PCBs

The soil sample submitted for PCBs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.4 for a summary of the soil results analyzed for PCBs.

5.5.6 Metals

The soil samples submitted for metals analysis indicated that select parameters were detected at concentrations above the applicable MECP Table 2 SCS:

	MECP (2011a)	Number of Soil	Number of Soil	Maximum
Parameter	Table 2 SCS	Samples	Samples Exceeding	concentration
	(µg/g)	Submitted	the applicable SCS	detected (µg/g)
Copper	140	27	4	360

The remaining parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Table B.5 for a summary of the soil results analyzed for metals.

5.5.7 Inorganics

Electrical conductivity (EC) and/or sodium adsorption ratio (SAR) exceedances were identified in soil across the exterior portion of the Site. EC and SAR are not considered as contaminants of concern (COC) at the Site as under the newly amended O.Reg.153/04 (O.Reg.407/19) Section 49.1 (1), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS.

As de-icing salts were used at the Site for vehicular and pedestrian safety, EC and SAR are not considered as COCs in soil at the Site.

The remaining inorganic parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Table B.5 for a summary of the soil results analyzed for inorganics.

5.5.8 Chemical Transformation and Soil Contaminant Sources

PHC F2, PHC F3, benzo(a)pyrene, fluoranthene, and copper were identified in soil at concentrations in exceedance of the applicable MECP Table 2 SCS. Given the nature of the compounds it is not expected that any chemical transformations (i.e., presence of parent compounds and daughter products) has occurred on the property. Further assessment would need to be conducted to assess whether any natural attenuation processes have occurred.

5.5.9 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes indicated the presence of some black staining and PHC odours at BH203 and BH204.

5.6 Groundwater Quality

Representative groundwater samples were collected from the newly installed interior monitoring wells and some of the previously installed monitoring wells to assess groundwater quality at the Site. Evidence of free product (i.e., visible film or sheen), and odour was not observed during well purging (noted in Section 5.6.7).

Analytical results summary tables are provided in Appendix B and copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix F.

5.6.1 PHCs

Groundwater samples submitted for PHCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.6 for a summary of the groundwater results analyzed for PHCs.

5.6.2 BTEX

Groundwater samples submitted for BTEX analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.7 for a summary of the groundwater results analyzed for BTEX.

5.6.3 VOCs

Groundwater samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.7 for a summary of the groundwater results analyzed for VOCs.

5.6.4 PAHs

Groundwater samples submitted for PAHs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.8 for a summary of the groundwater results analyzed for PAHs.

5.6.5 Metals

Groundwater sample submitted for metals analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Table B.9 for a summary of the groundwater results analyzed for metals.

5.6.6 Sodium and Chloride

Sodium and chloride exceedances were identified in groundwater at MW3, MW102 and MW108. The contaminants were not considered as contaminants of concerns (COCs) at the Site as under the newly amended O.Reg.153/04 (O.Reg.407/19), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS. As de-icing salts were used at the Site in the past for vehicular and pedestrian safety, sodium and chloride are not considered as COCs in groundwater at the Site.

The remaining parameters were either non-detect or detected below the applicable MECP Table 3 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Table B.9 for a summary of the groundwater results analyzed for sodium and chloride.

5.6.7 Chemical Transformation and Contaminant Sources

No parameters were identified in groundwater in exceedance of the applicable MECP Table 2 SCS and as such it is not expected that any chemical transformation (i.e., presence of parent compounds and daughter products) has occurred on the property.

5.6.8 Evidence of Non-Aqueous Phase Liquid

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour in groundwater.

5.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA did not include sediment sampling.

5.8 Quality Assurance and Quality Control Measures

QA/QC measures were taken during the field activities to meet the objectives of the sampling and QA plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and water table aquifer unit at the Site. QA/QC measures included:

- a) The collection of soil and groundwater samples following standard operating procedures;
- b) The implementation of decontamination procedures to minimize the potential for sample cross contamination;
- c) The collection of recommended analytical test group specific volumes into pre-cleaned laboratory supplied containers provided with necessary preservatives as required;
- d) Sample preservation in insulated coolers pre-chilled with ice and meeting holding time requirements;
- e) Sample documentation including Chain of Custody protocols; and
- f) The collection of QC samples.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*', dated March 9, 2004, amended as of July 1,2011. Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH101-SS1	DUP10101	Metals, As, Sb and Se
	DUD10201	Metals, As, Sb, Se, Cr (VI), B-
БП102-331	D0P10201	HWS, Hg, CN- and Inorganics
BH102-SS2	DUP10202	Metals, As, Sb and Se
BH105-SS3	DUP10503	BTEX and VOCs
BH106-SS1	DUP10601	PAHs
BH107-SS1	DUP10701	PAHs
BH109-SS1	DUP10901	PAHs
BH201-SS1	DUP20101	PAHs
BH203-SS3	DUP20303	PHCs and BTEX

Eleven (11) duplicate soil samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH206-SS1	DUP20601	Metals, As, Sb and Se
BH208-SS1	DUP20801	PCBs

Two (2) duplicate groundwater samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group
MW102	DUP1020	Metals, As, Sb, Se, Cr (VI), Hg, CN- and Inorganics
MW203	DUP2030	PHCs, BTEX, VOCs and PAHs

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil and groundwater samples, where quantifiable, showed that the results met analytical test group specific acceptance criteria with the exception of copper at BH101-SS1, BH102-SS1, and BH102-SS2 in soil, uranium at BH102-SS2 in soil, and chromium (total), cobalt, nickel and vanadium at BH102-SS1 which were above the MECP standard for metals in soils of 30% RPD (MECP, 2011b). The high RPDs at BH101-SS1, BH102-SS1 and BH102-SS2 in soil are likely due to the heterogeneity of the sampled fill material. The overall assessment indicates that the soil and groundwater samples were collected within an acceptable level of precision, and the data is acceptable quality for meeting the objectives of the Phase Two ESA.

The subcontract laboratory used during this investigation was BV. BV is accredited by the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. 15025) in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories".

Certificates of Analysis were received from BV reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the BV Certificates of Analysis are provided in Appendix F. Review of the Certificates of Analysis prepared by BV Labs indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg.153/04.

The analytical program conducted by BV included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by BV. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, RPDs for laboratory duplicates and analyte concentrations for method blanks.

The BV QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by BV indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by BV are of acceptable quality and data qualifications are not required.

5.9 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.9.1 Introduction

The Site is located south of South Service Road East, and north of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 15,500 m² in size and is currently occupied by a six-storey commercial building (Site building). The Site building has a footprint of approximately 3,300 m² and occupies approximately 23 % of the Site. The Site building was reportedly constructed prior to 1960. The Site building is currently used as a hotel and is occupied by the Holiday Inn Oakville. The areas surrounding the Site building are covered with asphalt paved parking with landscaping along the southern, eastern and northern property boundaries. The nearest surface water body is Sixteen Mile Creek, located approximately 470 m southwest, and Lake Ontario is located approximately 2.30 km southeast of the Site. A Site layout plan is shown on Figure 2.

Refer to the following table for the Site identification information.

Site Details	
Municipal Address	590 Argus Road, Oakville, Ontario
Current Owners	590 Argus Developments Inc.
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5
Owner Contact Information	Mr. Emil Toma
	Lot 15, Plan 1333; part lots 13 and 14, concession 3 Trafalgar
Legal Description	South of Dundas Street as in 82493 S & E parts 6, 7, 9 and 10,
	20R15677; Town of Oakville
Property Identification Number (PIN)	24816-0113
Property Size	15,500 m ²
	Zone: 17
Approximate Universal Transverse	Easting: 606332.34
Mercator (UTM) coordinates	Northing: 4812516.62
	(1m, NAD83, QGIS)

Table 1: Site Information

5.9.2 Potentially Contaminating Activities and Areas of Potential Environmental Concern

A Phase One ESA, in accordance with O. Reg. 153/04, as amended, has been conducted by BIG for the Site. The surrounding land use plan and PCAs identified On-Site and in the Phase One ESA Study Area are shown on Figure 2. A list of all PCA's identified at the Site and within the Phase One ESA Study Area are presented in Table 2. The interpreted shallow groundwater contour plan (Figure 6A) was used to determine if an off-Site PCA was to be considered as an APEC.

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale
1.	500 Argue	Importation of Unknown Fill (PCA#30 – Importation of Fill Material of Unknown Quality)			On-Site
2.	– 590 Argus Road	Usage of de-icing salts (PCA"Other" – Usage of de- icing salts)	On-Site	Yes	
3.		Current transformer (PCA#55 – Transformer			

Table 2: Potentially Contaminating Activities in the Phase One Study Area

PCA Identifier	Address	РСА	PCA Location	Contributing to APEC at the Site?	Rationale	
		Manufacturing, Processing and Use)				
4.		Previously Identified Soil Exceedance (PCA"Other" – Previously Identified Metals Exceedance in Soil)				
5.	226 South Service Road East	Historic PCB Storage (PCA#55 – Transformer Manufacturing, Processing and Use)	Off-site (north adjacent)	No	PCBs are immobile	
6.	234 South Service Road East	Current Transformer Use (PCA#55 – Transformer Manufacturing, Processing and Use)	Off-Site (east adjacent)	No	PCBs are immobile	
7.	570 Trafalgar	Private fuel tank (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site	No	Inferred	
8.	Road	Current Autobody Shop (PCA#10 – Commercial Autobody Shops)	(25 m east)			
9.	580 Argus Road	Former Autobody Shop (PCA#10 – Commercial Autobody Shops)	Off-Site (45 m southeast)	No	Down gradient	
10.	570 Argus Road	Current Autobody Shop (PCA#10 – Commercial Autobody Shops)				
11.	570 Argus Road	Sheet Metal Workshop (PCA#34 – Metal Fabrication)	Off-Site (90 m	No	Down gradient	
12.	(Formerly 572 Argus Road)	Sheet Metal Workshop (PCA #33 - Metal Treatment, Coating, Plating and Finishing)	southeast)			
13.	187 Cross Avenue (Formerly 185 Cross avenue)	Leather Tanning Facility (PCA#53 – Tannery)	Off-Site (135 m southeast)	No	Down gradient	
14.	155 North Service Road East	Historic Gasoline Spill (PCA"Other" – Gasoline Spill)	Off-Site (145 m northwest)	No	Significant distance	
15.	562 Trafalgar Road	Auto Service Facility (PCA#10 – Commercial Autobody Shops)	Off-Site (170 m	No	Trans-gradient	
16.	Noau	Underground Fuel Storage	custy			

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale	
		Tank				
		(PCA#28 – Gasoline and				
		Associated Products Storage				
		in Fixed Tanks)				
		Gasoline Service Station				
47		(PCA#28 – Gasoline and				
17.		Associated Products Storage				
		in Fixed Tanks)				
		Current Transformer				
10		(PCA#55 – Transformer				
18.		Manufacturing, Processing,				
		and Use)				
		Underground Fuel Storage				
	125 Cross Avenue	Tank	Off-Site			
19.		(PCA#28 – Gasoline and	(180 m	No	Down gradient	
		Associated Products Storage	southwest)			
		in Fixed Tanks)				
	238 Cross	Fuel Storage Tanks				
	Avenue (Formerly 218 Cross	(PCA#28 – Gasoline and	Off-Site			
20.		Associated Products Storage	ciated Products Storage (200 m N	No	Down gradient	
		in Fixed Tanks)	south)	south)		
	Avenue)		0.00			
	312 Davis Road	Autobody Shop	Off-Site			
21.		(PCA#10 – Commercial	(225 m	No	Trans-gradient	
		Autobody Shops)	east)			
		Paint Manufacturing				
22.		(PCA#39 – Paint				
	547	Manufacturing, Processing,	Off-Site			
	Trafalgar	and Bulk Storage)	(230 m	No	Trans-gradient	
23.	Road	Underground Storage Tank	east)		C	
		(PCA#28 – Gasoline and	,			
		Associated Products Storage				
		In Fixed Tanks)				
24	148 Cross	Steel Foundry	Off-Site			
24.	Avenue	(PCA#32 – Iron and Steel	(235 m	NO	Down gradient	
		,	Manufacturing)	South)		1

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

The identification of the PCAs both on-Site and off-Site within the Phase One study area are shown on Figure 3.

Based on the rationale provided, it is the opinion of the Qualified Person (QP) that four (4) PCAs are considered APECs at the Site. Further discussion is provided below.

5.9.3 Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, four (4) APECs were identified, as presented below:

Table 3: Areas of Potentia	al Environmental	Concern	(APECs)
----------------------------	------------------	---------	---------

APEC	Location of APEC on Phase One Property	РСА	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Importation of fill material	Exterior portion of the Site	#30 – Importation of Fill Material of Unknown Quality	Fill material of unknown quality was identified on- Site. As the quality of the fill was unknown, it could be contaminated.	On-Site	PAHs, metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 2: Use of de- icing salts	Exterior portion of the Site	"Other" – Usage of De- icing Salts	De-icing salt were used during the winter months on the exterior portion of the Site for vehicular and pedestrian safety during the winter months.	On-Site	Electrical Conductivity and SAR	Soil
APEC 3: Current Transformer	Western portion	#55 – Transformer Manufacturing, Processing and Use	The on-Site transformer located at the western portion of the Site may have leaked.	On-Site	PCBs	Soil
APEC 4: Previously Identified Soil Exceedance	Eastern portion east of the Site building	"Other" – Previously Identified Metals Exceedance in Soil	Previously identified metals soil exceedance at BH2 may have leached into the groundwater.	On-Site	Metals	Soil and Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

PAHs = polycyclic aromatic hydrocarbons; PCBs = polychlorinated biphenyls; As = arsenic, Sb = antimony, Se = selenium; Cr (VI) = chromium hexavalent; Hg = mercury; B-HWS = boron hot water soluble; CN- = cyanide; SAR = sodium adsorption ratio

Refer to Figures 4 and 5 for the Site plan illustrating the borehole/monitoring well locations and APECs and to Table 4 below for details on APEC characterization.

Table 4: APECs Characterization Details

APEC	APEC Details	Media Potentially Impacted	Boreholes/ Monitoring Wells Advanced within APEC	Depth(s) of Soil Samples Submitted for Analysis (m bgs)	Well Screen Depth (m bgs)	Parameters Tested	Figure #
APEC 1 Fill material of unknown quality was identified on-Site. As the quality of the fill was unknown, it could be contaminated			BH/MW1 BH2 BH/MW3 BH/MW4 BH5 BH/MW6 BH7 BH/MW8 BH101 BH/MW102 BH103	$\begin{array}{c} 0.00-0.61\\ \hline 0.15-0.76\\ \hline 0.15-0.76\\ \hline 0.76-1.37\\ \hline 0.00-0.61\\ \end{array}$		PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- Metals, As, Sb, Se	
	Fill material of hknown quality was identified on-Site. As the uality of the fill	BH104 BH/MW105 BH/MW106 BH/MW107 BH/MW108 BH/MW109 BH/MW110 BH/MW111	0.15-0.76 0.15-0.76 0.15-0.76 0.15-0.76 0.15-0.76 0.00 - 0.61 0.15-0.76 0.15-0.76	NA	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	13, 15	
	was unknown, it could be contaminated	vas unknown, it could be contaminated	BH/MW112	0.15-0.76		PAHs Metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-	
			BH/MW113	0.15-0.76		PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	
			BH201 BH202 BH/MW203 BH204	0.00 - 0.61 0.00 - 0.61 0.00 - 0.61 0.00 - 0.61 0.76 - 1.37		PAHs	
			BH205 BH206 BH207 BH209	0.00-0.61 0.00-0.61 0.00-0.61 0.00-0.61		Metals, As, Sb, Se	
APEC 2	De-icing salt were used during the winter months on the exterior asphalted	Soil	BH/MW1 BH2 BH/MW3 BH/MW4 BH5 BH/MW6		NA	Electrical Conductivity and SAR	16

APEC	APEC Details	Media Potentially Impacted	Boreholes/ Monitoring Wells Advanced within APEC	Depth(s) of Soil Samples Submitted for Analysis (m bgs)	Well Screen Depth (m bgs)	Parameters Tested	Figure #
	portion of the Site for vehicular and pedestrian safety during the winter months		BH7 BH/MW8 BH/MW102 BH/MW105	0.00 - 0.61 0.00 - 0.61 0.15-0.76 0.15-0.76			
	winter months		BH/MW107 BH/MW108 BH/MW109 BH/MW110 BH/MW111 BH/MW112 BH/MW113	0.15-0.76 0.15-0.76 0.00 - 0.61 0.15-0.76 0.15-0.76 0.76-1.37 0.15-0.76			
APEC 3	The on-Site transformer located at the western portion of the Site may have leaked	Soil	BH208	0.00-0.61	NA	PCBs	14
APEC 4	Previously identified copper impact at BH2, located at the eastern portion of the Site. The copper impact may have leached into the groundwater.	Soil and Groundwater	BH2	0.00-0.61	-	Metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-	15

5.9.4 Underground Utilities

One (1) hydro line enters the Site on the southern property boundary of the Site and extends north where it connects to the transformer located in the central western transformer portion of the Site. A second hydro line enters the Site on the southeastern property boundary where it extends northwest and exits the Site on the northern property boundary.

Four (4) streetlights are located at the western portion of the Site.

One (1) gas line is located at the western portion of the Site, the gas line extends northwest running parallel to the Site building and then extends east where it enters the site building.

One (1) Bell line enters the Site on the southern property boundary, the Bell line extends north where it then enters the Site building.

One (1) sanitary sewer line enters the Site on the southeastern property boundary, the sanitary sewer line extends northwest and exits the Site on the northern property boundary.

5.9.5 Physical Site Description

The Phase Two CSM provides a narrative and graphical interpretation of the Site surface features, near surface geologic and hydrogeologic conditions, potential contaminants of concern, contaminant fate and transport mechanisms and relevant receptors and exposure pathways. These components are discussed in the following sections.

Surface Features

The Site building is currently occupied by Holiday Inn Oakville. The areas surrounding the Site building are covered with an asphalt parking lot.

Geologic Setting

Information on the overburden and bedrock geology of the general Site area was obtained during the Phase One ESA. Based on the review, the following was summarized:

The Site is located in the physiographic region within the Iroquois Plains characterized as shale plains. The surficial geology of the Site is described as Paleozoic bedrock. The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member.

Based on the review of the OBM and Toporama map, the Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as properties to the west and east of the Site. The surrounding properties to the south are generally at lower elevation than the Site, and the surrounding properties to the northwest are generally at higher elevation than the Site.

Based on the review of available resources from the Ministry of Natural Resources and Forestry (MNRF), no areas of natural significance were identified at the Site or within the Phase One Study Area.

The general stratigraphy at the Site, as revealed in the borehole logs, consists of asphalt or topsoil followed by sand and gravel, sandy silt/silty sand and silty clay/clayey silt fill material, underlain by native clayey silt/silty clay and shale complex underlain by shale bedrock.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections.

<u>Surface Material</u>

An asphalt layer was encountered at all boreholes except for BH208. The asphalt ranged in thickness from 40 mm to 100 mm and was underlain by granular material ranging in thickness from 100 mm to 400 mm. A layer of crushed asphalt in 140 mm thickness was encountered at BH111. Topsoil was encountered at BH208 with a thickness of 300 mm.

<u>Fill</u>

Fill material comprised of sand and gravel, silty sand and silty clay/clayey silt was encountered in all boreholes advanced at the Site except for BH205, BH206, and BH209 and extended to depths ranging between 0.91 m to 2.29 m bgs. The fill material contained trace to some gravel and limestone fragments.

Silty Clay/Shale Complex

Below the fill material, a native deposit of silty clay/shale complex was observed in boreholes BH101, BH/MW102, BH103, BH104, BH/MW105 to BH/MW113, BH201, BH202, BH/MW203, and BH204 and below the asphalt at BH205 and BH209. The silty clay/shale complex layer extended to depths ranging from 0.6 m to 2.6 m bgs. Within this layer, occasional shale and limestone fragments were encountered.

Clayey Silt/Silty Clay

Below the asphalt, a native deposit of clayey silt/silty clay was observed in BH206 and BH207. The silt layer extended to a depth of 2.1 m bgs. Within this layer, trace sand, trace gravel and trace to some limestone were encountered.

<u>Bedrock</u>

Below the silty clay/shale complex, a highly weathered reddish brown and/or grey shale bedrock was encountered in all boreholes with the exception of shallow boreholes BH201, BH202, BH205 to BH209. The shale bedrock unit was encountered at depths ranging from 1.5 m to 2.6 m bgs, with more than two-thirds (2/3) of the Site consisting of soil equal to or greater than 2 m in depth before the bedrock was encountered.

Refer to the geological cross sections in Figures 7A, 8A and 9A for an overview of the Site stratigraphy.

Hydrogeologic Setting

Two (2) hydrostratigraphic units were encountered at the Site, all of which act as an aquifer.

The on-Site monitoring well network consists of a total of sixteen (16) monitoring wells advanced by BIG screened within the bedrock. Monitoring well screens were installed to assess both the shallow and deep aquifers present at the Site with ten (10) monitoring wells installed within the shallow aquifer and six (6) monitoring wells installed within the deep aquifer.

Groundwater depths in the shallow aquifer ranged between approximately 2.48 m and 4.32 m bgs and groundwater depths within the deep aquifer ranged between approximately 2.83 m and 20.49 m bgs, on May 5, 2023.

Based on the topography and the distance of the Site to Lake Ontario, the inferred groundwater flow direction was considered to be to the south/southeast in the Phase One ESA. Based on the static water levels observed, the interpreted shallow groundwater flow was towards the southeast and the interpreted deep groundwater flow was towards the southwest. The interpreted shallow groundwater flow was used to determine if any off-Site PCAs were to be considered as APECs. The interpreted shallow groundwater flow direction is presented on Figure 6A and the interpreted deep groundwater flow direction is presented on Figure 6B.

Single Well Response Test (SWRT) analyses were conducted by BIG at select monitoring wells within the shallow and deep aquifers. In the deep aquifer, BH/MW108 to BH/MW113 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the deep aquifer ranged from 1.52×10^{-8} m/s to 4.07×10^{-6} m/s, with a geometric mean of 3.65×10^{-7} m/s. In the shallow aquifer, BH/MW1, BH/MW3, BH/MW4, BH/MW6, BH/MW8, BH/MW102 and BH/MW106 were selected for the SWRT analyses. Estimates of the saturated hydraulic conductivity in the shallow aquifer ranged from 5.87×10^{-8} m/s to 2.71×10^{-5} m/s, with a geometric mean of 3.41×10^{-6} m/s.

The horizontal hydraulic gradient in groundwater in the shallow aquifer, based on groundwater measurements collected on May 5, 2023, was 0.053 m/m between BH/MW106 and BH/MW8 and 0.017 m/m between BH/MW6 and BH/MW105 with a geomean of 0.030 m/m. The horizontal hydraulic gradient in groundwater in the deep aquifer, based on groundwater measurements collected on May 5, 2023, was 0.054 m/m between BH/MW110 and BH/MW111 and 0.012 m/m between BH/MW108 and BH/MW112 with a geomean of 0.025 m/m.

The vertical hydraulic gradient in groundwater, based on groundwater measurements collected on May 5, 2023, was 0.005 m/m in a downward direction (between BH/MW1 and BH/MW108).

5.9.6 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in the table below:

		Does	
Sensitivity	Classification	Sensitivity	
		Apply to Site?	
	(i) property is within an area of natural significance	No	
	(ii) property includes or is adjacent to an area of natural significance or	No	
	part of such an area	NO	
	(iii) property includes land that is within 30 m of an area of natural	No	
	significance or part of such an area	NO	
	(iv) soil at property has a pH value for surface soil less than 5 or greater	No	
Section 41	than 9	NO	
applies if	(v) soil at property has a pH value for sub-surface soil less than 5 or	No	
	greater than 11	110	
	(vi) a qualified person is of the opinion that, given the characteristics of		
	the property and the certifications the qualified person would be		
	required to make in a record of site condition in relation to the property	No	
	as specified in Schedule A, it is appropriate to apply this section to the		
	property		
Section	(i) property is a shallow soil property	No	
43.1	(ii) property includes all or part of a water body or is adjacent to a water	No	
applies if	body or includes land that is within 30 m of a water body	INU	

5.9.7 Soil Importation

No soil importation has occurred on-Site.

5.9.8 Remediation

No remediation has occurred on-Site.

5.9.9 Previous Reports

Pinchin had previously conducted a due diligence Phase I Environmental Site Assessment (ESA) and BIG had previously conducted due diligence Phase I and Phase II ESAs at the Site in 2022 and a Phase One ESA in 2023. No other previous reports were provided to BIG for review. The previous reports prepared by Pinchin and BIG were relied upon in the Phase Two ESA and Phase Two CSM.

5.9.10 Land Use

The Site is currently used for commercial purposes and is developed with one (1) multi-storey building occupying approximately 23 % on the Site. The Site will be redeveloped for residential purposes with three (3) condominium building towers which is expected to have seven (7) levels of underground parking.

5.9.11 Contaminants of Concern

The MECP (2011a) Table 2: Full Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soil were considered applicable for determining contaminants of concern (COCs), based on the reasons presented below:

Descriptor	Site-Specific Condition
	Not applicable
	\circ The soil at the Site has pH values between 5 and 9 for surficial soil; and, between
Section 41 Site	5 and 11 for subsurface soil.
Sensitivity	\circ The Site is not located within, or adjacent to, an area of natural significance, or
	part of such an area; and, the Site does not include land that is within 30 m of an
	area of natural significance, or part of such an area.
	Not applicable
	\circ The Site is not considered a shallow soil property, based on the recovered soil
Section /2 1	cores, which indicated that more than two-thirds of the Site has an overburden
Site Sensitivity	thickness in excess of 2 m.
Site Sensitivity	\circ The Site is not located within 30 m of a surface water body; the nearest water
	body is Sixteen Mile Creek located approximately 470 m southwest and Lake
	Ontario is located approximately 2.30 km southeast.
Section 35	Potable
Ground Water	\circ The Site is supplied by the City of Oakville municipal water system however the
	Site is considered potable.
Land Lise	Residential/Parkland/Institutional
	\circ The future use of the Site will be residential land use.
Soil Texture	Coarse textured

Table 6: Site Condition Standards

The COCs identified in soil at the Site are presented in the tables below. No COCs were identified in groundwater at the Site.

Electrical conductivity (EC) and/or sodium adsorption ratio (SAR) exceedances were identified in soil and sodium and chloride were identified in groundwater across the exterior portion of the Site in exceedance of the applicable SCS. EC, SAR, sodium and chloride are not considered as contaminants of concern (COC) at the Site as under the newly amended O.Reg.153/04 (O.Reg.407/19) Section 49.1 (1), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS.

As de-icing salts were used at the Site for vehicular and pedestrian safety, EC and SAR are not considered as COCs in soil and sodium and chloride are not considered as COCs in groundwater at the Site.

Parameter Analyzed	Maximum Concentration (μg/g)	Site Condition Standard (µg/g) ⁽¹⁾	Maximum Concentration above Applicable SCS?
PHC F2	1,400	98	Yes
PHC F3	1,000	300	Yes
Benzo(a)pyrene	0.52	0.30	Yes
Fluoranthene	1.60	0.69	Yes
Copper	360	140	Yes

Table 7: Contaminants of Concern in Soil Prior to Remediation

(1) MECP Table 2 Full Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soils.

5.9.12 Soil Impacts

Information regarding the reasons for discharge, distribution and delineation of the impacts detected in soil is summarized in the below tables.

Table 8: Reasons for Discharge of Soil Impacts

Parameter Group and Media	Contaminants Associated with Each Parameter Group	Reason for Discharge
PHCs parameters in soil	PHC F2 and PHC F3	Based on review of the available historical records, the reason for discharge of PHCs is unknown
PAH parameters in soil	Benzo(a)pyrene and Fluoranthene	Likely associated with fill material of unknown quality
Metal parameter in soil	Copper	Likely associated with fill material of unknown quality

Table 9: Distribution of Soil Impacts

Parameter Group and Media	Contaminants Associated with Each Parameter Group	Distribution	
PHC parameters in soil	PHC F2 and PHC F3	Southwestern portion of the Site	
PAH parameters in soil	Benzo(a)pyrene and Fluoranthene	Southwestern portion of the Site	
Metal parameter in soil	Copper	East central portion of the Site	

Table 10: Delineation of Soil Impacts

Parameter Group and Media	Contaminants Associated with Each Parameter Group	Horizontal Delineation	Associated Figures	Vertical Delineation	Associated Figures
PHC parameters in soil	PHC F2 and PHC F3	Southwestern portion of the Site	10	1.52-2.13 m bgs at BH203	7B, 9B
PAH parameters in soil	Benzo(a)pyrene and Fluoranthene	Southwestern portion of the Site	13	0.76-1.37 m bgs at BH112, BH202 and BH204	7C, 9C
Metal parameter in soil	Copper	East central portion of the Site	15	0.76-1.37 m bgs at BH/MW102 and BH104	7D, 8B

5.9.13 Contaminant Fate and Transport

Soil Media

The soil COCs that were present at the Site include PHC F2, PHC F3, benzo(a)pyrene, fluoranthene and copper.

Based on the former activities on-Site, the PAH and copper impacts are associated with fill material of unknown quality. Based on the historical records available for review, the source of the PHC impacts in soil is unknown.

A variety of physical chemical, and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e., sorption and volatilization), and possibly abiotic and biotic chemical reactions, which effectively reduce COC concentrations.

Concentrations of COCs in soil will be reduced by the effects of molecular diffusion and the creation of concentration gradients. Select parameters at the Site are volatile chemical constituents (i.e., moderate Henry's Law Constant and saturate vapour pressure), these select parameters (i.e., PHC F1 and PHC F1-BTEX) can volatilize into soil gas and be transported through soil gas under the influence of pressure (e.g., water table fluctuations) and partial pressure gradients in the unsaturated zone. The transport of volatile COCs can also be retarded by sorption on to organic material that may be associated with the soil mineral particles throughout the overburden material.

As a result of the various natural attenuation mechanisms in the soil environment, the concentrations of COCs in soil are expected to reduce at the Site in the long-term.

There are no known preferential pathways for contaminants present in soil media.

Groundwater Media

No groundwater COCs were identified at the Site.

5.9.14 Preferential Pathways

The preferential pathways for contaminants present in soil media typically include various underground utilities, building footings, and surface features.

Underground utilities were identified at the Site, as described in Section 5.9.4. As such, there is a potential for underground utilities to affect soil vapour migration.

5.9.15 Climatic Conditions

It is noted that climatic or meteorological conditions may influence the distribution and migration of COCs at the Site. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge. Groundwater levels may be elevated in the spring and fall due to snow melt and/or increases in precipitation; and groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations can increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates. However, based on the conditions observed at the Site, it is not anticipated that the climatic or meteorological changes will result in significant alterations in the distribution of contaminants.

5.9.16 Soil Vapour Migration

Given the presence of volatile and semi-volatile COCs in soil, soil vapour intrusion is a potential contaminant transport mechanism. Intrusion of vapour-phase contaminants into the indoor air occurs from volatilization of chemical from the non-aqueous phases in the subsurface.

The relevant mechanisms for soil vapour intrusion are soil gas advection and vapour migration from diffusion through the building foundation. Soil gas advection is the dominant mechanism when the pressure gradient is greater than 1 Pascal (MECP, 2011b). Soil gas advection can occur through any unsealed entry points, cracks, or openings present in the building foundation.

Soil vapour flow is greatest within 1 m or 2 m below the building foundation (MECP, 2011b); as such, the soil permeability of backfill beneath the building foundation will affect the soil vapour flow rate. Furthermore, pressure gradients (i.e., depressurization of the indoor air space of the building) created by temperature differences between indoor and outdoor air may affect soil gas flow rate by creating a "stack effect" where, as warm air rises, it is replaced by air infiltrating through doors and windows, and soil gas migrating through the foundation.

The design features of the future residential Site buildings are not known at this time. However, they will have heating, ventilation and an air condition design and operation that will be in accordance with the Ontario Building Code. The design features will potentially have an impact on soil vapour migration.

A such, in the event that the vapour intrusion pathway is present, there may be potential for unacceptable health risks to building occupants via inhalation of indoor air.

5.9.17 Receptors and Exposure Pathways

Human Health Receptors and Exposure Pathways

The on-Site human receptors could have been exposed to the PHC F2, PHC F3, benzo(a)pyrene, fluoranthene and copper in soil. The receptors and complete on-Site exposure pathways prior to remediation are presented in Table 11 below.

Scenario	Receptor	Exposure Pathways	
	Adult	Soil ingestion, soil skin contact, soil	
Property Residents	(including pregnant female),	particle inhalation, indoor air inhalation,	
	Teen, Child, Toddler, Infant	vapour skin contact	
Workers – Long Term	Adult	Soil ingestion, soil skin contact, soil	
(indoor)	(including prognant female)	particle inhalation, indoor air inhalation,	
(110001)	(including pregnant remate)	vapour skin contact	
Workers - Short Term	Adult	Soil ingestion, soil skin contact, soil	
(outdoor)	(including prognant female)	particle inhalation, outdoor air inhalation,	
	(including pregnant remaie)	vapour skin contact	
Property Visitor -	Adult	Soil ingestion, soil skin contact, soil	
Recreational	(including pregnant female),	particle inhalation, indoor air inhalation,	
	Teen, Child, Toddler, Infant	vapour skin contact	
Property Visitor -	Adult	Soil ingestion, soil skin contact, soil	
	(including pregnant female),	particle inhalation, indoor air inhalation,	
	Teen, Child, Toddler, Infant	vapour skin contact	
Workers –	Adult	Soil ingestion, soil skin contact, soil	
Construction / Romodiation	(including prognant fomale)	particle inhalation, trench air inhalation,	
	(including pregnant remale)	vapour skin contact	

Table 11: Human Health Receptors and Exposure Pathways

The human health conceptual on-Site model is included in D.1 in Appendix D.

Ecological Receptors and Exposure Pathways

The on-Site ecological receptors could have been exposed to the PHC F2, PHC F3, benzo(a)pyrene, fluoranthene and copper in soil. The receptors and complete on-Site exposure pathways prior to remediation are presented in Table 12 below.

Primary Source	Secondary Source	Receptor	Exposure Pathway
		Vegetation	Root uptake of soil
		Soil invertebrates	Soil dermal contact, soil
	Impacted Soil	Soli liivei tebrates	ingestion, soil inhalation
		Torroctrial birds and mammals	Soil dermal contact, soil
		Terrestrial billus and mainmais	ingestion, soil inhalation
	Impacted Ambient	Vegetation	Stem and foliar uptake
		Soil Invertebrates	Vapour inhalation
Impacted Soil	dii	Terrestrial birds and mammals	Vapour inhalation
	Impacted	Terrestrial vegetation	None
		Soil invertebrates	None
	Groundwater	Terrestrial birds and mammals	None
		Sail invertabrates	Ingestion of plant and
	Impacted Plant and	Son invertebrates	animal tissue
	animal tissue	Torroctrial birds and mammals	Ingestion of plant and
			animal tissue

Table 12: Ecological Receptors and Exposure Pathways Prior to Remediation

The ecological health conceptual on-Site model is included in Figure D.2 in Appendix D.

6 Summary of Findings

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consists of asphalt or topsoil followed by sand and gravel, silty sand and silty clay/clayey silt fill material, underlain by native clayey silt/silty clay and shale complex underlain by shale bedrock.
- 2. The native materials encountered, are comprised of clayey silt/silty clay and shale complex. However, coarse textured standards were applied.
- 3. The groundwater depths in the shallow aquifer ranged between approximately 2.48 m and 4.32 m bgs and groundwater depths within the deep aquifer ranged between approximately 2.83 m and 20.49 m bgs, on May 5, 2023.
- 4. The soil analytical results indicated that select parameters were detected at concentrations above the applicable MECP (2011a) Table 2 Full Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soils including:

Parameter	MECP (2011a) Table 2 SCS (μg/g)	Number of Soil Samples Submitted ⁽¹⁾	Number of Soil Samples Exceeding the applicable SCS ⁽¹⁾	Maximum concentration detected (µg/g)		
PHCs						
PHC F2	98	5	2	1,400		
PHC F3	300	5	2	1,000		
PAHs						
Benzo(a)pyrene	0.30	24	1	0.52		
Fluoranthene	0.69	24	1	1.60		
Metals						
Copper	140	27	4	360		

(1) Excluding duplicate samples

5. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

7 Conclusions and Recommendations

The COCs present at the Site are comprised of PHC F2, PHC F3, benzo(a)pyrene, fluoranthene, and copper in soil. Based on the former activities on-Site, the PAH and copper impacts are associated with fill material of unknown quality. Based on the historical records available for review, the source of the PHC impacts in soil is unknown.

In order to proceed with the Record of Site Condition (RSC), the following is recommended:

- 1. Complete delineation of copper and PHCs in soil.
- 2. Excavate the impacted soil and dispose of off-Site at a registered landfill facility.
- 3. Conduct confirmatory sampling.
- 4. Prepare a report documenting remedial activities.
- 5. Update the Phase Two ESA.
- 6. File the RSC.

8 General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

This report was prepared for the exclusive use of the Client and may not be reproduced in whole or in part, without the prior written consent of BIG, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. BIG. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Yours truly,

B.I.G. Consulting Inc.

DRAFT

Rebecca Morrison, M.Env.Sc. Vice President, Environmental Services DRAFT

Darko Strajin, P.Eng., QP_{ESA} Managing Partner & Consulting Engineer

9 References

- 1. MECP (2011a) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*";
- 2. MECP (2011b) Protocol for Analytical Methods Used in the Assessment of Properties under Prt XV.1 of the *Environmental Protection Act*. PIBS 4696e01
- 3. MECP (2021); Well Records Map. Retrieved from https://www.ontario.ca/environment-and-energy/map-well-records
- 4. NHIC (2022); Make a Natural Heritage Map. Retrieved from http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_NaturalHeritage& viewer=NaturalHeritage&locale=en-US
- 5. Toporama. Retrieved from http://www.atlas.gc.ca/toporama/en/index.html

The following is a list of the environmental investigations reviewed in support of this report:

- 1. Pinchin (2016) Phase I Environmental Site Assessment, 590 Argus Road, Oakville, Ontario. Dated July 15, 2016, prepared by Pinchin Ltd.
- 2. BIG (2022a) Phase I Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated October 3, 2022, prepared by B.I.G. Consulting Inc.
- 3. BIG (2022b) Phase II Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated October 4, 2022, prepared by B.I.G. Consulting Inc.
- 4. BIG (2023) Phase One Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated April 28, 2023, prepared by B.I.G. Consulting Inc.

Figures

Tables

TABLE 1 – Areas of Potential Environmental Concern (APECs)

BIGC-ENV-554D – Phase Two Environmental Site Assessment 590 Argus Road, Oakville, Ontario

APEC	Location of APEC on Phase One Property	РСА	PCA Details	Location of PCA (On-Site or Off- Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Importation of fill material	Exterior portion of the Site	#30 – Importation of Fill Material of Unknown Quality	Fill material of unknown quality was identified on- Site. As the quality of the fill was unknown, it could be contaminated.	On-Site	PAHs, metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN-	Soil
APEC 2: Use of de- icing salts	Exterior portion of the Site	"Other" – Usage of De- icing Salts	De-icing salts were used during the winter months on the exterior portion of the Site for vehicular and pedestrian safety.	On-Site	Electrical Conductivity and SAR	Soil
APEC 3: Current Transformer	Western portion	#55 – Transformer Manufacturing, Processing and Use	The on-Site transformer located at the western portion of the Site may have leaked.	On-Site	PCBs	Soil
APEC 4: Previously Identified Soil Exceedance	EC 4: Fiously Diffied Foil Eastern Pr Portion east of the Site building Exce		Previously identified copper soil exceedance at BH2 may have leached into the groundwater.	On-Site	Metals	Soil and Groundwater

(1) Areas of potential environmental concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through,

a. Identification of past or present uses in, on or under the phase one property, and

b. Identification of potentially contaminating activity.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area.

PAHs = polycyclic aromatic hydrocarbons; As = arsenic; Sb = antimony; Se = selenium; B-HWS = boron-hot water soluble; Cr (VI) = hexavalent chromium; Hg = mercury; CN- = cyanide; PCBs = polychlorinated biphenyls; SAR = sodium adsorption ratio.

TABLE 2 – Summary of Soil Samples Submitted for Chemical Analysis

BIGC-ENV-554D – Phase Two Environmental Site Assessment 590 Argus Road, Oakville, Ontario

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH1-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH2-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH3-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH4-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH5-SS1	APEC 1 characterization	PAHs	BIG (2022b)
BH5-SS2	APECs 1 and 2 characterization	Metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN- and Inorganics	BIG (2022b)
BH6-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH7-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH8-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2022b)
BH101-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH102-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH102-SS2	Vertical delineation	Metals, As, Sb, and Se	BIG (2023)
BH103-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH104-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH104-SS2	Site characterization and vertical delineation	BTEX, VOCs, Metals, As, Sb, and Se	BIG (2023)
BH105-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH105-SS3	High PID value	BTEX and VOCs	BIG (2023)
BH106-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH107-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH108-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH108-SS2	High PID value	BTEX and VOCs	BIG (2023)
BH109-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH110-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH110-SS3	High PID value	BTEX and VOCs	BIG (2023)
BH111-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH112-SS1	APEC 1 characterization	PAHs	BIG (2023)
BH112-SS2	APECs 1 and 2 characterization and vertical delineation	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH112-SS3	High PID value	BTEX and VOCs	BIG (2023)
BH113-SS1	APECs 1 and 2 characterization	PAHs, Metals, As, Sb, Se, Cr (VI), Hg, B- HWS, CN- and Inorganics	BIG (2023)
BH113-SS2	High PID value	BTEX and VOCs	BIG (2023)
BH201-SS1	Horizontal delineation	PAHs	BIG (2023)
BH201-SS2	Horizontal delineation	PHCs and BTEX	BIG (2023)
BH202-SS1	Horizontal delineation	PAHs	BIG (2023)
BH202-SS2	Horizontal and vertical delineation	PHCs, BTEX and PAHs	BIG (2023)
BH203-SS1	Horizontal delineation	PAHs	BIG (2023)
BH203-SS2	PHC odour and black staining	PHCs and BTEX	BIG (2023)
BH203-SS3	High PID value	PHCs and BTEX	BIG (2023)
BH204-SS1	Horizontal delineation	PAHs	BIG (2023)
BH204-SS2	PHC odour, black staining and vertical delineation	PHCs, BTEX and PAHs	BIG (2023)
BH205-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH206-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH207-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)
BH208-SS1	APEC 3 characterization	PCBs	BIG (2023)
BH209-SS1	Horizontal delineation	Metals, As, Sb, and Se	BIG (2023)

TABLE 3 – Monitoring Well Installation Details

BIGC-ENV-554D – Phase Two Environmental Site Assessment

590 Argus Road, Oakville, Ontario

	_	Ground	Stick	Top of	Bottom	Screen	Top of	Bottom	Geologic Units	Well
Well ID	Consultant	Elevation	down/up	screen	of screen	length	screen	of screen	Intercepted by	Condition
		(m asl)	(m)	(m bgs)	(m bgs)	(m)	(m asl)	(m asl)	Well Screen	condition
BH/MW1	BIG (2022b)	104.45	0.15	3.1	6.1	3.0	101.35	98.35	Shale	Intact
BH/MW3	BIG (2022b)	104.84	0.16	3.1	6.1	3.0	101.74	98.74	Shale	Intact
BH/MW4	BIG (2022b)	105.05	0.13	3.1	6.1	3.0	101.95	98.95	Shale	Intact
BH/MW6	BIG (2022b)	105.36	0.13	3.1	6.1	3.0	102.26	99.26	Shale	Intact
BH/MW8	BIG (2022b)	105.12	0.17	3.1	6.1	3.0	102.02	99.02	Shale	Intact
BH/MW102	BIG (2023)	105.04	0.12	2.9	5.9	3.0	102.14	99.14	Shale	Intact
BH/MW105	BIG (2023)	104.96	0.08	3.1	6.1	3.0	101.86	98.86	Shale	Intact
BH/MW106	BIG (2023)	105.13	0.06	3.1	6.1	3.0	102.03	99.03	Shale	Intact
BH/MW107	BIG (2023)	104.65	0.045	2.9	5.9	3.0	101.75	98.75	Shale	Intact
BH/MW108	BIG (2023)	104.51	0.07	10.7	13.7	3.0	93.81	90.81	Shale	Intact
BH/MW109	BIG (2023)	105.09	0.09	21.4	24.4	3.0	83.69	80.69	Shale	Intact
BH/MW110	BIG (2023)	105.30	0.12	9.2	12.2	3.0	96.1	93.1	Shale	Intact
BH/MW111	BIG (2023)	105.08	0.15	15.3	18.3	3.0	89.78	86.78	Shale	Intact
BH/MW112	BIG (2023)	104.85	0.07	12.2	15.2	3.0	92.65	89.65	Shale	Intact
BH/MW113	BIG (2023)	105.08	0.10	21.4	24.4	3.0	83.68	80.68	Shale	Intact
BH/MW203	BIG (2023)	104.94	0.11	1.6	4.6	3.0	103.34	100.34	Silty Clay/Shale Complex and Shale	Intact

TABLE 4 – Water Level Depths and Elevations

BIGC-ENV-554D – Phase Two Environmental Site Assessment 590 Argus Road, Oakville, Ontario

Monitoring	Ground Surface	Groundwater	Groundwater Level		
Well ID	Elevation	Level (m bgs)	Elevation (m ASL)	Monitoring Date	
		3.90	100.55	May 31, 2022	
	104.45	3.36	101.09	March 3, 2023	
BH/IVIVI	104.45	3.58	100.87	May 5, 2023	
		3.69	100.76	July 27, 2023	
BH2	105.02	-	-	-	
		3.37	101.47	May 31, 2022	
	104.04	2.88	101.96	March 3, 2023	
BH/IVIW3	104.84	4.01	100.83	May 5, 2023	
		3.00	101.84	July 27, 2023	
		3.44	101.61	May 31, 2022	
	105.05	3.08	101.97	March 3, 2023	
BH/IMW4	105.05	3.53	101.52	May 5, 2023	
		3.12	101.93	July 27, 2023	
BH5	105.13	-	-	-	
		2.92	102.44	May 31, 2022	
	105.00	Well r	not accessible on Marc	h 3, 2023	
BH/IVIVV6	105.36	2.50	102.86	May 5, 2023	
		2.60	102.76	July 27, 2023	
BH7	105.08	-	-	-	
		4.55	100.57	May 31, 2022	
	105 10	Well r	not accessible on Marc	h 3, 2023	
BH/IMW8	105.12	4.32	100.80	May 5, 2023	
		4.43	100.69	July 27, 2023	
BH101	105.00	-	-	-	
		3.52	101.52	March 3, 2023	
BH/MW102	105.04	3.37	101.67	May 5, 2023	
		3.62	101.42	July 27, 2023	
BH103	104.90	-	-	-	
BH104	104.90	-	-	-	
		4.20	100.76	March 3, 2023	
BH/MW105	104.96	4.30	100.66	May 5, 2023	
		4.49	100.47	July 27, 2023	
		2.41	102.72	March 3, 2023	
BH/MW106	105.13	2.48	102.65	May 5, 2023	
		2.60	102.53	July 27, 2023	

Monitoring	Ground Surface	Groundwater	Groundwater	Groundwater Level
Well ID	Elevation	Level (m bgs)	Elevation (m ASL)	Monitoring Date
		Well r	not accessible on Marc	h 3, 2023
BH/MW107	104.65	3.65	101.01	May 5, 2023
		3.18	July 27, 2023	
		3.45	101.06	March 3, 2023
BH/MW108	104.51	3.58	100.93	May 5, 2023
		3.70	100.81	July 27, 2023
		23.09	82.00	March 3, 2023
BH/MW109	105.09	11.47	93.62	May 5, 2023
		11.64	93.45	July 27, 2023
		3.66	101.64	March 3, 2023
BH/MW110	105.30	4.82	100.48	May 5, 2023
		3.82	101.48	July 27, 2023
		6.84	98.24	March 3, 2023
BH/MW111	105.08	7.76	97.32	May 5, 2023
		6.92	98.16	July 27, 2023
		5.04	99.81	March 3, 2023
BH/MW112	104.85	5.25	99.60	May 5, 2023
		5.27	99.58	July 27, 2023
		23.84	81.24	March 3, 2023
BH/MW113	105.08	20.49	84.59	May 5, 2023
		20.06	85.02	July 27, 2023
BH201	104.86	-	-	-
BH202	104.89	-	-	-
	104.04	2.83	102.11	May 5, 2023
	104.94	3.02	101.92	July 27, 2023
BH204	104.76	-	-	-
BH205	104.97	-	-	-
BH206	104.89	-	-	-
BH207	104.91	-	-	-
BH208	105.24	-	-	-
BH209	104.99	-	-	-

TABLE 5 – Summary of Groundwater Samples Submitted for Chemical Analysis

BIGC-ENV-554D – Phase Two Environmental Site Assessment 590 Argus Road, Oakville, Ontario

Monitoring Well ID	Sampling Date	Rationale	Requested Analyses	Consultant
	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW1	BH/MW1 September 30, 2022		VOCs	
	May 5, 2023		PHCs and BTEX	BIG (2023)
	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW3	July 27, 2022	Site characterization	Metals, As, Sb, Se, Cr (VI),	BIC (2022)
	July 27, 2025	Site characterization	Hg, CN- and Inorganics	BIG (2023)
BH/MW4	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW6	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
BH/MW8	May 31, 2022	Site characterization	PHCs, BTEX and VOCs	BIG (2022b)
	March 2, 2022	APEC 4	Metals, As, Sb, Se, Cr (VI),	BIC (2022)
BH/10102	Warch 5, 2025	characterization	Hg, CN- and Inorganics	BIG (2023)
	July 27 2022	APEC 4	Metals, As, Sb, Se, Cr (VI),	BIC (2022)
BH/10100 July 27, 2025		characterization	Hg, CN- and Inorganics	BIG (2023)
BH/MW112 May 16, 2023		Site characterization	PHCs and BTEX	BIG (2023)
BH/MW203 July 27, 2023		Site characterization	PHCs, BTEX, VOCs, and PAHs	BIG (2023)

Appendix A - Sampling and Analysis Plan

1. Introduction

This appendix presents the Site Sampling and Analysis Plan (SSAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA), which will be conducted to provide further characterization of the Site subsurface conditions. The SSAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SSAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control (QA/QC) measures that will be undertaken to provide for the collection of accurate, reproducible, and representative data. These components are described in further detail below.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of parameters identified as potential contaminants of concern identified in the Phase One ESA.

The soil samples will be collected from the surficial and overburden material. The groundwater samples will be collected from each monitoring well.

The monitoring wells will be installed at selected boreholes to intercept the groundwater table aquifer. The monitoring wells will be installed with 3 m long screens extending to a maximum depth of approximately 24.4 metres below grade.

Elevation of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a Site temporary benchmark or a local geodetic benchmark. Groundwater flow will be determined through groundwater level measurements and the relative groundwater elevations established in the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- a) Borehole Drilling;
- b) Soil Sampling;
- c) Monitoring Well Installation;
- d) Monitoring Well Development;
- e) Groundwater Level Measurements;
- f) Elevation Survey;
- g) Groundwater Sampling; and
- h) Residue Management Procedures.

The field investigative methods will be performed as described below:

a) Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization and for the installation of groundwater monitoring wells. Boreholes will be advanced at the Site to a maximum depth of approximately 30.8 m below grade, within the overburden materials to provide for the collection of soil samples beneath the Site. The borehole locations will be selected to assess soil and groundwater quality at the Site.

Prior to borehole drilling, utility clearances will be obtained from public locators, as required. Boreholes will be advanced into the surficial reworked native and overburden soils by a drilling company under the full-time supervision of BIG staff. A track mounted drilling machine equipped with solid and hollow stem augers and split spoons will be utilized to advance the boreholes through the overburden materials.

b) Soil Sampling

Soil samples for geologic characterization and chemical analysis will be collected from the overburden boreholes using 5 cm diameter, 60 cm long, stainless steel split-spoon sampling devices advanced ahead of the augers. The split-spoon samplers will be attached to drill rods and advanced into the soil by means of a machine-driven hammer. Spilt-spoon soil samples will be collected where possible, beginning at the ground surface and subsequently at continuous intervals. Geologic and sampling details of the recovered cores will be logged, and the samples will be assessed for the potential presence of non-aqueous phase liquids. A portion of each soil sample will be placed in a sealed "zip-lock" plastic bag and allowed to reach ambient temperature prior to field screening with a photoionization detector (PID) that will be calibrated by the supplier with an appropriate reference gas and zeroed in ambient conditions prior to use. The vapour measurements will be made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings will provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling. Samples for chemical analysis will be selected on the basis of visual, combustible gas, and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of suspected impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into precleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for VOC analysis will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field notebook. The samples will be submitted to a CAEL certified laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used during the handling and sample collection for each soil core to prevent sample cross-contamination.

c) Monitoring Well Installation

Monitoring wells will be installed in general accordance with Ontario Regulation 903/90, as amended and will be installed by a licensed well contractor.

The monitoring wells will be constructed using 50 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The pipe components will be pre-wrapped in plastic, which will be removed prior to insertion in the borehole to minimize the potential for contamination. No lubricants or adhesives will be used in the construction of the monitoring wells. The annular space around the well screens will be backfilled with silica sand to at least 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately grade. The monitoring wells will be completed with protective casings.

d) Monitoring Well Development

Monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance contact with the surrounding formation groundwater and will be developed using Waterra[®] tubing. Monitoring well development will be monitored by multiparameter water quality meter, visual observations of turbidity, and by taking field measurements of pH and conductivity for every well volume removed. Standing water volumes will be determined by means of a water level meter. Water quality parameter measurements will be recorded using a multiparameter water quality meter and well the evelopment will be removed. Standing water the surrounded will be recorded using a multiparameter water quality meter. A minimum of approximately three (3) well volumes will be removed; and, well development will continue until the purged water has chemically stabilized as indicated by field parameters measurements.

Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All water accumulated during well development will be collected and stored in sealed containers.

e) Groundwater Level Measurements

Groundwater level measurements will be recorded from monitoring wells to determine groundwater flow and direction at the Site. Water levels will be measured with respect to the top of the casing by means of a groundwater level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

f) Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a known geodetic benchmark, or if unavailable, against a suitable arbitrary temporary benchmark. Elevations measured against a geodetic benchmark will be recorded as meters above mean sea level (m AMSL). The arbitrary temporary benchmark will be assigned an elevation of 100.00 m. The elevation survey will be accurate to within ± 1 cm.

g) Groundwater Sampling

Groundwater samples will be collected from monitoring wells for chemical analysis. The monitoring wells will be purged first of three to five wetted well volumes of water, or until dry, to remove standing water and draw in fresh formation water as previously described. Dedicated well materials will be used for well purging and sample collection.

Recommended groundwater sample volumes will be collected into pre-cleaned, laboratorysupplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Where needed, bottles will be checked for headspace.

All groundwater samples will be assigned unique identification numbers, and the date, time, project number, and company name will be specified on each bottle. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

h) Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of decontamination fluids from equipment cleaning, and waters from well development and purging will be placed in sealed drums for future off-Site disposal.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e., non-contaminated) samples, sample documentation, and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- a) Decontamination Protocols;
- b) Equipment Calibration;
- c) Sample Preservation;
- d) Sample Documentation; and,
- e) Field Quality Control Samples.

Details on the field QA/QC measures are provided in the following sections.

a) Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split-spoon soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into

boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, purging activities, and rising head tests. All decontamination fluids will be collected and stored in sealed containers.

b) Equipment Calibration

All equipment requiring calibration will be calibrated according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities.

c) Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in ice-filled insulated coolers for storage and transport.

d) Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, and company name. All samples will be handled and transported following COC protocols.

e) Field Quality Control Samples

Field quality controls samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. Where required, for groundwater samples, a trip blank prepared by a laboratory will be submitted for chemical analysis to evaluate the potential for sample cross-contamination or bias. The recommended alert criteria for the trip blank sample are the detections of any test group analyte at a concentration in excess of laboratory detection limits.

Appendix B – Analytical Results

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater	BH201-SS2	BH202-SS2	BH203-SS2	BH203-SS3	DUP 20303 (DUP of BH203- SS3)	BH204-SS2		
Lab ID	Condition	VRF356	VRF357	VRF358	VQO932	VQ0951	VQ0957		
Sampling Date	Residential/Parkland/Institutional	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23		
Soil Sample Depth (m)	Land Use	0.76-1.37	0.76-1.37	0.76-1.37	1.52-2.13	1.52-2.13	0.76-1.37		
Consultant	(coarse textured soil)	BIG	BIG	BIG	BIG	BIG	BIG		
Laboratory		BV	BV	BV	BV	BV	BV		
PHC F1 (C6-C10)	55	<10	<10	19	<10	12	<10		
PHC F1 (C6-C10) - BTEX	55	<10	<10	19	<10	12	<10		
PHC F2 (C10-C16)	98	<10	<10	1,400	86	60	370		
PHC F3 (C16-C34)	300	<50	<50	1,000	100	80	390		
PHC F4 (C34-C50)	2800	<50	<50	<50	<50	<50	<50		
Reached baseline at C50?	-	YES	YES	YES	YES	YES	YES		
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	-	-	-		
All soil concentrations reported in μg/g. '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MOECC (2011) SCS.									
Non-detect but detection limit exceeds the MOECC (2011) SCS.									

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH104-SS2	BH105-SS3	DUP10503 (Dup of BH105-SS3)	BH108-SS2	BH110-SS3	BH112-SS3	BH113-SS2	BH201-SS2	BH202-SS2	BH203-SS2	вн203-553	DUP20303 (Dup of BH203-SS3)	BH204-SS2
Lab ID		VDC590	VEV743	VEV750	VEV745	VDC591	VEV748	VDC592	VRF356	VRF357	VRF358	VQO932	VQ0951	VQO957
Sampling Date	Use (17-Feb-23	1-Mar-23	1-Mar-23	27-Feb-23	10-Feb-23	22-Feb-23	21-Feb-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23
Soil Sample Depth (m)	(coarse textured soil)	0.76-1.37	1.52-2.13	1.52-2.13	0.76-1.37	1.52-2.13	1.52-2.13	0.76-1.37	0.76-1.37	0.76-1.37	0.76-1.37	1.52-2.13	1.52-2.13	0.76-1.37
Consultant		BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV
Acetone	16	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	-	-	-	-	-	-
Benzene	0.21	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	1.5	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Bromoform	0.27	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Bromomethane	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Carbon Tetrachloride	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Chlorobenzene	2.4	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Chloroform	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Dibromochloromethane	2.3	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,2-Dichlorobenzene	1.2	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,3-Dichlorobenzene	4.8	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,4-Dichlorobenzene	0.083	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Dichlorodifluoromethane	16	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,1-Dichloroethane	0.47	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,2-Dichloroethane	0.05	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	-	-	-	-	-	-
1,1-Dichloroethylene	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
cis-1,2-Dichloroethylene	1.9	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
trans-1,2-Dichloroethylene	0.084	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,2-Dichloropropane	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
cis-1,3-Dichloropropene	0.05	<0.030	<0.030	< 0.030	<0.030	<0.030	< 0.030	< 0.030	-	-	-	-	-	-
trans-1,3-Dichloropropene	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
cis- & trans-1,3-Dichloropropene	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	-	-	-	-
Ethylbenzene	1.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Hexane (n)	2.8	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Methylene chloride (Dichloromethane)	0.1	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	-	-	-	-	-	-
Methyl ethyl ketone (2-Butanone)	16	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	-	-	-	-	-
Methyl Isobutyl Ketone	1.7	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	0.75	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Styrene	0.7	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.058	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Tetrachloroethylene	0.28	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
Toluene	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	0.38	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	-
1,1,2-Trichloroethane	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	
Trichloroethylene	0.061	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	-	-	-	-	
Trichlorofluoromethane	4	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	-	-	-	-	-	
Vinyl Chloride	0.02	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	-	-	-	-	-	
m-Xylene + p-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
o-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

B.I.G. Consulting Inc

Bold Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS.

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH1-SS1	BH2-SS1	BH3-SS1	BH4-SS1	BH5-SS1	BH6-SS1	BH7-SS1	BH8-SS1	BH105-SS1	BH/MW 106- SS1	DUP10601 (Dup of BH/MW106- SS1)	BH107-SS1	DUP10701 (Dup of BH107-SS1)	BH108-SS1
Lab ID	Residential/Parkland/Institutional Land	STX556	STX557	STX558	STX559	STX560	STX562	STX563	STX564	VEV742	VHG526	VHG528	VDC686	VDC692	VEV744
Sampling Date	Use	25-May-22	25-May-22	25-May-22	25-May-22	25-May-22	26-May-22	26-May-22	26-May-22	01-Mar-23	01-Mar-23	01-Mar-23	17-Feb-23	17-Feb-23	27-Feb-23
Soil Sample Depth (m)	(coarse textured soil)	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.15-0.76	0.15-0.76	0.15-0.76	0.15-0.76	0.15-0.76	0.15-0.76
Consultant		BIG	BIG	BIG	BIG	BIG									
Laboratory		BV	BV	BV	BV	BV									
Acenaphthene	7.9	<0.0050	<0.0050	<0.0050	<0.0050	0.0075	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050
Acenaphthylene	0.15	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.01
Anthracene	0.67	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.0075
Benzo(a)anthracene	0.5	0.01	<0.0050	<0.0050	<0.0050	0.011	<0.0050	<0.0050	0.01	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.049
Benzo(a)pyrene	0.3	0.011	<0.0050	<0.0050	<0.0050	0.015	<0.0050	<0.0050	0.011	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.061
Benzo(b)fluoranthene	0.78	0.018	<0.0050	0.0061	<0.0050	0.021	<0.0050	<0.0050	0.017	0.0055	<0.0050	<0.0050	<0.050	<0.050	0.088
Benzo(ghi)perylene	6.6	0.014	<0.0050	0.0065	<0.0050	0.017	<0.0050	<0.0050	0.011	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.043
Benzo(k)fluoranthene	0.78	0.0056	<0.0050	<0.0050	<0.0050	0.006	<0.0050	<0.0050	0.0051	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.029
Chrysene	7	0.01	<0.0050	<0.0050	<0.0050	0.012	<0.0050	<0.0050	0.01	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.05
Dibenz(a,h)anthracene	0.1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.0096
Fluoranthene	0.69	0.019	<0.0050	0.0051	<0.0050	0.028	<0.0050	<0.0050	0.02	0.006	<0.0050	0.0076	<0.050	<0.050	0.083
Fluorene	62	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050
Indeno(1,2,3-cd)pyrene	0.38	0.01	<0.0050	<0.0050	<0.0050	0.013	<0.0050	<0.0050	0.0098	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.044
1-Methylnaphthalene	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050
2-Methylnaphthalene	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050
1&2-Methylnaphthalene	0.99	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.071	<0.071	<0.0071
Naphthalene	0.6	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050
Phenanthrene	6.2	0.007	<0.0050	0.01	<0.0050	0.017	<0.0050	<0.0050	0.0095	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.026
Pyrene	78	0.016	<0.0050	0.0055	<0.0050	0.024	<0.0050	<0.0050	0.02	0.0051	<0.0050	0.0071	<0.050	<0.050	0.073
All soil concentratio '<' = Parameter below de	ns reported in μg/g. etection limit, as indicated														

'NV'= No value

Bold Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS.

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH109-SS1	DUP10901 (Dup of BH109-SS1)	BH110-SS1	BH111-SS1	BH112-SS1	BH/MW 112- SS2	BH113-SS1	BH201-SS1	DUP20101 (Dup of BH201-SS1)	BH202-SS1	BH202-SS2	BH203-SS1	BH204-SS1	BH204-SS2
Lab ID	Residential/Parkland/Institutional Land	VDC687	VDC693	VDC688	VDC689	VEV746	VHG527	VEV749	VQP092	VQP118	VQP203	VSD622	VQP195	VQP168	VSD623
Sampling Date	Use	15-Feb-23	15-Feb-23	10-Feb-23	10-Feb-23	22-Feb-23	22-Feb-23	21-Feb-23	20-Apr-23	20-Apr-23	21-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23
Soil Sample Depth (m)	(coarse textured soil)	0.00-0.61	0.00-0.61	0.15-0.76	0.15-0.76	0.15-0.76	0.76-1.37	0.15-0.76	0.00-0.61	0.00-0.61	0.00-0.61	0.76-1.37	0.00-0.61	0.00-0.61	0.76-1.37
Consultant		BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV	BV
Acenaphthene	7.9	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Acenaphthylene	0.15	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Anthracene	0.67	<0.0050	<0.0050	<0.0050	<0.0050	0.065	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Benzo(a)anthracene	0.5	<0.0050	<0.0050	<0.0050	<0.0050	0.5	<0.0050	0.02	<0.0050	<0.0050	0.056	<0.0050	<0.0050	0.076	<0.0050
Benzo(a)pyrene	0.3	<0.0050	<0.0050	<0.0050	<0.0050	0.52	<0.0050	0.017	<0.0050	<0.0050	0.075	<0.0050	<0.0050	0.083	<0.0050
Benzo(b)fluoranthene	0.78	<0.0050	<0.0050	<0.0050	<0.0050	0.77	<0.0050	0.02	<0.0050	<0.0050	0.12	<0.0050	<0.0050	0.11	<0.0050
Benzo(ghi)perylene	6.6	<0.0050	<0.0050	<0.0050	<0.0050	0.46	<0.0050	0.01	<0.0050	<0.0050	0.09	<0.0050	<0.0050	0.07	<0.0050
Benzo(k)fluoranthene	0.78	<0.0050	<0.0050	<0.0050	<0.0050	0.26	<0.0050	0.01	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Chrysene	7	<0.0050	<0.0050	<0.0050	<0.0050	0.58	<0.0050	0.015	<0.0050	<0.0050	0.071	<0.0050	<0.0050	0.089	<0.0050
Dibenz(a,h)anthracene	0.1	<0.0050	<0.0050	<0.0050	<0.0050	0.071	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Fluoranthene	0.69	<0.0050	<0.0050	<0.0050	<0.0050	1.6	<0.0050	0.03	<0.0050	<0.0050	0.16	<0.0050	0.008	0.28	<0.0050
Fluorene	62	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	0.0062	<0.050	<0.0050
Indeno(1,2,3-cd)pyrene	0.38	<0.0050	<0.0050	<0.0050	<0.0050	0.38	<0.0050	0.01	<0.0050	<0.0050	0.063	<0.0050	<0.0050	0.058	<0.0050
1-Methylnaphthalene	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	0.028	<0.050	<0.0050
2-Methylnaphthalene	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
1&2-Methylnaphthalene	0.99	<0.0071	<0.0071	<0.0071	<0.0071	<0.071	<0.071	<0.0071	<0.0071	<0.0071	<0.071	<0.0071	0.028	<0.071	<0.0071
Naphthalene	0.6	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.050	<0.0050
Phenanthrene	6.2	<0.0050	<0.0050	<0.0050	<0.0050	0.39	<0.0050	0.013	<0.0050	<0.0050	<0.050	<0.0050	0.013	0.13	<0.0050
Pyrene	78	<0.0050	<0.0050	<0.0050	<0.0050	1.3	<0.0050	0.029	<0.0050	<0.0050	0.17	<0.0050	0.0076	0.22	<0.0050
All soil concentratio '<' = Parameter below de	ns reported in µg/g. etection limit, as indicated														

'NV'= No value

Bold Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS.

				DUP20801				
Sa	mple ID	MOECC (2011) Table 2: Full Depth Generic	BH208-SS1	(Dup of				
		SCS in a Potable Groundwater Condition		BH208-SS1)				
	Lab ID	Posidential/Parkland/Institutional Land	VQP000	VQP030				
Sam	pling Date		20-Apr-23	20-Apr-23				
Soil Sam	ple Depth (m)	(coarso toytured soil)	0.00-0.30	0.00-0.30				
Со	nsultant	(coarse textured soll)	BIG	BIG				
Lal	poratory		BV	BV				
Aroclor 1242		NV	<0.010	<0.010				
Aroclor 1248		NV	<0.010	<0.010				
Aroclor 1254		NV	<0.010	<0.010				
Aroclor 1260		NV	<0.010	<0.010				
Total Polychlor	rinated Biphenyls	0.35	<0.010	<0.010				
'<' = 'NV'=	All soil concentratio Parameter below de No value	ns reported in µg/g. etection limit, as indicated						
Bold	Concentration exce	eeds MOECC (2011) SCS.						
Non-detect but detection limit exceeds the MOECC (2011) SCS.								

Sample ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH1-SS1	BH2-SS1	BH3-SS1	BH4-SS1	BH5-SS2	BH6-SS1	BH7-SS1	BH8-SS1	BH101-SS1	DUP10101 (Dup of BH101-SS1)	BH102-SS1	DUP10201 (Dup of BH102-SS1)	BH102-SS2	DUP10202 (Dup of BH102-SS2)	BH103-SS1	BH104-SS1
Lab ID	Residential/Parkland/Institutional Land	STX556	STX557	STX558	STX559	STX560	STX562	STX563	STX564	VDC680	VDC690	VDC681	VHG529	VDC682	VDC691	VDC683	VDC684
Sampling Date	Use	25-May-22	25-May-22	25-May-22	25-May-22	25-May-22	26-May-22	26-May-22	26-May-22	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23	17-Feb-23
Soil Sample Depth (m)	(coarse textured soil)	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.76-1.37	0.00-0.61	0.00-0.61	0.00-0.61	0.15-0.76	0.15-0.76	0.15-0.76	0.15-0.76	0.76-1.37	0.76-1.37	0.00-0.61	0.15-0.76
Consultant		BIG	BIG	BIG	BIG	BIG	BIG	BIG									
Laboratory		BV	BV	BV	BV	BV	BV	BV									
Antimony	7.5	0.5	0.33	0.24	<0.20	0.73	0.76	0.41	0.55	0.36	0.43	0.41	0.3	0.31	0.36	0.3	0.24
Arsenic	18	5.6	6.2	5.3	2.6	6.5	9.2	4.5	6.1	3.6	4	4.3	4.1	5.2	6.2	4.6	3.9
Barium	390	73	54.0	54.0	120.0	83.0	110.0	170.0	110.0	59.0	67	97.0	73.0	83.0	110	57.0	76.0
Beryllium	4	0.73	0.81	0.58	1.3	1	1.2	0.82	0.75	0.82	0.67	1.2	0.74	0.75	0.85	0.52	0.65
Boron (Total)	120	12	16	6.2	15	20	14	14	12	9.7	8.6	15	9.9	8	8.9	7.2	8.2
Boron (Hot water soluble)	1.5	1.1	0.45	0.28	0.2	0.2	0.48	0.33	0.48	-	-	-	0.35	-	-	-	-
Cadmium	1.2	0.34	0.12	<0.10	<0.10	<0.10	<0.10	0.1	0.19	<0.10	0.15	<0.10	<0.10	<0.10	<0.10	0.2	<0.10
Chromium (total)	160	20	22	15	28.0	25.0	28.0	22.0	21.0	20.0	17	28.0	19.0	19.0	23	14.0	17.0
Chromium VI	8	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	-	-	-	<0.18	-	-	-	-
Cobalt	22	11	13	6.1	16	14	14	13	11	11	8.7	15	9	9.4	11	6	8.9
Copper	140	100	190	58	31	91	95	43	65	360	74	39	88	24	51	40	130
Lead	120	37	13	20	4.6	8.9	12	14	23	12	12	10	11	9.4	9.3	29	10
Mercury	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	-	<0.050	-	-	-	-
Molybdenum	6.9	1.3	1.2	0.76	1.4	2.7	3.6	1.2	2.1	1.3	1.4	2	1.5	1.7	2.4	0.86	0.75
Nickel	100	23	29	16	38	32	33	28	24	24	19	36	21	19	24	13	19
Selenium	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.51	<0.50	<0.50
Silver	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.11	0.11	0.082	0.12	0.094	0.095	0.1	0.1	0.11	0.11	0.12	0.088	0.099	0.11	0.091	0.11
Uranium	23	1.2	0.95	0.69	1.4	1.7	1.6	0.75	1.1	0.88	1	1.3	1.4	1.6	3.9	0.87	0.48
Vanadium	86	30	31	29	37	35	42	32	32	29	27	42	30	34	41	23	29
Zinc	340	150	86	44	73.0	62.0	65.0	66.0	71.0	59.0	54	68.0	51.0	42.0	44	65.0	43.0
Electrical Conductivity (mS/cm)	0.7	1.1	0.87	0.81	0.46	0.33	0.61	1.3	1.2	-	-	-	0.96	-	-	-	-
Sodium Adsorption Ratio (unitless)	5	12	4.2	6.4	1.5	1	3.8	8.3	18	-	-	-	6.5	-	-	-	-
Free Cyanide	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	<0.01	-	-	-	-
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	7.09	7.85	7.28	7.3	7.85	7.77	7.8	7.16	-	-	-	7.46	-	-	-	-
	/	1	•	<u>.</u>	•	•	•	•	•	<u>.</u>	•	•	<u>.</u>	•	•		<u>.</u>

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold

Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS. pH level outside of the acceptable MOECC range

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH104-SS2	BH105-SS1	BH106-SS1	BH107-SS1	BH108-SS1	BH109-SS1	BH110-SS1	BH111-SS1	BH112-SS2	BH113-SS1	BH205-SS1	BH206-SS1	DUP20601 (Dup of BH	BH207-SS1	BH209-SS1
	SCS in a Potable Groundwater Condition													206- SS1)		
Lab ID	Residential/Parkland/Institutional Land	VDC685	VEV742	VHG526	VDC686	VEV744	VDC687	VDC688	VDC689	VEV747	VEV749	VQP178	VQP137	VQP127	VQP061	VQP039
Sampling Date	Use	17-Feb-23	1-Mar-23	1-Mar-23	17-Feb-23	27-Feb-23	15-Feb-23	10-Feb-23	17-Feb-23	22-Feb-23	21-Feb-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23
Soil Sample Depth (m)	(coarse textured soil)	0.76-1.37	0.15-0.76	0.15-0.76	0.15-0.76	0.15-0.76	0.00-0.61	0.15-0.76	0.15-0.76	0.76-1.37	0.15-0.76	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61	0.00-0.61
Consultant		BIG	BIG	BIG												
Laboratory		BV	BV	BV												
Antimony	7.5	0.23	0.38	<0.20	0.37	0.36	0.28	0.52	0.46	0.3	0.3	0.23	0.42	0.26	0.26	0.29
Arsenic	18	2.6	5.6	6.1	2.7	4.2	5.3	4.6	4.9	4	6.3	6.4	7.8	6.6	6.5	5.9
Barium	390	64.0	81	84	25.0	83	69	32	140	53	110	50	100	42	76	76
Beryllium	4	0.5	0.73	0.58	0.26	0.52	0.65	0.5	0.86	0.66	0.64	0.9	0.59	0.21	0.5	0.79
Boron (Total)	120	<5.0	10	<5.0	5.3	5.5	8.3	13	16	7.2	7.4	14	12	9.6	12	6.7
Boron (Hot water soluble)	1.5	-	0.43	0.28	1.3	1.5	0.59	0.31	0.44	0.19	0.86	-	-	-	-	-
Cadmium	1.2	<0.10	0.34	0.16	0.15	0.16	0.18	0.21	<0.10	<0.10	0.36	<0.10	0.32	0.82	0.2	<0.10
Chromium (total)	160	14.0	20	16	7.5	22	16	13	24	18	17	24	16	6.3	14	20
Chromium VI	8	-	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	-	-	-	-	-
Cobalt	22	5.1	9.4	8.8	2.9	5.1	7.7	7.8	14	8.6	8.9	15	9.5	4.3	9	9.9
Copper	140	37	120	50	23	39	37	14	36.0	84	71	220	33	22	32	190
Lead	120	10	22	8.6	14	29	15	18	13	7.2	23	10	25	23	16	13
Mercury	0.27	-	<0.050	<0.050	0.076	0.063	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	-	-	-
Molybdenum	6.9	0.52	1.3	1.9	0.54	0.9	2	1.3	1.5	1.6	1.6	0.94	1.1	0.96	0.87	0.89
Nickel	100	11	21	18	6.2	11	15	17	30	21	19	32	21	8.9	18	22
Selenium	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	0.52	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.50	<0.50	<0.50
Silver	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.20	<0.20	<0.20
Thallium	1	0.074	0.11	0.084	0.066	0.1	0.099	0.089	0.096	0.063	0.11	0.12	0.11	0.08	0.11	0.089
Uranium	23	0.42	0.9	0.91	0.33	1.1	1.6	0.91	0.77	0.69	1.2	0.94	0.59	0.42	0.51	0.71
Vanadium	86	25	31	29	15	24	29	18	33	29	32	32	25	14	23	32
Zinc	340	28.0	98	39	35.0	60	60	250	69	42	69	77	130	180	70	62
Electrical Conductivity (mS/cm)	0.7	-	1	1	0.74	0.84	1.4	0.62	1.1	1.5	1.1	-	-	-	-	-
Sodium Adsorption Ratio (unitless)	5	-	17	13	6.2	10	12	2.6	8.5	33	13	-	-	-	-	-
Free Cyanide	0.051	-	<0.01	<0.01	<0.01	0.01	0.01	<0.01	<0.01	<0.01	0.01	-	-	-	-	-
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	-	7.62	7.37	7.17	7.12	6.93	7.91	7.74	7.93	7.19	-	-	-	-	-
All soil concentration	is reported in μg/g.															

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Concentration exceeds MOECC (2011) SCS. Bold

Non-detect but detection limit exceeds the MOECC (2011) SCS. pH level outside of the acceptable MOECC range

Sample ID		BH/M	BH/MW1		BH/MW4	BH/MW6	BH/MW8	BH/MW112	BH/MW 203	DUP2030 (BH/MW203	TRIP BLANK
	MOECC (2011) Table 2: Full Depth Generic									Duplicate)	
Lab ID	SCS in a Potable Groundwater Condition	STP222	VSY640	STP223	STP224	STP225	STP226	VVE520	WNE972	WNE973	WNE980
Sampling Date	All Types of Land Use	31-May-22	5-May-23	31-May-22	31-May-22	31-May-22	31-May-22	16-May-23	27-Jul-23	27-Jul-23	27-Jul-23
Screen Depth Interval (m)	(coarse textured soil)	3.1-	-6.1	3.1-6.1	3.1-6.1	3.1-6.1	3.1-6.1	12.2-15.2	1.6-4.6	1.6-4.6	-
Consultant		BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory		BV	BV	BV	BV	BV	BV	BV	BV	BV	BV
PHC F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
PHC F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
PHC F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
PHC F3 (C16-C34)	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
PHC F4 (C34-C50)	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
Reached baseline at C50?	-	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
PHC F4 (C34-C50)-gravimetric	500	-	-	-	-	-	-	-	-	-	-
All groundwater concentrations reported in µg/L. '<' = Parameter below detection limit, as indicated 'NV'= No value											

Bold Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS.

Samala ID		рц /и	4\4/1							DUP2030
Sample ID	MOECC (2011) Table 2: Full Depth Generic	вп/г	VIVVI	BH/IVIVV3	BH/IVIW4	BH/IVIW6	BH/IVIW8	BH/IVIW112	BH/IVIW 203	(BH/IVIW203
Lab ID	SCS in a Potable Groundwater Condition	CTD222		CTD222	CTD224	CTDOOL	CTDDDC	10/5520		Duplicate)
Lab ID	All Types of Land Lise	STP222	1005683	STP223	STP224	STP225	STP226	VVE520	27 Jul 22	WINE973
Sampling Date	All Types of Land Ose	31-IVIAY-22	30-Sep-22	31-IVIAY-22	31-IVIAY-22	31-IVIAY-22	31-IVIAY-22	10-IVIAy-23	27-Jul-23	27-Jul-23
Screen Depth Interval (III)	(coarse textured soll)	3.1	-0.1	3.1-6.1	3.1-0.1	3.1-6.1	3.1-6.1	12.2-15.2	1.6-4.6	1.6-4.6
		BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG	BIG
Laboratory	2700	BV	BV	BV	BV	BV	BV	BV	BV	BV
Acetone	2700	<10	<10	<10	<10	<10	<10	-	<10	<10
Benzene	5	1.1	<0.20	<0.17	0.18	<0.17	<0.17	<0.20	<0.17	<0.17
Bromodichioromethane	16	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	-	<0.50	<0.50
Bromotorm	25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Bromometnane Gaula au Tatua al-Janida	0.89	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	-	<0.50	<0.50
Larbon Tetrachloride	0.79	<0.20	<0.19	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Chiorobenzene	30	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Dibromochloromethane	25	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	-	< 0.50	<0.50
1,2-Dichlorobenzene	3	<0.50	<0.40	< 0.50	< 0.50	<0.50	< 0.50	-	< 0.50	< 0.50
1,3-Dichlorobenzene	59	< 0.50	<0.40	< 0.50	<0.50	< 0.50	< 0.50	-	< 0.50	< 0.50
1,4-Dichlorobenzene	1	<0.50	<0.40	< 0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Dichlorodifluoromethane	590	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
1,1-Dichloroethane	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
1,2-Dichloroethane	1.6	<0.50	<0.49	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
1,1-Dichloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
cis-1,2-Dichloroethylene	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
trans-1,2-Dichloroethylene	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	< 0.50	< 0.50
1,2-Dichloropropane	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
cis-1,3-Dichloropropene	0.5	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	-	<0.30	<0.30
trans-1,3-Dichloropropene	0.5	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40
cis- & trans-1,3-Dichloropropene	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Ethylbenzene	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylene Dibromide (1,2-Dibromoethane)	0.2	<0.20	<0.19	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Hexane (n)	51	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Methylene chloride (Dichloromethane)	50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0
Methyl ethyl ketone (2-Butanone)	1800	<10	<10	<10	<10	<10	<10	-	<10	<10
Methyl Isobutyl Ketone	640	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0
Methyl t-butyl ether (MTBE)	15	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Styrene	5.4	<0.50	<0.40	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
1,1,1,2-Tetrachloroethane	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
1,1,2,2-Tetrachloroethane	1	<0.50	<0.40	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Tetrachloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Toluene	24	<0.20	<0.20	<0.20	<0.20	1.4	0.47	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
1,1,2-Trichloroethane	4.7	<0.50	<0.40	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Trichloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
Trichlorofluoromethane	150	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	<0.50	<0.50
Vinyl Chloride	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20
m-Xylene + p-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.4	<0.20	<0.20
o-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.20	<0.20
Xylenes (total)	300	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.4	<0.20	<0.20

All groundwater concentrations reported in μ g/L.

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOECC (2011) SCS.

Non-detect but detection limit exceeds the MOECC (2011) SCS.

Samle ID	MOECC (2011) Table 2: Full Depth Generic SCS in a Potable Groundwater Condition	BH/MW 203	DUP2030 (BH/MW203 Duplicate)								
Lab ID	All Types of Land Use	WNE972	WNE973								
Sampling Date	(coarse textured soil)	27-Jul-23	27-Jul-23								
Screen Depth Interval (m)		1.6-4.6	1.6-4.6								
Consultant		BIG	BIG								
Laboratory		BV	BV								
Acenaphthene	4.1	<0.050	<0.050								
Acenaphthylene	1	<0.050	<0.050								
Anthracene	2.4	<0.050	<0.050								
Benzo(a)anthracene	1	<0.050	<0.050								
Benzo(a)pyrene	0.01	<0.0090	<0.0090								
Benzo(b)fluoranthene	0.1	<0.050	<0.050								
Benzo(ghi)perylene	0.2	<0.050	<0.050								
Benzo(k)fluoranthene	0.1	<0.050	<0.050								
Chrysene	0.1	<0.050	<0.050								
Dibenz(a,h)anthracene	0.2	<0.050	<0.050								
Fluoranthene	0.41	<0.050	<0.050								
Fluorene	120	<0.050	<0.050								
Indeno(1,2,3-cd)pyrene	0.2	<0.050	<0.050								
1-Methylnaphthalene	3.2	<0.050	<0.050								
2-Methylnaphthalene	3.2	<0.050	<0.050								
1&2-Methylnaphthalene	3.2	<0.071	<0.071								
Naphthalene	11	<0.050	<0.050								
Phenanthrene	1	<0.030	<0.030								
Pyrene	4.1	<0.050	<0.050								
All groundwater concentrations reported in µg/L. '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MOECC (2011) SCS. Non-detect but detection limit exceeds the MOECC (2011) SCS.											

Sample ID	MOECC (2011) Table 2: Full Depth Generic	BH / MW3	BH/MW102	DUP 1020 (Dup of BH/MW 102)	BH/ MW 108							
Lab ID	All Types of Land Lise	WNE974	VEV995	VEV996	WNE978							
Sampling Date	All Types of Land Ose	27-Jul-23	03-Mar-23	03-Mar-23	27-Jul-23							
Screen Depth Interval (m)	(coarse textured son)	3.1-6.1	2.9-5.9	2.9-5.9	10.7-13.7							
Consultant		BIG	BIG	BIG	BIG							
Laboratory		BV	BV	BV	BV							
Antimony	6	<0.50	<0.50	<0.50	<0.50							
Arsenic	25	<1.0	<1.0	<1.0	<1.0							
Barium	1000	140	100	100	57							
Beryllium	4	<0.40	<0.40	<0.40	<0.40							
Boron (Total)	5000	400	440	480	1100							
Cadmium	2.7	<0.090	<0.090	<0.090	<0.090							
Chromium (total)	50	<5.0	<5.0	<5.0	<5.0							
Chromium VI	25	<0.50	<0.50	<0.50	<0.50							
Cobalt	3.8	<0.50	0.9	1.3	<0.50							
Copper	87	2.3	3.3	6.9	1.6							
Lead	10	<0.50	<0.50	<0.50	<0.50							
Mercury	0.29	<0.10	<0.10	<0.10	<0.10							
Molybdenum	70	3.2	3.4	2.9	7							
Nickel	100	<1.0	1.2	1.9	<1.0							
Selenium	10	<2.0	<2.0	<2.0	<2.0							
Silver	1.5	<0.090	<0.090	<0.090	<0.090							
Thallium	2	<0.050	<0.050	<0.050	<0.050							
Uranium	20	4.3	2.9	2.6	2.2							
Vanadium	6.2	<0.50	<0.50	0.91	<0.50							
Zinc	1100	<5.0	66	<5.0	<5.0							
Sodium	490000	750,000	1,500,000	1,500,000	730,000							
Chloride	790000	1,400,000	2,800,000	2,700,000	1,500,000							
Free Cyanide	66	<1	<1	<1	<1							
All groundwater concentrations reported in µg/L. '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MOECC (2011) SCS. Non-detect but detection limit exceeds the MOECC (2011) SCS. Parameter detected and no SCS provided												

Appendix C – Borehole Logs

R	ECORD OF	BOREHOLE N	0.	BH2	<u>201</u>												BLG. GONGLETING
Proj	ject Number: BIGC	-ENV-554E						Drilling	Location:	See borehol	e loca	tion p	lan			Logged by:	CE
Proj	ject Client: 590 A	Argus LP						Drilling	Method:	115 mm Sc	blid Stem Augering				Compiled by	: RC	
Proj	ject Name: Phase	e Two ESA						Drilling	Machine:	Truck Moun	ted Dr	ill				Reviewed by	/: <u>RM</u>
Proj	ject Location: 590 A	rgus Road, Oakville, ON						Date S	Started:	20 Apr 23	_ Dat	te Con	npletec	l: <u>20 A</u> p	or 23	Revision No	.: <u>0, 20/7/23</u>
	LITHOLOG	BY PROFILE	SC	NL SA	MPLI	NG			FIELD	TESTING	L	AB T	ESTI	NG	-		
ithology Plot	DESC		àample Type	àample Number	Recovery (%)	SPT 'N' Value/RQD%	JEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh	■ DCPT Nilcon Vane* Orr Nilcon Vane* Orr Remould ear Strength (kPa) So	× Rii 2 Si △ pa 10 10 × Lo W ₽lia	nse pH v 4 6 pil Vapo rts per m 0 200 wer Expl /p astic	Values 8 1 Dur Rea 1 1 300 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	12 ding n) 400 iit (LEL) W_ Liquid	NSTRUMENTATION NSTALLATION	COMME	NTS
	ASPHALT PAVEMEN 200 mm granular base	T: 70 mm asphalt over	0	0	Ľ.	0	-	<u>ш</u>	20 40	<u>60 80</u>	0.3	<u> </u>		80 	==		
	FILL: silty clay, some gravel, trace limestone brown, moist, compac	sand, trace to some 0.3 e, trace oxidization, reddish t	SS	1	75	10			0				- - - - - - - - - -	• • • • • • •			
	clayey silt, some sand some oxidization, brow stiff	d, trace gravel, trace to wn to greenish brown, moist,	SS	2	75	11	- - 1 -		0		0.4		· · · · · · · · · · · · · · · · · · ·				
	oxidization, reddish br	rown, moist, stiff					ŀ				0.7			•			
	- trace grey, hard		SS	3	88	80/43cr	Ē			80 0 43cm	1						
<u>~~~</u>	End of Borehole	2.0					F			• • • • • •				* * *			
	Notes: 1. Borehole open and drilling.	dry upon completion of											5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	• • • • • •			
													* * * * *	- - - - - - - - - - - - - - - - - - -			
														5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
														* * * * * * * * * * * * * * * * * * * *			
														4 4 4 4 4 4 4			
													* * * * *	* * * * *			
													* * * *	* * * *			
													8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 4 4 4 4 4			
													6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
													* * * *	• • • • •			
													6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
														• • • • •			
													* * * * *				
														* * * * *			
B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada																	
T: 41 F: 41	16-214-4880 16-551-2633	4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanyingNotes to Record of Boreholes'.													Scale: 1 : 53 Page: 1 of 1		

L

R	ECORD OF E	BOREHOLE N	o.	BH2	<u>202</u>								10	B.I.G. GONGLETING
Proj	ect Number: BIGC-E	NV-554E						Drilling	Location:	See borehol	e location plan		Logged by:	CE
Proj	ect Client: 590 Arc	jus LP						Drilling	Method:	115 mm So	lid Stem Augering		Compiled by:	RC
Proj	ect Name: Phase	Two ESA						Drilling	Machine:	Truck Moun	ted Drill		Reviewed by:	RM
Proj	ect Location: 590 Arg	gus Road, Oakville, ON						Date S	Started:	20 Apr 23	_ Date Completed: 20 A	or 23	Revision No.:	0, 20/7/23
	LITHOLOGY	PROFILE	SC	NL SA	MPLI	NG			FIELD	TESTING	LAB TESTING ★ Rinse pH Values	z		
ithology Plot	DESCF		sample Type	sample Number	Recovery (%)	sPT 'N' Value/RQD9	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh		2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) wp W W W Plastic Liquid 90 90	NSTRUMENTATIO NSTALLATION	COMMEN	TS
	ASPHALT PAVEMENT: 200 mm granular base	Elevation: : 80 mm asphalt over	0	0	Ľ.	0		<u> </u>	20 40		10.7			
	FILL: silty sand, trace c trace gravel, trace shale compact	lay, trace limestone, 0.3 , dark brown, moist,	SS	1	59	13	-		0					
	sandy silt, trace clay, tra oxidization, brown, moist SILTY CLAY/SHALE Co oxidization, reddish brow	ace gravel, trace t, compact 1.1 OMPLEX: trace vn, some grey, moist, stiff	SS	2	84	12	- - - - - -		0		2.4			
	- reddish brown, trace g	rey, hard	SS	3	100	48/56cn	- - - - - -		48 56cn	3 O 1	1.1			
	End of Borehole Notes: 1. Borehole open and dr drilling.	2.1 y upon completion of												
B.I.G 12-5 Mise	5. Consulting Inc. 500 Tomken Rd. issauga, ON I 4W 274	∑ ⊒ No freest	anding	 groundv	vater me	easured	in open	boreho	le on completi	on of drilling.				
Canada Example 100 constitute a thorough understanding of all potential conditions present and requires interpretative assistance F: 416-251-2633 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying/Notes to Record of Boreholes'.											Scale: 1 : 53			

L

R	ECORD OF BOREHOLE N	о.	<u>BH/</u>	MW	<u>203</u>							10	B.I.G. GONELITING		
Proj	ect Number: BIGC-ENV-554E						Drilling	g Location:	See borehol	le location plan		Logged by:	CE		
Proj	ect Client: 590 Argus LP						Drilling	g Method:	115 mm Sc	olid Stem Augering		_ Compiled by:	RC		
Proj	ect Name: Phase Two ESA						Drilling	g Machine:	Truck Moun	nted Drill		_ Reviewed by:	RM		
Proj	ect Location: 590 Argus Road, Oakville, ON						Date	Started:	20 Apr 23	Date Completed: 20	Apr 23	Revision No.:	0, 20/7/23		
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING					
thology Plot	DESCRIPTION	ample Type	ample Number	ecovery (%)	⊃T 'N' Value/RQD%	EPTH (m)	LEVATION (m)	Penetrat O SPT MTO Vane* △ Intact ▲ Remould * Undrained She	tionTesting DCPT Nilcon Vane* Intact Remould ear Strength (kPa)		 ISTRUMENTATION ISTALLATION	COMMEN	TS		
Ľ.	Geodetic Ground Surface Elevation: ASPHALT PAVEMENT: 60 mm asphalt over	ŭ	ů	Ĕ.	N.	<u> </u>		20 40	60 80						
	200 mm granular base FILL: sandy silt, trace gravel, trace clay, trace 0.3 oxidization, trace shale complex, dark brown to some reddish brown, moist, loose	ss	1	87	9			0							
	silty sand/sandy silt, reddish brown, moist, loose SILTY CLAY/SHALE COMPLEX: reddish 1.1 brown, moist, very stiff	ss	2	84	7			0							
	- trace black staining, PHC odours	ss	3	92	40	- - - - - - -		Ó	0	<u>∧</u> 16.1					
	BEDROCK: Shale, reddish brown, moist, hard 2.3	SS	4	100	50/13cn			13cr	Ŏ n	b					
	grey	SS	5	100	50/13cn	- 3		5 13cr	0 O n	4.4					
	- auger grinding					- - 4 									
						-			· · ·						
	End of Borehole 4.6 Notes: 1. Borehole open and dry upon completion of drilling.														
B.I.G 12-5 Miss	a. Consulting Inc. 500 Tomken Rd. ssauga, ON L4W 2Z4 ∑ No frees	tanding	groundv	vater me	easured	in oper	n boreho	le on completio	on of drilling.						
Cana T: 41 F: 41	ada 6-214-4880 Borehole details 6-551-2633 from a qualified commisioned ar	as prese Geotechr nd the acc	nted, do nical Eng companyi	not consi ineer. Als ing'Notes	titute a th o, boreh to Reco	orough ole infor rd of Bo	understa mation sl reholes'.	nding of all poter hould be read in o	ntial conditions pro conjunction with t	resent and requires interpretative the geotechnical report for which	e assistance it was	Pa	Scale: 1 : 53 age: 1 of 1		
R	ECORD	OF BORE	HOLE N	o.	BH2	<u>204</u>								1	B.I.G. GONGLETHY INC
-----------------------------	--	--	---	-----------------------------------	-----------------------------------	-------------------------------------	--------------------------------------	----------------------------------	-----------------------------------	---	-----------------------	---	------------------------------	---------------	----------------------------
Proj	ject Number:	BIGC-ENV-554E							Drilling	J Location:	See borehol	le location plan		Logged by:	CE
Proj	ject Client:	590 Argus LP							Drilling	g Method:	<u>115 mm So</u>	blid Stem Augering		Compiled by:	RC
Proj	ject Name:	Phase Two ESA	<u> </u>						Drilling	g Machine:	Truck Moun			Reviewed by:	RM
Proj	ject Location:	590 Argus Road,	Oakville, ON						Date S	Started:	20 Apr 23	_ Date Completed: 20 A	or 23	Revision No.:	0, 20/7/23
	LITHO	DLOGY PROFIL	.E	SC	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING ★ Rinse pH Values	z		
_ithology Plot	Geodetic Ground	DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained SI 20 40		2 4 6 8 10 12 Soil Vapour Reading parts per imilion (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _P W W 0 Plastic Liquid 0 80 20 40 60 80	NSTRUMENTATIO NSTALLATION	COMMEN	TS
	ASPHALT PA 200 mm granu	VEMENT: 70 mm asp ar base	ohalt over									2.5			
	FILL: sandy si gravel, trace bl	It/silty sand, trace cla ack staining, moist, c	y, trace 0.3 ompact	SS	1	46	10	-		0					
X	sand/silty sand compact SILTY CLAY/S oxidization, red	l, trace oxidization, bu SHALE COMPLEX: tr dish brown, moist, ve	rown, wet, 1.0 ace ery stiff	SS	2	92	17	- 1 - -		0		A ^{6.1}			
X	- trace black s BEDROCK: Sh brown, trace gr	aining and PHC odou ale, trace PHC odou ey, moist, hard	urs rs, reddish 1.5	SS	3	100	84/41cn				84 41cm	A ^{5.8}			
	End of Boreho	le	1.9												
	Notes: 1. Borehole op drilling.	en and dry upon com	pletion of												
1.1.0 2-5 Aiss	5. Consulting Ind 500 Tomken Rd. issauga, ON L4V	2. V 2Z4	$\frac{\nabla}{=}$ No freest	anding (groundv	vater me	asured	in oper	1 boreho	le on complet	tion of drilling.		. 1		
: 41 : 41	16-214-4880 16-551-2633		Borehole details from a qualified C commisioned and	as prese Geotechr d the acc	nted, do iical Engi ompanyi	not consi ineer. Als ng'Notes	titute a th o, boreho to Recor	orough ble infori d of Bor	understa mation sh eholes'.	nding of all pote nould be read in	ential conditions pro	esent and requires interpretative a he geotechnical report for which it	ssistance was	S Pa	Scale: 1 : 5

R	ECORD OF BOREHOLE N	0.	BH2	<u>205</u>									BIG. GONGLETING
Proj	ect Number: BIGC-ENV-554E						Drilling	Location:	See borehol	le location plan		Logged by:	CE
Proj	ect Client: 590 Argus LP						Drilling	Method:	115 mm Sc	blid Stem Augering		Compiled by:	RC
Proj	ect Name: Phase Two ESA						Drilling	Machine:	Truck Moun	ted Drill		Reviewed by:	RM
Proj	ect Location: 590 Argus Road, Oakville, ON						Date S	Started:	20 Apr 23	Date Completed: 20 Aj	or 23	Revision No.:	0, 20/7/23
		SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	z		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrai O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shu 20 40	■ DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80	2 4 6 8 10 12 Soil Vapour Reading parts per million (pm) 10 200 300 400 ▲ parts per million (pm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W W W ■ ● ● ● Plastic Liquid 20 40 60 80	INSTRUMENTATIOI INSTALLATION	COMMEN	тѕ
_	ASPHALT PAVEMENT: 50 mm asphalt over 180 mm granular base					-				0.5			
	SILTY CLAY/SHALE COMPLEX: trace 0.2 limestone, trace gravel, trace oxidization, grey and reddish brown, moist, stiff	SS	1	59	14			0					
	- grey, trace reddish brown, very stiff - auger grinding	SS	2	62	20	- - 1 - -		Ç		0.4			
	- reddish brown, some grey, very stiff	SS	3	54	26	- - - - - - 2		o		0.4			
	End of Borehole 2.1					[
	Notes: 1. Borehole open and dry upon completion of drilling.												
B.I.C 12-5 Misc	. Consulting Inc. 500 Tomken Rd. 500 N 14W 274	tanding	l groundv	vater me	asured	in open	ı boreho	le on completi	on of drilling.	<u> </u>	1 1		
Cana T: 41 F: 41	6-214-4880 Borehole details 6-551-2633 from a qualified commissioned ar	as prese Geotechr nd the acc	nted, do nical Engi companyi	not const ineer. Als ng'Notes	titute a th o, boreh to Reco	norough u ole inforr rd of Bor	understar mation sh reholes'.	nding of all poter hould be read in (ntial conditions proceeding of the second seco	esent and requires interpretative a he geotechnical report for which it	ssistance was	S Pa	Scale: 1 : 53

R	ECORD OF BOREHOLE	No.	BH2	206								10	B.I.G. GONGLETING
Pro	ject Number: BIGC-ENV-554E						Drilling	g Location:	See boreho	le location plan		Logged by:	CE
Pro	ject Client: 590 Argus LP						Drilling	g Method:	115 mm Sc	blid Stem Augering		Compiled by:	RC
Pro	ject Name: Phase Two ESA						Drilling	g Machine:	Truck Moun	nted Drill		Reviewed by:	RM
Pro	ject Location: <u>590 Argus Road, Oakville,</u>						Date S	Started:	20 Apr 23	Date Completed: 20 A	or 23	Revision No.:	0, 20/7/23
	LITHOLOGY PROFILE	sc	DIL SA	MPLI	NG %			FIELD	TESTING	LAB TESTING ★ Rinse pH Values	z		
Lithology Plot	DESCRIPTION Geodetic Ground Surface Elevation: ASPHALT PAVEMENT: 50 mm asphalt over	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	DCPT Nilcon Vane* Intact Remould hear Strength (kPa) 60 80	2 4 0 4 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) Wp W W 10 20 10 10 20 10 10 20 10<	INSTRUMENTATIC	COMMEN	TS
	200 mm granular base CLAYEY SILT/SILTY CLAY: trace sand, trace gravel, trace granular, reddish brown, moist, stif	0.3 SS f	1	75	12			0		A ^{0.8}			
		SS	2	25	9	- - - - - - -		0		0.4			
	some limestone, firm	SS	3	59	7			0		▲ 0.6			
윑						- 2							
	Notes: 1. Borehole open to 0.96 m bgs completion of drilling. 2. Borehole dry upon completion of drilling.												
12-5 Miss Can T: 4 F: 4	25:00 Tomken Rd. ↓ ↓ No fr sissauga, ON L4W 2Z4 ada ada 16-214-4880 Borehole dr 16-551-2633 from a qual commision	eestanding stails as prese fied Geotechi ad and the acc	groundv ented, do nical Eng company	not const ineer. Als ing'Notes	titute a the so, boreh	In open norough u ole inform rd of Bore	boreho understa nation sl eholes'.	nding of all poten	ion of drilling.	Cave in depth records resent and requires interpretative a the geotechnical report for which it	d on completion ssistance was	n of drilling: 0.9	<u>5 m</u> . Scale: 1 : 53

R	ECORD OF BOREHO	LE No.	BH2	<u>207</u>										B.I.G. GONGLETING
Proj	ect Number: BIGC-ENV-554E						Drilling	g Location:	See boreho	le locatio	n plan		Logged by:	CE
Proj	ect Client: 590 Argus LP						Drilling	g Method:	115 mm Se	olid Stem	Augering		Compiled by:	RC
Proj	ect Name: Phase Two ESA						Drilling	g Machine:	Truck Mour	nted Drill			Reviewed by:	RM
Proj	ect Location: 590 Argus Road, Oakv	rille, ON					Date S	Started:	20 Apr 23	_ Date (Completed: 20 Ap	r 23	Revision No.:	0, 20/7/23
	LITHOLOGY PROFILE	sc	DIL SA	MPLI	NG			FIELD	TESTING	★ Rinse	B TESTING	z		
ithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	sPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shu	tionTesting DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80	2 4 Soil √ parts p 100 ▲ Lower W _P Plastic 20	6 8 10 12 /apour Reading	NSTRUMENTATION NSTALLATION	COMMEN	TS
	ASPHALT PAVEMENT: 80 mm asphalt or 400 mm granular base	ver SS	1	67	15	-	<u> </u>	0		▲ ^{1.1}				
₩ 1	FILL: silty sand, trace clay, trace gravel, tr granular, trace limestone, trace oxidization to reddish brown, moist, compact	race 0.5 , brown 0.8								0.6				
	oxidization, reddish brown, moist, stiff	SS	2	95	9	- 1 - -		0		A				
		ss	3	30	6	- - - - - -		0		0.4				
	End of Borehole Notes: 1. Borehole open and dry upon completion drilling.													
B.I.C 12-5 Miss	b. Consulting Inc. 500 Tomken Rd. = issauga, ON L4W 2Z4	No freestanding	groundv	vater me	asured	in oper	n boreho	le on completi	on of drilling.					
Cana T: 41 F: 41	ida 6-214-4880 Boreh 6-551-2633 from : comn	nole details as prese a qualified Geotechr nisioned and the acc	nted, do nical Eng companyi	not const ineer. Als ing'Notes	titute a th o, boreh to Reco	orough ole infor rd of Bo	understar mation sh reholes'.	nding of all poter nould be read in	ntial conditions pr conjunction with	resent and re the geotechr	equires interpretative as ical report for which it	ssistance was	Pa	Scale: 1 : 53 age: 1 of 1

L

R		HOLE No.	BH2	208								10	B.I.G. GONGULTING
Proj	ect Number: BIGC-ENV-554E						Drilling	Location:	See boreho	le location plan		Logged by:	CE
Proj	ect Client: 590 Argus LP						Drilling	Method:	<u>115 mm Ma</u>	anual		Compiled by:	RC
Proj	ect Name: Phase Two ESA						Drilling	Machine:	Hand Auger	r		Reviewed by:	RM
Proj	ect Location: 590 Argus Road,	Oakville, ON					Date S	started:	20 Apr 23	Date Completed: 20 A	or 23	Revision No.:	<u>0, 20/7/23</u>
	LITHOLOGY PROFIL	.E SC	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	-		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrat O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sha 20 40	tionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould tear Strength (kPa) 60 80	A ruitse pri values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _p W W _i Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMEN	TS
	TOPSOIL: 100 mm FILL: sand and gravel, trace silt, tra	ace organics,0.1 AU	1	100					· · ·	▲ ^{0.2}			
****	brown, moist, loose	0.3						· · ·	* * * * * *				
	End of Borehole Notes: 1. Borehole open and dry completio	n of drilling.											
									- 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9				
B.I.G 12-5	6. Consulting Inc. 500 Tomken Rd.	$\frac{\nabla}{\Xi}$ No freestanding g	groundw	/ater me	asured	in open	boreho	le on completio	on of drilling.		<u>. </u>		
Cana T: 41	ada 6-214-4880	Borehole details as press	nted. do	not const	titute a th	orough m	nderstar	iding of all noter	ntial conditions or	resent and requires interpretative	ssistance		
F: 41	6-551-2633	from a qualified Geotechn commisioned and the acc	ical Engi ompanyi	neer. Als ng'Notes	o, boreho to Recor	d of Bore	hation she	ould be read in o	conjunction with t	the geotechnical report for which it	was	Pa	Scale: 1 : 53 age: 1 of 1

L

RECORD OF BOREHOLE N	0.	BH2	<u>209</u>								10	B.I.G. GONGLETING
Project Number: BIGC-ENV-554E						Drilling	Location:	See borehol	le location plan		Logged by:	CE
Project Client: 590 Argus LP						Drilling	Method:	115 mm Sc	olid Stem Augering		Compiled by:	RC
Project Name: Phase Two ESA						Drilling	Machine:	Truck Moun	ted Drill		Reviewed by:	RM
Project Location: 590 Argus Road, Oakville, ON						Date S	tarted:	20 Apr 23	_ Date Completed: 20 Apr 2	23	Revision No.:	<u>0, 20/7/23</u>
LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING		-		
DESCRIPTION	mple Type	mple Number	covery (%)	T 'N' Value/RQD%	EPTH (m)	EVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shi	tionTesting DCPT Nilcon Vane* Intact Remould ear Strength (kPa)		STALLATION	COMMEN	ITS
별 Geodetic Ground Surface Elevation: ASPHALT PAVEMENT: 50 mm asphalt over	Sa	Sa	Re	Ъ	ä	Ш	20 40	60 80	20 40 60 80	ΞΞ		
270 mm granular base SILTY CLAY/SHALE COMPLEX: trace 0.3 limestone, trace oxidization, reddish brown, some grey, moist, stiff 0.6	SS	1	75	12	-		0		0.5			
Notes: 1. Borehole open and dry upon completion of drilling.												
B.I.G. Consulting Inc.	anding	l groundv	l vater me	asured	in oper	1 boreho	e on completi	on of drilling.		<u> </u>		
12-5500 Tomken Rd.	anany	ground	ator me		oper	. 5516110	o on compieti	en or arming.				
Canada T: 416-214-4880 Borehole details	as prese Geotechr	ented, do nical Engi	not cons ineer. Als	titute a th o, boreh	norough ole infor	understar mation sh	ding of all poter ould be read in	ntial conditions pr conjunction with t	esent and requires interpretative assis he geotechnical report for which it was	stance		Scale: 1 : 53

RE			o. _	BH1	01										BLG. Consultive
Proj	ect Number: BIGC-ENV-554	D						Drilling	g Location:	See borehol	le location pla	n		Logged by:	FJ
Proj	ect Client: Distrikt Capita	I Corporation						Drilling	g Method:	150 mm So	olid Stem Auge	ering		Compiled by:	ММ
Proj	ect Name: Phase II ESA a	nd Supplementa	ary Geo	otechn	ical an	d		Drilling	g Machine:	Truck Moun	ted Drill			Reviewed by:	кк
Proj	ect Location: 590 Argus Roa	d, Oakville, ON						Date	Started:	17 Feb 23	_ Date Compl	leted: 17 Fe	b 23	Revision No.:	0, 10/4/23
	LITHOLOGY PROF	ILE	SC	IL SA	MPLI	NG			FIELD 1	ESTING	LAB TE	STING			
Lithology Plot	DESCRIPTIO	N : 105.00 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrati O SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40	DCPT Nilcon Vane* Remould ar Strength (kPa) 60 80		es 8 10 12 Reading n (ppm) 300 400 we Limit (LEL) WL Ultrace Liquid 60 80	INSTALLATION INSTALLATION	COMMENT	rs
	ASPHALT PAVEMENT: 40 mm 120 mm granular base FILL: silty sand, some clay, trac limestone fragments black stress	asphalt ov ¢ 04.85 0.2 ce gravel, trace	22	1	54	8	-	-			_13	• • • • • • • • • • • • • •			
	FILL: silty clay, trace sand, trac	104.24 e gravel, trace 0.8						-				· · · · · · · · · · · · · · · · · · ·			
		402.40	SS	2	33	6	- 1 - -	104 -	0		023				
	SILTY CLAY/SHALE COMPLE trace gravel, trace limestone fra brown to grey, moist, hard	X: trace sand, 1.5 gments, reddish	SS	3	54	38	- - - - - 2	103 -	0		_o 20				
	BEDROCK: Shale, grey, moist	102.56 2.4	SS	4	100	50/10 cm			- 50 - 10 cm			· · · · · · · · · · · · · · · · · · ·			
Interview Interview End of Borehole due to Auger Refusal 2.9 Notes: Interview 1. Borehole open and dry upon completion of															
	Notes: 1. Borehole open and dry upon drilling.	completion of													
												· · · · · · · · · · · · · · · · · · ·			
												· · · · · · · · · · · · · · · · · · ·			
												· · · · · · · · · · · · · · · · · · ·			
												· · · · · · · · · · · · · · · · · · ·			
												· · · · · · · · · · · · · · · · · · ·			
B.I.G 12-5 Missi	5. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2Z4	$\frac{\nabla}{=}$ No freest	anding (groundw	vater me	asured	in opei	n boreho	ble on completio	n of drilling.			 I		
Cana T: 41 F: 41	ada 6-214-4880 6-551-2633	Borehole details from a qualified of commisioned and	as prese Geotechr d the acc	nted, do iical Engi ompanyi	not const ineer. Als ng'Notes	titute a th o, boreho to Recor	orough ble infor d of Bo	understa mation s reholes'.	nding of all poten hould be read in c	tial conditions pro onjunction with th	esent and requires i he geotechnical rep	interpretative as ort for which it v	sistance was	S	cale: 1 : 53 ge: 1 of 1

R	ECORD OF BOREHOLE N	o.	<u>BH/</u>	MW	102							111	B.I.G. Consulting
Proj	ect Number: BIGC-ENV-554D						Drilling	Location:	See borehol	le location plan		_ Logged by:	FJ
Proj	ect Client: Distrikt Capital Corporation						Drilling	Method:	150 mm Sc	olid Stem Augering		Compiled by:	MM
Proj	ect Name: Phase II ESA and Supplement Hydrogeological Investigation	ary Geo	otechn	ical an	nd		Drilling	Machine:	Truck Moun	ted Drill		Reviewed by:	кк
Proj	ect Location: 590 Argus Road, Oakville, ON						Date	Started:	17 Feb 23	Date Completed: 1	Feb 23	Revision No.:	<u>0, 10/4/23</u>
	LITHOLOGY PROFILE	SC	NL SA	MPLI	NG			FIELD	TESTING				
			5		RQD%		Ê	Penetra O SPT	ationTesting DCPT 	2 4 6 8 10 Soil Vapour Reading			-
/ Plot	DESCRIPTION	Type	dmuN	y (%)	/alue/	Ē	NOL	MTO Vane*	Nilcon Vane* ♦ Intact	Δ parts per million (ppm) 100 200 300 400 Δ Lower Explosive Limit (LE		COMMEN	5
loogy		mple -	mple 1	cover	, v.	PTH	EVAT	Remould * Undrained St	Remould	W _p W W ■ O ■ O	STRUI		
Lith	Geodetic Ground Surface Elevation: 105.04 m ASPHALT PAVEMENT: 50 mm asphalt oven 489	Sa	Sa	Re	Ъ	ä		20 40	60 80	20 40 60 80	žž Bi Bi		
	100 mm granular base 0.2 FILL: silty clay/clayey silt, trace sand, trace					-			· · ·	F	·노동·		
	gravel, trace oxidization, trace organics, trace shale fragments, reddish brown to grey, moist,	SS	1	59	11	-	-	0	* * * * * *	0			
	SUIT								• • • • • •				
		SS	2	51	8	- 1 -	104 -	0	· · · · · · · · · · · · · · · · · · ·	o ²²			
	103.52					E							
	SILTY CLAY/SHALE COMPLEX: trace sand, 1.5 trace gravel, trace limestone fragments, reddish		_			- -	-		• • •	13			
	brown to grey, moist, hard	SS	3	87	35	- 2	103 -	0		0.5			
	100.00				50/40	- - -			50	14			
	BEDROCK: Shale, reddish brown to grey, 2.4	SS	4	64	50/13 cm			13 c	o m	0 ¹¹			
	moist					-	-		· · ·				
		SS	5	56	50/2	- 3	102 -		50	o ⁸			
					- cm	-		20	im : :				
						-							
						4	101						
						E .	101 -		• • •				
		- 00	6	100	50/8	-	-		50	11			
			0		cm	Ē	-	80	:m	0			
						- 5	100 -						
						-	-		• • • • • •				
							-						
	99.10					-							
	Notes:								• • •				
	 Borehole open upon completion of drilling. Groundwater level reading at 4.57 m bgs 								• • • • • • •				
	upon completion of drilling. 3. Ground water level reading at 3.42 m bgs on								• • • • • •				
	March 23, 2023.												
									* * * * * *				
									· · ·				
B.I.G	. Consulting Inc.	l ater der	l oth on c	l ompletic	n of dri	lina [.]	4,57 m	. :	* *	_ : :			
12-5 Miss	500 Tomken Rd. ssauga, ON L4W 2Z4	ater dep	oth obse	erved on	<u>3/23/</u>	9 . 2023 at	t a depth	of: <u>3.42</u>	<u>m</u> .				
Cana T: 41 F: 41	6-214-4880 Borehole details	as prese	nted, do	not cons	titute a th	norough	understa	nding of all pote	ential conditions pr	esent and requires interpretat	ve assistance	e	cale: 1 · 53
	commisioned ar	d the acc	ompanyi	ng'Notes	to Reco	rd of Bo	reholes'.		- conjunction with t	geotechnical report for Wh		Pa	ge: 1 of 1

RI	ECORD (o	BH1	03																B.I.G. GONGALTING
Proj	ject Number:	BIGC-ENV-554D							Drilling	g Locat	ion:	See	borehol	le loca	tion p	olan				Logged b	by:	FJ
Proj	ject Client:	Distrikt Capital C	Corporation						Drilling	g Meth	od:	150	mm So	olid Ste	em Au	ugerin	g			Compileo	d by:	MM
Proj Proj	ject Name:	Phase II ESA and Hydrogeological 590 Argus Road,	d Supplementa Investigations Oakville, ON	ary Geo S	otechn	ical an	d		Drilling Date S	g Mach Started	ine: :	<u>Truc</u> 17 F	<u>k Moun</u> eb 23	ted Dr	ill e Coi	mplete	ed: 17 F	eb 23		Reviewe	d by: No.:	<u>кк</u> 0, 10/4/23
			F	so			NG			FI		FEST	ING			TEST		—				
ithology Plot	[DESCRIPTION	<u>+</u>	ample Type	ample Number	ecovery (%)	PT 'N' Value/RQD%	EPTH (m)	LEVATION (m)	P O SP MTO △ Inta ▲ Re * Undra	Penetrat T Vane* act mould ained She	ionTes ● □ Nilco ◇ Ir ● F	sting pCPT n Vane* tact termould ngth (kPa)	★ Rir 2 SC △ pau 10 ▲ Lor W, ■ Pla	AD ase pH (4 (c) bil Vap rts per r 20 wer Exp P astic	Values 3 8 bour Re million (p 0 300 blosive Li W 0	10 12 ading pm) 400 mit (LEL) WL Liquid	ISTRUMENTATION	USTALLATION	СОМ	MEN	ſS
	Geodetic Ground ASPHALT PA	Surface Elevation: 1 VEMENT: 60 mm as	104.90 m sphalt ov ¢ 04.75	S	٥ ٥	Ľ	0	-	<u> </u>	- 20	<u>4</u> 0	6 <u>0</u>	80	20	<u> </u>) 60	80	<u> </u>	≤			
	FILL: silty san gravel, brown,	ar base d, trace clay, trace t moist, loose	<u>0.</u> 2 to some	SS	1	41	8	-	-	0	• • • • •	• • • • • •		o ¹²			* * * * * *					
	SILTY CLAY	SHALE COMPLEX:	103.68 trace sand, 1.2	SS	2	67	6	- - 1 - 1	104 -	0	• • • • • • •		* * * * *	0	18							
	brown to grey,	moist, hard	ienis, reduisti	SS	3	59	50	- - - - - 2	103 —			0		o ¹⁰		· · · · · · · · · · · · · · · · · · ·						
	BEDROCK: SI moist	nale, reddish brown	102.61 to grey, 2.3	SS	4	80	50/10 cm		-		5 10 cn	n O	- - - - - - - - -				- - - - - - - - - - - - - - - - - - -					
	End of Boreh	le	<u>101.83</u> 3.1		—5 —		<u>50/2</u> cm	- 3	102 -		51 2 cm	0 O			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
	Notes: 1. Borehole op drilling.	en and dry upon col	mpletion of								-	* * * * * * * * *	•			-	- - - - - - - - - - - - - - - - -					
											- - - - - - - -	• • • • • •					- - - - - - - - - - - -					
											- - - - - - - - - - - -						4 4 4 4 4 4 4 4 4 4 4					
											* * * * * * *	• • • • • • • • • • • • •	• • • • •				+ + + + + + + + + + + + +					
											- - - - - - - - - - - - - -	- - - - - - - - - - - - - - -					• • • • • • •					
											- - - - - - - - - - - - -	* * * * * *					* * * * * *					
											- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -	•				* * * * * *					
											* * * * * *	• • • • • • • •	•				* * * * * *					
											- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - -	-									
											• • • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •				- - - - - - -					
											*	- - - - - - -	•				4 4 4 4 4 4 4					
B.I.C 12-5 Miss Cana	5. Consulting Inc. 500 Tomken Rd. iissauga, ON L4W ada	2Z4	$\frac{\nabla}{=}$ No freest	anding (groundv	vater me	easured	in oper	n boreha	ole on co	ompletio	on of d	rilling.									
T: 41 F: 41	6-214-4880 16-551-2633		Borehole details from a qualified C commisioned and	as prese Geotechn d the acc	nted, do iical Engi ompanyi	not cons ineer. Als ng'Notes	titute a th so, boreho to Recor	orough ble infor d of Bo	understa mation sh reholes'.	nding of hould be	all poter read in o	itial con conjunc	ditions protion with the second	esent an he geote	d requi chnical	res inter I report f	pretative or which	assistai it was	nce		S Pa	

R		F BORE		o. _	BH1	04								10	BLG. GONELTING
Proj	ect Number: B	IGC-ENV-554D							Drilling	g Location:	See boreho	le location plan		Logged by:	FJ
Proj	ect Client:	istrikt Capital Co	orporation						Drilling	g Method:	150 mm So	olid Stem Augering		Compiled by:	MM
Proj	ect Name: P	hase II ESA and	Supplementa	ary Geo	otechn	ical an	d		Drilling	g Machine:	Truck Moun	nted Drill		Reviewed by:	<u>кк</u>
Proj	ect Location: 5	90 Argus Road,	Oakville, ON						Date	Started:	17 Feb 23	Date Completed: 17 Fe	b 23	Revision No.:	<u>0, 10/4/23</u>
	LITHOL	OGY PROFIL	E	SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	D Geodetic Ground S	ESCRIPTION	04.91 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetral O SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40	OCPT DCPT Nilcon Vane*	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W W W W Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMEN	TS
	ASPHALT PAV 120 mm granula FILL: silty clay, brown moist fir	EMENT: 50 mm as ir base trace sand, trace gi	pnait ov @ 04.76 <u>0.</u> 2 ravel,	22	1	5	9	-				013			
	FILL: silty sand	, trace to some clay	<u>104.15</u>		1	5	0		-						
	gravel, some ree brown to grey, n	ddish brown shale fi noist, compact	ragments,	SS	2	54	10	- 1 -	104	0		o ⁸			
	SILTY CLAY/S trace gravel, trac brown to grey, n	HALE COMPLEX: to ce limestone fragme noist, hard	103.39 race sand, 1.5 ents, reddish	SS	3	70	43	- 2	103 -	0		o ⁹			
	BEDROCK: Sha	ale, grey, moist	<u>102.62</u> 2.3	SS	4	100	50/8 cm	-		5 8 cr) O				
_	End of Borehol	e due to Auger Ref	102.17 fusal 2.7					-			• • • • • •				
BEDROCK: Shale, groy, moist 23 ss 4 100 50% BEDROCK: Shale, groy, moist 23 ss 4 100 50% Notes: 102.17 - - 8 m Notes: 1.000 completion of drilling. 102.17 - -															
B.I.G 12-5 Missi	5. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2	2Z4	$\frac{\nabla}{=}$ No freesta	anding g	groundw	vater me	asured	in oper	n boreho	le on completio	on of drilling.				
Cana T: 41 F: 41	ada 6-214-4880 6-551-2633	-	Borehole details a from a qualified of commisioned and	as prese Seotechn d the acc	nted, do iical Engi ompanyi	not const ineer. Als ng'Notes	itute a th o, boreho to Recor	orough ble infor d of Bo	understa mation sl reholes'.	nding of all poter hould be read in o	tial conditions pr conjunction with t	resent and requires interpretative a the geotechnical report for which it	ssistance was	Pa	Scale: 1 : 53 age: 1 of 1

R	ECORD OF BORE		o. [BH/	MW	<u>105</u>													BLG. GONDATING
Proj	ect Number: BIGC-ENV-554E)						Drilling	g Loca	ation:	Se	e borehol	e locatio	n plan				Logged by:	FJ
Proj	ect Client: Distrikt Capital	Corporation						Drilling	g Meth	nod:	15	50 mm So	lid Stem	Augeri	ing			Compiled by	: <u>MM</u>
Proj	ect Name: Phase II ESA an Hydrogeologica	nd Supplementa	ary Geo s	otechn	ical an	d		Drilling	g Mac	hine:	Tr	uck Mount	ted Drill					Reviewed by	/: <u>KK</u>
Proj	ect Location: 590 Argus Road	d, Oakville, ON	-					Date S	Starte	d:	11	Mar 23	_ Date (Comple	ted: <u>1 M</u>	ar 23		Revision No.	.: <u>0, 10/4/23</u>
	LITHOLOGY PROF	ILE	SC	IL SA	MPLI	NG			F	IELD	TES	STING	LA Binse	B TES	TING				
				5		ROD%		Ê	o s	Penetr	ation1	DCPT	2 4 Soil \	6 8 /apour F	10 12 Reading				
Plot	DESCRIPTION	N	ype	lumbe	(%)	'alue/F	Ê	NO	мто	Vane'	* Ni	Icon Vane*	△ parts p 100	200 30 Explosive	(ppm) 00 400			COMME	NTS
ology			nple T	nple N	overy	, Z	PTH (EVATI	∆ m ▲ R	emould	ě	Remould	W _P	W 0	W _L	TRUN			
Lith	Geodetic Ground Surface Elevation:	104.96 m	Sar	Sar	Rec	Ъ	DE		" Una 2	20 40	near S 0 6	trengtn (kPa) 0 80	20	40 6	Liquid 0 80				
***	150 mm granular base FILL: silty clay, some sand, trace	0.2					-	-				· · ·			· · · · · · · · · · · · · · · · · · ·		÷.		
	gravel, trace shale fragments, tra odour, black to dark brown, moist	ice organic t, firm to very	SS	1	70	8	Ē	-	0			• • • • • •	o ⁶ :	-	· · ·				
	stiff						E	-						-	· · ·				
			SS	2	41	7	- 1	104 -	0				o ¹⁷		· · · · · · · · · · · · · · · · · · ·				
							-	-	1						· · ·				
		103.28					Ē	-	1			· · ·			· · ·				
	SILLY CLAY/SHALE COMPLEX trace gravel, trace limestone frag moist very stiff to hard	ments, grey,	SS	3	70	28	-	103 -	1	0		· · ·	o ²		· · ·				
								-	1						· · · · · · · · · · · · · · · · · · ·				
102.37 SS 4 77 50/13 cm 50 13 cm 50 013 BEDROCK: Shale, grey, moist 2.6																			
102.37 SS 4 77 50/13 613 BEDROCK: Shale, grey, moist 2.6 3 102 13 cm 613																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
SS 5 52 50/10 cm 50 10 cm 50 10 cm 10 cm																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
							E	-											
							- 4	101 -				· · · · · · · · · · · · · · · · · · ·					•		
							-												
								-				· · ·			· · ·				
							-	100 -	1						• • • • • •				
							- 3	-	1						· · · · · · · · · · · · · · · · · · ·				
							-			· · ·		• • • • • •			· · ·				
							E	-				· · · · · · · · · · · · · · · · · · ·			· · ·				
		98.86					- 6	99 —							· · · · · · · · · · · · · · · · · · ·				
	End of Borehole	6.1													· · ·				
	Notes: 1. Borehole open upon completion 2. Created by the section of 5	on of drilling.													· · ·				
	 Groundwater level reading at a upon completion of drilling. Ground water level reading at a 	4 28 m bas on																	
	March 23, 2023.								1	· · ·				•	· · ·				
															· · ·				
												· · ·			· · ·				
												· · ·		:	· · ·				
												· · ·		-	· · ·				
												• • • • • •		-	· · ·				
												* * * * * * * *	-	-	* * * * * *				
									1			· · ·		•	· · ·				
									1			• • • • • •			· · ·				
									1			· · ·		•	· · ·				
									1						· · ·				
B.I.G	. Consulting Inc.		ator da	there	meleti	n of dat	ling	5 40	<u> </u>	: :		* *			• •				
12-5 Miss	500 Tomken Rd. issauga, ON L4W 2Z4		aler dep ater den	th obse	rved on	3/23/	mig: 2023 e	<u>5.49 m</u> . t a denth	ı of [.]	4 28	m								
Cana T: 41	ada 6-214-4880	Borehole details	as prese	nted, do	not cons	titute a th	horough	understa	nding o	f all pot	ential o	conditions pre	esent and re	equires in	terpretative	assistanc	e	1	0
г: 41	0-001-2000	from a qualified of commisioned and	Geotechn d the acc	ical Engi ompanyi	neer. Als ng'Notes	o, boreh to Reco	ole infor rd of Bo	mation sh reholes'.	nould be	e read ir	n conju	unction with th	ne geotechr	iical repoi	rt for which	it was			Scale: 1 : 53 Page: 1 of 1

R	ECORD OF BOR	REHOLE N	o	BH/	MW	106										10	BLG. GONSALTING
Proj	ect Number: BIGC-ENV-55	54D						Drilling	l Locatio	n: <u>S</u>	ee borehol	e locatio	n plan			Logged by:	FJ
Proj	ect Client: Distrikt Capit	tal Corporation						Drilling	Method	l: <u>1</u>	150 mm So	lid Stem	Augering	9		_ Compiled by:	MM
Proj	ect Name: Phase II ESA Hydrogeolog	and Supplementa	ary Geo s	otechn	ical an	nd		Drilling	Machin	e: <u>T</u>	ruck Moun	ted Drill				_ Reviewed by:	<u>кк</u>
Proj	ect Location: 590 Argus Ro	oad, Oakville, ON						Date	Started:	<u>1</u>	Mar 23	_ Date C	complete	d: <u>1 Ma</u>	23	Revision No.:	<u>0, 10/4/23</u>
	LITHOLOGY PRO	DFILE	SC	IL SA	MPLI	NG			FIE	LD TE	STING			NG	7		
				L		RQD%		Ê	Per	netratior	Testing	2 4 Soil V	6 8 apour Rea	10 12 ading	ATION		
Plot	DESCRIPTI	ON	ype	lumbe	(%)	alue/F	Ê	N	MTO Va	ane* N	lilcon Vane*	△ parts pe 100	er million (pp 200 300 Explosive Lir	om) 400 nit (LEL)	ATION	COMMEN	ITS
ology			nple T	nple N	overy	, z	PTH (EVATI	A Intact ▲ Remo	buld 🇳	Remould	W _P	W 0	W _L	TALL		
Lith	Geodetic Ground Surface Elevatio	on: 105.13 m	Sar	Sar	Rec	Ъ	DE		" Undraine 20	40 40	60 80	20	40 60	Liquid 80	으으 르르		
***	120 mm granular base FILL: silty sand, some clavey	0.2					Ē	105 -			• • • •			•			
	trace oxidization, reddish brow compact to dense	vn, moist,	SS	1	70	12	-		0			o ¹¹		•			
		104.22					È										
	SILTY CLAY/SHALE COMPL trace gravel, trace limestone fi	EX: trace sand, 0.9 ragments, reddish	SS	2	70	48	- 1 -	104 -		0		o ¹⁴					
	brown to grey, moist, hard						F				• • • • • •	-	* * * * * *	*			
							-			:	· · ·		· · ·				
			SS	3	70	61	-				0	o ⁶					
		102.84					- 1	103 -		50	· · · · · · · · · · · · · · · · · · ·			•			
	BEDROCK: Shale, reddish brown to grey, 2.3 SS 4 65 50/5 5 5 cm 5 cm 5																
SS 50/13 3 50 102 102 13 cm 13 cm																	
SS 5 100 50/13 - 3 - 50 -																	
							-	-		:	• • • • • •		· · ·	* * *			
										:	· · ·		· · ·	•			
							4 E	101 -		• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	,		••••			
							F				· · ·						
							-				· · ·						
							- 5	-									
							Ē	100 -			· · ·						
							-				· · ·						
							-			:	· · ·			:			
		99.03					- 6	-									
	End of Borehole	6.1								:	• • • • • •		· · ·	*			
	Notes: 1. Borehole open upon comple 2. Groundwater level reading	etion of drilling.								•	· · ·		· · ·	•			
	upon completion of drilling. 3. Ground water level reading	at 2.46 m bgs on								:	· · ·		· · ·	*			
	March 23, 2023.	J··									• • • • • •		· · ·	•			
											· · ·		· · ·				
										:	· · ·			•			
											• • • • • •		· · ·	* * *			
										:	· · ·						
											· · ·		· ·	*			
											· · ·						
											· · ·			-			
											· · · · · · · · · · · · · · · · · · ·		· · ·				
											• • • • • •		· · ·				
											· · ·						
B.I.G	. Consulting Inc.	∑ Groundw	ater den	oth on ca	l ompletic	n of dril	lina:	3.05 m	. ·		• •	L ·					
12-5 Missi	500 Tomken Rd. issauga, ON L4W 2Z4	= Groundw	ater dep	th obse	rved on	<u>3/23</u> /2		t a depth	of: <u>2</u>	<u>.46 m</u> .							
Cana T: 41 F: 41	aua 6-214-4880 6-551-2633	Borehole details	as prese	nted, do	not cons	titute a th	norough	understa	nding of all	potentia	l conditions pro	esent and rec	quires inter	pretative a	ssistance		Scale: 1 · 53
		commisioned an	d the acc	ompanyi	ng'Notes	to Reco	rd of Bo	reholes'.	iouid De rea	au ili CON	ganction with t	ne geotecnni	car report fo	or which it	was	P	age: 1 of 1

R	ECORD	OF BOREHOLE N	lo.	<u>BH/</u>	MW	<u>107</u>									10	B.I.G. GONEALTING
Proj	ect Number:	BIGC-ENV-554D						Drilling	J Location:	See boreho	le locatio	n plan			Logged by:	<u>FJ</u>
Proj	ect Client:	Distrikt Capital Corporation						Drilling	g Method:	<u>150 mm S</u>	olid Stem	Augering			_ Compiled by:	MM
Proj	ect Name:	Phase II ESA and Supplemen Hydrogeological Investigation	tary Ge ns	otechn	nical ar	nd		Drilling	g Machine:	Truck Mou	nted Drill				_ Reviewed by:	<u>кк</u>
Proj	ect Location:	590 Argus Road, Oakville, ON						_ Date \$	Started:	17 Feb 23	Date C	completed:	17 Fe	eb 23	Revision No.:	<u>0, 10/4/23</u>
	LITH		SC	DIL SA	AMPLI	NG			FIELD	TESTING	LAE ★ Rinse p	B TESTIN	IG	z		
				Ŀ		RQD		Ē	Penetra O SPT	 DCPT 	2 4 Soil V	6 8 10 apour Read) 1 <u>2</u> ling	N	COMMEN	те
/ Plot		DESCRIPTION	Type	dmuN	y (%)	Value	Ê	NOL	MTO Vane* ∆ Intact	Nilcon Vane [®] ◇ Intact	100 ▲ Lower I	200 300 Explosive Limit	400 (LEL)	ATIO	COMINEN	15
holog			umple	mple	scover	N' T	PTH	EVA]	Remould * Undrained Sh	 Remould ear Strength (kPa) 	W _P ■ Plastic	W 	W _L —● quid	STRU		
Lit	Geodetic Groun	Surface Elevation: 104.65 m AVEMENT: 50 mm asphalt ove04.50	ů	ő	Å	ц.	<u> </u>		20 40	60 80	20	40 60	80			
	110 mm gran FILL: silty sa	ular base 0.2 nd, trace gravel, trace				_	-					· · ·		1 I		
	moist, loose t	o compact	55	1	51	5	-	104 -		· · ·			:			
		103.74 SHALE COMPLEX: trace sand 0.9					E 1									
	trace gravel, brown to grey	trace limestone fragments, reddish y, moist, very stiff to hard	SS	2	84	27	- '		0		013					
							Ę			:0		· · ·	:			
	BEDROCK:	102.97 Shale, reddish brown to grey, 1.7	SS	3	54	50/13 cm	Ē	103 -	13 c	ñ m	0 ¹⁴	· · ·	•			
	moist						2									
			SS	4	56	50/2	È		5	i0 O	-	· · ·				
							E	102 -	2 c	m		· · ·				
						50/0	Ē					· · ·	•			
				5	100	<u>50/2</u> cm	- 3		2 c	O m						
							Ē									
							Ē	101 -			-	· · ·				
							- 4									
							F				-	· · ·				
				6	100	50/2 cm	Ę	100 -		lo D		· · ·				
							-					· · ·	•			
							- 5 -					• • • • • • • • • • • • • •				
							-			• • • • • •		· · ·				
							-	99 -		• • • • • •		· · ·	•			
		98.55					- 6									
	End of Borel	nole 6.1										· · ·				
	1. Borehole c 2. Groundwa	pen upon completion of drilling. er level reading at 4.27 m bgs							· · ·	• • • • • •		· · ·	•			
	upon comple	ion of drilling.										· · ·				
										· · ·			:			
										• • • • • •		· · ·	•			
										· · ·						
									· · ·	• • • • • •		· · ·				
										• •		· · ·	:			
												· · ·				
											-	· · ·				
										· · · · · · · · · · · · · · · · · · ·		· · ·				
	0									• •			*			
8.1.0 12-5 Miss	 Consulting In 500 Tomken Rd issauga, ON L4¹ 	C. V 2Z4	vater de	pth on c	ompleti	on of dril	ling:	<u>4.27 m</u> .								
T: 41	6-214-4880 6-551-2633	Borehole detail from a qualifier	s as prese Geotechi	ented, do	not cons	stitute a th	norough ole info	understa	nding of all pote	ntial conditions p	resent and rea	quires interpro	etative a	ssistance was		Scale: 1 : 53
		commisioned a	nd the acc	company	ing'Note:	s to Reco	rd of Bo	oreholes'.		,					Pa	age: 1 of 1

RI	ECORD OF BOREHOLE N	0.	<u>BH/</u>	MW	<u>108</u>										10	B.I.G. Gonesatives
Pro	ect Number: BIGC-ENV-554D					_ Drilling	g Location:	Se	ee borehol	e locatior	n plan			Logged by:	FJ	
Pro	ject Client: Distrikt Capital Corporation			_ Drilling	g Method:	2	00 mm Ho	llow Sten	n Augerin	g		Compiled by:	MM			
Pro	ect Name: Phase II ESA and Supplementa	ary Ge	otechn	ical an	d		Drilling	g Machine:	Tr	ruck Moun	ted Drill				Reviewed by:	КК
Pro	ect Location: 590 Argus Road, Oakville, ON						_ Date \$	Started:	27	7 Feb 23	_ Date C	ompleted	28 Fe	b 23	Revision No.:	0, 10/4/23
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD) te	STING	LAB	TESTIN	IG	_		
					QD%		- -	Penet	tration	Testing	★ Rinse p 2 4 Soil V:	H Values 6 8 10 apour Read) 1 <u>2</u>	TION		
olot	DESCRIPTION	be	Inder	(%)	alue/R	Ê	U U	MTO Vane	e* N	ilcon Vane*	△ parts pe	er million (ppr 200 300	1) 400	ENT ^A	COMMEN	TS
logy F		ple T)	ple Ni	overy	N. /8	TH (r	VATIC	 △ Intact ▲ Remould 	d 🇳	Intact Remould	Lower E	Explosive Limi W	t (LEL) WL	ALLA		
Litho	Geodetic Ground Surface Elevation: 104.51 m	Sam	Sam	Reco	SPT	DEP	ELE	* Undrained	Shear S 40	Strength (kPa) 60 80	Plastic 20	4 <u>0 60</u>	iquid 80	LSNI		
****	ASPHALT PAVEMENT: 70 mm asphalt ov¢04.36 170 mm granular base 0.2					Ē			•	• • • • • • •		• • • • • •	•	걸 것		
	FILL: sandy silt, trace gravel, trace clay, trace limestone fragments, black, moist, loose to	SS	1	46	8	-	104 -	0	•	· · ·	o ²¹	· · ·				
	103.43					Ē			:		16					
ĨĨ	SILTY CLAY/SHALE COMPLEX: trace sand, 1.1 trace gravel trace limestone fragments, reddish	SS	2	84	18	E '		0	•	· · · · · · · · · · · · · · · · · · ·	0.0		•			
	brown to grey, moist, very stiff to hard					Ē	103 -		•	· · · · · · · · · · · · · · · · · · ·		· · ·	•			
		SS	3	67	31	Ē		0	•	· · · · · · · · · · · · · · · · · · ·	o ¹²	· · ·				
	102.22				FOIF	Ē			50							
	BEDROCK: Shale, highly weathered to fresh, 2.3 very poor to excellent quality, trace limestone	SS	4	50	50/5 cm	E	102 -	5	cm	· · ·		· · ·				
	inclusion, reddish brown to grey, moist					-			50							
			5	100	<u>50/2</u> cm	- 3		2	cm							
						Ē	101 -						:	Y		
						-			•	· · ·						
						- 4 -					• • • • • • • • • • • •		•••••••			
						-	100 -		•	· · · · · · · · · · · · · · · · · · ·		· · ·				
	ROCK CORING START	RC	1	100	50	Ē			0	· · · · · · · · · · · · · · · · · · ·		· · ·	:			
	- Poor Quality					_ 5 _		· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •			
						-	99 -		•	· · ·		· · ·	•			
	- Very Poor Quality	RC	2	100	17	-		0		· · ·						
						- 6 -							••••			
						È	98 -									
						-										
		RC	3	100	83	- 7				0			• • • • • • • •			
	- Good Quality					-	97 -		•	· · ·			•			
						-			•	· · · · · · · · · · · · · · · · · · ·		· · ·				
						- 8			•	· · · · · · · · · · · · · · · · · · ·			••••			
						Ē	06		•	· · ·		· · ·				
	- Poor Quality	RC	4	88	36	Ē	90 -	c)	· · · · · · · · · · · · · · · · · · ·		• • • • • •	•			
						- 9			:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·			
		┝──				ŧ			•	· · · · · · · · · · · · · · · · · · ·		· · ·	•			
						Ē	95 -		•	· · ·		· · ·	•			
			_	400		- 10			:							
	- Good Quality	RC	5	100	82	È	_			U		· · ·				
						Ē	94 -		•	· · · · · · · · · · · · · · · · · · ·		· · ·	•			
		┣──				E 11]								
						È			•	· · · · · · · · · · · · · · · · · · ·		· · ·	•			
		RC	6	100	79	Ē	93 -		•	0		· · ·	• • •			
						F ₁₂			•	• •		•	*	: 目:		
B.I.C 12-5 Micc	5. Consulting Inc. 500 Tomken Rd.	/ater dep	oth on o	ompletic	on of dril	lling:	<u>N/A m</u> .									
Can T: 41	ada 16-214-4880	ater dep	oth obse	erved on	<u>3/23/</u>	<u>2023</u> a	it a depth	of: <u>3.5</u>	<u>7 m</u> .	aanditio		ultos let		alote		
F: 4	6-551-2633 From a qualified commissioned an	Geotechr d the acc	nical Eng companyi	ineer. Als	so, boreh to Reco	ole info rd of Bo	rmation s preholes'.	hould be read	in conj	unction with t	he geotechnic	cal report for	which it	was	-	Scale: 1 : 63
1															I Pa	age: 1 of 3

RE		o .	BH/	MW	<u>108</u>		Drillin	a Location.	See boreho	le location plan		Logged by: EJ
1105		sc			NG				ESTING			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrati O SPT MTO Vane* A Intact Remould * Undrained Shea 20 40	onTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould ar Strength (kPa) 60 80		INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist					-						
	- Good Quality	RC	7	100	79	- 13 - 13 - 13 - 14	92 - 91 -		Ó			
	- Fair Quality	RC	8	100	68	- - - - - - - - - - - - - - - - - - -	90 - 89 -		0			
	- Excellent Quality	RC	9	100	93		88 -		0			
	- Excellent Quality	RC	10	100	98	- - - - - - - - - - - - - - - - - - -	87 -		(5		
	- Excellent Quality	RC	11	100	97		85 -		c	2		
	- Excellent Quality	RC	12	100	98	21	84 - 83 -		(5		
	- Good Quality	RC	13	100	89	22	82 -		0			
	- Excellent Quality	RC	14	100	93	24	81 - 80 -		0			
						- 25	-					
	- Excellent Quality	RC	15	100	93	- - -	79 -		0			
	Borehole details from a qualified commisioned ar	as prese Geotechr id the acc	nted, do nical Engi companyi	not const ineer. Als ng'Notes	titute a th o, boreh to Reco	orough ole infori rd of Bor	understa mation s eholes'.	nding of all potent hould be read in c	tial conditions pr onjunction with t	esent and requires interpretative a he geotechnical report for which it	ssistance was	Scale: 1 : 63 Page: 2 of 3

RECORD OF BOREHOLE No. <u>BH/MW108</u>													BIG. CONSULTING
Project Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by:													
	LITHOLOGY PROFILE	SC	NL SA	MPLI	NG			FIELD	TESTING	LAB TE	STING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained SI 20 40	AtionTesting DCPT Nilcon Vane* Intact Remould near Strength (kPa) 60 80		ues 8 10 12 r Reading on (ppm) 300 400 ive Limit (LEL) WL Liquid 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, reddish brown to gray, moist						-						
	- Good Quality	RC	16	100	84	27	78		o				
	- Excellent Quality	RC	17	100	98	28	76 -			¢			
	- Excellent Quality 73.75 End of Borebole 30.8	RC	18	100	100	30 	75			· O			
	Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 3.57 m bgs on March 23, 2023. Borehole details from a qualified - commisioned an	as prese Geotechn	nted, do	not const	itute a this of the second secon	orrough u	nderstation station stations in the state of	nding of all pote	ntial conditions p	resent and requires the geotechnical rej	interpretative as port for which it	ssistance was	Scale: 1: 63

R	ECORD	OF BOREHO	LE No) . [BH/	MW	109													1	B.I.G. Generative Inc
Project Number: BIGC-ENV-554D									Drilling	g Loca	ation:	<u>Se</u>	e boreh	ole lo	ocatio	n plar	1			Logged by:	FJ
Proj	ect Client:	Distrikt Capital Corpo			Drilling	g Metł	hod:	20	0 mm 1	lollo	w Ste	m Aug	ering			Compiled by	MM				
Proj	ect Name:	Phase II ESA and Sup Hydrogeological Invest		Drilling	g Mac	hine:	Tru	uck Mou	inted	Drill					Reviewed by	: <u>KK</u>					
Proj	ect Location:	590 Argus Road, Oak	ville, ON						Date	Starte	d:	<u>15</u>	Feb 23		Date (Compl	eted:	16 Fe	b 23	Revision No.	: <u>0, 10/4/23</u>
	LITH	OLOGY PROFILE		SO	IL SA	MPLI	NG			F	IELD	TES	STING	_	LA		STING	3	7		
					L		RQD%		Ê		Penetra	ationT	esting	Ĥ	2 4 Soil \	6 /apour	8 10 Readir	12 1g	ATIO 10		
Plot		DESCRIPTION		ype	umbe	(%)	alue/F	Ê	No	MTC) Vane*	Nil	con Vane	*	parts p 100	er million 200	n (ppm) 300 4	00		COMME	NTS
ygolc				ple T	N əlqı	overy	> .z	TH (VATI	∆ lr ▲ F	ntact Remould	ě	Intact Remould	-	W _P	W O	e Linit (w _L ●	TALL		
Lith	Geodetic Groun	d Surface Elevation: 105.09	m	San	San	Rec	SPI	DEF	ELE	* Und	Irained Sh 20 40	iear St 6	trength (kPa 0 80	a)	Plastic 20	40	Liqi 60 8	uid 30			
****	140 mm gran	ular base	0.2					Ē	-					2			-				
	gravel, trace	organics, brown to reddish firm to hard	ace	SS	1	70	7			0				p²							
	,		Ī		_		10								- 17			: : :			
				55	2	59	12	-	104 -						0.	:	:				
			103.41					F							÷	:	:				
	SILTY CLAY trace gravel,	/SHALE COMPLEX: traces trace limestone fragments,	sand, 1.7 grey,	SS	3	70	34	-]	0				o ¹⁷			:			
	moist, hard		102.80						103 -						-		:				
	BEDROCK: S poor to excel	Shale, highly weathered to fi lent quality, trace limestone	fresh, 2.3	SS	4	65	89/28 cm	-					89 28 cm		-	:	:				
	inclusion, gre	y, moist	F					È.					20 0		-	:	:	•			
			F	SS	5	88	91/25	- 3	102 -				91	5							
			ŀ		-		cm	Ē					25 cm		-	:	-				
	- Auger Grin	ding						-					-				:				
								4 	101 -			•••••				• • • • • • •		· · · · · ·			
								Ē			· · ·						:	•			
								Ē							-	:	:				
								5 -	100 -			••••				• • • • • •					
								-									:				
																	-				
								- 6 -	99 -												
	F	OCK CORING START						-				•					:				
								Ē									-	:			
	- Good Qual	ity		RC	1	100	77	E 7	98 -			•••••	• • O		•••	: : : : : :		:			
													-			:	:	:			
			ļ					Ę					-		-	:	:				
								- 8	97 -			••••			•••	• • • • • •	÷	: : :			
				RC	2	100	12	Ē			6	,			÷		:				
	- Poor Qualit	У		i i i	2			-							-		:	•			
								- 9	96 -			•••••			•••	· :	÷	: : · · · ·			
			F					Ē							-						
								Ē									:	•			
	- Poor Quali	N .		RC	3	100	44	- 10	95 -		C)									
	i oor quan	<i>y</i>						Ē									-				
								-													
			F					E - 11	Q4 -			• • • • •									
								È	54 -	1	· · ·				-			•			
	- Good Qual	itv		RC	4	100	87	Ē		1	· · ·		0				:	•			
		-						F ₁₂		-	• •				-			•			
B.I.G 12-5 Miss	Consulting In 500 Tomken Rd issauga, ON L4'	c. ₩ 2Z4	Groundwat	ter dep	ith on co	ompletic	on of dril	ling: 2023 at	<u>N/A m</u> .	n of	17 / 2	m									
Cana T: 41	ida 6-214-4880	Bore	ehole details a	s prese	nted, do	not cons	titute a th	horough	understa	nding o	f all pote	ntial c	conditions	presen	t and re	quires i	nterpret	ative as	ssistance		<u> </u>
F: 41	v-551-2633	from com	a qualified Ge misioned and	eotechn the acc	ical Engi ompanyi	ineer. Als ng'Notes	o, boreh to Recor	ole infor rd of Bo	mation s reholes'.	hould b	e read in	conju	nction with	h the g	eotechn	ical rep	ort for w	hich it	was		Scale: 1:63

RECORD OF BOREHOLE No. <u>BH/MW109</u>														
Proje	BIGC-ENV-554D Drilling Location: See borehole location plan Logged by: FJ LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING ZOIL bit SOIL SAMPLING FIELD TESTING LAB TESTING ZOIL bit SOIL SAMPLING FIELD TESTING ZOIL ZOIL bit SOIL SAMPLING PenetrationTesting ZOIL ZOIL bit SOIL SAMPLING DOPT SOIL SAMPLING ZOIL													
Lithology Plot	LITHOLOGY PROFILE	Sample Type	Sample Number	Kecovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	FIELD Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	TESTING	LAB TESTING A Finse pH Values 2 4 6 8 10 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LE Wp W W Plastic 20 40 60 80	C C C C C C C C C C C C C C C C C C C	COMMENTS		
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, grey, moist					-								
	- Good Quality	RC	5	100	84	13	92 -		O					
	- Good Quality	RC	6	100	76	— 14 — 14 — 15	91		o					
	- Excellent Quality	RC	7	100	94	16	89 -		0					
	- Good Quality	RC	8	100	85	- 17 	88 -		o		····			
	- Excellent Quality	RC	9	100	98	- - - - - - - - - - - - - - - - - - -	86 -		c	5				
	- Excellent Quality	RC	10	100	100	20	85 — 84 —			o				
	- Excellent Quality	RC	11	100	100	22	83 -			•				
	- Weak Strength - Excellent Quality	RC	12	100	95	- 24	81 -		0	,		CS: 16.9 MPa		
	- Excellent Quality	RC	13	100	100	- 25 - 25 	80 -	nding of all poter	tial conditions pro-	esent and requires intercontext				
	from a qualified (commisioned an	Geotechr d the acc	ical Engi ompanyi	neer. Als ng'Notes	o, boreho to Recor	ble inform d of Bor	nation sl eholes'.	hould be read in	conjunction with th	he geotechnical report for wh	ch it was	Scale: 1 : 63 Page: 2 of 3		

٦.

RECORD OF BOREHOLE No. <u>BH/MW109</u>													
Project Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by:													
	LITHOLOGY PROFILE	_											
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetratio O SPT MTO Vane* I △ Intact ▲ Remould * Undrained Shear 20 40	nTesting DCPT Nilcon Vane* > Intact Ninact Remould Strength (kPa) 60 80		INSTRUMENTATION INSTALLATION	COMMENTS	
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, arey, moist						-		* * * * * * * *				
	- Excellent Quality	RC	14	100	100	- 26	79			Φ.			
	- Excellent Quality	RC	15	100	100	28	77			Φ			
	- Excellent Quality 74.38 End of Borehole 30.7	RC	16	100	100	30	75 -			Φ			
	74.38 End of Borehole 30.7 Notes: . 1. Borehole open upon completion of drilling. 2. Ground water level reading at 17.43 m bgs on March 23, 2023.												
_	Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nted, do nical Engi companyi	not const neer. Als ng'Notes	itute a th o, boreho to Recor	orough u ble inform d of Bore	nderstan ation sh holes'.	nding of all potentia hould be read in co	al conditions pr njunction with t	esent and requires interpretative a he geotechnical report for which it	ssistance was	Scale: 1 : 63	

RI	ECORD	OF BOREHOLE N	lo.	<u>BH/</u>	MW	<u>110</u>																B.	I.G.
Pro	ect Number:	BIGC-ENV-554D						Drilling	g Locatio	n: <u>s</u>	See b	orehol	e loca	tion p	olan				Lo	gged by	:	FJ	
Pro	ect Client:	Distrikt Capital Corporation						Drilling	g Methoo	l: _	200 n	nm Ho	ollow S	Stem /	Augeri	ing			Co	mpiled b	oy:	ММ	
Pro	ect Name:	Phase II ESA and Supplement Hydrogeological Investigation		Drilling	g Machin	ie:]	Fruck	Moun	ted Dr	ill					Re	viewed	by:	KK					
Pro	ect Location:	590 Argus Road, Oakville, ON		Date S	Started:	1	10 Feb	o 23	_ Dat	e Cor	nplete	ed: <u>13 </u>	Feb 23	3	Re	vision N	0.:	0, 10/4	4/23				
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIE	LD TI	ESTI	NG	L ★ Rin	AB 1	TEST /alues	ING							
thology Plot		DESCRIPTION	ample Type	ample Number	ecovery (%)	PT 'N' Value/RQD9	EPTH (m)	LEVATION (m)	Per O SPT MTO Va △ Intact ▲ Remo	netratio	● DC Nilcon ◇ Inta ● Rer	ng PT Vane* act mould th (kPa)	2 So △ pa 10 ▲ Lo W Pla	4 6 oil Vap rts per r 0 200 wer Exp P astic	our Re nillion (pp 300 losive Lin W	10 12 ading pm) 400 mit (LEL) WL Liquid	ISTRUMENTATIO	ISTALLATION	I	СОММ	ENT	S	
	Geodetic Ground ASPHALT P. 240 mm gran	d Surface Elevation: 105.30 m AVEMENT: 60 mm asphalt ov¢05.15 ular base 0.7	s S	S S	~	S	-	<u> </u>	20	40	60 :	80	20) 40 :	60	80		≤					
	FILL: clayey gravel, trace grey, firm to v	silt, some sand, trace to some imestone fragments, brown to ery stiff	SS	1	62	7		105 -	0					o ²⁴	-	•							
	SILTY CLAY trace gravel, containing co	104.23 /SHALE COMPLEX: trace sand, 1.1 trace limestone fragments, bbles and boulders, reddish w moist very stiff to bard	- ss	2	33	25	- 1 - - -	104 —	Ö				o ¹²			· · · · · · · · · · · · · · · · · · ·							
	brown to groy	103.01	SS	3	33	65	- - - 2	-		50	0				-								
	BEDROCK: S poor to excell inclusion, red	Shale, highly weathered to fresh, 2.3 ent quality, trace limestone dish brown to grey, moist	SS	4	63	50/8 cm		103 -		8 cm)				-	•							
			SS	5	80	50/10 cm		102 -		50 C 10 cm)												
							- - - - 4	-				· · · · · · · · · · · · · · · · · · ·						_					
			SS	6	80	50/10 cm		101 —		50 10 cm)				-	•							
								100 -		*													
	- Highliy Wea	athered/Clayey Zone	SS	7	46	25		99 -	0				01	6		· · · · · · · · · · · · · · · · · · ·							
			ss	8	100	50/10		98 -		50 C)	· · · · · · · · · · · · · · · · · · ·	-										
	R	OCK CORING START				cm	- 8	97 —		10 cm	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·							
	- Poor Qualit	у	RC	1	100	48	- 9	-		0	· · · · ·	· · · ·				· · · · ·							
	- Poor Qualit	у	RC	2	100	46	1 	96		0													
								95 —		•					-	* * * * * * * *							
	- Poor Qualit	у	RC	3	100	48		94 —		0	• • • • • • •												
B.I.C 12-5 Miss	i. Consulting In 500 Tomken Rd issauga, ON L4 ¹	c. V 2Z4 ∑ Groundv Ţ Groundv	vater dep vater dep	oth on c oth obse	ompletic erved or	on of dril 1 <u>3/23</u> /2	12 lling: <u>2023</u> at	<u>N/A m</u> . t a depth	of: 3	. <u>84 m</u> .													
Can T: 41 F: 41	iua 6-214-4880 6-551-2633	= Borehole details from a qualified commisioned a	s as prese Geotechr nd the acc	ented, do nical Eng company	not cons ineer. Als ing'Notes	titute a th so, boreh s to Reco	horough ole infor rd of Bo	understar mation sh reholes'.	nding of all hould be rea	potentia ad in co	al condi njunctio	itions pro	esent an he geote	d requi chnical	res inter report f	pretative or which	e assista it was	ince			So Pac	cale: 1 ie: 1	:63 of 3

BIGC-ENV-554D Drilling Location: See borehole location plan Logged by: FJ													
Proje	ect Number: BIGC-ENV-554D						Drilling	Location:	See boreho	e locatio	n plan	Logged by: FJ	
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING		B TESTING	7	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting DCPT Nilcon Vane* A Intact Remould near Strength (kPa) 60 80	A Turse p 2 4 Soil V △ parts p 100 ▲ Lower W _P Plastic 20	A to allow 3 10 12 G 8 10 12 /apour Reading er million (ppm) 20 300 400 Explosive Limit (LEL) W W W U Liquid 40 60 80	COMMENTS COMMENTS	
	poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist						93 -						
	- Good Quality	RC	4	100	83	- 13	92 -		0				
	- Good Quality	RC	5	100	87	- 14 	91 -		0				
	- Excellent Quality	RC	6	100	98	- - - - - - - - - - - - - - - - - - -	90 - 89 -						
	- Excellent Quality	RC	7	100	100	- 17 - 17 	88 -			Þ			
	- Excellent Quality	RC	8	100	100	- - - - - - - - - - - - - - - - - - -	86 -			þ			
	- Excellent Quality	RC	9	100	95	20 	85 — 85 — 84 —		c				
	- Excellent Quality	RC	10	100	97	- 22	83 -		c				
	- Weak Strength - Excellent Quality	RC	11	100	95	23	82		с			UCS: 18.3 MPa	
	- Excellent Quality	RC	12	100	97	- - - - - -	80 -		(
	Borehole details from a qualified commisioned an	as prese Geotechr id the acc	nted, do nical Engi companyi	not consi ineer. Als ng'Notes	utute a th o, boreh to Recor	orough u ole inforr rd of Bor	understa mation sl reholes'.	noung of all pote lould be read in	nual conditions pr conjunction with t	esent and re ne geotechni	quires interpretative a ical report for which it	was Scale: 1 : 63	

Г

RECORD OF BOREHOLE No. <u>BH/MW110</u>													
Proj	Logged by: FJ												
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTING		7			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Vane* △ Intact ◆ Intact Remould * Undrained Shear Strength (kPa) 20 40 60 80	$\label{eq:constraints} \begin{array}{c} \text{In Values privatives} \\ 2 & 4 & 6 & 8 & 10 & 12 \\ \text{Soil Vapour Reading} \\ \text{a parts per million (ppm)} \\ 100 & 200 & 300 & 400 \\ \hline \text{Mover Explosive Limit (LEL)} \\ W_{p} & W & W, \\ \hline W_{p} & W & W, \\ \hline \text{Plastic} & Liquid \\ 20 & 40 & 60 & 80 \\ \hline \end{array}$	INSTRUMENTATION INSTALLATION	COMMENTS		
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist					_	-						
	- Excellent Quality	RC	13	100	100	26	79		>				
	- Good Quality	RC	14	100	83	28	77 -	o					
	- Excellent Quality 74.64	RC	15	100	95	30	76	0					
	74.64 End of Borehole 30.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 3.84 m bgs on March 23, 2023.	as prese	nted. do j	not consi	itute a th		derstar	ding of all potential conditions pre	sent and requires interpretative assis e geotechnical report for which it was	tance	Scale: 1 : 63		

R	ECORD	OF BOREHO	DLE No	o. [BH/	MW	<u>111</u>															10	B.M Gow	G.
Proj	ject Number:		Drilling	g Loca	ation:	Se	e bor	ehol	e loca	tion	plan				Logge	ed by:	FJ							
Proj	ject Client:	Distrikt Capital Corp		Drilling	g Metł	nod:	20)0 mn	n Ho	llow S	Stem	Auge	ring			Comp	iled by:	MM						
Proj	ect Name:	Phase II ESA and Su Hydrogeological Inve	pplementa estigations	ry Geo	otechn	ical an	d		Drilling	g Mac	hine:	Tru	uck M	ount	ted Dr	ill					Revie	wed by:	KK	
Proj	ject Location:	590 Argus Road, Oal	kville, ON						Date	Starte	d:	<u>10</u>	Feb 2	23	_ Da	te Co	mplet	ted:	15 Fe	b 23	Revis	ion No.:	<u>0, 10/4</u>	/23
	LITH	OLOGY PROFILE		SC	IL SA	MPLI	NG			F	IELD	TES	STIN	6)	L + Ri	AB	TES	TING	6	7				
					L		RaD%		Ê		Penetr	ationT	esting		2 S	4 (oil Vap	pour R	10 eadin	12 q	ATIO				
Plot		DESCRIPTION		ype	umbe	(%)	alue/F	Ê	NO	MTC) Vane	* Nil	lcon Va	ane*	△ pa 10	rts per i 0 20	million (0 30	ppm) 0 4(Limit (I			CC	OMMEN	TS	
ology				nple T	nple N	overy	,z	TH (ITATI	∆ ir ▲ F	Remould	ě	Remo	uld	W	P	W	V	V_ ●	TALL				
Lith	Geodetic Groun	Surface Elevation: 105.0	8 m	San	San	Rec	SPT	DEF	ELE	* Und	Irained S 20 4	hear St	trength (0 80	(kPa))	Pl: 2	astic) 40) 6	Liqu) 8	iid 0					
	140 mm crus	h asphalt over 180 mm gi	ranular 104.71					-	-						1	1				<u>a</u>				
	FILL: silty cl	ay/clayey silt, trace gravel,	0.4	SS	1	62	13	E							0									
			,	00	0		47			1						1.8 · · ·								
XXX	SILTY CLAY	SHALE COMPLEX: trace	103.86 sand, 1.2	55	2	62	17		104 -		,						-							
	trace gravel, brown, moist	trace limestone fragments very stiff to hard	, reddish	SS	3	100	50/13	-			-	50			10		-							
					-		cm	- - 2		1	13	cm												
	2522001		102.79				50/40		103 -			50					-							
	very poor to a	shale, highly weathered to excellent quality, trace lime	stone	SS	4	71	50/13 cm	-			13	cm												
	inoluoion, gre	y, moloc					E0/E	- - ,				50					-							
				SS	-5-		cm		102 -		5	cm												
	grey							-									-							
								Ë,																
								4 	101 -															
							50/8	-				50												
				SS	6	100	cm				8	cm					-							
	F	OCK CORING START						- 5	100 -															
	Von/Poor	Quality		RC	1	48	0			d D						:	-							
	- very Poor	adany						-																
								6	99 -							•••••								
								-									-							
								Ē												¥-				
	- Fair Quality	,		RC	2	100	63	— 7 —	98 -			• • • • •	0			•••••								
																	-							
																	-							
								- 8	97 -							•••••								
				PC	3	100	76	-					0				-							
	- Good Qual	ty		RC	3	100	10	-					0											
								- 9	96 -							•••••								
			-								-						-							
								-			-					:	-							
	Fair Quality			RC	4	100	64	- 10	95 -				0			···· :	•••••							
								-			-													
																	-							
								- 11	94 -							•••••	•••••	• • • • •						
	- Fair Quality			RC	5	100	62	E				Ċ	Э											
	Consulting							- 12								:								
в.I.G 12-5 Місс	500 Tomken Rd	C. N 274	⊈ Groundwa	ater dep	th on co	ompletic	n of dril	ling:	<u>N/A m</u> .															
Cana T: 41	ada 6-214-4880			ater dep	th obse	erved on	<u>3/23/2</u>	2023 at	a depth	n of:	6.71	<u>m</u> .	opditi -	ne ne	sont a	d rocu:	r00 int	ornrot	ativo a	eietanoo		1		
F: 41	6-551-2633	froi	m a qualified G nmisioned and	eotechn the acc	ical Engi ompanyi	ineer. Als	o, boreh to Reco	ole inform rd of Bor	mation sl reholes'.	hould b	e read i	n conju	inction	with th	ie geote	chnica	l repor	t for w	hich it	was			Scale: 1	:63
																						1 Pa	iye: 1 (JIJ

RECORD OF BOREHOLE No. BH/MW111 Project Number BIGC-ENV-554D Drilling Location: See borehole location plan													
Proj	ect Number: BIGC-ENV-554D	Logged by: FJ											
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTING					
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT DCPT MTO Vane* Nilcon Vane A Intact Remould * Undrained Shear Strength (kP 20 40 60 80	★ Kinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per milion (ppm) 100 200 300 400 ▲ parts per milion (ppm) 100 200 300 400 ▲ b w We We	COMMENTS NOLLATION NOTATION NO			
	very poor to excellent quality, trace limestone inclusion, grey, moist												
	- Good Quality	RC	6	100	79	13	92 -	о О					
	- Excellent Quality	RC	7	100	94	— 14 	91		0				
	- Good Quality	RC	8	100	80	- 16 - 16 	89 -	o					
	- Fair Quality	RC	9	100	69	- 18	87 -	0					
	- Good Quality	RC	10	100	88	19	86 -	c					
	- Excellent Quality	RC	11	100	97	20 	85 – 84 –		c				
	- Good Quality - Weak Strength	RC	12	100	87	- 22	83 -	c		UCS: 17.7 MPa			
	- Excellent Quality	RC	13	100	95	- - - - - - - - - - - - - - - - - - -	81 —		0				
	- Excellent Quality	RC	14	100	97	- - - - - - - -	80 -	nding of all potential conditions	C present and requires interventations	ssistance			
	from a qualified to commissioned an	Geotechr d the acc	ical Engi ompanyi	neer. Als ng'Notes	o, boreho to Recor	ole inforn rd of Bore	nation sl eholes'.	hould be read in conjunction wit	h the geotechnical report for which i	was Scale: 1 : 63			

Г

o .	<u>BH/</u>	MW	<u>111</u>						B.I.G. GONDALTING
					Drilling	Location: See borehol	e location plan		Logged by: FJ
SC	DIL SA	MPLI	NG			FIELD TESTING	LAB TESTING		
Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Vane* △ Intact ◆ Intact ▲ Remould ◆ Remould * Undrained Shear Strength (kPa) 20 40 60 80	A state p1 values 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _p W W Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
					-				
RC	15	100	100	27	79		p		
RC	16	100	100	28	77		P		
RC	17	100	100		75 -		p		
s as prese Geotenh	ented, do	not consi	titute a th			Inding of all potential conditions pro	sent and requires interpretative a	ssistance	Scale: 1 : 63
	eC.	SOIL SA adv Jaguny RC 15 RC 16 RC 17 RC 17	SOIL SAMPLI adx L adum W adum S RC 15 RC 16 RC 17 RC 17 Image M B RC 17 Image M B Image M B	SOIL SAMPLING adx Jaguard Source adx Jaguard Jaguard adx Jaguard Jaguard RC 15 100 100 RC 16 100 100 RC 17 100 100 Image: Source Jaguard Jaguard Jaguard RC 17 100 100 Image: Source Jaguard Jaguard Jaguard Image: Sourc	O. BH/MVV111 SOIL SAMPLING (i) add add (i) (ii) add add (iii) (iii) (iii) add add (iii) (iii) (iii) add add (iii) (iii) (iii) (iii) add (iii) (iii) (iii) (iii) (iii) (iii) add (iii) (iii) (iii) (iii) (iii) (iii) (iii) RC 15 100 100 27 (iii) 28 RC 16 100 100 28 (iii) 29 RC 17 100 100 30 (iii) 100 30 as presentical donine constitutes to thorough up monded to accompanying Notes to Record of Bord (iii) (iii) (iii) (iii) (iii) as presentical, donine constitutes to thorough up monded to accompanying Notes to Record of Bord (iiii) (iii) (iiii) (iiii) (iiii) as presentical, donine constitutes to Record of Bord (iiiiiii) (iiii) (BH/MV111 Soil SAMPLING Image: Construct of the second of the metore of the m	A. BH/MW111 presented, do not constitute a thorough understanding of all potential constitutes and constitute and constitutes in should be read in conjunction with the accomparison of benefities.	9. EHVMU11 Dring Location Selected Location part Soli SAMPLING FIELD TESTING LAST TESTING 9	

R	ECORD	OF BOREHOLE	No.	<u>BH/</u>	MW	112																	B.I.G	L.
Proj	ect Number:	BIGC-ENV-554D						Drilling	g Loca	ation:	Se	e bore	ehol	e loca	ation	plan					_ Logge	d by:	FJ	
Proj	ect Client:	Distrikt Capital Corporation						Drilling	g Meth	hod:	2	00 mm	Ho	llow	Stem	Auge	ering				_ Compi	led by:	MM	
Proj	ect Name:	Phase II ESA and Supplement Hydrogeological Investigation	ntary Ge ons	otechr	nical ar	nd		Drilling	g Mac	hine:	Tr	uck M	ount	ted D	rill						Review	ved by:	КК	
Proj	ect Location:	590 Argus Road, Oakville, O	N					Date	Starte	d:	22	Feb 2	23	_ Da	ite Co	omple	ted:	27 Fe	eb 23	_	Revisi	on No.:	<u>0, 10/4/</u>	23
	LITH		SC	DIL SA	AMPLI	NG			F	IELD	TE	STINC	3	Ⅰ ★ R	LAB	TES Values	TING	G	z					
				er		RQD		Ê	o s	Penetra PT	ation [®]	Testing DCPT		2 S	4 oil Va	6 8 pour F	10 Readir	12 1g	ATIO	z	~~~		то	
/ Plot		DESCRIPTION	Type	qunN	y (%)	Value	Ê	NOL	MTC ∆ Ir) Vane'	* N ♦	lcon Va	ane*	10 ▲ Lo	0 20 Dwer Ex	00 30 plosive	Limit (00 LEL)	MEN	2	co		15	
holog			mple	mple	scover	N. To	PTH	EVA	▲ R *Und	Remould Irained S	thear S	Remou Strength (I	uld kPa)	V ∎ Pi	V _P I lastic	• •	Liq	W∟ -● uid	STRU					
Lit	Geodetic Ground	I Surface Elevation: 104.85 m AVEMENT: 60 mm asphalt ov∉04.7	ගී 70	Š	Å	ц.	Ē		2	2 <u>0 4</u> 0	0 (50 80 : :)	2	<u>04</u>	0 6	0 8	B <u></u> O :	ZZ					
	170 mm gran FILL: sand a	ular base 0 nd gravel, trace wood pieces,	_₽ SS	1	41	10			0			· · ·												
	grey, moist, c	ompact 104.0	9				È	104 -	_			· · ·												
	clay, reddish	brown to grey, moist, loose	ss	2	75	7	- 1	104	10					· ·9.				: : :						
		103.3	33				Ē					· · ·												
11	SILTY CLAY trace gravel,	/SHALE COMPLEX: trace sand, 1 trace limestone fragments, reddish	.5 SS	3	84	30	Ē	103 -		0		· · ·		o ⁸										
11	drown, moist,	naro 102 5					E 2	105										· • · · · · ·						
	BEDROCK: S	Shale, highly weathered to fresh, 2	.3 SS	4	89	50/13 cm	Ē			12	50	· · ·												
	inclusion, red	dish brown to grey, moist					Ē	102 -	_	130	un	· · ·						•						
			SS	5	100	50/10	- 3	102			50	· · · · · · ·						: :						
					100	cm	Ē			10 c	cm	· · ·			-									
	grey							101 -				· · ·						•						
							- 4	101							•			· · · · · ·						
												· · ·												
							Ę	100 -		:		· · ·						•						
	R	OCK CORING START					- 5	100										· · · · · · ·	T					
			RC	1	100	8	Ē					· · ·						•						
	- Very Poor (Quality		.	100		-	99 -	Ĭ			· · ·						•						
							E 6	00										· · · · · ·						
							-	98 -				· · ·						-						
	- Fair Quality		RC	2	100	54	E 7				0							· · ·						
							-					· · ·						•						
							Ļ	97 -		:		· · ·												
							8	0.										• • •						
			RC	3	100	70						Ó						•						
	- Good Quali	ty			100	15	Ē	96 -	-									•						
							- 9 -								• • • • • • •			· · · · · · ·						
							ŧ					· · ·						•						
							Ē	95 -				· · ·						•						
	- Fair Quality		RC	4	100	56	E 10				° C							 						
												· · ·												
							Ē	94 -				· · · · · · · · · · · · · · · · · · ·												
							E 11	0.4										•						
			RC	5	100	97	È					· · ·	\sim					:						
	- Excellent Q	uality					Ę	93 -				· · · · · · · · · · · · · · · · · · ·	0					•						
B.I.G	. Consulting In	c. ∇ Group	dwater de	l pth on c	ompletiv	n of dri	<u>Г 12</u> Ilina [.]	N/A m	_					l				•	1.1					_
12-5 Miss	500 Tomken Rd issauga, ON L4\	v 2Z4	dwater de	pth obse	erved or	n <u>3/23/</u>		t a depth	n of:	<u>5.05</u>	<u>m</u> .													
Cana T: 41 F: 41	iua 6-214-4880 6-551-2633	Borehole deta	ils as pres	ented, do	not cons	stitute a ti	horough	understa	nding o	of all pote	ential	condition	ns pre	esent a	nd requ	uires int	terpret	tative a	ssistan	се			Scale: 1 ·	63
	2000	commissioned	and the ac	company	ing'Notes	s to Reco	rd of Bo	reholes'.	nould D	u reaŭ li	ounj	anction V	and i th	le geoti	CONTRACT	a repor	CIOF W	••••C11 IT	ndə				ade: 1 o	f 3

RE Proj	ECORD OF BOREHOLE N ect Number: BIGC-ENV-554D	o.	BH/	MW	112		Drilling	ng Location: See borehole location plan Logged by: FJ	L. ILTINS
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTING LAB TESTING	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting ★ Rinse pH Values 2 0 Values 2 0 O SPT DCPT Soil Vapour Reading a parts per million (ppm) Kort Kort MTO Vane* Nilcon Vane* Lower Explosive Limit (LEL) WP Kort Kort A Intact Remould Remould Lower Explosive Limit (LEL) WP Kort Kort Variance Shear Strength (kPa) 20 40 60 80 20 40 60 80	
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone in build and the language to a state of the language to the state of the state of the language to the state of the stat					-			
	- Fair Quality	RC	6	100	58	13	92 -		
	- Good Quality	RC	7	100	75	- 14 	90 -		
	- Excellent Quality								
	- Excellent Quality	RC	9	100	95	- 17 - 17 - 17 - 18 - 18	87 –	o	
	- Good Quality	RC	10	100	80	- - - - - - - -	86 -	Ó Ó	
	- Excellent Quality	RC	11	100	97	20	85 – 84 –	c c	
	- Excellent Quality	RC	12	100	98	22	83 -		
	- Excellent Quality	RC	13	100	98	23	81 —	o	
	- Excellent Quality	RC	14	100	97	- - - - - - -	80 -		
	Borehole details from a qualified commisioned an	as prese Geotechr d the acc	nted, do iical Engi ompanyi	not const neer. Als ng'Notes	titute a th o, boreho to Recor	orough u ble inforr rd of Bor	understa nation s eholes'.	anding of all potential conditions present and requires interpretative assistance should be read in conjunction with the geotechnical report for which it was . Page: 2 of	63 f 3

RE	CORD OF BOREHOLE N	o.	BH/	MW	<u>112</u>												B.I.G. GONSULTING
Proje	ect Number: BIGC-ENV-554D					[Drilling	Location:	See	borehol	e lo	cation p	lan			Logged by: FJ	
r Plot	LITHOLOGY PROFILE	Lype SC	NIL SA	MPLI (%) x	/alue/RQD%	(m)	(m) NOI	FIELD Penetra O SPT MTO Vane*	TES ationTe	TING esting DCPT on Vane*	* 	LAB T Rinse pH V 2 4 6 Soil Vapo parts per m 100 200 Lower Explo	alues 8 1(our Reac illion (ppm 300 osive Limit	IG 12 ling 400 (LEL)	MENTATION LATION	COMMENTS	
Litholog		Sample	Sample	Recover	SPT 'N'	рертн	ELEVA	 Remould * Undrained SI 20 40 	◆ near Stro 0 60	Remould ength (kPa) 80		W _P Plastic 20 40	₩ ●Li 60	W _L ● quid 80	INSTRU INSTAL		
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist					26	79 -										
							-							* * *			
	- Excellent Quality	RC	15	100	98	- 27	78 —			c	}						
						/ 	-										
							77 –			•			•	* * * *			
	- Good Quality	RC	16	100	85	28 	-			0							
							76 -							- - - - -			
						- 29 - -	-										
	- Excellent Quality	RC	17	100	100		75 -			(\		•	* * * *			
						- 30 -				* * * * * * * * * * *							
	74.29 End of Borehole 30.6					-				-				*			
	Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 5.05 m bgs on March 23, 2023.								* * * * * * * *	-			•				
									* * * * * *	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			•	* * * *			
									* * * * *	4 4 4 4 4 4 4			•	* * * *			
									* * * * * * * * * * * * * *	-			•	* * * *			
									* * * * * * * * * * * * * * * * * * * *	•			•	• • • • • • • • • • • • • • • • • • • •			
										-			•	* * * *			
										•			•	* * * *			
										-				* * *			
										•			•	* * * * * * *			
										-				* * * *			
										-			•	* * * *			
										- - - -			•	- - - -			
										-			•	* * * *			
										-				* * * *			
									:	-			•	*			
										-				* * *			
	Borehole details from a qualified commisioned an	as prese Geotechr d the acc	ented, do nical Engi companyi	not const ineer. Als ng'Notes	titute a th o, boreho to Recor	orough ur ble inform d of Bore	nderstan ation sl holes'.	nding of all pote hould be read in	ential co conjun	onditions pre ction with th	esent he geo	and require	es interpr report for	etative as which it	ssistance was	Scale Page	:1:63

R	ECORD	OF BOREH		o. <u>I</u>	<u>BH/</u>	MW	<u>113</u>																B.I.G. Gonsultivis Inc
Proj	ect Number:	BIGC-ENV-554D							Drilling	g Loca	ation:	<u>Se</u>	e bor	ehole	e loca	ation	plan				_ Logged by:	FJ	
Pro	ect Client:	Distrikt Capital Co	orporation						Drilling	g Metl	nod:	20	0 mn	n Ho	llows	Stem	Auge	ering			_ Compiled by	: <u>MM</u>	
Proj	ect Name:	Phase II ESA and S Hydrogeological In	Supplementa nvestigations	iry Geo S	otechni	ical an	d		Drilling	g Mac	hine:	Tru	uck N	lount	ted D	rill					_ Reviewed b	y: <u>KK</u>	
Proj	ect Location:	590 Argus Road, C	Dakville, ON						Date \$	Starte	d:	21	Feb 2	23	_ Da	te Co	mple	ted:	22 Fe	b 23	Revision No	.: <u>0, 1</u> (0/4/23
	LITH	OLOGY PROFILE	Ξ	SO	IL SA	MPLI	NG			F	IELD	TES	STIN	G	L ★ Ri	AB	TES Values	TINC	3	z			
ology Plot		DESCRIPTION		nple Type	nple Number	covery (%)	T 'N' Value/RQDº	PTH (m)	EVATION (m)	O s MTC △ III ▲ F	Penetr SPT Vane Nact Remould	ationT ● * Nil ◇	DCPT DCPT con Va Intact Remo	l ane* puld	2 ▲ pa 10 ▲ Lo ₩	4 oil Vaj ints per 0 20 ower Ex /p	6 8 pour R million (0 30 plosive W	10 (ppm) 10 40 Limit (L	12 12 19 00 EL) NL ●	STRUMENTATIO STALLATION	COMME	NTS	
Lith	Geodetic Groun ASPHALT P	d Surface Elevation: 10 AVEMENT: 100 mm as	5.08 m phalt o ve 4.93	Sar	Sai	Re	З	B			20 4	0 6	0 8	(KFa) 0	2	asuc 0 4	0 6	190 0 8	0	<u>zz</u>			
	220 mm gran FILL: silty sa some gravel, moist loose t	ular base ind, trace to some clay, trace organics, block to o compact	0.2 trace to brown,	SS	1	62	7		-	0					o ⁶				- - - - - - - - -				
	110101, 10000 1	oompuol		SS	2	59	7	- 1 	104 -	10,0					c	20			* * * * * *				
				SS	3	41	11		-	0		- - - - - - - -			o ¹	5	-						
	SILTY CLAY	/SHALE COMPLEX: tra trace limestone fragme	102.79 ace sand, 2.3 nts. red b0s b49	SS	4	100	65/28	- 2 -	103 -			6	5		o ⁹				· · · · ·				
	brown, moist, BEDROCK: 9 poor to excel inclusion, gre	hard Shale, highly weathered lent quality, trace limest y, moist	2.¢ I to fresh, tone				cm	- 3	102 -	- - - - -		28 cr	n 82						· · · · · ·				
				SS	5	100	cm		-		· · · · · · · · · · · · · · · · · · ·		10 cm	D 1					a 4 4 6 6 7 7 6				
								4	101 -	-									• • • • • •				
												- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - -						· · · · ·				
								-	100 -		· · · · · · · · · · · · · · · · · · ·								•				
								6	99 -	-									- - - - - - - - -				
	F	OCK CORING START							-	-			-						•				
	- Poor Qualit	У		RC	1	100	50	- - - - - -	98 -			0							• • • • • • • • • • • • •				
								8	97 -										* * * * * * *				
	- Poor Qualit			RC	2	100	43	-			· · · · · · · · · · · · · · · · · · ·	0				-	-		• • • • •				
		3						9	96 -	-			• • • • • • • •			- - - - - - - - - - - - - - - - - - -			· · · · ·				
								- 10				- - - - - - - - - - - - - - - - - - -							-				
	- Fair Quality	,		RC	3	100	72	-	95		· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	0			-			• • • • • •				
								- 	94 -			• • • • • •	•						• • • • • • •				
	- Good Qual	ity		RC	4	100	76		-			- - - - - - - - - - - - - - - - - - -	0						• • • • •				
B.I.C 12-5 Miss	500 Tomken Rd ssauga, ON L4	c. N 2Z4	모 Groundwa ▼ Groundwa	ater dep ater dep	th on co oth obse	ompletio rved on	n of drill <u>3/23/2</u>	<u>+ 12</u> ling: 2023 at	<u>N/A m</u> . a depth	of:	22.0	<u>0 m</u> .											
T: 41 F: 41	6-214-4880 6-551-2633		- Borehole details from a qualified C commisioned and	as preser Geotechn I the acco	nted, do r ical Engi ompanyi	not const neer. Als ng'Notes	titute a the o, boreho to Recor	orough ble infor rd of Bor	understa mation sl reholes'.	nding a nould b	of all pot e read in	ential c n conju	onditic nction	ons pre with th	esent ar	nd requ echnica	ires int I repor	erpret t for w	ative as hich it	ssistance was		Scale: Page:	1:63 1 of 3

		60	011 64	MDII	NG				TESTING		TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrai O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shi 20 40	tionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould ear Strength (kPa) 60 80	Kinse pH 2 4 Soil Va parts per 100 20 Lower Ex W Plastic 20 4	Values 6 8 10 12 poour Reading million (ppm) y0 300 400 plosive Limit (LEL) W W_L U Liquid 0 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, grey, moist												
	- Good Quality	RC	5	100	75	13	92 -		0				
	- Good Quality	RC	6	100	77	14	91		Q				
	- Excellent Quality	RC	7	100	95	- 16 - 16 	89 —		0				
	- Excellent Quality	RC	8	100	96	- - - - - - - - - - - - - - - - - - -	88		0				
	- Excellent Quality	RC	9	100	100	- 19 - 19 	86 -		c)			
	- Excellent Quality	RC	10	100	95	21	85		0				
	- Excellent Quality	RC	11	100	91	22	83 -		0				
	- Excellent Quality	RC	12	100	94	23	82		0				
	- Good Quality	RC	13	100	83	- - - 25 - -	80 -		o				

RE	CORD OF BOREHOLE N	o.	<u>BH/</u>	MW	<u>113</u>							BLG. CONSULTING
Proj	ect Number: BIGC-ENV-554D					I	Drilling	g Location:	See boreho	ble location plan		Logged by: FJ
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD 1	TESTING	LAB TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrati O SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40	OCPT DCPT Nilcon Vane* Intact Remould Aar Strength (kPa) 60 80	Number privates 10 12 Soil Vapour Reading parts per million (ppm) ports per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) We We We Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, arey, moist					-						
	- Excellent Quality	RC	14	100	100	- 26	79			0		
	- Excellent Quality	RC	15	100	95	28	77 -		c	5		
	- Excellent Quality 74.37	RC	16	100	100	30	75 -			.Φ		
	Part of Derohole 30.7 Notes: . 2. Ground water level reading at 22.00 m bgs on March 23, 2023. .	as prese	ntted, do	not consi	itute a th	- - - - -	ndersta	nding of all poten	tial conditions p	resent and requires interpretative a	ssistance	
	Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nted, do nical Engi companyi	not const ineer. Als ing'Notes	titute a th o, boreho to Recor	orough u ble inform d of Bore	ndersta ation sl holes'.	nding of all poten hould be read in c	tial conditions p conjunction with	present and requires interpretative a the geotechnical report for which it	ssistance was	Scale: 1 : 63

roject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	ble Location Plan	Logged by: KK
roject Client: Distrikt Capital						_ Drilling	g Method:	100 mm So	olid Stem Augering	Compiled by: KK
roject Name: Preliminary Geotechnical	nvestigat	ion				_ Drilling	g Machine:	Truck Mour	nted Drill	Reviewed by: AC
roject Location: 590 Argus Road, Oakville,	Ontario					_ Date \$	Started:	25 May 22	Date Completed: 25 May 22	Revision No.: 1, 4/4/23
LITHOLOGY PROFILE	S	DIL SA	AMPL	ING			FIELD	TESTING	LAB TESTING	
DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting ● DCPT Nilcon Vane* ◆ Intact • Remould tear Strength (kPa) 60 80 : :	★ Rinse pH Values Z Q Q U V	COMMENTS
FILL: sand and gravel, trace silt, trace organics, brown, moist, loose	0.2 SS	1	41	6		104 —	0		o ¹⁷	
- black stains, oxidations	ss	2	84	8	- - - - - -	103 -	0		o ¹⁶	
30 SILTY CLAY/CLAYEY SILT/SHALE COMPLEX: trace silt, trace gravel, grey, moist hard	. 33 1.5 SS	3	95	63	- - - - - 2	103 -		O	o ¹¹	
10 BEDROCK: Shale, highly weathered, grey, damp to moist, hard	.16 2.3 SS	4	125	50/8cm		102 —	5 8cr	0 0 n	5 ²	
	s	5	260	50/5cm	- 	101 —	5cr	0 O n	o ³	
	SS	6	48	50/15cr	- - m_4 - -	-	5 15ci	0 O n	o ⁴	
	SS	7	50	53/28cr		100 -	280	53 m	o ¹⁴	
wet	SS	8	100	50/8cm		99 -	5 8cr	0 0 n	o ¹⁶	
	35				- 6]			
End of Borehole Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 3.89 m bgs upon completion of drilling. 3. Groundwater level reading at 3.9 m bgs on May 31, 2022.	6.1									
↓ G. Consulting Inc. □ □ Growship 5500 Tomken Rd. sissauga, ON L4W 2Z4 □ □ Growship iada 116-214-4880 Borehole d from a qua i16-551-2633 from a gua From a gua	ndwater de ndwater de tails as pres fied Geotech	pth on c pth obse ented, do nical Eng	completion erved or o not consigneer. All	on of dri <u>2022</u> stitute a tl so, boreh	L lling: -05-31 horough tole info	<u>4.4 m</u> . at a dep understa	th of: <u>3.9 r</u> nding of all poten hould be read in	ntial conditions pr	resent and requires interpretative assistance the geotechnical report for which it was	Scale: 1 :

R	ECORD OF BOREHOLE	No.	BH	2								B.I.G.
Pro	ject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	le Location Plan		Logged by: KK
Pro	ject Client: Distrikt Capital						Drilling	g Method:	100 mm Sc	olid Stem Augering		_ Compiled by: <u>KK</u>
Pro	ject Name: Preliminary Geotechnical	Investigati	on				Drilling	g Machine:	Truck Moun	ted Drill		_ Reviewed by: AC
Pro	ject Location: 590 Argus Road, Oakville,	Ontario					Date	Started:	<u>25 May 22</u>	_ Date Completed: 2	May 22	Revision No.: <u>1, 4/4/23</u>
	LITHOLOGY PROFILE	SC		AMPLI	NG			FIELD	TESTING			
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting DCPT Nilcon Vane* A Intact Remould ear Strength (kPa) 60 80	★ Rinse PH Values 2 4 6 8 10 11 Soil Vapour Reading parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LE Wp W W W Plastic Liquid 200 400 800		COMMENTS
	ASPHAL I PAVEMENI: 50 mm asphalt oven 100 mm granular base FILL: sand and gravel, brown, moist, compac	14.87 2 t SS	1	38	16	- - -	•	0		p ¹		
	- silty clay/clayey silt, trace sand, black stains, oxidations, brown/grey, moist, stiff	SS	2	100	10	+ - - - - - - -	104 -	0		o ¹³		
	10 SILTY CLAY/CLAYEY SILT/SHALE COMPLEX: trace silt, trace gravel, reddish brown, moist, very stiff	1.5 SS	3	92	26	- - - - - - 2	103 -	0		o ⁷		
	10 BEDROCK: Shale, highly weathered, occasional limestone layers, grey, damp to moist	2.73 2.3 SS	4	100	50/13cr			5 13cr	0 0 1	o ¹²		
						- - - - - -	102 -					
						- - - - - - -	101 —					
		SS	5	100	50/10cr	- m - - - - 5	100 -	5 10cr	0 0 n	o ¹³		
							-					
		SS _	6	100	50/5cm		99 -	5 5 6	0 D n	o ¹⁴		
						- - - - -	98 -		0	10		
	9 End of Borehole Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 4.31 m bgs upon completion of drilling.	7.32 ss	7	100	50/5cm			1 5 5 6	Ŋ			
B.I.C 12-5 Miss Can	5. Consulting Inc. i500 Tomken Rd. issauga, ON L4W 2Z4 ada	undwater de	pth on c	completic	on of dril	lling:	<u>4.30 m</u> .	· · · ·				
T: 4 F: 4	16-214-4880 Borehole c 16-551-2633 from a qua commision	details as prese alified Geotech ned and the ac	ented, do nical Eng company	o not cons gineer. Als /ing'Notes	titute a th so, boreh s to Reco	horough ole infor rd of Bo	understa mation si reholes'.	nding of all poten nould be read in	ntial conditions pr conjunction with t	esent and requires interpretat he geotechnical report for whi	ve assistance ch it was	Scale: 1 : 47 Page: 1 of 1

RI	ECORD	OF MONITORING	WE	LL I	No.	BH	/ M \	<u>W3</u>					10	B.I.G. Generatives
Pro	ject Number:	BIGC-ENV-554A						_ Drilling	J Location:	See Borehol	le Location Plan		Logged by:	кк
Pro	ject Client:	Distrikt Capital						_ Drilling	g Method:	100 mm So	lid Stem Augering		Compiled by:	кк
Pro	ject Name:	Preliminary Geotechnical Inve	estigation	on				_ Drilling	g Machine:	Truck Moun	ted Drill		Reviewed by:	AC
Pro	ject Location:	590 Argus Road, Oakville, On	tario					_ Date \$	Started:	25 May 22	_ Date Completed: 25 M	ay 22	Revision No.:	1, 4/4/23
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	Geodetic Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting ● DCPT Nilcon Vane* ◆ Intact ● Remould ear Strength (kPa) 60 80	Kinse pH Values 2 4 6 8 10 12 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _p W W _L Plastic Liquid 20 40 60 80	INSTRUMENTATION	COMMEN	TS
	110 mm gran FILL: sand an organics, bro	ular base 10.2 nd gravel, trace silt, trace wn, moist, loose	ss	1	79	9			0		o ⁸			
	- silty clay/cla oxidations, br SILTY CLAY/ COMPLEX: tr brown to grey	yey silt, trace sand, black stains, own/grey, moist, firm 104.08 CLAYEY SILT/SHALE 0.8 acce silt, trace gravel, reddish r, moist, hard	SS	2	79	38	- - - - - - -	104 -	0		····o ¹⁰ ······			
			ss	3	58	58/28cn		- - 103 —	28	58. O Scm	o ⁵			
			ss	4	100	50/5cm	- 2 - -	-	5 5 5 5	o n	o ¹⁰			
	BEDROCK	101.79 Shale biobly weathered grey 3 1	SS	5	100	50/8cm	- - - - - 3	102 -	5	0	o ⁵			
	damp to mois	t, hard						-	80	n				
							- - - - -	101 —		n				
	wet		SS	6	100	50/13cn		100 -	13cr	Ŏ				
	End of Borel	<u>98.74</u> 10le 6.1		-7-	100	50/3cm	- - - - - 6	99 -	5	0 n				
	Notes: 1. Borehole o 2. Ground wa 3.35 m bgs u 3. Groundwal May 31, 2022	pen upon completion of drilling. ter level reading measured at pon completion of drilling. er level reading at 3.37m bgs on 2.												
B.I.0 12-5 Miss Can T: 41	6. Consulting In 500 Tomken Rd issauga, ON L4\ ada 16-214-4880	c. ⊻ Groundv W 2Z4 ⊈ Groundv	vater dep vater dep	oth on c	ompletic	on of dril	ling: -05-31	<u>3.5 m</u> . at a dep	th of: <u>3.37</u>	<u>m</u> .	esent and requires interpretative	ssistance		
-: 4	16-551-2633	from a qualified commisioned a	Geotechr nd the acc	nical Eng	ineer. Als ing'Notes	so, boreh to Recor	ole info rd of Bo	rmation sl preholes'.	nould be read in	conjunction with th	he geotechnical report for which it	was	P	Scale: 1 : 47

R	ECORD OF MONITORING	WE	LL I	No.	BH	I/M\	N4					10	BIG. GONGALTING
Pro	ject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	ble Location Plan		Logged by:	кк
Pro	ject Client: Distrikt Capital						Drilling	g Method:	100 mm Se	olid Stem Augering		Compiled by:	кк
Pro	ject Name: Preliminary Geotechnical Inve	stigati	on				Drilling	g Machine:	Truck Mour	nted Drill		Reviewed by:	AC
Pro	ject Location: 590 Argus Road, Oakville, Ont	ario					Date S	Started:	25 May 22	Date Completed: 25	May 22	Revision No.:	1, 4/4/23
gy Plot	LITHOLOGY PROFILE	e Type	PIL SA	MPLI (%)	I' Value/RQD%	(m) H	ATION (m)	FIELD Penetra O SPT MTO Vane* ∆ Intact ▲ Remould	ttionTesting ● DCPT Nilcon Vane* ◆ Intact ◆ Remould	LAB TESTING ★ Rinse pH Values 2 4 8 10 1 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LE W _o W W W	UMENTATION	COMMEN	TS
Litholo	Geodetic Ground Surface Elevation: 105.05 m	Sample	Sample	Recove	N' T SPT 'N	DEPTI	ELEV	* Undrained SI 20 40	hear Strength (kPa)	Plastic Liquid 20 40 60 80			
	120 mm granular base FILL: sand and gravel, trace silt, trace organics, brown, moist, loose	ss	1	84	7		-	0		o ²⁸			
	- silty clay/clayey silt, trace sand, black stains, oxidations, brown/grey, moist, firm	SS	2	100	6		104 -	0		o ¹⁹			
	103.53 BEDROCK: Shale, highly weathered, reddish 1.5 brown, damp to moist	SS	3	100	81	- - - - - -			O	o ⁶			
		SS	4	100	50/10cr		103 -	100	50 m				
							- - - - - - -			o ⁷			
	grey	- \$\$ -	5	100	50/3cm		-	- 30	50 m				
						- - - 4 -	101 -						
		SS	6	100	50/13cr		-	130	50 m	o ¹¹			
							100						
	98.95 End of Borehole 6.1		7	100	50/3cm	- - - 6	99 -	30	50 m				
	Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 4.88 m bgs upon completion of drilling. 3. Groundwater level reading at 3.44 on May 31, 2022.												
B.I. 12-5 Miss Can T: 4	5. Consulting Inc. 500 Tomken Rd. 500 Tomken Rd. issauga, ON L4W 2Z4 ada 16-214-4880 Borehole details	vater dep vater dep	oth on c oth obse	ompletic erved on not cons	on of dri <u>2022</u> titute a ti	ling: -05-31	<u>4.9 m</u> . at a dep understa	th of: <u>3.4</u>	<u>4 m</u> .	resent and requires interpretati	ve assistance		
⊦:4	from a qualified commisioned ar	Geotechi nd the acc	nical Eng	ineer. Als ing'Notes	so, boreh to Reco	ole info rd of Bo	rmation sl preholes'.	hould be read in	conjunction with	the geotechnical report for whi	h it was	Pa	ide: 1 : 47

R	ECORD OF BOREHOLE N	o.	BH	5			Deillie		Ore Develo				BIG. Crosting
Pro	bject Number: BIGC-ENV-554A						Drilling	J Location:	See Boreno	le Location Pla	in ring		Logged by: <u>KK</u>
Pro	viect Name: Preliminary Geotechnical Inve	stinati	on				Drilling	Machine [.]	Truck Moun	tod Drill	nng		Complied by: <u>KK</u>
Pro	piect I ocation: 590 Argus Road, Oakville, Ont	ario	011				Date S	Started	26 May 22	Date Compl	eted [.] 26 M	av 22	
					NG	1							<u>.,</u>
		SU	ЛL 54		NG %			Penetra	tionTesting	LAB IE: ★ Rinse pH Value 2 4 6	BS 10 12	z	
hology Plot	DESCRIPTION	Imple Type	Imple Number	scovery (%)	PT 'N' Value/RQD	EPTH (m)	EVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh	DCPT Nilcon Vane* Intact Remould ear Strength (kPa)	Soil Vapour Soil Vapour parts per million 100 200 :: ▲ Lower Explosiv W _P W ■ O Plastic		STRUMENTATIC	COMMENTS
Ë	Geodetic Ground Surface Elevation: 105.13 m ASPHALT PAVEMENT: 70 mm asphalt over 104.05	Й	ഗ്	ž	5	<u>ā</u>	105 -	20 40	60 80	20 40	60 80	ZZ	
	100 mm granular base 0.2 FILL: sand and gravel, trace silt, trace organics, brown, moist, compact	SS	1	41	14		105 -	0		o ⁵			
	SILTY CLAY/CLAYEY SILT/SHALE 0.8 COMPLEX: trace silt, trace gravel, reddish brown, moist, very stiff	SS	2	92	20	- - - - - -	104 -	Ô		o ⁶			
	103.61 BEDROCK: Shale, highly weathered, reddish 1.5 brown, damp to moist	SS	3	100	73	- - - - - - 2			0	o ⁹			
		SS	4	100	5/10cm		103 – 100	15 O m		o ⁶			
	grey	SS	5	56	76/20cr	- - - - -	102 -		76 20cm	o ¹⁵			
						- - - - - - - -	101 -						
		SS	6	100	50/8cm		100 -	5 8ci	10 O m	o ¹⁶			
							-				· · · · · · · · · · · · · · · · · · ·	Ţ	
			7	100	50/3cm		99 -	3ci	io O m				
						- - - - - -	98 -						
	97.43 End of Borehole 7.7 Notes:	SS	8	100	50/8cm		- - -	5 8ci	0 0 m	o ¹⁰			
	1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 5.18 m bgs upon completion of drilling.												
B.I. 12- Mis	G. Consulting Inc. 5500 Tomken Rd. issauga, ON L4W 2Z4 orde	ı ater dep	oth on c	ompletic	on of dri	lling:	<u>5.3 m</u> .	<u></u>		. .	, ,	<u> </u>	
T: 4 F: 4	16-214-4880 Borehole details 16-551-2633 from a qualified (commisioned an	as prese Geotechr d the acc	ented, do nical Eng company	not cons ineer. Als ing'Notes	titute a tl so, boreh s to Reco	norough ole info rd of Bo	understa rmation s reholes'.	nding of all pote nould be read in	ntial conditions pro conjunction with th	esent and requires i he geotechnical rep	nterpretative a ort for which it	ssistance was	Scale: 1 : 47 Page: 1 of 1
RECORD OF MONITORIN	G WE		No.	BH	<u>ا/M/</u>	<u>N6</u>						B.I.G. Gonesia this No	
---	---	---	---	---	---	--	--	---	--	----------------------------	----------------	------------------------------	
Project Number: BIGC-ENV-554A						Drilling	J Location:	See Boreho	le Location Plan		_ Logged by:	кк	
Project Client: Distrikt Capital						Drilling	g Method:	100 mm So	blid Stem Augering		Compiled by:	KK	
Project Name: Preliminary Geotechnical In	vestigat	on				Drilling	g Machine:	Truck Moun	ted Drill		_ Reviewed by:	AC	
Project Location: <u>590 Argus Road, Oakville, C</u>	Intario					_ Date \$	Started:	26 May 22	Date Completed: 26 N	lay 22	Revision No.:	1, 4/4/23	
LITHOLOGY PROFILE	S	<u>SIL SA</u>	AMPLI	ING %DD%		(L)	FIELD Penetra O SPT	ionTesting	LAB TESTING ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading A soil vapour Reading	ATION	00111EN	TO	
DESCRIPTION	mple Type	mple Numb	covery (%)	T 'N' Value/	EPTH (m)	EVATION	MTO Vane* △ Intact ▲ Remould * Undrained She	Nilcon Vane* ◇ Intact ◆ Remould aar Strength (kPa)	A parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W _P W W _L Plastic Liquid	L STRUMENT STALLATIO	COMMEN	15	
Geodetic Ground Surface Elevation: 105.36 m ASPHALT PAVEMENT: 65 mm asphalt over	19	Sa	Å	ц.	<u> </u>		20 40	60 80 [′]	20 40 60 80				
115 mm granular base 103 FILL: clayey silt, trace to some sand, brown, moist, stiff	ss	1	70	11		105 -	0		o ¹⁵	133 133			
SILTY CLAY/CLAYEY SILT/SHALE COMPLEX: trace silt, trace gravel, reddish brown, moist, very stiff	60).8 SS	2	92	24	- - - - - - -	104 -	0		° ⁹				
BEDROCK: Shale, highly weathered, reddish brown, damp to moist	84 1.5 SS	3	100	100	- - - - - - 2 - -	-			Φ o ⁸				
	SS	4	100	50/8cm		103 –	5 8cr	0 n	o ³				
	SS	5	95	88/28cr		102 -		88 0 28cm	o ¹²				
					- - - - - -	101 -							
grey		6	100	50/8cm			5 8cr	0 0 1	o ¹¹				
					-	100 -							
- wet 99	16 <u>SS</u>	7	100	50/10cr	- 6 1		5	0	o ¹²				
End of Borehole Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 3.15 m bgs upon completion of drilling. 3. Groundwater level reading at 2.92 mbgs on May 31, 2022.	5.2												
B.I.G. Consulting Inc.						24							
Zi-S500 Tomken Rd. ✓ Groui Zi-S500 Tomken Rd. ✓ Groui Mississauga, ON L4W 2Z4 ✓ Groui Canada ✓ Groui F: 416-551-2633 From a quali commissione Commissione	ndwater de ndwater de ails as pres ied Geotech d and the ac	pth on c pth obse ented, do nical Eng company	completion erved or o not consigneer. Als ying'Notes	on of dril n <u>2022</u> stitute a th so, boreh s to Reco	horough horough hole info	<u>3.1 m</u> . at a dep understa rmation sloreholes'.	th of: <u>2.92</u> nding of all poter nould be read in t	<u>m</u> . tial conditions pr conjunction with t	resent and requires interpretative the geotechnical report for which i	assistance t was	s	cale: 1 : 47	

R	ECORD OF BOREHOLE	No.	BH	7									BI.G. GONGALTWO
Pro	ject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	ole Location P	lan		Logged by: KK
Pro	ject Client: Distrikt Capital						Drilling	g Method:	100 mm S	olid Stem Aug	ering		Compiled by: KK
Pro	ject Name: Preliminary Geotechnical Inv	estigati	on				Drilling	g Machine:	Truck Mou	nted Drill			Reviewed by: AC
Pro	ject Location: 590 Argus Road, Oakville, O	ntario					Date	Started:	26 May 22	Date Com	pleted: 26 M	ay 22	Revision No.: <u>1, 4/4/23</u>
	LITHOLOGY PROFILE	SC	DIL SA	AMPLI	NG			FIELD	TESTING	LAB TE ★ Rinse pH Va		z	
nology Plot	DESCRIPTION	mple Type	mple Number	covery (%)	T 'N' Value/RQD%	.РТН (m)	EVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould	tionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould arr Strength (kPa)	2 4 6 Soil Vapot △ parts per mil 100 200 ▲ Lower Explor W _P W ■ C	8 10 12 ur Reading ion (ppm) 300 400 sive Limit (LEL) / WL Liquid	STRUMENTATIO	COMMENTS
Lith	Geodetic Ground Surface Elevation: 105.08 m ASPHALT PAVEMENT: 60 mm asphalt over 54 o	Sal	Sa	Re	Ъ	B	105 -	20 40	60 80	20 40	60 80	<u>z</u> z	
	110 mm granular base 104.9 10 mm granular base 0. FILL: sand and gravel, trace silt, trace organics, brown, moist, loose	ss	1	100	12	- - -		0		o ¹⁴			
	- silty clay/clayey silt, trace sand, black stains, oxidations, brown/grey, moist, firm	ss	2	95	15	- - - - - -	104 -	0		o ¹³			
	103.5 BEDROCK: Shale, highly weathered, reddish 1. brown, damp to moist	5 SS	3	92	69	2			0	o ⁷			
	grey	SS	4	135	50/13cr		103 —	5 13cr	0 0 n	o ⁵			
		SS	5	100	50/8cm		102 -	5 8cr	0 O n	o ²⁴		Ξ	
						- - - - - 4	101 -						
	 wet	SS	6	100	50/13cr			5 13cr	0 0 n	o ¹⁴			
						- 5	100 -						
			7	100	50/3cm	- - - - 6	99 –	5	0	o ¹⁵			
						- - - -							
						- - 7 - -	98 -						
	97.3 End of Borehole 7. Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 3.01 m bgs upon completion of drilling.	8 <u>ss</u>	8	100	50/5cm	-		5 5 Sor	0 n	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			
B.I.C 12-5 Miss	L S. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2Z4 ada	l water de	I pth on c	completio	n of dri	lling:	<u>3.2 m</u> .	<u> </u>		<u> </u>		1 1	
T: 4 F: 4	6-214-4880 Borehole deta 16-551-2633 from a qualifie commissioned	Is as prese d Geotech and the acc	ented, do nical Eng company	o not cons gineer. Als /ing'Notes	stitute a tl so, boreh s to Reco	horough ole info rd of Bo	understa rmation s oreholes'.	nding of all poter nould be read in	ntial conditions p conjunction with	present and requires the geotechnical re	s interpretative a port for which it	ssistance was	Scale: 1 : 47 Page: 1 of 1

RECORD	OF MONITORING	WE		No.	BH	/ M \	<u>N8</u>							BIG. GONGLETHO
Project Number:	BIGC-ENV-554A						Drilling	Location:	See Boreho	le Location Pl	an		Logged by:	КК
Project Client:	Distrikt Capital						Drilling	Method:	100 mm Sc	olid Stem Auge	ering		Compiled by:	кк
Project Name:	Preliminary Geotechnical Inve	stigatio	on				Drilling	Machine:	Truck Moun	ted Drill			Reviewed by:	AC
Project Location:	590 Argus Road, Oakville, Onta	ario					Date S	Started:	26 May 22	_ Date Comp	eted: 26 Ma	ay 22	Revision No.:	1, 4/4/23
LITHO	LOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TE	STING			
Toologic Laboratoria Laborator	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting DCPT Nilcon Vane* A Intact Remould ear Strength (kPa) <u>60</u> 80	 ★ Rinse pH Vala 2 4 6 Soil Vapou parts per milli 100 200 ▲ Lower Explos W_p W ■ OPlastic 20 40 	Jes 8 10 12 r Reading on (ppm) 300 400 ive Limit (LEL) ↓ Liquid 60 80	INSTRUMENTATION	COMMEN	TS
FILL:silty clay/ occassional or moist, firm to s	lar base 0.2 clayey silt, trace sand, ganics, oxidations, brown/grey, tiff	SS	1	92	7	-	105	0		o ¹⁶				
	100.00	SS	2	84	12	- - - - -	- - 104 — -	O		o ¹¹				
BEDROCK: S brown, damp t	103.60 hale, highly weathered, reddish 1.5 o moist	SS	3	58	70/28cn	- - - - - - - - -	- - - - 102		70 28cm	o ¹⁷				
		SS	4	100	50/3cm			5 3cr	0 0 n	o ⁷				
grey		SS	5	100	50/10cn	- 	102	5 10cr	0 O n	o ³				
						- - - - - - 4 -	- - - - - - - - - - - - - - - - - - -							
		SS	6	100	50/13cn	5		5 13cı	0 0 n	o ⁴				
						-	100							
	98.92	SS	7	100	50/8cm	- 6	- 99 —		0	o ⁵	· · · · · · · · · · · · · · · · · · ·			
End of Boreho Notes: 1. Borehole op 2. Ground wat 5.80 m bgs up 3. Groundwat May 31, 2022.	ole 6.2 ben upon completion of drilling. er level reading measured at on completion of drilling. r level reading at 4.55 mbgs on								n					
3.I.G. Consulting Inc 12-5500 Tomken Rd.	· Groundw	ater dep	oth on co	ompletic	on of dril	ling:	<u>2.9 m</u> .							
∕lississauga, ON L4W Canada ∵ 416-214-4880 ∵ 416-551-2633	✓ 2Z4	ater dep as prese Geotechr d the acc	nted, do nical Engi companyi	not cons ineer. Als	<u>2022</u> titute a theorem	-05-31 Norough ole infor rd of Bo	at a dept understar mation sh reholes'.	th of: <u>4.55</u> nding of all poter would be read in	m. ntial conditions pr conjunction with t	esent and requires he geotechnical re	interpretative a port for which it	ssistance was		Scale: 1 : 4

Appendix D – Conceptual Site Models

Recreational - All age groups Property Visitor - Trespassers - All age groups Norkers - Construction (adult, incl. pregnant female) (adult, incl. pregr ind. Residents - All age groups (adult, Workers - Short Term Outdoor pregnant female) Indoor (female) - Long Term I -operty Visitor -Environmental Medium Secondary Media Tertiary Media Receptor/Exposure Pathway soil inhalation \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark Soil (PHC F2, PHC F3, benozo(a)pyrene, \checkmark \checkmark \checkmark \checkmark \checkmark ✓ soil skin contact fluoranthene and copper) ✓ \checkmark \checkmark \checkmark \checkmark \checkmark soil ingestion soil leaching garden produce ingestion volatilization vapour intrusion ✓ ✓ \checkmark \checkmark indoor air indoor vapour inhalation advection & dispersion soil gas \checkmark \checkmark \checkmark \checkmark ✓ ✓ vapour skin contact volatilization atmospheric dispersion outdoor air outdoor vapour inhalation √ Groundwater (none) trench air inhalation/vapour skin \checkmark trench air volatilization contact groundwater skin contact groundwater ingestion groundwater groundwater skin contact pooled in trench Incidental groundwater ingestion

	Receptor/Exposure Pathway is
	incomplete
1	Receptor/Exposure Pathway is
•	complete

Figure D.1 - Human Health Conceptual On-Site Model

Figure D.2 - Ecological Conceptual On-Site Model

Appendix E - Survey Plan

Appendix F – Laboratory Certificates of Analysis

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/04/27 Report #: R7605298 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7267 Received: 2023/04/26, 13:57

Sample Matrix: Soil

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	N/A	2023/04/27	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2023/04/26	2023/04/27	CAM SOP-00316	CCME CWS m
Moisture	1	N/A	2023/04/26	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 8

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/04/27 Report #: R7605298 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7267 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 27 Apr 2023 16:27:12

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Bureau Verit	as ID			VQ0932					
Sampling Da	te			2023/04/20					
				09:35					
COC Number	r			n/a					
		UNITS	Criteria	BH203-SS3	RDL	QC Batch			
BTEX & F1 H	ydrocarbons								
Benzene		ug/g	0.21	ND	0.020	8630765			
Toluene		ug/g	2.3	ND	0.020	8630765			
Ethylbenzene	5	ug/g	1.1	ND	0.020	8630765			
o-Xylene		ug/g	-	ND	0.020	8630765			
p+m-Xylene		ug/g	-	ND	0.040	8630765			
Total Xylenes	5	ug/g	3.1	ND	0.040	8630765			
F1 (C6-C10)		ug/g	55	ND	10	8630765			
F1 (C6-C10) -	BTEX	ug/g	55	ND	10	8630765			
F2-F4 Hydrocarbons									
F2 (C10-C16	Hydrocarbons)	ug/g	98	86	10	8631444			
F3 (C16-C34	Hydrocarbons)	ug/g	300	100	50	8631444			
F4 (C34-C50	Hydrocarbons)	ug/g	2800	ND	50	8631444			
Reached Bas	eline at C50	ug/g	-	Yes		8631444			
Surrogate Re	covery (%)								
1,4-Difluorob	penzene	%	-	89		8630765			
4-Bromofluo	robenzene	%	-	109		8630765			
D10-o-Xylene	2	%	-	87		8630765			
D4-1,2-Dichle	oroethane	%	-	96		8630765			
o-Terphenyl		%	-	102		8631444			
No Fill	No Exceedanc	е							
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both	criteria/	levels						
RDL = Report	able Detection I	imit							
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground									
Water Condition									
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									
ND = Not Detected at a concentration equal or greater than the indicated									
Detection Lir	nit.								

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQ0932						
Sampling Data		2023/04/20						
		09:35						
COC Number		n/a						
	UNITS	BH203-SS3	RDL	QC Batch				
Inorganics								
Moisture	%	13	1.0	8630462				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	ntch							

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	1.3°C	
Sample Additio	VQO932 [BH203 nal methanol was	-SS3]:F1 BTEX a added to the via	nalysis : Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. I to ensure extraction efficiency
Results	s relate only to th	e items tested.	

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILE Sampler Initials: MM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8630765	1,4-Difluorobenzene	2023/04/27	88	60 - 140	89	60 - 140	90	%		
8630765	4-Bromofluorobenzene	2023/04/27	106	60 - 140	106	60 - 140	104	%		
8630765	D10-o-Xylene	2023/04/27	89	60 - 140	80	60 - 140	85	%		
8630765	D4-1,2-Dichloroethane	2023/04/27	92	60 - 140	94	60 - 140	95	%		
8631444	o-Terphenyl	2023/04/27	101	60 - 130	99	60 - 130	101	%		
8630462	Moisture	2023/04/26							0.61	20
8630765	Benzene	2023/04/27	82	50 - 140	75	50 - 140	ND, RDL=0.020	ug/g	NC	50
8630765	Ethylbenzene	2023/04/27	92	50 - 140	83	50 - 140	ND, RDL=0.020	ug/g	NC	50
8630765	F1 (C6-C10) - BTEX	2023/04/27					ND, RDL=10	ug/g	NC	30
8630765	F1 (C6-C10)	2023/04/27	87	60 - 140	95	80 - 120	ND, RDL=10	ug/g	NC	30
8630765	o-Xylene	2023/04/27	90	50 - 140	82	50 - 140	ND, RDL=0.020	ug/g	NC	50
8630765	p+m-Xylene	2023/04/27	87	50 - 140	79	50 - 140	ND, RDL=0.040	ug/g	NC	50
8630765	Toluene	2023/04/27	79	50 - 140	73	50 - 140	ND, RDL=0.020	ug/g	7.9	50
8630765	Total Xylenes	2023/04/27					ND, RDL=0.040	ug/g	NC	50
8631444	F2 (C10-C16 Hydrocarbons)	2023/04/27	105	60 - 130	108	80 - 120	ND, RDL=10	ug/g	2.6	30
8631444	F3 (C16-C34 Hydrocarbons)	2023/04/27	112	60 - 130	115	80 - 120	ND, RDL=50	ug/g	44 (1)	30
8631444	F4 (C34-C50 Hydrocarbons)	2023/04/27	108	60 - 130	115	80 - 120	ND, RDL=50	ug/g	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate results exceeded RPD acceptance criteria for flagged analytes. The sample was reanalyzed with the similar results. This is likely due to sample heterogeneity.

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory gu	uidelines.					

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/04/27 Report #: R7605280 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7276 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	N/A	2023/04/27	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2023/04/26	2023/04/27	CAM SOP-00316	CCME CWS m
Moisture	1	N/A	2023/04/26	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 8

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/04/27 Report #: R7605280 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7276 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 27 Apr 2023 16:21:35

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

				•	-				
Bureau Verit	as ID			VQ0951					
Sampling Da	te			2023/04/20 09:35					
COC Number	r			n/a					
		UNITS	Criteria	DUP20303	RDL	QC Batch			
BTEX & F1 H	ydrocarbons								
Benzene		ug/g	0.21	ND	0.020	8630765			
Toluene		ug/g	2.3	ND	0.020	8630765			
Ethylbenzene	e	ug/g	1.1	ND	0.020	8630765			
o-Xylene		ug/g	-	ND	0.020	8630765			
p+m-Xylene		ug/g	-	ND	0.040	8630765			
Total Xylenes	5	ug/g	3.1	ND	0.040	8630765			
F1 (C6-C10)		ug/g	55	12	10	8630765			
F1 (C6-C10) -	BTEX	ug/g	55	12	10	8630765			
F2-F4 Hydrod	carbons								
F2 (C10-C16	Hydrocarbons)	ug/g	98	60	10	8631444			
F3 (C16-C34	Hydrocarbons)	ug/g	300	80	50	8631444			
F4 (C34-C50	Hydrocarbons)	ug/g	2800	ND	50	8631444			
Reached Bas	eline at C50	ug/g	-	Yes		8631444			
Surrogate Re	covery (%)								
1,4-Difluorob	penzene	%	-	88		8630765			
4-Bromofluo	robenzene	%	-	108		8630765			
D10-o-Xylene	9	%	-	89		8630765			
D4-1,2-Dichle	oroethane	%	-	90		8630765			
o-Terphenyl		%	-	102		8631444			
No Fill	No Exceedanc	e							
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both	criteria/	levels						
RDL = Report	able Detection I	imit							
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground									
Water Condition									
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									
ND = Not Det	tected at a conce	entratior	n equal oi	r greater than	the inc	licated			
Detection Lir	nit.								

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQ0951						
Sampling Data		2023/04/20						
Sampling Date		09:35						
COC Number		n/a						
	UNITS	DUP20303	RDL	QC Batch				
Inorganics								
Moisture	%	12	1.0	8630462				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	ntch							

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each t	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	1.3°C								
Sample Additic	Sample VQO951 [DUP20303] : F1 BTEX analysis : Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency									
Result	Results relate only to the items tested.									

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8630765	1,4-Difluorobenzene	2023/04/27	88	60 - 140	89	60 - 140	90	%			
8630765	4-Bromofluorobenzene	2023/04/27	106	60 - 140	106	60 - 140	104	%			
8630765	D10-o-Xylene	2023/04/27	89	60 - 140	80	60 - 140	85	%			
8630765	D4-1,2-Dichloroethane	2023/04/27	92	60 - 140	94	60 - 140	95	%			
8631444	o-Terphenyl	2023/04/27	101	60 - 130	99	60 - 130	101	%			
8630462	Moisture	2023/04/26							0.61	20	
8630765	Benzene	2023/04/27	82	50 - 140	75	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	Ethylbenzene	2023/04/27	92	50 - 140	83	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	F1 (C6-C10) - BTEX	2023/04/27					ND, RDL=10	ug/g	NC	30	
8630765	F1 (C6-C10)	2023/04/27	87	60 - 140	95	80 - 120	ND, RDL=10	ug/g	NC	30	
8630765	o-Xylene	2023/04/27	90	50 - 140	82	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	p+m-Xylene	2023/04/27	87	50 - 140	79	50 - 140	ND, RDL=0.040	ug/g	NC	50	
8630765	Toluene	2023/04/27	79	50 - 140	73	50 - 140	ND, RDL=0.020	ug/g	7.9	50	
8630765	Total Xylenes	2023/04/27					ND, RDL=0.040	ug/g	NC	50	
8631444	F2 (C10-C16 Hydrocarbons)	2023/04/27	105	60 - 130	108	80 - 120	ND, RDL=10	ug/g	2.6	30	
8631444	F3 (C16-C34 Hydrocarbons)	2023/04/27	112	60 - 130	115	80 - 120	ND, RDL=50	ug/g	44 (1)	30	
8631444	F4 (C34-C50 Hydrocarbons)	2023/04/27	108	60 - 130	115	80 - 120	ND, RDL=50	ug/g	NC	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate results exceeded RPD acceptance criteria for flagged analytes. The sample was reanalyzed with the similar results. This is likely due to sample heterogeneity.

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 7 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summar	y table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory gui	delines.					

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/04/27 Report #: R7605279 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7280 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	N/A	2023/04/27	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2023/04/26	2023/04/27	CAM SOP-00316	CCME CWS m
Moisture	1	N/A	2023/04/26	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 8

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/04/27 Report #: R7605279 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7280 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 27 Apr 2023 16:20:57

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Dumper Marth			-	100057			
вureau Verit	as ID			VQU957		ļ	
Sampling Da	te			2023/04/20 09:50			
COC Number	r			n/a			
		UNITS	Criteria	BH204-SS2	RDL	QC Batch	
BTEX & F1 H	ydrocarbons						
Benzene		ug/g	0.21	ND	0.020	8630765	
Toluene		ug/g	2.3	ND	0.020	8630765	
Ethylbenzene	e	ug/g	1.1	ND	0.020	8630765	
o-Xylene		ug/g	-	ND	0.020	8630765	
p+m-Xylene		ug/g	-	ND	0.040	8630765	
Total Xylenes	5	ug/g	3.1	ND	0.040	8630765	
F1 (C6-C10)		ug/g	55	ND	10	8630765	
F1 (C6-C10) -	ug/g	55	ND	10	8630765		
F2-F4 Hydrocarbons							
F2 (C10-C16	ug/g	98	370	10	8631444		
F3 (C16-C34	ug/g	300	390	50	8631444		
F4 (C34-C50	ug/g	2800	ND	50	8631444		
Reached Bas	eline at C50	ug/g	-	Yes		8631444	
Surrogate Re	covery (%)	·			-	-	
1,4-Difluorob	penzene	%	-	91		8630765	
4-Bromofluo	robenzene	%	-	106		8630765	
D10-o-Xylene	2	%	-	89		8630765	
D4-1,2-Dichlo	oroethane	%	-	95		8630765	
o-Terphenyl		%	-	102		8631444	
No Fill	No Exceedanc	е					
Grey	Exceeds 1 crite	eria poli	cy/level				
Black	Exceeds both	criteria/	levels				
RDL = Report	able Detection I	imit					
QC Batch = O	uality Control B	atch					
Criteria: Onta	ario Reg. 153/04	(Amenc	led April :	15, 2011)			
Table 2: Full I	Depth Generic Si	ite Cond	ition Star	idards in a Pot	table G	round	
Water Condition							
Soil - Resider	Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil						
ND = Not Det	tected at a conce	entratior	n equal or	r greater than	the inc	licated	
Detection Limit.							

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQ0957						
Sampling Date		2023/04/20						
Samping Date		09:50						
COC Number		n/a						
	UNITS	BH204-SS2	RDL	QC Batch				
Inorganics								
Moisture	%	13	1.0	8630462				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	1.3°C								
Sample Additio	Sample VQO957 [BH204-SS2] : F1 BTEX analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency									
Results	s relate only to th	e items tested.								

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8630765	1,4-Difluorobenzene	2023/04/27	88	60 - 140	89	60 - 140	90	%			
8630765	4-Bromofluorobenzene	2023/04/27	106	60 - 140	106	60 - 140	104	%			
8630765	D10-o-Xylene	2023/04/27	89	60 - 140	80	60 - 140	85	%			
8630765	D4-1,2-Dichloroethane	2023/04/27	92	60 - 140	94	60 - 140	95	%			
8631444	o-Terphenyl	2023/04/27	101	60 - 130	99	60 - 130	101	%			
8630462	Moisture	2023/04/26							0.61	20	
8630765	Benzene	2023/04/27	82	50 - 140	75	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	Ethylbenzene	2023/04/27	92	50 - 140	83	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	F1 (C6-C10) - BTEX	2023/04/27					ND, RDL=10	ug/g	NC	30	
8630765	F1 (C6-C10)	2023/04/27	87	60 - 140	95	80 - 120	ND, RDL=10	ug/g	NC	30	
8630765	o-Xylene	2023/04/27	90	50 - 140	82	50 - 140	ND, RDL=0.020	ug/g	NC	50	
8630765	p+m-Xylene	2023/04/27	87	50 - 140	79	50 - 140	ND, RDL=0.040	ug/g	NC	50	
8630765	Toluene	2023/04/27	79	50 - 140	73	50 - 140	ND, RDL=0.020	ug/g	7.9	50	
8630765	Total Xylenes	2023/04/27					ND, RDL=0.040	ug/g	NC	50	
8631444	F2 (C10-C16 Hydrocarbons)	2023/04/27	105	60 - 130	108	80 - 120	ND, RDL=10	ug/g	2.6	30	
8631444	F3 (C16-C34 Hydrocarbons)	2023/04/27	112	60 - 130	115	80 - 120	ND, RDL=50	ug/g	44 (1)	30	
8631444	F4 (C34-C50 Hydrocarbons)	2023/04/27	108	60 - 130	115	80 - 120	ND, RDL=50	ug/g	NC	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate results exceeded RPD acceptance criteria for flagged analytes. The sample was reanalyzed with the similar results. This is likely due to sample heterogeneity.

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 7 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
BH204-SS2	VQ0957-01	F2 (C10-C16 Hydrocarbons)	98	370	10	ug/g		
BH204-SS2	VQ0957-01	F3 (C16-C34 Hydrocarbons)	300	390	50	ug/g		
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory guidelines.								

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609470 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7293 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Moisture	1	N/A	2023/04/27	CAM SOP-00445	Carter 2nd ed 51.2 m
Polychlorinated Biphenyl in Soil	1	2023/04/27	2023/04/28	CAM SOP-00309	EPA 8082A m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609470 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7293 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 11:59:49

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Bureau Verita	as ID			VQP000		
Sampling Dat	•			2023/04/20		
			10:30			
COC Number				n/a		
		UNITS	Criteria	BH208-SS1	RDL	QC Batch
PCBs						
Aroclor 1242		ug/g	-	ND	0.010	8634056
Aroclor 1248		ug/g	-	ND	0.010	8634056
Aroclor 1254		ug/g	-	ND	0.010	8634056
Aroclor 1260		ug/g	-	ND	0.010	8634056
Total PCB	ug/g	0.35	ND	0.010	8634056	
Surrogate Re	covery (%)					
Decachlorobi	phenyl	%	-	98		8634056
No Fill	No Exceedance	9				
Grey	Exceeds 1 crite	eria polio	cy/level			
Black	Exceeds both o	riteria/	levels			
RDL = Report	able Detection L	imit				
QC Batch = Q	uality Control Ba	atch				
Criteria: Onta	rio Reg. 153/04	(Amend	led April :	15, 2011)		
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground						
Water Condition						
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil						ured Soil
ND = Not Det	ected at a conce	ntratior	n equal or	r greater than	the inc	licated
Detection Lin	nit.					

O.REG 153 PCBS (SOIL)

Page 3 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP000		
Sampling Date		2023/04/20		
		10:30		
COC Number		n/a		
	UNITS	BH208-SS1	RDL	QC Batch
Inorganics				
Moisture	%	13	1.0	8633864
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8634056	Decachlorobiphenyl	2023/04/28	122	60 - 130	85	60 - 130	92	%		
8633864	Moisture	2023/04/27							1.7	20
8634056	Aroclor 1242	2023/04/28					ND, RDL=0.010	ug/g	NC	50
8634056	Aroclor 1248	2023/04/28					ND, RDL=0.010	ug/g	NC	50
8634056	Aroclor 1254	2023/04/28					ND, RDL=0.010	ug/g	NC	50
8634056	Aroclor 1260	2023/04/28	NC (1)	30 - 130	96	30 - 130	ND, RDL=0.010	ug/g	5.2	50
8634056	Total PCB	2023/04/28	NC (1)	30 - 130	96	30 - 130	ND, RDL=0.010	ug/g	5.2	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery in the matrix spike was not calculated (NC) due to background interference.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
No Exceedances									
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory gui	delines.								

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609608 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7301 Received: 2023/04/26, 13:57

Sample Matrix: Soil

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Moisture	1	N/A	2023/04/27	CAM SOP-00445	Carter 2nd ed 51.2 m
Polychlorinated Biphenyl in Soil	1	2023/04/28	2023/04/28	CAM SOP-00309	EPA 8082A m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609608 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7301 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 13:21:42

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Bureau Verit	as ID			VQP030		
Sampling Da	to			2023/04/20		
	le			10:30		
COC Numbe	r			n/a		
		UNITS	Criteria	DUP20801	RDL	QC Batch
PCBs						
Aroclor 1242		ug/g	-	ND	0.010	8634295
Aroclor 1248		ug/g	-	ND	0.010	8634295
Aroclor 1254		ug/g	-	ND	0.010	8634295
Aroclor 1260)	ug/g	-	ND	0.010	8634295
Total PCB		ug/g	0.35	ND	0.010	8634295
Surrogate Re	covery (%)					
Decachlorob	iphenyl	%	-	123		8634295
No Fill	No Exceedance	9				
Grey	Exceeds 1 crite	eria polio	cy/level			
Black	Exceeds both o	riteria/	levels			
RDL = Report	table Detection L	imit				
QC Batch = C	Quality Control Ba	atch				
Criteria: Onta	ario Reg. 153/04	(Amend	led April :	15, 2011)		
Table 2: Full	Depth Generic Si	te Cond	ition Star	idards in a Po	table G	round
Water Condi	tion					
Soil - Resider	ntial/Parkland/Ins	stitution	al Propei	rty Use - Coars	se Texti	ured Soil
ND = Not De	tected at a conce	ntratior	n equal or	r greater than	the inc	licated
Detection Lir	nit.					

O.REG 153 PCBS (SOIL)

Page 3 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP030								
Sompling Data		2023/04/20								
Sampling Date		10:30								
COC Number		n/a								
	UNITS	DUP20801	RDL	QC Batch						
Inorganics										
Moisture	%	13	1.0	8633649						
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609807 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7304 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	1	2023/04/29	2023/05/01	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609807 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7304 Received: 2023/04/26, 13:57

Encryption Key

01 May 2023 15:04:11

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843 _____

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Verita	s ID			VQP039					
Sampling Date	2			2023/04/20					
				10:50					
COC Number		LINUTC	C uite sie	n/a		OC Datab			
		UNITS	Criteria	BH209-551	KDL	QC Batch			
Metals									
Acid Extractab	le Antimony (Sb)	ug/g	7.5	0.29	0.20	8637058			
Acid Extractab	le Arsenic (As)	ug/g	18	5.9	1.0	8637058			
Acid Extractab	le Barium (Ba)	ug/g	390	76	0.50	8637058			
Acid Extractab	le Beryllium (Be)	ug/g	4	0.79	0.20	8637058			
Acid Extractab	le Boron (B)	ug/g	120	6.7	5.0	8637058			
Acid Extractab	le Cadmium (Cd)	ug/g	1.2	ND	0.10	8637058			
Acid Extractab	le Chromium (Cr)	ug/g	160	20	1.0	8637058			
Acid Extractab	le Cobalt (Co)	ug/g	22	9.9	0.10	8637058			
Acid Extractab	le Copper (Cu)	ug/g	140	190	0.50	8637058			
Acid Extractab	le Lead (Pb)	ug/g	120	13	1.0	8637058			
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	0.89	0.50	8637058			
Acid Extractab	le Nickel (Ni)	ug/g	100	22	0.50	8637058			
Acid Extractab	le Selenium (Se)	ug/g	2.4	ND	0.50	8637058			
Acid Extractab	le Silver (Ag)	ug/g	20	ND	0.20	8637058			
Acid Extractab	le Thallium (Tl)	ug/g	1	0.089	0.050	8637058			
Acid Extractab	le Uranium (U)	ug/g	23	0.71	0.050	8637058			
Acid Extractab	le Vanadium (V)	ug/g	86	32	5.0	8637058			
Acid Extractab	le Zinc (Zn)	ug/g	340	62	5.0	8637058			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria pol	icy/leve	1						
Black	Exceeds both criteria	/levels							
RDL = Reporta	ble Detection Limit								
QC Batch = Qu	ality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition									
Soil - Resident	ial/Parkland/Institution	al Prope	erty Use -	Coarse Textu	red Soi				
ND = Not Dete Limit.	ected at a concentratior	equal o	or greater	than the indi	cated [Detection			

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8637058	Acid Extractable Antimony (Sb)	2023/05/01	93	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	2.2	30
8637058	Acid Extractable Arsenic (As)	2023/05/01	100	75 - 125	103	80 - 120	ND, RDL=1.0	ug/g	1.9	30
8637058	Acid Extractable Barium (Ba)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	2.1	30
8637058	Acid Extractable Beryllium (Be)	2023/05/01	97	75 - 125	98	80 - 120	ND, RDL=0.20	ug/g	1.1	30
8637058	Acid Extractable Boron (B)	2023/05/01	88	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30
8637058	Acid Extractable Cadmium (Cd)	2023/05/01	94	75 - 125	96	80 - 120	ND, RDL=0.10	ug/g	1.3	30
8637058	Acid Extractable Chromium (Cr)	2023/05/01	NC	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	6.7	30
8637058	Acid Extractable Cobalt (Co)	2023/05/01	96	75 - 125	99	80 - 120	ND, RDL=0.10	ug/g	3.9	30
8637058	Acid Extractable Copper (Cu)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	0.71	30
8637058	Acid Extractable Lead (Pb)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	0.53	30
8637058	Acid Extractable Molybdenum (Mo)	2023/05/01	99	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	2.0	30
8637058	Acid Extractable Nickel (Ni)	2023/05/01	94	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	5.2	30
8637058	Acid Extractable Selenium (Se)	2023/05/01	94	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	3.2	30
8637058	Acid Extractable Silver (Ag)	2023/05/01	97	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	1.7	30
8637058	Acid Extractable Thallium (TI)	2023/05/01	94	75 - 125	102	80 - 120	ND, RDL=0.050	ug/g	0.60	30
8637058	Acid Extractable Uranium (U)	2023/05/01	95	75 - 125	96	80 - 120	ND, RDL=0.050	ug/g	2.5	30
8637058	Acid Extractable Vanadium (V)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	1.9	30
8637058	Acid Extractable Zinc (Zn)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria Result		DL	UNITS			
BH209-SS1	VQP039-01	Acid Extractable Copper (Cu)	140	190	0.50	ug/g			
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory guidelines.									

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/02 Report #: R7611084 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7310 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	1	2023/04/29	2023/05/01	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/02 Report #: R7611084 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7310 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 02 May 2023 10:24:21

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Verita	s ID			VQP061					
Sampling Date	9			2023/04/20 10:20					
COC Number				n/a					
		UNITS	Criteria	BH207-SS1	RDL	QC Batch			
Metals									
Acid Extractab	le Antimony (Sb)	ug/g	7.5	0.26	0.20	8637943			
Acid Extractab	le Arsenic (As)	ug/g	18	6.5	1.0	8637943			
Acid Extractab	le Barium (Ba)	ug/g	390	76	0.50	8637943			
Acid Extractab	le Beryllium (Be)	ug/g	4	0.50	0.20	8637943			
Acid Extractab	le Boron (B)	ug/g	120	12	5.0	8637943			
Acid Extractab	le Cadmium (Cd)	ug/g	1.2	0.20	0.10	8637943			
Acid Extractab	le Chromium (Cr)	ug/g	160	14	1.0	8637943			
Acid Extractab	le Cobalt (Co)	ug/g	22	9.0	0.10	8637943			
Acid Extractab	le Copper (Cu)	ug/g	140	32	0.50	8637943			
Acid Extractab	le Lead (Pb)	ug/g	120	16	16 1.0				
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	0.87	0.50	8637943			
Acid Extractab	le Nickel (Ni)	ug/g	100	18	0.50	8637943			
Acid Extractab	le Selenium (Se)	ug/g	2.4	ND	0.50	8637943			
Acid Extractab	le Silver (Ag)	ug/g	20	ND	0.20	8637943			
Acid Extractab	le Thallium (Tl)	ug/g	1	0.11	0.050	8637943			
Acid Extractab	le Uranium (U)	ug/g	23	0.51	0.050	8637943			
Acid Extractab	le Vanadium (V)	ug/g	86	23	5.0	8637943			
Acid Extractab	le Zinc (Zn)	ug/g	340	70	5.0	8637943			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria pol	icy/leve	1						
Black	Exceeds both criteria	/levels							
RDL = Reporta	ble Detection Limit								
QC Batch = Qu	ality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition									
ND = Not Dete Limit.	cted at a concentration	equal c	or greater	than the indi	cated [Detection			

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Sampler Initials: MM

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8637943	Acid Extractable Antimony (Sb)	2023/05/01	84	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	NC	30
8637943	Acid Extractable Arsenic (As)	2023/05/01	104	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	1.2	30
8637943	Acid Extractable Barium (Ba)	2023/05/01	NC	75 - 125	95	80 - 120	ND, RDL=0.50	ug/g	1.5	30
8637943	Acid Extractable Beryllium (Be)	2023/05/01	104	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	0.46	30
8637943	Acid Extractable Boron (B)	2023/05/01	99	75 - 125	94	80 - 120	ND, RDL=5.0	ug/g	5.9	30
8637943	Acid Extractable Cadmium (Cd)	2023/05/01	103	75 - 125	97	80 - 120	ND, RDL=0.10	ug/g	23	30
8637943	Acid Extractable Chromium (Cr)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=1.0	ug/g	3.0	30
8637943	Acid Extractable Cobalt (Co)	2023/05/01	108	75 - 125	97	80 - 120	ND, RDL=0.10	ug/g	0.58	30
8637943	Acid Extractable Copper (Cu)	2023/05/01	102	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	1.3	30
8637943	Acid Extractable Lead (Pb)	2023/05/01	106	75 - 125	97	80 - 120	ND, RDL=1.0	ug/g	7.0	30
8637943	Acid Extractable Molybdenum (Mo)	2023/05/01	106	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	NC	30
8637943	Acid Extractable Nickel (Ni)	2023/05/01	103	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	0.37	30
8637943	Acid Extractable Selenium (Se)	2023/05/01	106	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	NC	30
8637943	Acid Extractable Silver (Ag)	2023/05/01	104	75 - 125	99	80 - 120	ND, RDL=0.20	ug/g	NC	30
8637943	Acid Extractable Thallium (TI)	2023/05/01	104	75 - 125	98	80 - 120	ND, RDL=0.050	ug/g	8.2	30
8637943	Acid Extractable Uranium (U)	2023/05/01	103	75 - 125	95	80 - 120	ND, RDL=0.050	ug/g	8.0	30
8637943	Acid Extractable Vanadium (V)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	1.2	30
8637943	Acid Extractable Zinc (Zn)	2023/05/01	NC	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g	1.1	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should r	not be considered a compre	hensive listing or	statement of	conformance to
applicable regulatory gu	uidelines.					

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7610149 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7314 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/05/01	CAM SOP-00301	EPA 8270D m
Moisture	1	N/A	2023/04/28	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/04/28	2023/04/29	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7610149 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7314 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 16:46:25

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

0.REG 155 PARS (5012)									
Bureau Verit	as ID			VQP092					
Sampling Dat	te			2023/04/20 09:00					
COC Number				n/a					
		UNITS	Criteria	BH201-SS1	RDL	QC Batch			
Calculated Pa	arameters								
Methylnapht	halene, 2-(1-)	ug/g	-	ND	0.0071	8629172			
Polyaromatio	C Hydrocarbons								
Acenaphthen	ie	ug/g	7.9	ND	0.0050	8635309			
Acenaphthyle	ene	ug/g	0.15	ND	0.0050	8635309			
Anthracene		ug/g	0.67	ND	0.0050	8635309			
Benzo(a)anth	iracene	ug/g	0.5	ND	0.0050	8635309			
Benzo(a)pyre	ne	ug/g	0.3	ND	0.0050	8635309			
Benzo(b/j)flu	oranthene	ug/g	0.78	ND	0.0050	8635309			
Benzo(g,h,i)p	erylene	ug/g	6.6	ND	0.0050	8635309			
Benzo(k)fluoranthene		ug/g	0.78	ND	0.0050	8635309			
Chrysene		ug/g	7	ND	0.0050	8635309			
Dibenzo(a,h)anthracene		ug/g	0.1	ND	0.0050	8635309			
Fluoranthene	2	ug/g	0.69	ND	0.0050	8635309			
Fluorene		ug/g	62	ND	0.0050	8635309			
Indeno(1,2,3-	-cd)pyrene	ug/g	0.38	ND	0.0050	8635309			
1-Methylnap	hthalene	ug/g	0.99	ND	0.0050	8635309			
2-Methylnap	hthalene	ug/g	0.99	ND	0.0050	8635309			
Naphthalene		ug/g	0.6	ND	0.0050	8635309			
Phenanthren	e	ug/g	6.2	ND	0.0050	8635309			
Pyrene		ug/g	78	ND	0.0050	8635309			
Surrogate Re	covery (%)								
D10-Anthrace	ene	%	-	88		8635309			
D14-Terphen	yl (FS)	%	-	90		8635309			
D8-Acenapht	hylene	%	-	88		8635309			
No Fill	No Exceedance								
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both (criteria/	levels						
RDL = Report	able Detection L	imit							
QC Batch = Quality Control Batch									

O REG 153 PAHS (SOIL)

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP092					
Sampling Date		2023/04/20					
Sampling Date		09:00					
COC Number		n/a					
	UNITS	BH201-SS1	RDL	QC Batch			
Inorganics							
Moisture	%	13	1.0	8634669			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8635309	D10-Anthracene	2023/04/29	89	50 - 130	98	50 - 130	97	%		
8635309	D14-Terphenyl (FS)	2023/04/29	92	50 - 130	111	50 - 130	103	%		
8635309	D8-Acenaphthylene	2023/04/29	82	50 - 130	92	50 - 130	90	%		
8634669	Moisture	2023/04/28							1.8	20
8635309	1-Methylnaphthalene	2023/04/29	102	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	2-Methylnaphthalene	2023/04/29	91	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Acenaphthene	2023/04/29	94	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Acenaphthylene	2023/04/29	96	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Anthracene	2023/04/29	103	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Benzo(a)anthracene	2023/04/29	101	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Benzo(a)pyrene	2023/04/29	99	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Benzo(b/j)fluoranthene	2023/04/29	105	50 - 130	111	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Benzo(g,h,i)perylene	2023/04/29	103	50 - 130	116	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Benzo(k)fluoranthene	2023/04/29	102	50 - 130	109	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Chrysene	2023/04/29	102	50 - 130	106	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Dibenzo(a,h)anthracene	2023/04/29	113	50 - 130	124	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Fluoranthene	2023/04/29	100	50 - 130	110	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Fluorene	2023/04/29	100	50 - 130	92	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Indeno(1,2,3-cd)pyrene	2023/04/29	103	50 - 130	113	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Naphthalene	2023/04/29	84	50 - 130	93	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Phenanthrene	2023/04/29	99	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8635309	Pyrene	2023/04/29	104	50 - 130	115	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 7 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary	/ table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory guid	delines.					

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7610532 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7320 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/05/01	CAM SOP-00301	EPA 8270D m
Moisture	1	N/A	2023/04/27	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/04/29	2023/04/30	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7610532 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7320 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 18:55:25

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

	0.REG 135 PARS (501L)									
Bureau Verit	as ID			VQP118						
Sampling Dat	te			2023/04/20 09:00						
COC Number				n/a						
		UNITS	Criteria	DUP20101	RDL	QC Batch				
Calculated Pa	arameters									
Methylnapht	halene, 2-(1-)	ug/g	-	ND	0.0071	8630529				
Polyaromatic	Hydrocarbons									
Acenaphthene		ug/g	7.9	ND	0.0050	8636718				
Acenaphthyle	ene	ug/g	0.15	ND	0.0050	8636718				
Anthracene		ug/g	0.67	ND	0.0050	8636718				
Benzo(a)anth	racene	ug/g	0.5	ND	0.0050	8636718				
Benzo(a)pyre	ne	ug/g	0.3	ND	0.0050	8636718				
Benzo(b/j)fluoranthene		ug/g	0.78	ND	0.0050	8636718				
Benzo(g,h,i)perylene		ug/g	6.6	ND	0.0050	8636718				
Benzo(k)fluoranthene		ug/g	0.78	ND	0.0050	8636718				
Chrysene		ug/g	7	ND	0.0050	8636718				
Dibenzo(a,h)anthracene		ug/g	0.1	ND	0.0050	8636718				
Fluoranthene		ug/g	0.69	ND	0.0050	8636718				
Fluorene		ug/g	62	ND	0.0050	8636718				
Indeno(1,2,3-	cd)pyrene	ug/g	0.38	ND	0.0050	8636718				
1-Methylnapl	hthalene	ug/g	0.99	ND	0.0050	8636718				
2-Methylnapl	hthalene	ug/g	0.99	ND	0.0050	8636718				
Naphthalene		ug/g	0.6	ND	0.0050	8636718				
Phenanthren	e	ug/g	6.2	ND	0.0050	8636718				
Pyrene		ug/g	78	ND	0.0050	8636718				
Surrogate Re	covery (%)									
D10-Anthrace	ene	%	-	113		8636718				
D14-Terphenyl (FS)		%	-	109		8636718				
D8-Acenaphthylene		%	-	96		8636718				
No Fill	II No Exceedance									
Grey	Exceeds 1 criteria policy/level									
Black	Exceeds both o	criteria/	levels							
RDL = Report	able Detection L	imit								

O.REG 153 PAHS (SOIL)

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP118					
Sampling Date		2023/04/20					
		09:00					
COC Number		n/a					
	UNITS	DUP20101	RDL	QC Batch			
Inorganics							
Moisture	%	12	1.0	8633649			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8636718	D10-Anthracene	2023/04/30	85	50 - 130	114	50 - 130	114	%		
8636718	D14-Terphenyl (FS)	2023/04/30	95	50 - 130	106	50 - 130	105	%		
8636718	D8-Acenaphthylene	2023/04/30	87	50 - 130	98	50 - 130	94	%		
8633649	Moisture	2023/04/27							1.3	20
8636718	1-Methylnaphthalene	2023/04/30	99	50 - 130	111	50 - 130	ND, RDL=0.0050	ug/g	19	40
8636718	2-Methylnaphthalene	2023/04/30	91	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	27	40
8636718	Acenaphthene	2023/04/30	86	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	7.2	40
8636718	Acenaphthylene	2023/04/30	97	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636718	Anthracene	2023/04/30	94	50 - 130	109	50 - 130	ND, RDL=0.0050	ug/g	16	40
8636718	Benzo(a)anthracene	2023/04/30	77	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	5.1	40
8636718	Benzo(a)pyrene	2023/04/30	64	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	0.15	40
8636718	Benzo(b/j)fluoranthene	2023/04/30	73	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	1.5	40
8636718	Benzo(g,h,i)perylene	2023/04/30	60	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	2.8	40
8636718	Benzo(k)fluoranthene	2023/04/30	72	50 - 130	91	50 - 130	ND, RDL=0.0050	ug/g	2.3	40
8636718	Chrysene	2023/04/30	74	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	4.7	40
8636718	Dibenzo(a,h)anthracene	2023/04/30	76	50 - 130	93	50 - 130	ND, RDL=0.0050	ug/g	7.2	40
8636718	Fluoranthene	2023/04/30	73	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	6.8	40
8636718	Fluorene	2023/04/30	88	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	18	40
8636718	Indeno(1,2,3-cd)pyrene	2023/04/30	63	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	2.3	40
8636718	Naphthalene	2023/04/30	87	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	37	40
8636718	Phenanthrene	2023/04/30	81	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	15	40
8636718	Pyrene	2023/04/30	76	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	5.6	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summar	y table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory gui	delines.					

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7322 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	1	2023/04/29	2023/05/01	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609806 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7322 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 15:03:20

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Verita	s ID			VQP127				
Sampling Date	2			2023/04/20				
COC Number				10.10 n/a				
		UNITS	Criteria	DUP20601	RDL	OC Batch		
Metals								
Acid Extractab	le Antimony (Sb)	ug/g	7.5	0.26	0.20	8637058		
Acid Extractable Arsenic (As)		ug/g	18	6.6	1.0	8637058		
Acid Extractab	le Barium (Ba)	ug/g	390	42	0.50	8637058		
Acid Extractab	le Beryllium (Be)	ug/g	4	0.21	0.20	8637058		
Acid Extractab	le Boron (B)	ug/g	120	9.6	5.0	8637058		
Acid Extractab	le Cadmium (Cd)	ug/g	1.2	0.82	0.10	8637058		
Acid Extractab	le Chromium (Cr)	ug/g	160	6.3	1.0	8637058		
Acid Extractab	le Cobalt (Co)	ug/g	22	4.3	0.10	8637058		
Acid Extractab	le Copper (Cu)	ug/g	140	22	0.50	8637058		
Acid Extractab	le Lead (Pb)	ug/g	120	23	1.0	8637058		
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	0.96	0.50	8637058		
Acid Extractab	le Nickel (Ni)	ug/g	100	8.9	0.50	8637058		
Acid Extractab	le Selenium (Se)	ug/g	2.4	ND	0.50	8637058		
Acid Extractab	le Silver (Ag)	ug/g	20	ND	0.20	8637058		
Acid Extractab	le Thallium (Tl)	ug/g	1	0.080	0.050	8637058		
Acid Extractab	le Uranium (U)	ug/g	23	0.42	0.050	8637058		
Acid Extractab	le Vanadium (V)	ug/g	86	14	5.0	8637058		
Acid Extractab	le Zinc (Zn)	ug/g	340	180	5.0	8637058		
No Fill	No Exceedance							
Grey	Exceeds 1 criteria pol	icy/leve	1					
Black	Exceeds both criteria	/levels						
RDL = Reporta	ble Detection Limit							
QC Batch = Qu	ality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition								
Soil - Resident ND = Not Dete Limit.	ial/Parkland/Institution ected at a concentratior	al Prope equal c	erty Use - or greater	Coarse Textu than the indi	red Soi cated E	Detection		

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-554ESite Location: 590 ARGUS ROAD, OAKVILLESampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8637058	Acid Extractable Antimony (Sb)	2023/05/01	93	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	2.2	30	
8637058	Acid Extractable Arsenic (As)	2023/05/01	100	75 - 125	103	80 - 120	ND, RDL=1.0	ug/g	1.9	30	
8637058	Acid Extractable Barium (Ba)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	2.1	30	
8637058	Acid Extractable Beryllium (Be)	2023/05/01	97	75 - 125	98	80 - 120	ND, RDL=0.20	ug/g	1.1	30	
8637058	Acid Extractable Boron (B)	2023/05/01	88	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30	
8637058	Acid Extractable Cadmium (Cd)	2023/05/01	94	75 - 125	96	80 - 120	ND, RDL=0.10	ug/g	1.3	30	
8637058	Acid Extractable Chromium (Cr)	2023/05/01	NC	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	6.7	30	
8637058	Acid Extractable Cobalt (Co)	2023/05/01	96	75 - 125	99	80 - 120	ND, RDL=0.10	ug/g	3.9	30	
8637058	Acid Extractable Copper (Cu)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	0.71	30	
8637058	Acid Extractable Lead (Pb)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	0.53	30	
8637058	Acid Extractable Molybdenum (Mo)	2023/05/01	99	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	2.0	30	
8637058	Acid Extractable Nickel (Ni)	2023/05/01	94	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	5.2	30	
8637058	Acid Extractable Selenium (Se)	2023/05/01	94	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	3.2	30	
8637058	Acid Extractable Silver (Ag)	2023/05/01	97	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	1.7	30	
8637058	Acid Extractable Thallium (Tl)	2023/05/01	94	75 - 125	102	80 - 120	ND, RDL=0.050	ug/g	0.60	30	
8637058	Acid Extractable Uranium (U)	2023/05/01	95	75 - 125	96	80 - 120	ND, RDL=0.050	ug/g	2.5	30	
8637058	Acid Extractable Vanadium (V)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	1.9	30	
8637058	Acid Extractable Zinc (Zn)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 6 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summar	y table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory gui	delines.					

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609805 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7324 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	1	2023/04/29	2023/05/01	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609805 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7324 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 15:03:04

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Verita	s ID			VQP137				
Sampling Date	2			2023/04/20				
COC Number				n/a				
		UNITS	Criteria	BH206-SS1	RDL	QC Batch		
Metals					•			
Acid Extractab	le Antimony (Sb)	ug/g	7.5	0.42	0.20	8637058		
Acid Extractable Arsenic (As)		ug/g	18	7.8	1.0	8637058		
Acid Extractab	le Barium (Ba)	ug/g	390	100	0.50	8637058		
Acid Extractab	le Beryllium (Be)	ug/g	4	0.59	0.20	8637058		
Acid Extractab	le Boron (B)	ug/g	120	12	5.0	8637058		
Acid Extractab	le Cadmium (Cd)	ug/g	1.2	0.32	0.10	8637058		
Acid Extractab	le Chromium (Cr)	ug/g	160	16	1.0	8637058		
Acid Extractab	le Cobalt (Co)	ug/g	22	9.5	0.10	8637058		
Acid Extractab	le Copper (Cu)	ug/g	140	33	0.50	8637058		
Acid Extractab	le Lead (Pb)	ug/g	120	25	1.0	8637058		
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	1.1	0.50	8637058		
Acid Extractab	le Nickel (Ni)	ug/g	100	21	0.50	8637058		
Acid Extractab	le Selenium (Se)	ug/g	2.4	ND	0.50	8637058		
Acid Extractab	le Silver (Ag)	ug/g	20	ND	0.20	8637058		
Acid Extractab	le Thallium (Tl)	ug/g	1	0.11	0.050	8637058		
Acid Extractab	le Uranium (U)	ug/g	23	0.59	0.050	8637058		
Acid Extractab	le Vanadium (V)	ug/g	86	25	5.0	8637058		
Acid Extractab	le Zinc (Zn)	ug/g	340	130	5.0	8637058		
No Fill	No Exceedance							
Grey	Exceeds 1 criteria pol	icy/leve	1					
Black	Exceeds both criteria	/levels						
RDL = Reporta	ble Detection Limit							
QC Batch = Qu	ality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition								
Soil - Resident ND = Not Dete Limit.	ial/Parkland/Institution ected at a concentratior	al Prope equal c	erty Use - or greater	Coarse Textu than the indi	red Soi icated E	Detection		

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-554ESite Location: 590 ARGUS ROAD, OAKVILLESampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8637058	Acid Extractable Antimony (Sb)	2023/05/01	93	75 - 125	100	80 - 120	ND, RDL=0.20	ug/g	2.2	30	
8637058	Acid Extractable Arsenic (As)	2023/05/01	100	75 - 125	103	80 - 120	ND, RDL=1.0	ug/g	1.9	30	
8637058	Acid Extractable Barium (Ba)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	2.1	30	
8637058	Acid Extractable Beryllium (Be)	2023/05/01	97	75 - 125	98	80 - 120	ND, RDL=0.20	ug/g	1.1	30	
8637058	Acid Extractable Boron (B)	2023/05/01	88	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30	
8637058	Acid Extractable Cadmium (Cd)	2023/05/01	94	75 - 125	96	80 - 120	ND, RDL=0.10	ug/g	1.3	30	
8637058	Acid Extractable Chromium (Cr)	2023/05/01	NC	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	6.7	30	
8637058	Acid Extractable Cobalt (Co)	2023/05/01	96	75 - 125	99	80 - 120	ND, RDL=0.10	ug/g	3.9	30	
8637058	Acid Extractable Copper (Cu)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	0.71	30	
8637058	Acid Extractable Lead (Pb)	2023/05/01	NC	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	0.53	30	
8637058	Acid Extractable Molybdenum (Mo)	2023/05/01	99	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	2.0	30	
8637058	Acid Extractable Nickel (Ni)	2023/05/01	94	75 - 125	101	80 - 120	ND, RDL=0.50	ug/g	5.2	30	
8637058	Acid Extractable Selenium (Se)	2023/05/01	94	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	3.2	30	
8637058	Acid Extractable Silver (Ag)	2023/05/01	97	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	1.7	30	
8637058	Acid Extractable Thallium (TI)	2023/05/01	94	75 - 125	102	80 - 120	ND, RDL=0.050	ug/g	0.60	30	
8637058	Acid Extractable Uranium (U)	2023/05/01	95	75 - 125	96	80 - 120	ND, RDL=0.050	ug/g	2.5	30	
8637058	Acid Extractable Vanadium (V)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	1.9	30	
8637058	Acid Extractable Zinc (Zn)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	3.1	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should r	not be considered a compre	hensive listing or	statement of	conformance to
applicable regulatory gu	uidelines.					

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7610531 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7329 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/05/01	CAM SOP-00301	EPA 8270D m
Moisture	1	N/A	2023/04/27	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/04/29	2023/04/30	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7610531 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7329 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 18:53:03

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 PAHS (SOIL)

Bureau Verit	as ID			VQP168				
Sampling Da	te			2023/04/20	\Box			
Junhung Da	te			09:45				
COC Number	r			n/a				
		UNITS	Criteria	BH204-SS1	RDL	QC Batch		
Calculated Pa	arameters							
Methylnapht	halene, 2-(1-)	ug/g	-	ND	0.071	8630529		
Polyaromati	c Hydrocarbons							
Acenaphther	าย	ug/g	7.9	ND	0.050	8636718		
Acenaphthyle	ene	ug/g	0.15	ND	0.050	8636718		
Anthracene		ug/g	0.67	ND	0.050	8636718		
Benzo(a)anth	nracene	ug/g	0.5	0.076	0.050	8636718		
Benzo(a)pyre	ene	ug/g	0.3	0.083	0.050	8636718		
Benzo(b/j)flu	oranthene	ug/g	0.78	0.11	0.050	8636718		
Benzo(g,h,i)p	verylene	ug/g	6.6	0.070	0.050	8636718		
Benzo(k)fluo	ranthene	ug/g	0.78	ND	0.050	8636718		
Chrysene		ug/g	7	0.089	0.050	8636718		
Dibenzo(a,h)	anthracene	ug/g	0.1	ND	0.050	8636718		
Fluoranthene	e	ug/g	0.69	0.28	0.050	8636718		
Fluorene		ug/g	62	ND	0.050	8636718		
Indeno(1,2,3	-cd)pyrene	ug/g	0.38	0.058	0.050	8636718		
1-Methylnap	hthalene	ug/g	0.99	ND	0.050	8636718		
2-Methylnap	hthalene	ug/g	0.99	ND	0.050	8636718		
Naphthalene	1	ug/g	0.6	ND	0.050	8636718		
Phenanthren	ie	ug/g	6.2	0.13	0.050	8636718		
Pyrene		ug/g	78	0.22	0.050	8636718		
Surrogate Re	covery (%)							
D10-Anthrac	ene	%	-	113		8636718		
D14-Terphen	ıyl (FS)	%	-	106		8636718		
D8-Acenapht	thylene	%	-	96		8636718		
No Fill	No Exceedance	e						
Grey	Exceeds 1 crite	eria polio	cy/level					
Black	Exceeds both c	criteria/	levels					
RDL = Report	RDL = Reportable Detection Limit							
QC Batch = O	Quality Control Ba	atch						
Criteria: Onta	ario Reg. 153/04	(Amend	led April :	15, 2011)				
Table 2: Full I	Depth Generic Sit	te Cond	ition Star	idards in a Po	table G	round		
Water Condit	tion							
Soil - Resider	ntial/Parkland/Ins	stitution	ial Propei	rty Use - Coar	se Texti	ured Soil		
ND = Not Det	tected at a conce	ntratior	າ equal oi	r greater than	the inc	licated		
Detection Lin	nit.							

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP168						
Sompling Data		2023/04/20						
Sampling Date		09:45						
COC Number		n/a						
	UNITS	BH204-SS1	RDL	QC Batch				
Inorganics								
Moisture	%	11	1.0	8633649				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Results relate only to the items tested.									
Sample	Sample VQP168 [BH204-SS1] : PAH Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.								
III	Package 1	1.3°C							
Each te	Each temperature is the average of up to three cooler temperatures taken at receipt								

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/02 Report #: R7611310 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7331 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	1	2023/04/29	2023/05/01	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/02 Report #: R7611310 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7331 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 02 May 2023 12:33:01

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Verita	s ID			VQP178			
Sampling Date	2			2023/04/20			
COC Number				n/a			
		UNITS	Criteria	BH205-SS1	RDL	QC Batch	
Metals		I					
Acid Extractab	le Antimony (Sb)	ug/g	7.5	0.23	0.20	8637943	
Acid Extractab	le Arsenic (As)	ug/g	18	6.4	1.0	8637943	
Acid Extractab	le Barium (Ba)	ug/g	390	50	0.50	8637943	
Acid Extractab	le Beryllium (Be)	ug/g	4	0.90	0.20	8637943	
Acid Extractab	le Boron (B)	ug/g	120	14	5.0	8637943	
Acid Extractab	le Cadmium (Cd)	ug/g	1.2	ND	0.10	8637943	
Acid Extractab	le Chromium (Cr)	ug/g	160	24	1.0	8637943	
Acid Extractab	le Cobalt (Co)	ug/g	22	15	0.10	8637943	
Acid Extractab	le Copper (Cu)	ug/g	140	220	0.50	8637943	
Acid Extractab	le Lead (Pb)	ug/g	120	10	1.0	8637943	
Acid Extractab	le Molybdenum (Mo)	ug/g	6.9	0.94	0.50	8637943	
Acid Extractab	le Nickel (Ni)	ug/g	100	32	0.50	8637943	
Acid Extractab	le Selenium (Se)	ug/g	2.4	ND	0.50	8637943	
Acid Extractab	le Silver (Ag)	ug/g	20	ND	0.20	8637943	
Acid Extractab	le Thallium (Tl)	ug/g	1	0.12	0.050	8637943	
Acid Extractab	le Uranium (U)	ug/g	23	0.94	0.050	8637943	
Acid Extractab	le Vanadium (V)	ug/g	86	32	5.0	8637943	
Acid Extractab	le Zinc (Zn)	ug/g	340	77	5.0	8637943	
No Fill	No Exceedance						
Grey	Exceeds 1 criteria pol	icy/leve	1				
Black	Exceeds both criteria	/levels					
RDL = Reporta	ble Detection Limit						
QC Batch = Qu	ality Control Batch						
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition							
ND = Not Dete Limit.	cted at a concentration	equal c	or greater	than the indi	cated [Detection	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 4 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8637943	Acid Extractable Antimony (Sb)	2023/05/01	84	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	NC	30
8637943	Acid Extractable Arsenic (As)	2023/05/01	104	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	1.2	30
8637943	Acid Extractable Barium (Ba)	2023/05/01	NC	75 - 125	95	80 - 120	ND, RDL=0.50	ug/g	1.5	30
8637943	Acid Extractable Beryllium (Be)	2023/05/01	104	75 - 125	96	80 - 120	ND, RDL=0.20	ug/g	0.46	30
8637943	Acid Extractable Boron (B)	2023/05/01	99	75 - 125	94	80 - 120	ND, RDL=5.0	ug/g	5.9	30
8637943	Acid Extractable Cadmium (Cd)	2023/05/01	103	75 - 125	97	80 - 120	ND, RDL=0.10	ug/g	23	30
8637943	Acid Extractable Chromium (Cr)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=1.0	ug/g	3.0	30
8637943	Acid Extractable Cobalt (Co)	2023/05/01	108	75 - 125	97	80 - 120	ND, RDL=0.10	ug/g	0.58	30
8637943	Acid Extractable Copper (Cu)	2023/05/01	102	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	1.3	30
8637943	Acid Extractable Lead (Pb)	2023/05/01	106	75 - 125	97	80 - 120	ND, RDL=1.0	ug/g	7.0	30
8637943	Acid Extractable Molybdenum (Mo)	2023/05/01	106	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	NC	30
8637943	Acid Extractable Nickel (Ni)	2023/05/01	103	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	0.37	30
8637943	Acid Extractable Selenium (Se)	2023/05/01	106	75 - 125	100	80 - 120	ND, RDL=0.50	ug/g	NC	30
8637943	Acid Extractable Silver (Ag)	2023/05/01	104	75 - 125	99	80 - 120	ND, RDL=0.20	ug/g	NC	30
8637943	Acid Extractable Thallium (TI)	2023/05/01	104	75 - 125	98	80 - 120	ND, RDL=0.050	ug/g	8.2	30
8637943	Acid Extractable Uranium (U)	2023/05/01	103	75 - 125	95	80 - 120	ND, RDL=0.050	ug/g	8.0	30
8637943	Acid Extractable Vanadium (V)	2023/05/01	NC	75 - 125	97	80 - 120	ND, RDL=5.0	ug/g	1.2	30
8637943	Acid Extractable Zinc (Zn)	2023/05/01	NC	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g	1.1	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 6 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS	
BH205-SS1	VQP178-01	Acid Extractable Copper (Cu)	140	220	0.50	ug/g	
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to							
applicable regulatory guidelines.							

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/01 Report #: R7609648 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7335 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/05/01	CAM SOP-00301	EPA 8270D m
Moisture	1	N/A	2023/04/28	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/04/28	2023/04/29	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/01 Report #: R7609648 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7335 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 01 May 2023 13:51:33

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

0.1.20 133 1 Alis (3012)									
Bureau Verit	as ID			VQP195					
Sampling Dat	te			2023/04/20 09:30					
COC Number				n/a					
		UNITS	Criteria	BH203-SS1	RDL	QC Batch			
Calculated Parameters									
Methylnapht	halene, 2-(1-)	ug/g	-	0.028	0.0071	8629172			
Polyaromatio	c Hydrocarbons	•							
Acenaphther	ie	ug/g	7.9	ND	0.0050	8634280			
Acenaphthyle	ene	ug/g	0.15	ND	0.0050	8634280			
Anthracene		ug/g	0.67	ND	0.0050	8634280			
Benzo(a)anth	iracene	ug/g	0.5	ND	0.0050	8634280			
Benzo(a)pyre	ene	ug/g	0.3	ND	0.0050	8634280			
Benzo(b/j)fluoranthene		ug/g	0.78	ND	0.0050	8634280			
Benzo(g,h,i)p	erylene	ug/g	6.6	ND	0.0050	8634280			
Benzo(k)fluoranthene		ug/g	0.78	ND	0.0050	8634280			
Chrysene		ug/g	7	ND	0.0050	8634280			
Dibenzo(a,h)anthracene		ug/g	0.1	ND	0.0050	8634280			
Fluoranthene		ug/g	0.69	0.0080	0.0050	8634280			
Fluorene		ug/g	62	0.0062	0.0050	8634280			
Indeno(1,2,3	-cd)pyrene	ug/g	0.38	ND	0.0050	8634280			
1-Methylnap	hthalene	ug/g	0.99	0.028	0.0050	8634280			
2-Methylnap	hthalene	ug/g	0.99	ND	0.0050	8634280			
Naphthalene		ug/g	0.6	ND	0.0050	8634280			
Phenanthren	е	ug/g	6.2	0.013	0.0050	8634280			
Pyrene		ug/g	78	0.0076	0.0050	8634280			
Surrogate Re	covery (%)								
D10-Anthrac	ene	%	-	93		8634280			
D14-Terphen	iyl (FS)	%	-	92		8634280			
D8-Acenapht	hylene	%	-	92		8634280			
No Fill	No Exceedance	е							
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds both	criteria/	levels						
RDL = Report	able Detection L	imit							
OC Batch - Quality Control Batch									

O.REG 153 PAHS (SOIL)

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP195						
Sampling Date		2023/04/20						
Sampling Date		09:30						
COC Number		n/a						
	UNITS	BH203-SS1	RDL	QC Batch				
Inorganics								
Moisture	%	14	1.0	8634506				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/02 Report #: R7611378 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7338 Received: 2023/04/26, 13:57

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2023/05/02	CAM SOP-00301	EPA 8270D m
Moisture	1	N/A	2023/04/28	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2023/04/29	2023/04/29	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/02 Report #: R7611378 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3B7338 Received: 2023/04/26, 13:57

Encryption Key

Bureau Veritas 02 May 2023 13:05:00

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 PAHS (SOIL)

Bureau Verit	as ID			VQP203					
Sampling Da	te			2023/04/21					
COC Number	r			n/a					
		UNITS	Criteria	BH202-SS1	RDL	QC Batch			
Calculated P	arameters			·	<u> </u>				
Methylnapht	halene, 2-(1-)	ug/g	-	ND	0.071	8633339			
Polyaromati	c Hydrocarbons	1	1	1		1			
Acenaphther	าย	ug/g	7.9	ND	0.050	8636705			
Acenaphthyl	ene	ug/g	0.15	ND	0.050	8636705			
Anthracene		ug/g	0.67	ND	0.050	8636705			
Benzo(a)anth	nracene	ug/g	0.5	0.056	0.050	8636705			
Benzo(a)pyre	ene	ug/g	0.3	0.075	0.050	8636705			
Benzo(b/j)flu	ioranthene	ug/g	0.78	0.12	0.050	8636705			
Benzo(g,h,i)p	berylene	ug/g	6.6	0.086	0.050	8636705			
Benzo(k)fluo	ranthene	ug/g	0.78	ND	0.050	8636705			
Chrysene		ug/g	7	0.071	0.050	8636705			
Dibenzo(a,h)anthracene		ug/g	0.1	ND	0.050	8636705			
Fluoranthene		ug/g	0.69	0.16	0.050	8636705			
Fluorene		ug/g	62	ND 0.0		8636705			
Indeno(1,2,3-cd)pyrene		ug/g	0.38	0.063	0.050	8636705			
1-Methylnap	ug/g	0.99	ND 0.050		8636705				
2-Methylnaphthalene		ug/g	0.99	ND 0.05		8636705			
Naphthalene	2	ug/g	0.6	ND	0.050	8636705			
Phenanthren	ie	ug/g	6.2	ND	0.050	8636705			
Pyrene		ug/g	78	0.17	0.050	8636705			
Surrogate Re	ecovery (%)								
D10-Anthrac	ene	%	-	113		8636705			
D14-Terpher	nyl (FS)	%	-	97		8636705			
D8-Acenapht	thylene	%	-	99		8636705			
No Fill	No Exceedance	e							
Grey	Exceeds 1 crite	eria poli	cy/level						
Black	Exceeds both o	criteria/	levels						
RDL = Report	able Detection L	imit							
QC Batch = C	Quality Control Ba	atch							
Criteria: Onta	ario Reg. 153/04	(Amenc	led April :	15, 2011)					
Table 2: Full I	Depth Generic Si	te Cond	ition Star	ndards in a Po	table G	round			
Water Condi	tion								
Soil - Resider	ntial/Parkland/In	stitutior	al Propei	rty Use - Coar	se Texti	ured Soil			
ND = Not Det	tected at a conce	entration	n equal or	r greater than	the inc	licated			
Detection Lir	Detection Limit.								

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VQP203							
Sampling Date		2023/04/21							
COC Number		n/a							
	UNITS	BH202-SS1	RDL	QC Batch					
Inorganics									
Moisture	%	9.3	1.0	8634506					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	1.3°C								
Sample	Sample VQP203 [BH202-SS1] : PAH ANALYSIS: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.									
Results	Results relate only to the items tested.									

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8636705	D10-Anthracene	2023/04/29	103	50 - 130	103	50 - 130	104	%		
8636705	D14-Terphenyl (FS)	2023/04/29	101	50 - 130	102	50 - 130	96	%		
8636705	D8-Acenaphthylene	2023/04/29	102	50 - 130	102	50 - 130	98	%		
8634506	Moisture	2023/04/28							9.9	20
8636705	1-Methylnaphthalene	2023/04/29	115	50 - 130	111	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	2-Methylnaphthalene	2023/04/29	106	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Acenaphthene	2023/04/29	106	50 - 130	103	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Acenaphthylene	2023/04/29	111	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Anthracene	2023/04/29	111	50 - 130	107	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Benzo(a)anthracene	2023/04/29	107	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Benzo(a)pyrene	2023/04/29	103	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Benzo(b/j)fluoranthene	2023/04/29	104	50 - 130	108	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Benzo(g,h,i)perylene	2023/04/29	113	50 - 130	108	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Benzo(k)fluoranthene	2023/04/29	108	50 - 130	107	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Chrysene	2023/04/29	108	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Dibenzo(a,h)anthracene	2023/04/29	116	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Fluoranthene	2023/04/29	111	50 - 130	106	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Fluorene	2023/04/29	110	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Indeno(1,2,3-cd)pyrene	2023/04/29	112	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Naphthalene	2023/04/29	103	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Phenanthrene	2023/04/29	105	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8636705	Pyrene	2023/04/29	112	50 - 130	107	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
No Exceedances								
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory gui	delines.							

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/02 Report #: R7611826 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C0429 Received: 2023/04/28, 14:55

Sample Matrix: Soil

Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	3	N/A	2023/05/02	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	3	2023/05/01	2023/05/02	CAM SOP-00316	CCME CWS m
Moisture	3	N/A	2023/04/28	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 8

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/02 Report #: R7611826 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C0429 Received: 2023/04/28, 14:55

Encryption Key

Bureau Veritas 02 May 2023 16:54:06

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas II)			VRF356	VRF357	VRF358				
Sampling Date				2023/04/20	2023/04/20	2023/04/20				
Sumpling Dute				09:00	09:30	10:00				
COC Number				n/a	n/a	n/a				
		UNITS	Criteria	BH201-SS2	BH202-SS2	BH203-SS2	RDL	QC Batch		
BTEX & F1 Hydrocarbons										
Benzene		ug/g	0.21	ND	ND	ND	0.020	8639723		
Toluene		ug/g	2.3	ND	ND	ND	0.020	8639723		
Ethylbenzene		ug/g	1.1	ND	ND	ND	0.020	8639723		
o-Xylene		ug/g	-	ND	ND	ND	0.020	8639723		
p+m-Xylene		ug/g	-	ND	ND	ND	0.040	8639723		
Total Xylenes		ug/g	3.1	ND	ND	ND	0.040	8639723		
F1 (C6-C10)		ug/g	55	ND	ND	19	10	8639723		
F1 (C6-C10) - BTE	Х	ug/g	55	ND	ND	19	10	8639723		
F2-F4 Hydrocarbo	F2-F4 Hydrocarbons									
F2 (C10-C16 Hydr	ug/g	98	ND	ND	1400	10	8637726			
F3 (C16-C34 Hydr	ocarbons)	ug/g	300	ND	ND	1000	50	8637726		
F4 (C34-C50 Hydr	ocarbons)	ug/g	2800	ND	ND	ND	50	8637726		
Reached Baseline	at C50	ug/g	-	Yes	Yes	Yes		8637726		
Surrogate Recove	ery (%)	-								
1,4-Difluorobenze	ene	%	-	103	102	99		8639723		
4-Bromofluorobe	nzene	%	-	98	100	108		8639723		
D10-o-Xylene		%	-	95	96	98		8639723		
D4-1,2-Dichloroe	thane	%	-	112	110	104		8639723		
o-Terphenyl		%	-	98	96	98		8637726		
No Fill	No Exceed	lance								
Grey	Exceeds 1	criteria	policy/le	vel						
Black	Exceeds b	oth crite	eria/level	S						
RDL = Reportable	Detection L	imit								
QC Batch = Qualit	ty Control Ba	atch								
Criteria: Ontario I	Reg. 153/04	(Amend	led April	15, 2011)						
Table 2: Full Dept	h Generic Si	te Cond	ition Star	dards in a Pot	table Ground	Water Condit	ion			
Soil - Residential/	Parkland/In	stitution	nal Propei	rty Use - Coar	se Textured So	bil				
ND = Not Detecte	ed at a conce	entration	n equal o	r greater than	the indicated	Detection Li	nit.			

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VRF356	VRF357	VRF358					
Sampling Data		2023/04/20	2023/04/20	2023/04/20					
Sampling Date		09:00	09:30	10:00					
COC Number		n/a	n/a	n/a					
	UNITS	BH201-SS2	BH202-SS2	BH203-SS2	RDL	QC Batch			
Inorganics									
Moisture	%	13	20	14	1.0	8636355			
RDL = Reportable Detection Limit									
QC Batch = Quality Control Ba	itch								

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt										
[Package 1	2.7°C]							
F1/BTEX vial to e	F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.									
Results relate only to the items tested.										

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD,OAKVILLE Sampler Initials: MM

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8637726	o-Terphenyl	2023/05/01	97	60 - 130	95	60 - 130	98	%		
8639723	1,4-Difluorobenzene	2023/05/01	97	60 - 140	102	60 - 140	101	%		
8639723	4-Bromofluorobenzene	2023/05/01	111	60 - 140	102	60 - 140	99	%		
8639723	D10-o-Xylene	2023/05/01	93	60 - 140	95	60 - 140	94	%		
8639723	D4-1,2-Dichloroethane	2023/05/01	102	60 - 140	103	60 - 140	108	%		
8636355	Moisture	2023/04/28							0	20
8637726	F2 (C10-C16 Hydrocarbons)	2023/05/01	107	60 - 130	105	80 - 120	ND, RDL=10	ug/g	NC	30
8637726	F3 (C16-C34 Hydrocarbons)	2023/05/01	108	60 - 130	105	80 - 120	ND, RDL=50	ug/g	NC	30
8637726	F4 (C34-C50 Hydrocarbons)	2023/05/01	111	60 - 130	108	80 - 120	ND, RDL=50	ug/g	NC	30
8639723	Benzene	2023/05/02	NC	50 - 140	78	50 - 140	ND, RDL=0.020	ug/g	7.0	50
8639723	Ethylbenzene	2023/05/02	NC	50 - 140	91	50 - 140	ND, RDL=0.020	ug/g	5.7	50
8639723	F1 (C6-C10) - BTEX	2023/05/02					ND, RDL=10	ug/g	1.7	30
8639723	F1 (C6-C10)	2023/05/02	NC	60 - 140	88	80 - 120	ND, RDL=10	ug/g	5.0	30
8639723	o-Xylene	2023/05/02	NC	50 - 140	90	50 - 140	ND, RDL=0.020	ug/g	5.2	50
8639723	p+m-Xylene	2023/05/02	NC	50 - 140	85	50 - 140	ND, RDL=0.040	ug/g	6.5	50
8639723	Toluene	2023/05/02	NC	50 - 140	78	50 - 140	ND, RDL=0.020	ug/g	9.5	50
8639723	Total Xylenes	2023/05/02					ND, RDL=0.040	ug/g	6.2	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
BH203-SS2	VRF358-01	F2 (C10-C16 Hydrocarbons)	98	1400	10	ug/g		
BH203-SS2	VRF358-01	F3 (C16-C34 Hydrocarbons)	300	1000	50	ug/g		
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory guidelines.								

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: N/A

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/09 Report #: R7621223 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C5014 Received: 2023/05/03, 14:26

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2023/05/09	CAM SOP-00301	EPA 8270D m
Moisture	2	N/A	2023/05/04	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2023/05/05	2023/05/06	CAM SOP-00318	EPA 8270E

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: N/A

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/09 Report #: R7621223 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C5014 Received: 2023/05/03, 14:26

Encryption Key

Bureau Veritas 09 May 2023 11:48:19

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 PAHS (SOIL)

Bureau Veritas ID				VSD622	VSD623					
Sampling Date				2023/04/20	2023/04/20					
COC Number				N/A	N/A					
		UNITS	Criteria	BH202-SS2	BH204-SS2	RDL	QC Batch			
Calculated Para	meters									
Methylnaphtha	lene, 2-(1-)	ug/g	-	ND	ND	0.0071	8645348			
Polyaromatic H	ydrocarbons									
Acenaphthene		ug/g	7.9	ND	ND	0.0050	8649627			
Acenaphthylene	<u>e</u>	ug/g	0.15	ND	ND	0.0050	8649627			
Anthracene		ug/g	0.67	ND	ND	0.0050	8649627			
Benzo(a)anthra	cene	ug/g	0.5	ND	ND	0.0050	8649627			
Benzo(a)pyrene		ug/g	0.3	ND	ND	0.0050	8649627			
Benzo(b/j)fluora	anthene	ug/g	0.78	ND	ND	0.0050	8649627			
Benzo(g,h,i)per	ylene	ug/g	6.6	ND	ND	0.0050	8649627			
Benzo(k)fluorar	nthene	ug/g	0.78	ND	ND	0.0050	8649627			
Chrysene		ug/g	7	ND	ND	0.0050	8649627			
Dibenzo(a,h)an	thracene	ug/g	0.1	ND	ND	0.0050	8649627			
Fluoranthene		ug/g	0.69	ND	ND	0.0050	8649627			
Fluorene		ug/g	62	ND ND		0.0050	8649627			
Indeno(1,2,3-cd	l)pyrene	ug/g	0.38	ND	ND	0.0050	8649627			
1-Methylnaphtl	nalene	ug/g	0.99	ND	ND	0.0050	8649627			
2-Methylnaphtl	nalene	ug/g	0.99	ND	ND	0.0050	8649627			
Naphthalene		ug/g	0.6	ND	ND	0.0050	8649627			
Phenanthrene		ug/g	6.2	ND	ND	0.0050	8649627			
Pyrene		ug/g	78	ND	ND	0.0050	8649627			
Surrogate Reco	very (%)									
D10-Anthracen	е	%	-	88	88		8649627			
D14-Terphenyl	(FS)	%	-	92	91		8649627			
D8-Acenaphthy	lene	%	-	83	83		8649627			
No Fill No Exceedance										
Grey	Exceeds 1 criteria policy/level									
Black Exceeds both criteria/levels										
RDL = Reportab	le Detection L	imit								

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

 Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VSD622	VSD623		
Sampling Date		2023/04/20	2023/04/20		
COC Number		N/A	N/A		
	UNITS	BH202-SS2	BH204-SS2	RDL	QC Batch
Inorganics					
Moisture	%	16	18	1.0	8645648
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	itch				

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: CD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8649627	D10-Anthracene	2023/05/05	87	50 - 130	96	50 - 130	95	%		
8649627	D14-Terphenyl (FS)	2023/05/05	90	50 - 130	95	50 - 130	94	%		
8649627	D8-Acenaphthylene	2023/05/05	81	50 - 130	93	50 - 130	92	%		
8645648	Moisture	2023/05/04							3.3	20
8649627	1-Methylnaphthalene	2023/05/05	100	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	2-Methylnaphthalene	2023/05/05	92	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Acenaphthene	2023/05/05	92	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Acenaphthylene	2023/05/05	89	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Anthracene	2023/05/05	91	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Benzo(a)anthracene	2023/05/05	97	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Benzo(a)pyrene	2023/05/05	90	50 - 130	94	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Benzo(b/j)fluoranthene	2023/05/05	93	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Benzo(g,h,i)perylene	2023/05/05	98	50 - 130	103	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Benzo(k)fluoranthene	2023/05/05	91	50 - 130	97	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Chrysene	2023/05/05	94	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Dibenzo(a,h)anthracene	2023/05/05	93	50 - 130	95	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Fluoranthene	2023/05/05	99	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Fluorene	2023/05/05	92	50 - 130	96	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Indeno(1,2,3-cd)pyrene	2023/05/05	94	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Naphthalene	2023/05/05	88	50 - 130	93	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Phenanthrene	2023/05/05	95	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8649627	Pyrene	2023/05/05	98	50 - 130	100	50 - 130	ND, RDL=0.0050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summar	y table is for information purp	oses only and should	not be considered a compre	ehensive listing or	statement of	conformance to
applicable regulatory gui	delines.					

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/05/19 Report #: R7636612 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D9622 Received: 2023/05/16, 17:21

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2023/05/18	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2023/05/18	2023/05/18	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 7

Your Project #: BIGC-ENV-554E Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/05/19 Report #: R7636612 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3D9622 Received: 2023/05/16, 17:21

Encryption Key

Bureau Veritas 19 May 2023 16:10:56

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 7 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID				VVE520			VVE520		
Sampling Date				2023/05/16 09:45			2023/05/16 09:45		
COC Number				n/a			n/a		
		UNITS	Criteria	BH/MW112	RDL	QC Batch	BH/MW112 Lab-Dup	RDL	QC Batch
BTEX & F1 Hydrod	arbons								
Benzene		ug/L	5.0	ND	0.20	8671418	ND	0.20	8671418
Toluene		ug/L	24	ND	0.20	8671418	ND	0.20	8671418
Ethylbenzene		ug/L	2.4	ND	0.20	8671418	ND	0.20	8671418
o-Xylene		ug/L	-	ND	0.20	8671418	ND	0.20	8671418
p+m-Xylene		ug/L	-	ND	0.40	8671418	ND	0.40	8671418
Total Xylenes		ug/L	300	ND	0.40	8671418	ND	0.40	8671418
F1 (C6-C10)		ug/L	750	ND	25	8671418	ND	25	8671418
F1 (C6-C10) - BTE	<	ug/L	750	ND	25	8671418	ND	25	8671418
F2-F4 Hydrocarbo	ins								
F2 (C10-C16 Hydro	ocarbons)	ug/L	150	ND	100	8671684			
F3 (C16-C34 Hydro	ocarbons)	ug/L	500	ND	200	8671684			
F4 (C34-C50 Hydro	ocarbons)	ug/L	500	ND	200	8671684			
Reached Baseline	at C50	ug/L	-	Yes		8671684			
Surrogate Recove	ry (%)								
1,4-Difluorobenze	ne	%	-	95		8671418	94		8671418
4-Bromofluorober	nzene	%	-	99		8671418	99		8671418
D10-o-Xylene		%	-	94		8671418	92		8671418
D4-1,2-Dichloroet	hane	%	-	135 (1)		8671418	137 (2)		8671418
o-Terphenyl		%	-	96		8671684			
No Fill	No Excee	dance							
Grey	Exceeds 1 criteria policy/level								
Black	Exceeds b	oth crit	eria/leve	ls					
RDL = Reportable	Detection L	imit							

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) The recovery of the instrument surrogate 1,2 -dichloroethane-D4 is outside the acceptance limits. However this has no significant effect on the results since the recoveries of the other instrument surrogates are within acceptable limits.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 10.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.Client Project #: BIGC-ENV-554ESite Location: 590 ARGUS ROAD, OAKVILLESampler Initials: MM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8671418	1,4-Difluorobenzene	2023/05/18	93	70 - 130	98	70 - 130	98	%		
8671418	4-Bromofluorobenzene	2023/05/18	102	70 - 130	106	70 - 130	98	%		
8671418	D10-o-Xylene	2023/05/18	92	70 - 130	110	70 - 130	100	%		
8671418	D4-1,2-Dichloroethane	2023/05/18	130	70 - 130	126	70 - 130	128	%		
8671684	o-Terphenyl	2023/05/18	102	60 - 130	100	60 - 130	96	%		
8671418	Benzene	2023/05/18	105	50 - 140	102	50 - 140	ND, RDL=0.20	ug/L	NC	30
8671418	Ethylbenzene	2023/05/18	106	50 - 140	108	50 - 140	ND, RDL=0.20	ug/L	NC	30
8671418	F1 (C6-C10) - BTEX	2023/05/18					ND, RDL=25	ug/L	NC	30
8671418	F1 (C6-C10)	2023/05/18	105	60 - 140	103	60 - 140	ND, RDL=25	ug/L	NC	30
8671418	o-Xylene	2023/05/18	106	50 - 140	105	50 - 140	ND, RDL=0.20	ug/L	NC	30
8671418	p+m-Xylene	2023/05/18	100	50 - 140	102	50 - 140	ND, RDL=0.40	ug/L	NC	30
8671418	Toluene	2023/05/18	97	50 - 140	96	50 - 140	ND, RDL=0.20	ug/L	NC	30
8671418	Total Xylenes	2023/05/18					ND, RDL=0.40	ug/L	NC	30
8671684	F2 (C10-C16 Hydrocarbons)	2023/05/18	104	60 - 130	101	60 - 130	ND, RDL=100	ug/L	NC	30
8671684	F3 (C16-C34 Hydrocarbons)	2023/05/18	105	60 - 130	104	60 - 130	ND, RDL=200	ug/L	NC	30
8671684	F4 (C34-C50 Hydrocarbons)	2023/05/18	105	60 - 130	104	60 - 130	ND, RDL=200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should n	ot be considered a compre	hensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: 946149-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/08/03 Report #: R7749455 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M5407 Received: 2023/07/27, 13:23

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2023/08/02	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	2	N/A	2023/08/01		EPA 8260C m
Chloride by Automated Colourimetry	2	N/A	2023/08/01	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	2	N/A	2023/08/01	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	2	N/A	2023/08/02	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2023/07/30	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2023/07/31	2023/07/31	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2023/07/31	2023/08/01	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2023/07/31	2023/08/01	CAM SOP-00453	EPA 7470A m
Mercury	1	2023/08/01	2023/08/01	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2023/08/02	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2023/08/03	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	2	2023/07/31	2023/07/31	CAM SOP-00318	EPA 8270E
Volatile Organic Compounds and F1 PHCs	2	N/A	2023/08/01	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 15

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Your C.O.C. #: 946149-01-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/08/03 Report #: R7749455 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3M5407 Received: 2023/07/27. 13:23

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

03 Aug 2023 19:07:00

Bureau Veritas

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 15

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				WNE974		WNE978		
Sampling Date				2023/07/27		2023/07/27		
Sampling Date				11:30		11:45		
COC Number				946149-01-01		946149-01-01		
		UNITS	Criteria	BH / MW3	QC Batch	BH/ MW 108	RDL	QC Batch
Inorganics								
WAD Cyanide (Free)		ug/L	66	ND	8828250	ND	1	8828121
Dissolved Chloride (C	: -)	mg/L	790	1400	8821336	1500	10	8821336
Metals								
Chromium (VI)		ug/L	25	ND	8819706	ND	0.50	8819706
Mercury (Hg)		ug/L	0.29	ND	8824802	ND	0.10	8823486
Dissolved Antimony ((Sb)	ug/L	6.0	ND	8822704	ND	0.50	8822704
Dissolved Arsenic (As	5)	ug/L	25	ND	8822704	ND	1.0	8822704
Dissolved Barium (Ba	a)	ug/L	1000	140	8822704	57	2.0	8822704
Dissolved Beryllium (Be)	ug/L	4.0	ND	8822704	ND	0.40	8822704
Dissolved Boron (B)		ug/L	5000	400	8822704	1100	10	8822704
Dissolved Cadmium ((Cd)	ug/L	2.7	ND	8822704	ND	0.090	8822704
Dissolved Chromium	(Cr)	ug/L	50	ND	8822704	ND	5.0	8822704
Dissolved Cobalt (Co))	ug/L	3.8	ND	8822704	ND	0.50	8822704
Dissolved Copper (Cu	(r	ug/L	87	2.3	8822704	1.6	0.90	8822704
Dissolved Lead (Pb)		ug/L	10	ND	8822704	ND	0.50	8822704
Dissolved Molybdenu	um (Mo)	ug/L	70	3.2	8822704	7.0	0.50	8822704
Dissolved Nickel (Ni)		ug/L	100	ND	8822704	ND	1.0	8822704
Dissolved Selenium (S	Se)	ug/L	10	ND	8822704	ND	2.0	8822704
Dissolved Silver (Ag)		ug/L	1.5	ND	8822704	ND	0.090	8822704
Dissolved Sodium (Na	a)	ug/L	490000	750000	8822704	730000	500	8822704
Dissolved Thallium (TI)		ug/L	2.0	ND	8822704	ND	0.050	8822704
Dissolved Uranium (U)		ug/L	20	4.3	8822704	2.2	0.10	8822704
Dissolved Vanadium (V)		ug/L	6.2	ND	8822704	ND	0.50	8822704
Dissolved Zinc (Zn)		ug/L	1100	ND	8822704	ND	5.0	8822704
No Fill N	lo Exceeda	ance						
Grev	vreeds 1	critoria I	nolicy/lev	ام				

Exceeds 1 criteria policy/level

Black Exceeds both criteria/levels RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 PAHS (WATER)

Bureau Veritas ID			WNE972	WNE973			WNE973		
Sampling Date			2023/07/27	2023/07/27			2023/07/27		
			12:00	12:00			12:00		
COC Number			946149-01-01	946149-01-01			946149-01-01		
	UNITS	Criteria	BH/MW 203	DUP2030	RDL	QC Batch	DUP2030 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-) ug/L 3.2 ND ND 0.071 8817734									
Polyaromatic Hydrocar	bons								
Acenaphthene	ug/L	4.1	ND	ND	0.050	8823025	ND	0.050	8823025
Acenaphthylene	ug/L	1	ND	ND	0.050	8823025	ND	0.050	8823025
Anthracene	ug/L	2.4	ND	ND	0.050	8823025	ND	0.050	8823025
Benzo(a)anthracene	ug/L	1.0	ND	ND	0.050	8823025	ND	0.050	8823025
Benzo(a)pyrene	ug/L	0.01	ND	ND	0.0090	8823025	ND	0.0090	8823025
Benzo(b/j)fluoranthene	ug/L	0.1	ND	ND	0.050	8823025	ND	0.050	8823025
Benzo(g,h,i)perylene	ug/L	0.2	ND	ND	0.050	8823025	ND	0.050	8823025
Benzo(k)fluoranthene	ug/L	0.1	ND	ND	0.050	8823025	ND	0.050	8823025
Chrysene	ug/L	0.1	ND	ND	0.050	8823025	ND	0.050	8823025
Dibenzo(a,h)anthracene	e ug/L	0.2	ND	ND	0.050	8823025	ND	0.050	8823025
Fluoranthene	ug/L	0.41	ND	ND	0.050	8823025	ND	0.050	8823025
Fluorene	ug/L	120	ND	ND	0.050	8823025	ND	0.050	8823025
Indeno(1,2,3-cd)pyrene	ug/L	0.2	ND	ND	0.050	8823025	ND	0.050	8823025
1-Methylnaphthalene	ug/L	3.2	ND	ND	0.050	8823025	ND	0.050	8823025
2-Methylnaphthalene	ug/L	3.2	ND	ND	0.050	8823025	ND	0.050	8823025
Naphthalene	ug/L	11	ND	ND	0.050	8823025	ND	0.050	8823025
Phenanthrene	ug/L	1	ND	ND	0.030	8823025	ND	0.030	8823025
Pyrene	ug/L	4.1	ND	ND	0.050	8823025	ND	0.050	8823025
Surrogate Recovery (%)									
D10-Anthracene	%	-	114	109		8823025	112		8823025
D14-Terphenyl (FS)	%	-	107	110		8823025	110		8823025
D8-Acenaphthylene	%	-	97	92		8823025	96		8823025
No Fill	No Exceedan	ce							
Grey	Exceeds 1 cri	teria polio	cy/level						
		/							

Black Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Verit	as ID			WNE980				
Sampling Do	to			2023/07/27				
Sampling Date				13:00				
COC Number	r			946149-01-01				
		UNITS	Criteria	TRIP BLANK	RDL	QC Batch		
BTEX & F1 H	ydrocarbons							
Benzene		ug/L	5.0	ND	0.20	8820921		
Toluene		ug/L	24	ND	0.20	8820921		
Ethylbenzene	9	ug/L	2.4	ND	0.20	8820921		
o-Xylene		ug/L	-	ND	0.20	8820921		
p+m-Xylene		ug/L	-	ND	0.40	8820921		
Total Xylenes	5	ug/L	300	ND	0.40	8820921		
F1 (C6-C10)		ug/L	750	ND	25	8820921		
F1 (C6-C10) -	BTEX	ug/L	750	ND	25	8820921		
F2-F4 Hydrod	arbons							
F2 (C10-C16	Hydrocarbons)	ug/L	150	ND	100	8822511		
F3 (C16-C34	Hydrocarbons)	ug/L	500	ND	200	8822511		
F4 (C34-C50	Hydrocarbons)	ug/L	500	ND	200	8822511		
Reached Bas	eline at C50	ug/L	-	Yes		8822511		
Surrogate Re	covery (%)			-				
1,4-Difluorob	penzene	%	-	97		8820921		
4-Bromofluo	robenzene	%	-	108		8820921		
D10-o-Xylene	9	%	-	93		8820921		
D4-1,2-Dichlo	oroethane	%	-	88		8820921		
o-Terphenyl		%	-	96		8822511		
No Fill	No Exceedanc	e						
Grey	Exceeds 1 crite	eria poli	cy/level					
Black	Exceeds both	criteria/	levels					
RDL = Report	able Detection L	imit						
QC Batch = Quality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)								
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground								
Water Condition								
Potable Ground Water- All Types of Property Uses - Coarse Textured Soil								
ND = Not Detected at a concentration equal or greater than the indicated								
Detection Lir	nit.							

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

O.REG 153 VOCS BY HS & F1-F4 (WATER)

		-		r	r					
Bureau Veritas ID				WNE972	WNE973			WNE973		
Sampling Date				2023/07/27	2023/07/27			2023/07/27		
				12:00	12:00			12:00		
COC Number				946149-01-01	946149-01-01			946149-01-01		
		UNITS	Criteria	BH/MW 203	DUP2030	RDL	QC Batch	DUP2030 Lab-Dup	RDL	QC Batch
Calculated Parameters	5									
1,3-Dichloropropene (cis+trans)	ug/L	0.5	ND	ND	0.50	8818008			
Volatile Organics		•	•	•	•		•	•	•	
Acetone (2-Propanone)		ug/L	2700	ND	ND	10	8818788			
Benzene		ug/L	5.0	ND	ND	0.17	8818788			
Bromodichloromethane		ug/L	16.0	ND	ND	0.50	8818788			
Bromoform		ug/L	25.0	ND	ND	1.0	8818788			
Bromomethane		ug/L	0.89	ND	ND	0.50	8818788			
Carbon Tetrachloride		ug/L	0.79	ND	ND	0.20	8818788			
Chlorobenzene		ug/L	30	ND	ND	0.20	8818788			
Chloroform		ug/L	2.4	ND	ND	0.20	8818788			
Dibromochloromethane		ug/L	25.0	ND	ND	0.50	8818788			
1,2-Dichlorobenzene		ug/L	3.0	ND	ND	0.50	8818788			
1,3-Dichlorobenzene		ug/L	59	ND	ND	0.50	8818788			
1,4-Dichlorobenzene		ug/L	1.0	ND	ND	0.50	8818788			
Dichlorodifluoromethane (FREON 12)		ug/L	590	ND	ND	1.0	8818788			
1,1-Dichloroethane		ug/L	5	ND	ND	0.20	8818788			
1,2-Dichloroethane		ug/L	1.6	ND	ND	0.50	8818788			
1,1-Dichloroethylene		ug/L	1.6	ND	ND	0.20	8818788			
cis-1,2-Dichloroethylene		ug/L	1.6	ND	ND	0.50	8818788			
trans-1,2-Dichloroethylene		ug/L	1.6	ND	ND	0.50	8818788			
1,2-Dichloropropane		ug/L	5.0	ND	ND	0.20	8818788			
cis-1,3-Dichloropropene		ug/L	0.5	ND	ND	0.30	8818788			
trans-1,3-Dichloropropene		ug/L	0.5	ND	ND	0.40	8818788			
Ethylbenzene		ug/L	2.4	ND	ND	0.20	8818788			
Ethylene Dibromide		ug/L	0.2	ND	ND	0.20	8818788			
Hexane		ug/L	51	ND	ND	1.0	8818788			
No Fill	No Exceedance	edance								
Grey	Exceeds 1 criter	Exceeds 1 criteria policy/level								
Black	Exceeds both criteria/levels									
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				WNE972	WNE973			WNE973		
Sampling Date				2023/07/27	2023/07/27			2023/07/27		
				12:00	12:00			12:00		
COC Number				946149-01-01	946149-01-01			946149-01-01		
		UNITS	Criteria	BH/MW 203	DUP2030	RDL	QC Batch	DUP2030 Lab-Dup	RDL	QC Batch
Methylene Chloride(Di	chloromethane)	ug/L	50	ND	ND	2.0	8818788			
Methyl Ethyl Ketone (2	-Butanone)	ug/L	1800	ND	ND	10	8818788			
Methyl Isobutyl Ketone	5	ug/L	640	ND	ND	5.0	8818788			
Methyl t-butyl ether (N	/ITBE)	ug/L	15	ND	ND	0.50	8818788			
Styrene		ug/L	5.4	ND	ND	0.50	8818788			
1,1,1,2-Tetrachloroeth	ane	ug/L	1.1	ND	ND	0.50	8818788			
1,1,2,2-Tetrachloroeth	ane	ug/L	1.0	ND	ND	0.50	8818788			
Tetrachloroethylene		ug/L	1.6	ND	ND	0.20	8818788			
Toluene		ug/L	24	ND	ND	0.20	8818788			
1,1,1-Trichloroethane		ug/L	200	ND	ND	0.20	8818788			
1,1,2-Trichloroethane		ug/L	4.7	ND	ND	0.50	8818788			
Trichloroethylene		ug/L	1.6	ND	ND	0.20	8818788			
Trichlorofluoromethane (FREON 11)		ug/L	150	ND	ND	0.50	8818788			
Vinyl Chloride		ug/L	0.5	ND	ND	0.20	8818788			
p+m-Xylene		ug/L	-	ND	ND	0.20	8818788			
o-Xylene		ug/L	-	ND	ND	0.20	8818788			
Total Xylenes		ug/L	300	ND	ND	0.20	8818788			
F1 (C6-C10)		ug/L	750	ND	ND	25	8818788			
F1 (C6-C10) - BTEX		ug/L	750	ND	ND	25	8818788			
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)		ug/L	150	ND	ND	100	8823020	ND	100	8823020
F3 (C16-C34 Hydrocarbons)		ug/L	500	ND	ND	200	8823020	ND	200	8823020
F4 (C34-C50 Hydrocarbons)		ug/L	500	ND	ND	200	8823020	ND	200	8823020
Reached Baseline at C50		ug/L	-	Yes	Yes		8823020	Yes		8823020
Surrogate Recovery (%	5)									
o-Terphenyl		%	-	92	94		8823020	94		8823020
4-Bromofluorobenzene	5	%	-	90	91		8818788			
No Fill	No Exceedance									
Grey	Exceeds 1 criteria policy/level									
Black	Exceeds both criteria/levels									
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate										
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Coarse Textured Soil										
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.										

Page 7 of 15

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				WNE972	WNE973			WNE973		
Sampling Data				2023/07/27	2023/07/27			2023/07/27		
Sampling Date				12:00	12:00			12:00		
COC Number				946149-01-01	946149-01-01			946149-01-01		
		LINUTC	Cuitouio	DU /MAN 202	DU02020			DUP2030		OC Datab
		UNITS	Criteria	BH/IVIW 203	D0P2030	KDL	QC Batch	Lab-Dup	RDL	QC Batch
D4-1,2-Dichloroethane % - 93 94 8818788										
D8-Toluene % - 96 98 8818788										
No Fill	No Exceedance									
Grey	Exceeds 1 criter	ia policy	/level							
Black	Exceeds both cr	iteria/le	evels							
RDL = Reportable Dete	ection Limit									
QC Batch = Quality Co	ntrol Batch									
Lab-Dup = Laboratory Initiated Duplicate										
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 2: Full Depth Ge	Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition									
Potable Ground Wate	r- All Types of Prop	erty Use	es - Coars	e Textured Soil						

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 24.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8818788	4-Bromofluorobenzene	2023/08/01	96	70 - 130	98	70 - 130	93	%		
8818788	D4-1,2-Dichloroethane	2023/08/01	93	70 - 130	88	70 - 130	88	%		
8818788	D8-Toluene	2023/08/01	103	70 - 130	103	70 - 130	99	%		
8820921	1,4-Difluorobenzene	2023/07/30	95	70 - 130	96	70 - 130	97	%		
8820921	4-Bromofluorobenzene	2023/07/30	104	70 - 130	104	70 - 130	101	%		
8820921	D10-o-Xylene	2023/07/30	98	70 - 130	94	70 - 130	93	%		
8820921	D4-1,2-Dichloroethane	2023/07/30	89	70 - 130	88	70 - 130	90	%		
8822511	o-Terphenyl	2023/08/01	100	60 - 130	99	60 - 130	97	%		
8823020	o-Terphenyl	2023/08/01	97	60 - 130	96	60 - 130	91	%		
8823025	D10-Anthracene	2023/07/31	108	50 - 130	108	50 - 130	110	%		
8823025	D14-Terphenyl (FS)	2023/07/31	111	50 - 130	111	50 - 130	112	%		
8823025	D8-Acenaphthylene	2023/07/31	96	50 - 130	98	50 - 130	87	%		
8818788	1,1,1,2-Tetrachloroethane	2023/08/01	95	70 - 130	92	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,1,1-Trichloroethane	2023/08/01	93	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	1,1,2,2-Tetrachloroethane	2023/08/01	97	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,1,2-Trichloroethane	2023/08/01	98	70 - 130	92	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,1-Dichloroethane	2023/08/01	102	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	1,1-Dichloroethylene	2023/08/01	103	70 - 130	102	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	1,2-Dichlorobenzene	2023/08/01	95	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,2-Dichloroethane	2023/08/01	90	70 - 130	85	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,2-Dichloropropane	2023/08/01	104	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	1,3-Dichlorobenzene	2023/08/01	90	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	1,4-Dichlorobenzene	2023/08/01	103	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Acetone (2-Propanone)	2023/08/01	108	60 - 140	99	60 - 140	ND, RDL=10	ug/L	NC	30
8818788	Benzene	2023/08/01	99	70 - 130	97	70 - 130	ND, RDL=0.17	ug/L	NC	30
8818788	Bromodichloromethane	2023/08/01	95	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Bromoform	2023/08/01	95	70 - 130	90	70 - 130	ND, RDL=1.0	ug/L	NC	30
8818788	Bromomethane	2023/08/01	104	60 - 140	100	60 - 140	ND, RDL=0.50	ug/L	NC	30
8818788	Carbon Tetrachloride	2023/08/01	88	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Chlorobenzene	2023/08/01	100	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Chloroform	2023/08/01	95	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30

Page 10 of 15

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8818788	cis-1,2-Dichloroethylene	2023/08/01	100	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	cis-1,3-Dichloropropene	2023/08/01	101	70 - 130	99	70 - 130	ND, RDL=0.30	ug/L	NC	30
8818788	Dibromochloromethane	2023/08/01	93	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Dichlorodifluoromethane (FREON 12)	2023/08/01	117	60 - 140	114	60 - 140	ND, RDL=1.0	ug/L	NC	30
8818788	Ethylbenzene	2023/08/01	89	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Ethylene Dibromide	2023/08/01	98	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	F1 (C6-C10) - BTEX	2023/08/01					ND, RDL=25	ug/L	NC	30
8818788	F1 (C6-C10)	2023/08/01	98	60 - 140	100	60 - 140	ND, RDL=25	ug/L	NC	30
8818788	Hexane	2023/08/01	116	70 - 130	115	70 - 130	ND, RDL=1.0	ug/L	NC	30
8818788	Methyl Ethyl Ketone (2-Butanone)	2023/08/01	115	60 - 140	107	60 - 140	ND, RDL=10	ug/L	NC	30
8818788	Methyl Isobutyl Ketone	2023/08/01	106	70 - 130	100	70 - 130	ND, RDL=5.0	ug/L	NC	30
8818788	Methyl t-butyl ether (MTBE)	2023/08/01	98	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Methylene Chloride(Dichloromethane)	2023/08/01	106	70 - 130	101	70 - 130	ND, RDL=2.0	ug/L	NC	30
8818788	o-Xylene	2023/08/01	89	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	p+m-Xylene	2023/08/01	89	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Styrene	2023/08/01	99	70 - 130	100	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Tetrachloroethylene	2023/08/01	86	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Toluene	2023/08/01	101	70 - 130	100	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Total Xylenes	2023/08/01					ND, RDL=0.20	ug/L	NC	30
8818788	trans-1,2-Dichloroethylene	2023/08/01	94	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	trans-1,3-Dichloropropene	2023/08/01	105	70 - 130	102	70 - 130	ND, RDL=0.40	ug/L	NC	30
8818788	Trichloroethylene	2023/08/01	99	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30
8818788	Trichlorofluoromethane (FREON 11)	2023/08/01	91	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	NC	30
8818788	Vinyl Chloride	2023/08/01	123	70 - 130	120	70 - 130	ND, RDL=0.20	ug/L	NC	30
8819706	Chromium (VI)	2023/07/31	90	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	0.48	20
8820921	Benzene	2023/07/30	89	50 - 140	86	50 - 140	ND, RDL=0.20	ug/L	NC	30
8820921	Ethylbenzene	2023/07/30	99	50 - 140	97	50 - 140	ND, RDL=0.20	ug/L	NC	30
8820921	F1 (C6-C10) - BTEX	2023/07/30					ND, RDL=25	ug/L	NC	30
8820921	F1 (C6-C10)	2023/07/30	103	60 - 140	98	60 - 140	ND, RDL=25	ug/L	NC	30
8820921	o-Xylene	2023/07/30	93	50 - 140	91	50 - 140	ND, RDL=0.20	ug/L	NC	30
8820921	p+m-Xylene	2023/07/30	97	50 - 140	98	50 - 140	ND, RDL=0.40	ug/L	NC	30

Page 11 of 15

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8820921	Toluene	2023/07/30	86	50 - 140	83	50 - 140	ND, RDL=0.20	ug/L	NC	30
8820921	Total Xylenes	2023/07/30					ND, RDL=0.40	ug/L	NC	30
8821336	Dissolved Chloride (Cl-)	2023/08/01	98	80 - 120	94	80 - 120	ND, RDL=1.0	mg/L	NC	20
8822511	F2 (C10-C16 Hydrocarbons)	2023/07/31	108	60 - 130	104	60 - 130	ND, RDL=100	ug/L	NC	30
8822511	F3 (C16-C34 Hydrocarbons)	2023/07/31	105	60 - 130	105	60 - 130	ND, RDL=200	ug/L	NC	30
8822511	F4 (C34-C50 Hydrocarbons)	2023/07/31	105	60 - 130	104	60 - 130	ND, RDL=200	ug/L	NC	30
8822704	Dissolved Antimony (Sb)	2023/08/02	108	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	NC	20
8822704	Dissolved Arsenic (As)	2023/08/02	103	80 - 120	101	80 - 120	ND, RDL=1.0	ug/L	1.4	20
8822704	Dissolved Barium (Ba)	2023/08/02	105	80 - 120	103	80 - 120	ND, RDL=2.0	ug/L	0.95	20
8822704	Dissolved Beryllium (Be)	2023/08/02	101	80 - 120	98	80 - 120	ND, RDL=0.40	ug/L	NC	20
8822704	Dissolved Boron (B)	2023/08/02	98	80 - 120	94	80 - 120	ND, RDL=10	ug/L	3.2	20
8822704	Dissolved Cadmium (Cd)	2023/08/02	104	80 - 120	100	80 - 120	ND, RDL=0.090	ug/L	NC	20
8822704	Dissolved Chromium (Cr)	2023/08/02	104	80 - 120	101	80 - 120	ND, RDL=5.0	ug/L	NC	20
8822704	Dissolved Cobalt (Co)	2023/08/02	99	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	1.3	20
8822704	Dissolved Copper (Cu)	2023/08/02	105	80 - 120	99	80 - 120	ND, RDL=0.90	ug/L	NC	20
8822704	Dissolved Lead (Pb)	2023/08/02	98	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20
8822704	Dissolved Molybdenum (Mo)	2023/08/02	110	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	1.1	20
8822704	Dissolved Nickel (Ni)	2023/08/02	97	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	10	20
8822704	Dissolved Selenium (Se)	2023/08/02	104	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20
8822704	Dissolved Silver (Ag)	2023/08/02	52 (1)	80 - 120	100	80 - 120	ND, RDL=0.090	ug/L	NC	20
8822704	Dissolved Sodium (Na)	2023/08/02	NC	80 - 120	101	80 - 120	ND, RDL=100	ug/L	0.40	20
8822704	Dissolved Thallium (TI)	2023/08/02	98	80 - 120	99	80 - 120	ND, RDL=0.050	ug/L	NC	20
8822704	Dissolved Uranium (U)	2023/08/02	101	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	1.7	20
8822704	Dissolved Vanadium (V)	2023/08/02	103	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20
8822704	Dissolved Zinc (Zn)	2023/08/02	100	80 - 120	101	80 - 120	ND, RDL=5.0	ug/L	NC	20
8823020	F2 (C10-C16 Hydrocarbons)	2023/08/01	99	60 - 130	102	60 - 130	ND, RDL=100	ug/L	NC	30
8823020	F3 (C16-C34 Hydrocarbons)	2023/08/01	93	60 - 130	96	60 - 130	ND, RDL=200	ug/L	NC	30
8823020	F4 (C34-C50 Hydrocarbons)	2023/08/01	91	60 - 130	92	60 - 130	ND, RDL=200	ug/L	NC	30
8823025	1-Methylnaphthalene	2023/07/31	101	50 - 130	105	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	2-Methylnaphthalene	2023/07/31	99	50 - 130	104	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Acenaphthene	2023/07/31	101	50 - 130	102	50 - 130	ND, RDL=0.050	ug/L	NC	30

Page 12 of 15

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8823025	Acenaphthylene	2023/07/31	107	50 - 130	106	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Anthracene	2023/07/31	111	50 - 130	110	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Benzo(a)anthracene	2023/07/31	104	50 - 130	106	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Benzo(a)pyrene	2023/07/31	96	50 - 130	101	50 - 130	ND, RDL=0.0090	ug/L	NC	30
8823025	Benzo(b/j)fluoranthene	2023/07/31	93	50 - 130	98	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Benzo(g,h,i)perylene	2023/07/31	91	50 - 130	97	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Benzo(k)fluoranthene	2023/07/31	98	50 - 130	104	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Chrysene	2023/07/31	93	50 - 130	98	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Dibenzo(a,h)anthracene	2023/07/31	97	50 - 130	103	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Fluoranthene	2023/07/31	99	50 - 130	98	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Fluorene	2023/07/31	102	50 - 130	102	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Indeno(1,2,3-cd)pyrene	2023/07/31	93	50 - 130	98	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Naphthalene	2023/07/31	102	50 - 130	106	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823025	Phenanthrene	2023/07/31	103	50 - 130	103	50 - 130	ND, RDL=0.030	ug/L	NC	30
8823025	Pyrene	2023/07/31	97	50 - 130	97	50 - 130	ND, RDL=0.050	ug/L	NC	30
8823486	Mercury (Hg)	2023/08/01	88	75 - 125	91	80 - 120	ND, RDL=0.10	ug/L	NC	20
8824802	Mercury (Hg)	2023/08/01	102	75 - 125	96	80 - 120	ND, RDL=0.10	ug/L	NC	20
8828121	WAD Cyanide (Free)	2023/08/02	106	80 - 120	102	80 - 120	ND,RDL=1	ug/L	3.3	20
8828250	WAD Cyanide (Free)	2023/08/02	92	80 - 120	101	80 - 120	ND,RDL=1	ug/L	4.8	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike exceeds acceptance limits, probable matrix interference

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD, OAKVILLE Sampler Initials: ST

Exceedance Summary Table – Reg153/04 T2-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH / MW3	WNE974-01	Dissolved Chloride (Cl-)	790	1400	10	mg/L
BH / MW3	WNE974-02	Dissolved Sodium (Na)	490000	750000	500	ug/L
BH/ MW 108	WNE978-01	Dissolved Chloride (Cl-)	790	1500	10	mg/L
BH/ MW 108	WNE978-02	Dissolved Sodium (Na)	490000	730000	500	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: N/A

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/09/19 Report #: R7820593 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C352962 Received: 2023/02/23, 15:07

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	3	N/A	2023/02/25		EPA 8260C m
Moisture	3	N/A	2023/02/23	CAM SOP-00445	Carter 2nd ed 51.2 m
Volatile Organic Compounds in Soil	3	N/A	2023/02/24	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: N/A

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/09/19 Report #: R7820593 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C352962 Received: 2023/02/23, 15:07

Encryption Key

Neroshun Govinthathas Project Manager Assistant 19 Sep 2023 12:43:36

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 10 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VDC590	VDC591	VDC592		
Sampling Date		2023/02/17	2023/02/10	2023/02/21		
COC Number		N/A	N/A	N/A		
	UNITS	BH104-SS2	BH110-SS3	BH113-SS2	RDL	QC Batch
Inorganics						
Moisture	%	16	8.8	17	1.0	8519039
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit itch					

VOLATILE ORGANICS BY GC/MS (SOIL)

Bureau Veritas ID		VDC590	VDC591	VDC592		
Sampling Date		2023/02/17	2023/02/10	2023/02/21		
COC Number		N/A	N/A	N/A		
	UNITS	BH104-SS2	BH110-SS3	BH113-SS2	RDL	QC Batch
Calculated Parameters	· · ·					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	8518225
Volatile Organics						
Acetone (2-Propanone)	ug/g	<0.49	<0.49	<0.49	0.49	8520341
Benzene	ug/g	<0.0060	<0.0060	<0.0060	0.0060	8520341
Bromodichloromethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Bromoform	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Bromomethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Carbon Tetrachloride	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Chlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Chloroform	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Dibromochloromethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,1-Dichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,2-Dichloroethane	ug/g	<0.049	<0.049	<0.049	0.049	8520341
1,1-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,2-Dichloropropane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	8520341
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	0.010	8520341
Ethylene Dibromide	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Hexane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	<0.049	0.049	8520341
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	<0.40	0.40	8520341
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	<0.40	0.40	8520341
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Styrene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

VOLATILE ORGANICS BY GC/MS (SOIL)

Bureau Veritas ID		VDC590	VDC591	VDC592		
Sampling Date		2023/02/17	2023/02/10	2023/02/21		
COC Number		N/A	N/A	N/A		
	UNITS	BH104-SS2	BH110-SS3	BH113-SS2	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Tetrachloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	8520341
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	0.010	8520341
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	<0.040	0.040	8520341
Vinyl Chloride	ug/g	<0.019	<0.019	<0.019	0.019	8520341
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	8520341
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	8520341
Total Xylenes	ug/g	<0.020	<0.020	<0.020	0.020	8520341
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	98	98	99		8520341
D10-o-Xylene	%	101	98	94		8520341
D4-1,2-Dichloroethane	%	99	97	101		8520341
D8-Toluene	%	97	99	98		8520341
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

GENERAL COMMENTS

Each te	mperature is the	average of up to t	hree cooler temperatures taken at receipt							
	Package 1	4.3°C								
Revised	Report [2023/09/	/19]: Updated crit	eria to Table 2 as per client request.							
Revised	report[2023/02/2	28] - Project numb	per updated as per client request.							
Sample day spe	Sample VDC591 [BH110-SS3] : VOC Analysis: The sample extract was transferred from the soil before 14 days. Analysis was completed within the 40 day specified hold time.									
Result	relate only to the	e items tested.								

QUALITY ASSURANCE REPORT

Brownfield Investment Group Inc Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8520341	4-Bromofluorobenzene	2023/02/24	100	60 - 140	100	60 - 140	99	%		
8520341	D10-o-Xylene	2023/02/24	98	60 - 130	98	60 - 130	98	%		
8520341	D4-1,2-Dichloroethane	2023/02/24	99	60 - 140	102	60 - 140	99	%		
8520341	D8-Toluene	2023/02/24	101	60 - 140	99	60 - 140	99	%		
8519039	Moisture	2023/02/23							2.8	20
8520341	1,1,1,2-Tetrachloroethane	2023/02/24	92	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8520341	1,1,1-Trichloroethane	2023/02/24	96	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8520341	1,1,2,2-Tetrachloroethane	2023/02/24	86	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8520341	1,1,2-Trichloroethane	2023/02/24	91	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8520341	1,1-Dichloroethane	2023/02/24	88	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
8520341	1,1-Dichloroethylene	2023/02/24	95	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8520341	1,2-Dichlorobenzene	2023/02/24	91	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8520341	1,2-Dichloroethane	2023/02/24	88	60 - 140	92	60 - 130	<0.049	ug/g	NC	50
8520341	1,2-Dichloropropane	2023/02/24	90	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8520341	1,3-Dichlorobenzene	2023/02/24	92	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8520341	1,4-Dichlorobenzene	2023/02/24	104	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8520341	Acetone (2-Propanone)	2023/02/24	106	60 - 140	111	60 - 140	<0.49	ug/g	NC	50
8520341	Benzene	2023/02/24	84	60 - 140	86	60 - 130	<0.0060	ug/g	NC	50
8520341	Bromodichloromethane	2023/02/24	91	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8520341	Bromoform	2023/02/24	88	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8520341	Bromomethane	2023/02/24	92	60 - 140	94	60 - 140	<0.040	ug/g	NC	50
8520341	Carbon Tetrachloride	2023/02/24	92	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8520341	Chlorobenzene	2023/02/24	92	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8520341	Chloroform	2023/02/24	90	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8520341	cis-1,2-Dichloroethylene	2023/02/24	92	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8520341	cis-1,3-Dichloropropene	2023/02/24	89	60 - 140	93	60 - 130	<0.030	ug/g	NC	50
8520341	Dibromochloromethane	2023/02/24	87	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8520341	Dichlorodifluoromethane (FREON 12)	2023/02/24	116	60 - 140	115	60 - 140	<0.040	ug/g	NC	50
8520341	Ethylbenzene	2023/02/24	89	60 - 140	87	60 - 130	<0.010	ug/g	NC	50
8520341	Ethylene Dibromide	2023/02/24	86	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
8520341	Hexane	2023/02/24	93	60 - 140	92	60 - 130	<0.040	ug/g	NC	50

Page 7 of 10

Brownfield Investment Group Inc Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8520341	Methyl Ethyl Ketone (2-Butanone)	2023/02/24	109	60 - 140	117	60 - 140	<0.40	ug/g	NC	50
8520341	Methyl Isobutyl Ketone	2023/02/24	93	60 - 140	101	60 - 130	<0.40	ug/g	NC	50
8520341	Methyl t-butyl ether (MTBE)	2023/02/24	87	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
8520341	Methylene Chloride(Dichloromethane)	2023/02/24	90	60 - 140	93	60 - 130	<0.049	ug/g	NC	50
8520341	o-Xylene	2023/02/24	88	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
8520341	p+m-Xylene	2023/02/24	93	60 - 140	92	60 - 130	<0.020	ug/g	NC	50
8520341	Styrene	2023/02/24	97	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8520341	Tetrachloroethylene	2023/02/24	88	60 - 140	86	60 - 130	<0.040	ug/g	NC	50
8520341	Toluene	2023/02/24	90	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
8520341	Total Xylenes	2023/02/24					<0.020	ug/g	NC	50
8520341	trans-1,2-Dichloroethylene	2023/02/24	95	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8520341	trans-1,3-Dichloropropene	2023/02/24	101	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8520341	Trichloroethylene	2023/02/24	97	60 - 140	97	60 - 130	<0.010	ug/g	NC	50
8520341	Trichlorofluoromethane (FREON 11)	2023/02/24	95	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8520341	Vinyl Chloride	2023/02/24	89	60 - 140	89	60 - 130	<0.019	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Exceedance Summary Table – Reg153/04 T2-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should no	ot be considered a comprel	nensive listing or	statement of	conformance to
applicable regulatory gu	uidelines.					

Your Project #: BIG-ENV-542D Site Location: 590 ARGUS ROAD Your C.O.C. #: N/A

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/02/28 Report #: R7527007 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C352983 Received: 2023/02/23, 15:07

Sample Matrix: Soil # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	6	N/A	2023/02/28	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	4	2023/02/27	2023/02/28	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2023/02/24	2023/02/24	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	2	2023/02/27	2023/02/27	CAM SOP-00457	OMOE E3015 m
Conductivity	4	2023/02/27	2023/02/27	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	4	2023/02/27	2023/02/27	CAM SOP-00436	EPA 3060/7199 m
Acid Extractable Metals by ICPMS	2	2023/02/27	2023/02/28	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	10	2023/02/28	2023/02/28	CAM SOP-00447	EPA 6020B m
Moisture	2	N/A	2023/02/23	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	3	N/A	2023/02/25	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2023/02/27	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	6	2023/02/26	2023/02/27	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	4	2023/02/27	2023/02/27	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	4	N/A	2023/02/28	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 15

Your Project #: BIG-ENV-542D Site Location: 590 ARGUS ROAD Your C.O.C. #: N/A

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/02/28 Report #: R7527007 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C352983 Received: 2023/02/23, 15:07

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID				VDC680	VDC681	VDC682	VDC683	VDC684	VDC685		
Sampling Date				2023/02/17	2023/02/17	2023/02/17	2023/02/17	2023/02/17	2023/02/17		
COC Number				N/A	N/A	N/A	N/A	N/A	N/A		
		UNITS	Criteria	BH101-SS1	BH102-SS1	BH102-SS2	BH103-SS1	BH104-SS1	BH104-SS2	RDL	QC Batch
Metals											
Acid Extractable Antimony	(Sb)	ug/g	7.5	0.36	0.41	0.31	0.30	0.24	0.23	0.20	8525647
Acid Extractable Arsenic (As	s)	ug/g	18	3.6	4.3	5.2	4.6	3.9	2.6	1.0	8525647
Acid Extractable Barium (Ba	a)	ug/g	390	59	97	83	57	76	64	0.50	8525647
Acid Extractable Beryllium ((Be)	ug/g	4	0.82	1.2	0.75	0.52	0.65	0.50	0.20	8525647
Acid Extractable Boron (B)		ug/g	120	9.7	15	8.0	7.2	8.2	<5.0	5.0	8525647
Acid Extractable Cadmium ((Cd)	ug/g	1.2	<0.10	<0.10	<0.10	0.20	<0.10	<0.10	0.10	8525647
Acid Extractable Chromium	ı (Cr)	ug/g	160	20	28	19	14	17	14	1.0	8525647
Acid Extractable Cobalt (Co)	ug/g	22	11	15	9.4	6.0	8.9	5.1	0.10	8525647
Acid Extractable Copper (Cu	u)	ug/g	140	360	39	24	40	130	37	0.50	8525647
Acid Extractable Lead (Pb)		ug/g	120	12	10	9.4	29	10	10	1.0	8525647
Acid Extractable Molybden	um (Mo)	ug/g	6.9	1.3	2.0	1.7	0.86	0.75	0.52	0.50	8525647
Acid Extractable Nickel (Ni)		ug/g	100	24	36	19	13	19	11	0.50	8525647
Acid Extractable Selenium ((Se)	ug/g	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	8525647
Acid Extractable Silver (Ag)		ug/g	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	8525647
Acid Extractable Thallium (1	TI)	ug/g	1	0.11	0.12	0.099	0.091	0.11	0.074	0.050	8525647
Acid Extractable Uranium (I	U)	ug/g	23	0.88	1.3	1.6	0.87	0.48	0.42	0.050	8525647
Acid Extractable Vanadium	(V)	ug/g	86	29	42	34	23	29	25	5.0	8525647
Acid Extractable Zinc (Zn)		ug/g	340	59	68	42	65	43	28	5.0	8525647
No Fill	No Exceed	lance									
Grey	Exceeds 1	criteria	policy/le	vel							
Black	oth crite	eria/level	S								
RDL = Reportable Detection	n Limit										
QC Batch = Quality Control Batch											
a			45 2044	`							

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas II	D			VDC690	VDC691		
Sampling Date				2023/02/17	2023/02/17		
COC Number				N/A	N/A		
		UNITS	Criteria	DUP10101	DUP10202	RDL	QC Batch
Metals							
Acid Extractable	Antimony (Sb)	ug/g	7.5	0.43	0.36	0.20	8525647
Acid Extractable	Arsenic (As)	ug/g	18	4.0	6.2	1.0	8525647
Acid Extractable	Barium (Ba)	ug/g	390	67	110	0.50	8525647
Acid Extractable	Beryllium (Be)	ug/g	4	0.67	0.85	0.20	8525647
Acid Extractable	Boron (B)	ug/g	120	8.6	8.9	5.0	8525647
Acid Extractable	Cadmium (Cd)	ug/g	1.2	0.15	<0.10	0.10	8525647
Acid Extractable	Chromium (Cr)	ug/g	160	17	23	1.0	8525647
Acid Extractable	Cobalt (Co)	ug/g	22	8.7	11	0.10	8525647
Acid Extractable	Copper (Cu)	ug/g	140	74	51	0.50	8525647
Acid Extractable	Lead (Pb)	ug/g	120	12	9.3	1.0	8525647
Acid Extractable	Molybdenum (Mo)	ug/g	6.9	1.4	2.4	0.50	8525647
Acid Extractable	Nickel (Ni)	ug/g	100	19	24	0.50	8525647
Acid Extractable	Selenium (Se)	ug/g	2.4	<0.50	0.51	0.50	8525647
Acid Extractable	Silver (Ag)	ug/g	20	<0.20	<0.20	0.20	8525647
Acid Extractable	Thallium (Tl)	ug/g	1	0.11	0.11	0.050	8525647
Acid Extractable	Uranium (U)	ug/g	23	1.0	3.9	0.050	8525647
Acid Extractable	Vanadium (V)	ug/g	86	27	41	5.0	8525647
Acid Extractable	Zinc (Zn)	ug/g	340	54	44	5.0	8525647
No Fill	No Exceedance						
Grey	Exceeds 1 criteria p	olicy/le	vel				
Black	Exceeds both criter	ria/level	S				
RDL = Reportable	RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)							
Table 6: Generic	Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition						
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil							

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			VDC686			VDC686			VDC687		
Sampling Date			2023/02/17			2023/02/17			2023/02/15		
COC Number			N/A			N/A			N/A		
	UNITS	Criteria	BH107-SS1	RDL	QC Batch	BH107-SS1 Lab-Dup	RDL	QC Batch	BH109-SS1	RDL	QC Batch
Calculated Parameters											
Sodium Adsorption Ratio	N/A	5.0	6.2		8518273				12		8518273
Inorganics											
Conductivity	mS/cm	0.7	0.74	0.002	8523495				1.4	0.002	8523495
Available (CaCl2) pH	рН	-	7.17		8523820				6.93		8523820
WAD Cyanide (Free)	ug/g	0.051	< 0.01	0.01	8523621				0.01	0.01	8523621
Chromium (VI)	ug/g	8	<0.18	0.18	8523719	<0.18	0.18	8523719	<0.18	0.18	8523719
Metals											
Hot Water Ext. Boron (B)	ug/g	1.5	1.3	0.050	8523819				0.59	0.050	8523819
Acid Extractable Antimony (Sb)	ug/g	7.5	0.37	0.20	8523973				0.28	0.20	8523973
Acid Extractable Arsenic (As)	ug/g	18	2.7	1.0	8523973				5.3	1.0	8523973
Acid Extractable Barium (Ba)	ug/g	390	25	0.50	8523973				69	0.50	8523973
Acid Extractable Beryllium (Be)	ug/g	4	0.26	0.20	8523973				0.65	0.20	8523973
Acid Extractable Boron (B)	ug/g	120	5.3	5.0	8523973				8.3	5.0	8523973
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.15	0.10	8523973				0.18	0.10	8523973
Acid Extractable Chromium (Cr)	ug/g	160	7.5	1.0	8523973				16	1.0	8523973
Acid Extractable Cobalt (Co)	ug/g	22	2.9	0.10	8523973				7.7	0.10	8523973
Acid Extractable Copper (Cu)	ug/g	140	23	0.50	8523973				37	0.50	8523973
Acid Extractable Lead (Pb)	ug/g	120	14	1.0	8523973				15	1.0	8523973
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.54	0.50	8523973				2.0	0.50	8523973
Acid Extractable Nickel (Ni)	ug/g	100	6.2	0.50	8523973				15	0.50	8523973
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	0.50	8523973				0.52	0.50	8523973
Acid Extractable Silver (Ag)	ug/g	20	<0.20	0.20	8523973				<0.20	0.20	8523973
Acid Extractable Thallium (Tl)	ug/g	1	0.066	0.050	8523973				0.099	0.050	8523973
Acid Extractable Uranium (U)	ug/g	23	0.33	0.050	8523973				1.6	0.050	8523973
Acid Extractable Vanadium (V)	ug/g	86	15	5.0	8523973				29	5.0	8523973
Acid Extractable Zinc (Zn)	ug/g	340	35	5.0	8523973				60	5.0	8523973
Acid Extractable Mercury (Hg)	ug/g	0.27	0.076	0.050	8523973				<0.050	0.050	8523973
No Fill No Exceed	ance										

Grey Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Page 5 of 15

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			VDC688			VDC688			VDC689		
Sampling Date			2023/02/10			2023/02/10			2023/02/10		
COC Number			N/A			N/A			N/A		
	UNITS	Criteria	BH110-SS1	RDL	QC Batch	BH110-SS1 Lab-Dup	RDL	QC Batch	BH111-SS1	RDL	QC Batch
Calculated Parameters											
Sodium Adsorption Ratio	N/A	5.0	2.6		8518273				8.5		8518273
Inorganics											
Conductivity	mS/cm	0.7	0.62	0.002	8523495				1.1	0.002	8523495
Available (CaCl2) pH	рН	-	7.91		8523803	8.02		8523803	7.74		8523803
WAD Cyanide (Free)	ug/g	0.051	<0.01	0.01	8520137				<0.01	0.01	8520137
Chromium (VI)	ug/g	8	<0.18	0.18	8523856	<0.18	0.18	8523856	<0.18	0.18	8523856
Metals					·		·	·		·	
Hot Water Ext. Boron (B)	ug/g	1.5	0.31	0.050	8523388				0.44	0.050	8523388
Acid Extractable Antimony (Sb)	ug/g	7.5	0.52	0.20	8525647				0.46	0.20	8525647
Acid Extractable Arsenic (As)	ug/g	18	4.6	1.0	8525647				4.9	1.0	8525647
Acid Extractable Barium (Ba)	ug/g	390	32	0.50	8525647				140	0.50	8525647
Acid Extractable Beryllium (Be)	ug/g	4	0.50	0.20	8525647				0.86	0.20	8525647
Acid Extractable Boron (B)	ug/g	120	13	5.0	8525647				16	5.0	8525647
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.21	0.10	8525647				<0.10	0.10	8525647
Acid Extractable Chromium (Cr)	ug/g	160	13	1.0	8525647				24	1.0	8525647
Acid Extractable Cobalt (Co)	ug/g	22	7.8	0.10	8525647				14	0.10	8525647
Acid Extractable Copper (Cu)	ug/g	140	14	0.50	8525647				36	0.50	8525647
Acid Extractable Lead (Pb)	ug/g	120	18	1.0	8525647				13	1.0	8525647
Acid Extractable Molybdenum (Mo)	ug/g	6.9	1.3	0.50	8525647				1.5	0.50	8525647
Acid Extractable Nickel (Ni)	ug/g	100	17	0.50	8525647				30	0.50	8525647
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	0.50	8525647				<0.50	0.50	8525647
Acid Extractable Silver (Ag)	ug/g	20	<0.20	0.20	8525647				<0.20	0.20	8525647
Acid Extractable Thallium (Tl)	ug/g	1	0.089	0.050	8525647				0.096	0.050	8525647
Acid Extractable Uranium (U)	ug/g	23	0.91	0.050	8525647				0.77	0.050	8525647
Acid Extractable Vanadium (V)	ug/g	86	18	5.0	8525647				33	5.0	8525647
Acid Extractable Zinc (Zn)	ug/g	340	250	5.0	8525647				69	5.0	8525647
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	0.050	8525647				<0.050	0.050	8525647
No Fill No Exceed	ance										

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Page 6 of 15

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			VDC686		VDC687	VDC688	VDC689		VDC692		
Sampling Date			2023/02/17		2023/02/15	2023/02/10	2023/02/10		2023/02/17		
COC Number			N/A		N/A	N/A	N/A		N/A		
	UNITS	Criteria	BH107-SS1	RDL	BH109-SS1	BH110-SS1	BH111-SS1	RDL	DUP10701	RDL	QC Batch
Calculated Parameters		•	·		·	·	·			<u> </u>	
Methylnaphthalene, 2-(1-)	ug/g	-	<0.071	0.071	<0.0071	<0.0071	<0.0071	0.0071	<0.071	0.071	8518988
Polyaromatic Hydrocarbo	ns	•	•			•		•	•	+	
Acenaphthene	ug/g	7.9	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Acenaphthylene	ug/g	0.15	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Anthracene	ug/g	0.67	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Benzo(a)anthracene	ug/g	0.5	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Benzo(a)pyrene	ug/g	0.3	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Benzo(b/j)fluoranthene	ug/g	0.78	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Benzo(g,h,i)perylene	ug/g	6.6	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Benzo(k)fluoranthene	ug/g	0.78	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Chrysene	ug/g	7	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Dibenzo(a,h)anthracene	ug/g	0.1	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Fluoranthene	ug/g	0.69	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Fluorene	ug/g	62	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
1-Methylnaphthalene	ug/g	0.99	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
2-Methylnaphthalene	ug/g	0.99	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Naphthalene	ug/g	0.6	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Phenanthrene	ug/g	6.2	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Pyrene	ug/g	78	<0.050	0.050	<0.0050	<0.0050	<0.0050	0.0050	<0.050	0.050	8523139
Surrogate Recovery (%)											
D10-Anthracene	%	-	109		99	98	100		119		8523139
D14-Terphenyl (FS)	%	-	85		95	93	94		97		8523139
D8-Acenaphthylene	%	-	79		84	82	85		90		8523139
No Fill	No Exceed	lance									
Grey Exceeds 1 criteria policy/level											
Black	Exceeds b	oth criter	ia/levels								
RDL = Reportable Detectio	n Limit										
QC Batch = Quality Contro	l Batch										
riteria: Ontario Reg. 153/04 (Amended April 15, 2011)											

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Bureau Verit	as ID			VDC693		
Sampling Da	te			2023/02/15		
COC Number				N/A		
		UNITS	Criteria	DUP10901	RDL	QC Batch
Calculated P	arameters	-				
Methylnapht	halene, 2-(1-)	ug/g	-	<0.0071	0.0071	8518988
Polyaromati	c Hydrocarbons	•			•	
Acenaphther	ie	ug/g	7.9	<0.0050	0.0050	8523139
Acenaphthyl	ene	ug/g	0.15	<0.0050	0.0050	8523139
Anthracene		ug/g	0.67	<0.0050	0.0050	8523139
Benzo(a)anth	iracene	ug/g	0.5	<0.0050	0.0050	8523139
Benzo(a)pyre	ene	ug/g	0.3	<0.0050	0.0050	8523139
Benzo(b/j)flu	oranthene	ug/g	0.78	<0.0050	0.0050	8523139
Benzo(g,h,i)p	erylene	ug/g	6.6	<0.0050	0.0050	8523139
Benzo(k)fluo	ranthene	ug/g	0.78	<0.0050	0.0050	8523139
Chrysene		ug/g	7	<0.0050	0.0050	8523139
Dibenzo(a,h)	anthracene	ug/g	0.1	<0.0050	0.0050	8523139
Fluoranthene	2	ug/g	0.69	<0.0050	0.0050	8523139
Fluorene		ug/g	62	<0.0050	0.0050	8523139
Indeno(1,2,3	-cd)pyrene	ug/g	0.38	<0.0050	0.0050	8523139
1-Methylnap	hthalene	ug/g	0.99	<0.0050	0.0050	8523139
2-Methylnap	hthalene	ug/g	0.99	<0.0050	0.0050	8523139
Naphthalene		ug/g	0.6	<0.0050	0.0050	8523139
Phenanthren	е	ug/g	6.2	<0.0050	0.0050	8523139
Pyrene		ug/g	78	<0.0050	0.0050	8523139
Surrogate Re	covery (%)	•			•	
D10-Anthrac	ene	%	-	98		8523139
D14-Terpher	ıyl (FS)	%	-	93		8523139
D8-Acenapht	hylene	%	-	86		8523139
No Fill	No Exceedanc	e				
Grey	Exceeds 1 crit	eria poli	cy/level			
Black Exceeds both criteria/levels						
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition						

O.REG 153 PAHS (SOIL)

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VDC686	VDC687		VDC688	VDC689		VDC692		
Sampling Date		2023/02/17	2023/02/15		2023/02/10	2023/02/10		2023/02/17		
COC Number		N/A	N/A		N/A	N/A		N/A		
	UNITS	BH107-SS1	BH109-SS1	QC Batch	BH110-SS1	BH111-SS1	QC Batch	DUP10701	RDL	QC Batch
Inorganics										
Moisture	%	18	14	8522498	24	15	8519787	16	1.0	8522498
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

Bureau Veritas ID		VDC693		
Sampling Date		2023/02/15		
COC Number		N/A		
	UNITS	DUP10901	RDL	QC Batch
Inorganics				
Inorganics Moisture	%	17	1.0	8523880

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt							
I	Package 1	4.3°C					
Sample	VDC686 [BH107-SS1]	: PAH Anaylsis	: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.				
Sample	VDC692 [DUP10701]	: PAH Anaylsis:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.				
Results	relate only to the ite	ms tested.					

QUALITY ASSURANCE REPORT

Brownfield Investment Group Inc Client Project #: BIG-ENV-542D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix Spike		SPIKED BLANK		Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8523139	D10-Anthracene	2023/02/27	104	50 - 130	105	50 - 130	104	%		
8523139	D14-Terphenyl (FS)	2023/02/27	101	50 - 130	99	50 - 130	96	%		
8523139	D8-Acenaphthylene	2023/02/27	93	50 - 130	89	50 - 130	88	%		
8519787	Moisture	2023/02/23							1.3	20
8520137	WAD Cyanide (Free)	2023/02/24	90	75 - 125	101	80 - 120	<0.01	ug/g	NC	35
8522498	Moisture	2023/02/25							0	20
8523139	1-Methylnaphthalene	2023/02/27	99	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8523139	2-Methylnaphthalene	2023/02/27	90	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
8523139	Acenaphthene	2023/02/27	95	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8523139	Acenaphthylene	2023/02/27	95	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
8523139	Anthracene	2023/02/27	101	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8523139	Benzo(a)anthracene	2023/02/27	99	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8523139	Benzo(a)pyrene	2023/02/27	92	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
8523139	Benzo(b/j)fluoranthene	2023/02/27	92	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8523139	Benzo(g,h,i)perylene	2023/02/27	90	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8523139	Benzo(k)fluoranthene	2023/02/27	91	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
8523139	Chrysene	2023/02/27	97	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8523139	Dibenzo(a,h)anthracene	2023/02/27	86	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
8523139	Fluoranthene	2023/02/27	102	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8523139	Fluorene	2023/02/27	95	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
8523139	Indeno(1,2,3-cd)pyrene	2023/02/27	90	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8523139	Naphthalene	2023/02/27	86	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
8523139	Phenanthrene	2023/02/27	94	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
8523139	Pyrene	2023/02/27	102	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8523388	Hot Water Ext. Boron (B)	2023/02/28	110	75 - 125	112	75 - 125	<0.050	ug/g	2.4	40
8523495	Conductivity	2023/02/27			104	90 - 110	<0.002	mS/cm	9.8	10
8523621	WAD Cyanide (Free)	2023/02/27	90	75 - 125	101	80 - 120	<0.01	ug/g	NC	35
8523719	Chromium (VI)	2023/02/27	0.18 (1)	70 - 130	91	80 - 120	<0.18	ug/g	NC	35
8523803	Available (CaCl2) pH	2023/02/27			100	97 - 103			1.3	N/A
8523819	Hot Water Ext. Boron (B)	2023/02/28	108	75 - 125	110	75 - 125	<0.050	ug/g	11	40
8523820	Available (CaCl2) pH	2023/02/27			100	97 - 103			0.97	N/A

Page 11 of 15

Brownfield Investment Group Inc Client Project #: BIG-ENV-542D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED BLANK		Method Blank		RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8523856	Chromium (VI)	2023/02/27	91	70 - 130	94	80 - 120	<0.18	ug/g	NC	35
8523880	Moisture	2023/02/27							0.51	20
8523973	Acid Extractable Antimony (Sb)	2023/02/28	95	75 - 125	107	80 - 120	<0.20	ug/g	NC	30
8523973	Acid Extractable Arsenic (As)	2023/02/28	99	75 - 125	101	80 - 120	<1.0	ug/g	6.1	30
8523973	Acid Extractable Barium (Ba)	2023/02/28	NC	75 - 125	104	80 - 120	<0.50	ug/g	5.2	30
8523973	Acid Extractable Beryllium (Be)	2023/02/28	99	75 - 125	101	80 - 120	<0.20	ug/g	4.0	30
8523973	Acid Extractable Boron (B)	2023/02/28	87	75 - 125	98	80 - 120	<5.0	ug/g	NC	30
8523973	Acid Extractable Cadmium (Cd)	2023/02/28	93	75 - 125	100	80 - 120	<0.10	ug/g	21	30
8523973	Acid Extractable Chromium (Cr)	2023/02/28	103	75 - 125	101	80 - 120	<1.0	ug/g	4.6	30
8523973	Acid Extractable Cobalt (Co)	2023/02/28	97	75 - 125	99	80 - 120	<0.10	ug/g	6.5	30
8523973	Acid Extractable Copper (Cu)	2023/02/28	97	75 - 125	106	80 - 120	<0.50	ug/g	4.9	30
8523973	Acid Extractable Lead (Pb)	2023/02/28	101	75 - 125	104	80 - 120	<1.0	ug/g	9.7	30
8523973	Acid Extractable Mercury (Hg)	2023/02/28	98	75 - 125	101	80 - 120	<0.050	ug/g	1.3	30
8523973	Acid Extractable Molybdenum (Mo)	2023/02/28	98	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
8523973	Acid Extractable Nickel (Ni)	2023/02/28	102	75 - 125	100	80 - 120	<0.50	ug/g	4.8	30
8523973	Acid Extractable Selenium (Se)	2023/02/28	94	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
8523973	Acid Extractable Silver (Ag)	2023/02/28	100	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
8523973	Acid Extractable Thallium (TI)	2023/02/28	99	75 - 125	105	80 - 120	<0.050	ug/g	16	30
8523973	Acid Extractable Uranium (U)	2023/02/28	101	75 - 125	104	80 - 120	<0.050	ug/g	18	30
8523973	Acid Extractable Vanadium (V)	2023/02/28	NC	75 - 125	101	80 - 120	<5.0	ug/g	7.5	30
8523973	Acid Extractable Zinc (Zn)	2023/02/28	NC	75 - 125	98	80 - 120	<5.0	ug/g	8.5	30
8525647	Acid Extractable Antimony (Sb)	2023/02/28	81	75 - 125	102	80 - 120	<0.20	ug/g	6.6	30
8525647	Acid Extractable Arsenic (As)	2023/02/28	96	75 - 125	101	80 - 120	<1.0	ug/g	2.6	30
8525647	Acid Extractable Barium (Ba)	2023/02/28	NC	75 - 125	101	80 - 120	<0.50	ug/g	1.8	30
8525647	Acid Extractable Beryllium (Be)	2023/02/28	97	75 - 125	100	80 - 120	<0.20	ug/g	2.2	30
8525647	Acid Extractable Boron (B)	2023/02/28	86	75 - 125	97	80 - 120	<5.0	ug/g	3.7	30
8525647	Acid Extractable Cadmium (Cd)	2023/02/28	94	75 - 125	96	80 - 120	<0.10	ug/g	NC	30
8525647	Acid Extractable Chromium (Cr)	2023/02/28	NC	75 - 125	99	80 - 120	<1.0	ug/g	1.7	30
8525647	Acid Extractable Cobalt (Co)	2023/02/28	95	75 - 125	99	80 - 120	<0.10	ug/g	1.4	30
8525647	Acid Extractable Copper (Cu)	2023/02/28	96	75 - 125	100	80 - 120	<0.50	ug/g	11	30
8525647	Acid Extractable Lead (Pb)	2023/02/28	92	75 - 125	102	80 - 120	<1.0	ug/g	34 (2)	30

Page 12 of 15

Brownfield Investment Group Inc Client Project #: BIG-ENV-542D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8525647	Acid Extractable Mercury (Hg)	2023/02/28	96	75 - 125	100	80 - 120	<0.050	ug/g	NC	30
8525647	Acid Extractable Molybdenum (Mo)	2023/02/28	97	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
8525647	Acid Extractable Nickel (Ni)	2023/02/28	NC	75 - 125	98	80 - 120	<0.50	ug/g	0.37	30
8525647	Acid Extractable Selenium (Se)	2023/02/28	97	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
8525647	Acid Extractable Silver (Ag)	2023/02/28	99	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
8525647	Acid Extractable Thallium (TI)	2023/02/28	96	75 - 125	101	80 - 120	<0.050	ug/g	3.4	30
8525647	Acid Extractable Uranium (U)	2023/02/28	99	75 - 125	102	80 - 120	<0.050	ug/g	1.4	30
8525647	Acid Extractable Vanadium (V)	2023/02/28	NC	75 - 125	98	80 - 120	<5.0	ug/g	2.1	30
8525647	Acid Extractable Zinc (Zn)	2023/02/28	NC	75 - 125	100	80 - 120	<5.0	ug/g	0.94	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due to the sample matrix. The sample was re-analyzed with the same results

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T6-Soil/Res-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH101-SS1	VDC680-01	Acid Extractable Copper (Cu)	140	360	0.50	ug/g
BH107-SS1	VDC686-02	Conductivity	0.7	0.74	0.002	mS/cm
BH107-SS1	VDC686-02	Sodium Adsorption Ratio	5.0	6.2		N/A
BH109-SS1	VDC687-02	Conductivity	0.7	1.4	0.002	mS/cm
BH109-SS1	VDC687-02	Sodium Adsorption Ratio	5.0	12		N/A
BH111-SS1	VDC689-02	Conductivity	0.7	1.1	0.002	mS/cm
BH111-SS1	VDC689-02	Sodium Adsorption Ratio	5.0	8.5		N/A

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: BIG-ENV-554D Site#: OAKVILLE,ON Site Location: 590 ARGUS ROAD Your C.O.C. #: n/a

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/03/09 Report #: R7540041 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C361624 Received: 2023/03/03, 13:51

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	4	N/A	2023/03/08	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	3	2023/03/07	2023/03/07	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	1	2023/03/08	2023/03/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	4	N/A	2023/03/08		EPA 8260C m
Free (WAD) Cyanide	1	2023/03/06	2023/03/06	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	2	2023/03/07	2023/03/07	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2023/03/08	2023/03/08	CAM SOP-00457	OMOE E3015 m
Conductivity	4	2023/03/08	2023/03/08	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	3	2023/03/07	2023/03/07	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	1	2023/03/08	2023/03/08	CAM SOP-00436	EPA 3060/7199 m
Acid Extractable Metals by ICPMS	1	2023/03/07	2023/03/08	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	3	2023/03/08	2023/03/08	CAM SOP-00447	EPA 6020B m
Moisture	4	N/A	2023/03/06	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	5	N/A	2023/03/07	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	4	2023/03/07	2023/03/07	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	1	2023/03/06	2023/03/06	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	2	2023/03/07	2023/03/07	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	1	2023/03/08	2023/03/08	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	3	N/A	2023/03/08	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2023/03/09	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds in Soil	4	N/A	2023/03/07	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 17

Your Project #: BIG-ENV-554D Site#: OAKVILLE,ON Site Location: 590 ARGUS ROAD Your C.O.C. #: n/a

Attention: Rebecca Morrison

Brownfield Investment Group Inc 12-5500 Tomken Rd Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/03/09 Report #: R7540041 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C361624 Received: 2023/03/03, 13:51

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 17

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				VEV742		VEV744		VEV747		VEV749		
Sampling Date				2023/03/01		2023/02/27		2023/02/22		2023/02/21		
COC Number				n/a		n/a		n/a		n/a		
		UNITS	Criteria	BH105-SS1	QC Batch	BH108-SS1	QC Batch	BH112-SS2	QC Batch	BH113-SS1	RDL	QC Batch
Calculated Parameters												
Sodium Adsorption Ratio		N/A	5.0	17	8533688	10	8533688	33	8533688	13		8533688
Inorganics	· · · ·		·									
Conductivity		mS/cm	0.7	1.0	8540095	0.84	8540095	1.5	8540095	1.1	0.002	8540083
Available (CaCl2) pH		рН	-	7.62	8537937	7.12	8537937	7.93	8541082	7.19		8536577
WAD Cyanide (Free)		ug/g	0.051	< 0.01	8537484	0.01	8538172	< 0.01	8540061	0.01	0.01	8536383
Chromium (VI)		ug/g	8	<0.18	8537709	<0.18	8537709	<0.18	8540220	<0.18	0.18	8537694
Metals												
Hot Water Ext. Boron (B)		ug/g	1.5	0.43	8540127	1.5	8539233	0.19	8539233	0.86	0.050	8539233
Acid Extractable Antimony	y (Sb)	ug/g	7.5	0.38	8540184	0.36	8540184	0.30	8540184	0.30	0.20	8539226
Acid Extractable Arsenic (/	As)	ug/g	18	5.6	8540184	4.2	8540184	4.0	8540184	6.3	1.0	8539226
Acid Extractable Barium (E	3a)	ug/g	390	81	8540184	83	8540184	53	8540184	110	0.50	8539226
Acid Extractable Beryllium	ı (Be)	ug/g	4	0.73	8540184	0.52	8540184	0.66	8540184	0.64	0.20	8539226
Acid Extractable Boron (B))	ug/g	120	10	8540184	5.5	8540184	7.2	8540184	7.4	5.0	8539226
Acid Extractable Cadmium	n (Cd)	ug/g	1.2	0.34	8540184	0.16	8540184	<0.10	8540184	0.36	0.10	8539226
Acid Extractable Chromiur	n (Cr)	ug/g	160	20	8540184	22	8540184	18	8540184	17	1.0	8539226
Acid Extractable Cobalt (C	o)	ug/g	22	9.4	8540184	5.1	8540184	8.6	8540184	8.9	0.10	8539226
Acid Extractable Copper (C	Cu)	ug/g	140	120	8540184	39	8540184	84	8540184	71	0.50	8539226
Acid Extractable Lead (Pb)		ug/g	120	22	8540184	29	8540184	7.2	8540184	23	1.0	8539226
Acid Extractable Molybder	num (Mo	ug/g	6.9	1.3	8540184	0.90	8540184	1.6	8540184	1.6	0.50	8539226
Acid Extractable Nickel (Ni	i)	ug/g	100	21	8540184	11	8540184	21	8540184	19	0.50	8539226
Acid Extractable Selenium	(Se)	ug/g	2.4	<0.50	8540184	<0.50	8540184	<0.50	8540184	<0.50	0.50	8539226
Acid Extractable Silver (Ag	;)	ug/g	20	<0.20	8540184	<0.20	8540184	<0.20	8540184	<0.20	0.20	8539226
Acid Extractable Thallium (Tl)		ug/g	1	0.11	8540184	0.10	8540184	0.063	8540184	0.11	0.050	8539226
Acid Extractable Uranium (U)		ug/g	23	0.90	8540184	1.1	8540184	0.69	8540184	1.2	0.050	8539226
Acid Extractable Vanadium	n (V)	ug/g	86	31	8540184	24	8540184	29	8540184	32	5.0	8539226
Acid Extractable Zinc (Zn)		ug/g	340	98	8540184	60	8540184	42	8540184	69	5.0	8539226
Acid Extractable Mercury	(Hg)	ug/g	0.27	<0.050	8540184	0.063	8540184	<0.050	8540184	<0.050	0.050	8539226
No Fill	No Exce	edance	•	,		,	•				*	,

Grey

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veri	tas ID			VEV749						
Sampling Da	ite			2023/02/21						
COC Numbe	r			n/a						
		UNITS	Criteria	BH113-SS1 Lab-Dup	QC Batch					
Inorganics										
Available (CaCl2) pH pH - 7.29 8536										
No Fill	No Exceedance									
Grey	Exceeds 1 criteria po	licy/leve	1							
Black	Exceeds both criteria	/levels								
QC Batch = 0	Quality Control Batch									
Lab-Dup = La	aboratory Initiated Dup	licate								
Criteria: Ont	ario Reg. 153/04 (Amer	nded Ap	ril 15, 20	11)						
Table 6: Gen	Table 6: Generic Site Condition Standards for Shallow Soils in a Potable									
Ground Wat	er Condition									
Soil - Reside	ntial/Parkland/Institutio	onal Pro	perty Use	e - Coarse Text	tured Soil					

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			VEV742	VEV744		VEV746			VEV746		
Sampling Date			2023/03/01	2023/02/27		2023/02/22			2023/02/22		
COC Number			n/a	n/a		n/a			n/a		
	UNITS	Criteria	BH105-SS1	BH108-SS1	RDL	BH112-SS1	RDL	QC Batch	BH112-SS1 Lab-Dup	RDL	QC Batch
Calculated Parameters											
Methylnaphthalene, 2-(1) ug/g	-	<0.0071	<0.0071	0.0071	<0.071	0.071	8533913			
Polyaromatic Hydrocarb	ons	•			•		•				
Acenaphthene	ug/g	7.9	<0.0050	<0.0050	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
Acenaphthylene	ug/g	0.15	<0.0050	0.010	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
Anthracene	ug/g	0.67	<0.0050	0.0075	0.0050	0.065	0.050	8538171	0.069	0.050	8538171
Benzo(a)anthracene	ug/g	0.5	<0.0050	0.049	0.0050	0.50	0.050	8538171	0.50	0.050	8538171
Benzo(a)pyrene	ug/g	0.3	<0.0050	0.061	0.0050	0.52	0.050	8538171	0.51	0.050	8538171
Benzo(b/j)fluoranthene	ug/g	0.78	0.0055	0.088	0.0050	0.77	0.050	8538171	0.77	0.050	8538171
Benzo(g,h,i)perylene	ug/g	6.6	<0.0050	0.043	0.0050	0.46	0.050	8538171	0.44	0.050	8538171
Benzo(k)fluoranthene	ug/g	0.78	<0.0050	0.029	0.0050	0.26	0.050	8538171	0.25	0.050	8538171
Chrysene	ug/g	7	<0.0050	0.046	0.0050	0.58	0.050	8538171	0.56	0.050	8538171
Dibenzo(a,h)anthracene	ug/g	0.1	<0.0050	0.0096	0.0050	0.071	0.050	8538171	0.073	0.050	8538171
Fluoranthene	ug/g	0.69	0.0060	0.083	0.0050	1.6	0.050	8538171	1.6	0.050	8538171
Fluorene	ug/g	62	<0.0050	<0.0050	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
Indeno(1,2,3-cd)pyrene	ug/g	0.38	<0.0050	0.044	0.0050	0.38	0.050	8538171	0.38	0.050	8538171
1-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
2-Methylnaphthalene	ug/g	0.99	<0.0050	<0.0050	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
Naphthalene	ug/g	0.6	<0.0050	<0.0050	0.0050	<0.050	0.050	8538171	<0.050	0.050	8538171
Phenanthrene	ug/g	6.2	<0.0050	0.026	0.0050	0.39	0.050	8538171	0.37	0.050	8538171
Pyrene	ug/g	78	0.0051	0.073	0.0050	1.3	0.050	8538171	1.3	0.050	8538171
Surrogate Recovery (%)								-			
D10-Anthracene	%	-	109	102		123		8538171	116		8538171
D14-Terphenyl (FS)	%	-	100	95		100		8538171	96		8538171
D8-Acenaphthylene	%	-	96	91		97		8538171	94		8538171
No Fill	No Exceed	dance									
Grev	Exceeds 1	criteria	policy/level								

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 PAHS (SOIL)

Bureau Verit	tas ID			VEV749						
Sampling Da	te			2023/02/21						
COC Numbe	r			n/a						
		UNITS	Criteria	BH113-SS1	RDL	QC Batch				
Calculated P	arameters									
Methylnaph	thalene, 2-(1-)	ug/g	-	<0.0071	0.0071	8533913				
Polyaromati	c Hydrocarbon	S								
Acenaphther	ne	ug/g	7.9	<0.0050	0.0050	8538171				
Acenaphthyl	ene	ug/g	0.15	<0.0050	0.0050	8538171				
Anthracene		ug/g	0.67	<0.0050	0.0050	8538171				
Benzo(a)anti	hracene	ug/g	0.5	0.018	0.0050	8538171				
Benzo(a)pyre	ene	ug/g	0.3	0.017	0.0050	8538171				
Benzo(b/j)flu	uoranthene	ug/g	0.78	0.023	0.0050	8538171				
Benzo(g,h,i)p	perylene	ug/g	6.6	0.011	0.0050	8538171				
Benzo(k)fluo	ranthene	ug/g	0.78	0.0078	0.0050	8538171				
Chrysene		ug/g	7	0.015	0.0050	8538171				
Dibenzo(a,h)	anthracene	ug/g	0.1	<0.0050	0.0050	8538171				
Fluoranthen	e	ug/g	0.69	0.034	0.0050	8538171				
Fluorene		ug/g	62	<0.0050	0.0050	8538171				
Indeno(1,2,3	-cd)pyrene	ug/g	0.38	0.011	0.0050	8538171				
1-Methylnap	hthalene	ug/g	0.99	<0.0050	0.0050	8538171				
2-Methylnap	hthalene	ug/g	0.99	<0.0050	0.0050	8538171				
Naphthalene	2	ug/g	0.6	<0.0050	0.0050	8538171				
Phenanthrer	ne	ug/g	6.2	0.013	0.0050	8538171				
Pyrene		ug/g	78	0.029	0.0050	8538171				
Surrogate Re	ecovery (%)					-				
D10-Anthrac	ene	%	-	102		8538171				
D14-Terpher	nyl (FS)	%	-	94		8538171				
D8-Acenaph	thylene	%	-	91		8538171				
No Fill	No Exceedan	ce								
Grey	Exceeds 1 crit	teria po	licy/leve							
Black	Exceeds both	criteria	a/levels							
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Criteria: Onta	ario Reg. 153/0	4 (Amei	nded Apr	il 15 <i>,</i> 2011)						
Table 6: Gen	eric Site Condit	ion Star	ndards fo	r Shallow Soils	s in a Pot	table				
Ground Wate	Ground Water Condition									
Sou - vesidel	itiai/FaiKidiiú/I	institutio	υπαι ΡΙΟμ	icity Use - CO	arse lexi	Luieu Sull				

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID			VEV743	VEV745	VEV748	VEV750		
Sampling Date			2023/03/01	2023/02/27	2023/02/22	2023/03/01		
COC Number			n/a	n/a	n/a	n/a		
	UNITS	Criteria	BH105-SS3	BH108-SS2	BH112-SS3	DUP10503	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	<0.050	<0.050	0.050	8533662
Volatile Organics								
Acetone (2-Propanone)	ug/g	16	<0.49	<0.49	<0.49	<0.49	0.49	8537210
Benzene	ug/g	0.21	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	8537210
Bromodichloromethane	ug/g	1.5	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Bromoform	ug/g	0.27	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Bromomethane	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Carbon Tetrachloride	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Chlorobenzene	ug/g	2.4	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Chloroform	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Dibromochloromethane	ug/g	2.3	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,2-Dichlorobenzene	ug/g	1.2	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,3-Dichlorobenzene	ug/g	4.8	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,4-Dichlorobenzene	ug/g	0.083	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,1-Dichloroethane	ug/g	0.47	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,2-Dichloroethane	ug/g	0.05	<0.049	<0.049	<0.049	<0.049	0.049	8537210
1,1-Dichloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
cis-1,2-Dichloroethylene	ug/g	1.9	<0.040	<0.040	<0.040	<0.040	0.040	8537210
trans-1,2-Dichloroethylene	ug/g	0.084	<0.040	<0.040	<0.040	<0.040	0.040	8537210
1,2-Dichloropropane	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	<0.030	<0.030	0.030	8537210
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Ethylbenzene	ug/g	1.1	<0.010	<0.010	<0.010	<0.010	0.010	8537210
Ethylene Dibromide	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Hexane	ug/g	2.8	<0.040	<0.040	<0.040	<0.040	0.040	8537210
Methylene Chloride(Dichloromethane	ug/g	0.1	<0.049	<0.049	<0.049	<0.049	0.049	8537210
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.40	<0.40	<0.40	<0.40	0.40	8537210
Methyl Isobutyl Ketone	ug/g	1.7	<0.40	<0.40	<0.40	<0.40	0.40	8537210
No Fill No Exceedance								

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID				VEV743	VEV745	VEV748	VEV750			
Sampling Date				2023/03/01	2023/02/27	2023/02/22	2023/03/01			
COC Number				n/a	n/a	n/a	n/a			
		UNITS	Criteria	BH105-SS3	BH108-SS2	BH112-SS3	DUP10503	RDL	QC Batch	
Methyl t-butyl ether	(MTBE)	ug/g	0.75	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
Styrene		ug/g	0.7	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
1,1,1,2-Tetrachloroet	hane	ug/g	0.058	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
1,1,2,2-Tetrachloroet	hane	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
Tetrachloroethylene		ug/g	0.28	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
Toluene		ug/g	2.3	<0.020	<0.020	<0.020	<0.020	0.020	8537210	
1,1,1-Trichloroethane	2	ug/g	0.38	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
1,1,2-Trichloroethane	2	ug/g	0.05	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
Trichloroethylene		ug/g	0.061	<0.010	<0.010	<0.010	<0.010	0.010	8537210	
Trichlorofluorometha	ane (FREON 11)	ug/g	4	<0.040	<0.040	<0.040	<0.040	0.040	8537210	
Vinyl Chloride		ug/g	0.02	<0.019	<0.019	<0.019	<0.019	0.019	8537210	
p+m-Xylene		ug/g	-	<0.020	<0.020	<0.020	<0.020	0.020	8537210	
o-Xylene		ug/g	-	<0.020	<0.020	<0.020	<0.020	0.020	8537210	
Total Xylenes		ug/g	3.1	<0.020	<0.020	<0.020	<0.020	0.020	8537210	
Surrogate Recovery	(%)									
4-Bromofluorobenze	ne	%	-	93	92	91	92		8537210	
D10-o-Xylene		%	-	87	84	86	81		8537210	
D4-1,2-Dichloroethar	ie	%	-	105	107	108	107		8537210	
D8-Toluene		%	-	97	97	99	98		8537210	
No Fill	No Exceedance	9								
Grey	Exceeds 1 crite	ria polio	cy/level							
Black	Black Exceeds both criteria/levels									
RDL = Reportable Det	RDL = Reportable Detection Limit									
QC Batch = Quality Co	ontrol Batch									
Criteria: Ontario Reg.	153/04 (Amende	ed April	15, 2011)						
Table 6: Generic Site	Condition Standa	rds for S	Shallow S	oils in a Potab	le Ground Wa	ter Condition				
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil										

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID			VEV74	42		VEV	743			VEV	744		T	VEV	745			
Sampling Date		:	2023/03	3/01		2023/	03/01			2023/	02/27			2023/	02/27			
COC Number			n/a			n,	/a			n,	/a			n	/a			
		UNITS	BH105-	SS1 QO	Batch	BH10	5-SS3	QC Ba	tch	BH10	8-SS1	QC Ba	tch	BH10	8-SS2	RDL	QC Ba	tch
Inorganics						-						-						
Moisture		%	15	85	37732	1	4	85370)19	1	7	85377	'32	1	8	1.0	85370	019
RDL = Reportable Det QC Batch = Quality Co	ection ontrol B	Limit Batch																
eau Veritas ID		VEV7	46		VEV	747	VEV	747			VEV	748			VEV	749	1	
npling Date		2023/0	2/22		2023/	02/22	2023/	02/22			2023/	02/22			2023/	02/21		
C Number		n/a	а		n,	/a	n,	/a			n,	/a			n,	/a		
	UNITS	BH112	2-SS1 Q	C Batch	BH11	2-SS2	BH11 Lab-	2-SS2 Dup	QC I	Batch	BH11	2-SS3	QC	Batch	BH11	3-SS1	RDL	QC Batc
rganics																		
isture	%	14	8	537732	1	7	1	6	853	87679	1	3	853	37019	1	4	1.0	8537732
L = Reportable Detection Batch = Quality Control I	Limit Batch	licate			•				•								•	

Bureau Veritas IDVEV750Sampling Date2023/03/01COC Numbern/aUNITSDUP10503RDLQC BatchInorganicsMoisture%151.0RDL = Reportable Detection LimitQC Batch = Quality Control Batch

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt											
	Package 1	7.3°C]									
Sample	VEV746 [BH112-S	S1]:PAH ANALYS	IS:Due to the sample matrix, sample required dilution. Detection limis were adjusted accordingly.									
Results	Results relate only to the items tested.											

QUALITY ASSURANCE REPORT

Brownfield Investment Group Inc Client Project #: BIG-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8537210	4-Bromofluorobenzene	2023/03/07	94	60 - 140	96	60 - 140	96	%		
8537210	D10-o-Xylene	2023/03/07	96	60 - 130	95	60 - 130	86	%		
8537210	D4-1,2-Dichloroethane	2023/03/07	104	60 - 140	109	60 - 140	109	%		
8537210	D8-Toluene	2023/03/07	105	60 - 140	103	60 - 140	95	%		
8538171	D10-Anthracene	2023/03/07	121	50 - 130	108	50 - 130	103	%		
8538171	D14-Terphenyl (FS)	2023/03/07	98	50 - 130	99	50 - 130	93	%		
8538171	D8-Acenaphthylene	2023/03/07	97	50 - 130	97	50 - 130	91	%		
8536383	WAD Cyanide (Free)	2023/03/06	100	75 - 125	104	80 - 120	<0.01	ug/g	NC	35
8536577	Available (CaCl2) pH	2023/03/06			100	97 - 103			1.4	N/A
8537019	Moisture	2023/03/06							4.6	20
8537210	1,1,1,2-Tetrachloroethane	2023/03/07	91	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8537210	1,1,1-Trichloroethane	2023/03/07	90	60 - 140	89	60 - 130	<0.040	ug/g	NC	50
8537210	1,1,2,2-Tetrachloroethane	2023/03/07	94	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8537210	1,1,2-Trichloroethane	2023/03/07	99	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8537210	1,1-Dichloroethane	2023/03/07	92	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8537210	1,1-Dichloroethylene	2023/03/07	95	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8537210	1,2-Dichlorobenzene	2023/03/07	88	60 - 140	89	60 - 130	<0.040	ug/g	NC	50
8537210	1,2-Dichloroethane	2023/03/07	91	60 - 140	95	60 - 130	<0.049	ug/g	NC	50
8537210	1,2-Dichloropropane	2023/03/07	94	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8537210	1,3-Dichlorobenzene	2023/03/07	89	60 - 140	86	60 - 130	<0.040	ug/g	NC	50
8537210	1,4-Dichlorobenzene	2023/03/07	101	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8537210	Acetone (2-Propanone)	2023/03/07	116	60 - 140	122	60 - 140	<0.49	ug/g	5.4	50
8537210	Benzene	2023/03/07	86	60 - 140	86	60 - 130	<0.0060	ug/g	NC	50
8537210	Bromodichloromethane	2023/03/07	91	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8537210	Bromoform	2023/03/07	89	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8537210	Bromomethane	2023/03/07	93	60 - 140	91	60 - 140	<0.040	ug/g	NC	50
8537210	Carbon Tetrachloride	2023/03/07	85	60 - 140	85	60 - 130	<0.040	ug/g	NC	50
8537210	Chlorobenzene	2023/03/07	92	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8537210	Chloroform	2023/03/07	89	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8537210	cis-1,2-Dichloroethylene	2023/03/07	96	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8537210	cis-1,3-Dichloropropene	2023/03/07	90	60 - 140	90	60 - 130	< 0.030	ug/g	NC	50

Page 11 of 17

Brownfield Investment Group Inc Client Project #: BIG-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	þ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8537210	Dibromochloromethane	2023/03/07	89	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8537210	Dichlorodifluoromethane (FREON 12)	2023/03/07	103	60 - 140	100	60 - 140	<0.040	ug/g	NC	50
8537210	Ethylbenzene	2023/03/07	85	60 - 140	83	60 - 130	<0.010	ug/g	NC	50
8537210	Ethylene Dibromide	2023/03/07	88	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8537210	Hexane	2023/03/07	95	60 - 140	91	60 - 130	<0.040	ug/g	2.0	50
8537210	Methyl Ethyl Ketone (2-Butanone)	2023/03/07	117	60 - 140	129	60 - 140	<0.40	ug/g	NC	50
8537210	Methyl Isobutyl Ketone	2023/03/07	97	60 - 140	109	60 - 130	<0.40	ug/g	NC	50
8537210	Methyl t-butyl ether (MTBE)	2023/03/07	84	60 - 140	87	60 - 130	<0.040	ug/g	NC	50
8537210	Methylene Chloride(Dichloromethane)	2023/03/07	93	60 - 140	95	60 - 130	<0.049	ug/g	NC	50
8537210	o-Xylene	2023/03/07	86	60 - 140	85	60 - 130	<0.020	ug/g	NC	50
8537210	p+m-Xylene	2023/03/07	89	60 - 140	87	60 - 130	<0.020	ug/g	NC	50
8537210	Styrene	2023/03/07	95	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8537210	Tetrachloroethylene	2023/03/07	84	60 - 140	82	60 - 130	<0.040	ug/g	NC	50
8537210	Toluene	2023/03/07	91	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
8537210	Total Xylenes	2023/03/07					<0.020	ug/g	NC	50
8537210	trans-1,2-Dichloroethylene	2023/03/07	98	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8537210	trans-1,3-Dichloropropene	2023/03/07	108	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
8537210	Trichloroethylene	2023/03/07	91	60 - 140	90	60 - 130	<0.010	ug/g	NC	50
8537210	Trichlorofluoromethane (FREON 11)	2023/03/07	87	60 - 140	85	60 - 130	<0.040	ug/g	NC	50
8537210	Vinyl Chloride	2023/03/07	89	60 - 140	87	60 - 130	<0.019	ug/g	NC	50
8537484	WAD Cyanide (Free)	2023/03/07	101	75 - 125	106	80 - 120	<0.01	ug/g	NC	35
8537679	Moisture	2023/03/07							6.7	20
8537694	Chromium (VI)	2023/03/07	90	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
8537709	Chromium (VI)	2023/03/07	89	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
8537732	Moisture	2023/03/07							0.46	20
8537937	Available (CaCl2) pH	2023/03/07			100	97 - 103			0.12	N/A
8538171	1-Methylnaphthalene	2023/03/07	116	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8538171	2-Methylnaphthalene	2023/03/07	105	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8538171	Acenaphthene	2023/03/07	102	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8538171	Acenaphthylene	2023/03/07	105	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
8538171	Anthracene	2023/03/07	107	50 - 130	108	50 - 130	<0.0050	ug/g	6.3	40

Page 12 of 17

Brownfield Investment Group Inc Client Project #: BIG-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8538171	Benzo(a)anthracene	2023/03/07	92	50 - 130	104	50 - 130	<0.0050	ug/g	0.22	40
8538171	Benzo(a)pyrene	2023/03/07	80	50 - 130	102	50 - 130	<0.0050	ug/g	1.5	40
8538171	Benzo(b/j)fluoranthene	2023/03/07	81	50 - 130	102	50 - 130	<0.0050	ug/g	0.64	40
8538171	Benzo(g,h,i)perylene	2023/03/07	81	50 - 130	99	50 - 130	<0.0050	ug/g	5.6	40
8538171	Benzo(k)fluoranthene	2023/03/07	88	50 - 130	101	50 - 130	<0.0050	ug/g	1.5	40
8538171	Chrysene	2023/03/07	86	50 - 130	107	50 - 130	<0.0050	ug/g	2.9	40
8538171	Dibenzo(a,h)anthracene	2023/03/07	88	50 - 130	93	50 - 130	<0.0050	ug/g	2.1	40
8538171	Fluoranthene	2023/03/07	80	50 - 130	109	50 - 130	<0.0050	ug/g	3.5	40
8538171	Fluorene	2023/03/07	104	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8538171	Indeno(1,2,3-cd)pyrene	2023/03/07	88	50 - 130	100	50 - 130	<0.0050	ug/g	0.75	40
8538171	Naphthalene	2023/03/07	104	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
8538171	Phenanthrene	2023/03/07	89	50 - 130	105	50 - 130	<0.0050	ug/g	4.4	40
8538171	Pyrene	2023/03/07	87	50 - 130	109	50 - 130	<0.0050	ug/g	3.6	40
8538172	WAD Cyanide (Free)	2023/03/07	104	75 - 125	107	80 - 120	<0.01	ug/g	NC	35
8539226	Acid Extractable Antimony (Sb)	2023/03/08	92	75 - 125	102	80 - 120	<0.20	ug/g		
8539226	Acid Extractable Arsenic (As)	2023/03/08	89	75 - 125	99	80 - 120	<1.0	ug/g		
8539226	Acid Extractable Barium (Ba)	2023/03/08	NC	75 - 125	100	80 - 120	<0.50	ug/g		
8539226	Acid Extractable Beryllium (Be)	2023/03/08	92	75 - 125	96	80 - 120	<0.20	ug/g		
8539226	Acid Extractable Boron (B)	2023/03/08	87	75 - 125	97	80 - 120	<5.0	ug/g		
8539226	Acid Extractable Cadmium (Cd)	2023/03/08	88	75 - 125	96	80 - 120	<0.10	ug/g		
8539226	Acid Extractable Chromium (Cr)	2023/03/08	78	75 - 125	99	80 - 120	<1.0	ug/g		
8539226	Acid Extractable Cobalt (Co)	2023/03/08	89	75 - 125	99	80 - 120	<0.10	ug/g		
8539226	Acid Extractable Copper (Cu)	2023/03/08	NC	75 - 125	100	80 - 120	<0.50	ug/g		
8539226	Acid Extractable Lead (Pb)	2023/03/08	NC	75 - 125	99	80 - 120	<1.0	ug/g	2.2	30
8539226	Acid Extractable Mercury (Hg)	2023/03/08	89	75 - 125	102	80 - 120	<0.050	ug/g		
8539226	Acid Extractable Molybdenum (Mo)	2023/03/08	94	75 - 125	99	80 - 120	<0.50	ug/g		
8539226	Acid Extractable Nickel (Ni)	2023/03/08	77	75 - 125	100	80 - 120	<0.50	ug/g		
8539226	Acid Extractable Selenium (Se)	2023/03/08	92	75 - 125	99	80 - 120	<0.50	ug/g		
8539226	Acid Extractable Silver (Ag)	2023/03/08	90	75 - 125	100	80 - 120	<0.20	ug/g		
8539226	Acid Extractable Thallium (TI)	2023/03/08	91	75 - 125	99	80 - 120	<0.050	ug/g		
8539226	Acid Extractable Uranium (U)	2023/03/08	91	75 - 125	99	80 - 120	<0.050	ug/g		

Page 13 of 17

Brownfield Investment Group Inc Client Project #: BIG-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8539226	Acid Extractable Vanadium (V)	2023/03/08	90	75 - 125	99	80 - 120	<5.0	ug/g		
8539226	Acid Extractable Zinc (Zn)	2023/03/08	NC	75 - 125	97	80 - 120	<5.0	ug/g		
8539233	Hot Water Ext. Boron (B)	2023/03/07	97	75 - 125	104	75 - 125	<0.050	ug/g	1.9	40
8540061	WAD Cyanide (Free)	2023/03/08	103	75 - 125	103	80 - 120	<0.01	ug/g	NC	35
8540083	Conductivity	2023/03/08			106	90 - 110	<0.002	mS/cm	1.3	10
8540095	Conductivity	2023/03/08			103	90 - 110	<0.002	mS/cm	1.8	10
8540127	Hot Water Ext. Boron (B)	2023/03/08	94	75 - 125	94	75 - 125	<0.050	ug/g	16	40
8540184	Acid Extractable Antimony (Sb)	2023/03/08	109	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
8540184	Acid Extractable Arsenic (As)	2023/03/08	107	75 - 125	94	80 - 120	<1.0	ug/g	NC	30
8540184	Acid Extractable Barium (Ba)	2023/03/08	105	75 - 125	97	80 - 120	<0.50	ug/g	1.7	30
8540184	Acid Extractable Beryllium (Be)	2023/03/08	111	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8540184	Acid Extractable Boron (B)	2023/03/08	114	75 - 125	102	80 - 120	<5.0	ug/g	NC	30
8540184	Acid Extractable Cadmium (Cd)	2023/03/08	105	75 - 125	94	80 - 120	<0.10	ug/g	NC	30
8540184	Acid Extractable Chromium (Cr)	2023/03/08	111	75 - 125	98	80 - 120	<1.0	ug/g	9.6	30
8540184	Acid Extractable Cobalt (Co)	2023/03/08	107	75 - 125	95	80 - 120	<0.10	ug/g	6.9	30
8540184	Acid Extractable Copper (Cu)	2023/03/08	106	75 - 125	98	80 - 120	<0.50	ug/g	3.4	30
8540184	Acid Extractable Lead (Pb)	2023/03/08	102	75 - 125	95	80 - 120	<1.0	ug/g	5.4	30
8540184	Acid Extractable Mercury (Hg)	2023/03/08	104	75 - 125	98	80 - 120	<0.050	ug/g	NC	30
8540184	Acid Extractable Molybdenum (Mo)	2023/03/08	108	75 - 125	97	80 - 120	<0.50	ug/g	NC	30
8540184	Acid Extractable Nickel (Ni)	2023/03/08	107	75 - 125	99	80 - 120	<0.50	ug/g	5.5	30
8540184	Acid Extractable Selenium (Se)	2023/03/08	109	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
8540184	Acid Extractable Silver (Ag)	2023/03/08	108	75 - 125	96	80 - 120	<0.20	ug/g	NC	30
8540184	Acid Extractable Thallium (TI)	2023/03/08	102	75 - 125	96	80 - 120	<0.050	ug/g	2.7	30
8540184	Acid Extractable Uranium (U)	2023/03/08	110	75 - 125	101	80 - 120	<0.050	ug/g	4.0	30
8540184	Acid Extractable Vanadium (V)	2023/03/08	119	75 - 125	98	80 - 120	<5.0	ug/g	18	30
8540184	Acid Extractable Zinc (Zn)	2023/03/08	99	75 - 125	93	80 - 120	<5.0	ug/g	7.2	30
8540220	Chromium (VI)	2023/03/08	86	70 - 130	93	80 - 120	<0.18	ug/g	NC	35

Brownfield Investment Group Inc Client Project #: BIG-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8541082	Available (CaCl2) pH	2023/03/08			100	97 - 103			0.82	N/A
N/A = Not Ap	olicable	·	·							

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T6-Soil/Res-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH105-SS1	VEV742-02	Conductivity	0.7	1.0	0.002	mS/cm
BH105-SS1	VEV742-02	Sodium Adsorption Ratio	5.0	17		N/A
BH108-SS1	VEV744-02	Conductivity	0.7	0.84	0.002	mS/cm
BH108-SS1	VEV744-02	Sodium Adsorption Ratio	5.0	10		N/A
BH112-SS1	VEV746-01-Lab Dup	Benzo(a)pyrene	0.3	0.51	0.050	ug/g
BH112-SS1	VEV746-01	Benzo(a)pyrene	0.3	0.52	0.050	ug/g
BH112-SS1	VEV746-01-Lab Dup	Fluoranthene	0.69	1.6	0.050	ug/g
BH112-SS1	VEV746-01	Fluoranthene	0.69	1.6	0.050	ug/g
BH112-SS2	VEV747-01	Conductivity	0.7	1.5	0.002	mS/cm
BH112-SS2	VEV747-01	Sodium Adsorption Ratio	5.0	33		N/A
BH113-SS1	VEV749-02	Conductivity	0.7	1.1	0.002	mS/cm
BH113-SS1	VEV749-02	Sodium Adsorption Ratio	5.0	13		N/A

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: 908291-03-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/08/31 Report #: R7792269 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C361664 Received: 2023/03/03, 14:40

Sample Matrix: Water # Samples Received: 2

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Chloride by Automated Colourimetry	2		2023/03/08		SM 23 /500-CLE m
Chromium (M) in Mator	2		2023/03/06	CAM 50P-00405	5101 25 4500-CI L III
	2	N/A	2023/03/06		EPA / 199 III
Free (WAD) Cyanide	2	N/A	2023/03/06	CAM SOP-00457	OMOE E3015 m
Mercury	2	2023/03/06	2023/03/06	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	2	N/A	2023/03/07	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: 908291-03-01

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/08/31 Report #: R7792269 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C361664 Received: 2023/03/03, 14:40

Encryption Key

Neroshun Govinthathas Project Manager Assistant 31 Aug 2023 19:20:32

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas	ID			VEV995	VEV996			
Sampling Data				2023/03/03	2023/03/03			
Sampling Date				10:50	10:55			
COC Number				908291-03-01 908291-03-0				
		UNITS	Criteria	BH/MW 102	DUP 1020	RDL	QC Batch	
Inorganics								
WAD Cyanide (Free)	ug/L	66	ND	ND	1	8535584	
Dissolved Chlor	mg/L	790	2800	2700	25	8535383		
No Fill	No Exceeda	nce						
Grey	Exceeds 1 ci	riteria p	olicy/leve	2				
Black	Exceeds bot	h criteri	ia/levels					
RDL = Reportab	le Detection L	imit						
QC Batch = Qua	lity Control Ba	atch						
Criteria: Ontario	o Reg. 153/04	(Amend	led April 2	15, 2011)				
Table 2: Full De	pth Generic Si [.]	te Cond	ition Stan	idards in a Potal	ole Ground Wat	er Coi	ndition	
Potable Ground	l Water- All Ty	pes of P	roperty U	lses - Coarse Tex	tured Soil			
ND = Not Detec	ted at a conce	entration	n equal oi	r greater than th	ne indicated Det	ectio	n Limit.	

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID			VEV995	VEV996			VEV996		
Sampling Date			2023/03/03	2023/03/03			2023/03/03		
			10:50	10:55			10:55		
COC Number			908291-03-01	908291-03-01			908291-03-01		ļ
	UNITS	Criteria	BH/MW 102	DUP 1020	RDL	QC Batch	DUP 1020 Lab-Dup	RDL	QC Batch
Metals									
Chromium (VI)	ug/L	25	ND	ND	0.50	8535767			
Mercury (Hg)	ug/L	0.29	ND	ND	0.10	8536124	ND	0.10	8536124
Dissolved Antimony (Sb)	ug/L	6.0	ND	ND	0.50	8535762			
Dissolved Arsenic (As)	ug/L	25	ND	ND	1.0	8535762			
Dissolved Barium (Ba)	ug/L	1000	100	100	2.0	8535762			
Dissolved Beryllium (Be)	ug/L	4.0	ND	ND	0.40	8535762			
Dissolved Boron (B)	ug/L	5000	440	480	10	8535762			
Dissolved Cadmium (Cd)	ug/L	2.7	ND	ND	0.090	8535762			
Dissolved Chromium (Cr)	ug/L	50	ND	ND	5.0	8535762			
Dissolved Cobalt (Co)	ug/L	3.8	0.85	1.3	0.50	8535762			
Dissolved Copper (Cu)	ug/L	87	3.3	6.9	0.90	8535762			
Dissolved Lead (Pb)	ug/L	10	ND	ND	0.50	8535762			
Dissolved Molybdenum (Mo)	ug/L	70	3.4	2.9	0.50	8535762			
Dissolved Nickel (Ni)	ug/L	100	1.2	1.9	1.0	8535762			
Dissolved Selenium (Se)	ug/L	10	ND	ND	2.0	8535762			
Dissolved Silver (Ag)	ug/L	1.5	ND	ND	0.090	8535762			
Dissolved Sodium (Na)	ug/L	490000	1500000	1500000	500	8535762			
Dissolved Thallium (Tl)	ug/L	2.0	ND	ND	0.050	8535762			
Dissolved Uranium (U)	ug/L	20	2.9	2.6	0.10	8535762			
Dissolved Vanadium (V)	ug/L	6.2	ND	0.91	0.50	8535762			
Dissolved Zinc (Zn)	ug/L	1100	66	ND	5.0	8535762			
No Fill No Exc	eedance	2							
Grey Exceed	ls 1 crite	ria policy	/level						
Black Exceed	ls both c	riteria/le	vels						
RDL = Reportable Detection Li	mit								
QC Batch = Quality Control Ba	tch								

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	7.0°C	
Revised	l Report [2023/08	/31]: Criteria upd	ated from Table 6 to Table 2 as per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: CD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8535383	Dissolved Chloride (Cl-)	2023/03/08	NC	80 - 120	96	80 - 120	ND, RDL=1.0	mg/L	3.1	20
8535584	WAD Cyanide (Free)	2023/03/06	102	80 - 120	102	80 - 120	ND,RDL=1	ug/L	NC	20
8535762	Dissolved Antimony (Sb)	2023/03/07	112	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20
8535762	Dissolved Arsenic (As)	2023/03/07	107	80 - 120	98	80 - 120	ND, RDL=1.0	ug/L	NC	20
8535762	Dissolved Barium (Ba)	2023/03/07	105	80 - 120	98	80 - 120	ND, RDL=2.0	ug/L	0.31	20
8535762	Dissolved Beryllium (Be)	2023/03/07	110	80 - 120	101	80 - 120	ND, RDL=0.40	ug/L	NC	20
8535762	Dissolved Boron (B)	2023/03/07	107	80 - 120	100	80 - 120	ND, RDL=10	ug/L	3.4	20
8535762	Dissolved Cadmium (Cd)	2023/03/07	107	80 - 120	98	80 - 120	ND, RDL=0.090	ug/L	NC	20
8535762	Dissolved Chromium (Cr)	2023/03/07	105	80 - 120	96	80 - 120	ND, RDL=5.0	ug/L	NC	20
8535762	Dissolved Cobalt (Co)	2023/03/07	103	80 - 120	97	80 - 120	ND, RDL=0.50	ug/L	NC	20
8535762	Dissolved Copper (Cu)	2023/03/07	106	80 - 120	98	80 - 120	ND, RDL=0.90	ug/L	NC	20
8535762	Dissolved Lead (Pb)	2023/03/07	105	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	NC	20
8535762	Dissolved Molybdenum (Mo)	2023/03/07	116	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	8.0	20
8535762	Dissolved Nickel (Ni)	2023/03/07	100	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	7.6	20
8535762	Dissolved Selenium (Se)	2023/03/07	106	80 - 120	98	80 - 120	ND, RDL=2.0	ug/L	NC	20
8535762	Dissolved Silver (Ag)	2023/03/07	97	80 - 120	102	80 - 120	ND, RDL=0.090	ug/L	NC	20
8535762	Dissolved Sodium (Na)	2023/03/07	NC	80 - 120	96	80 - 120	ND, RDL=100	ug/L	0.74	20
8535762	Dissolved Thallium (TI)	2023/03/07	109	80 - 120	101	80 - 120	ND, RDL=0.050	ug/L	NC	20
8535762	Dissolved Uranium (U)	2023/03/07	108	80 - 120	99	80 - 120	ND, RDL=0.10	ug/L	0.67	20
8535762	Dissolved Vanadium (V)	2023/03/07	105	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	NC	20
8535762	Dissolved Zinc (Zn)	2023/03/07	104	80 - 120	97	80 - 120	ND, RDL=5.0	ug/L	4.6	20
8535767	Chromium (VI)	2023/03/06	101	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	NC	20
8536124	Mercury (Hg)	2023/03/06	99	75 - 125	106	80 - 120	ND, RDL=0.10	ug/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 6 of 8

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH/MW 102	VEV995-01	Dissolved Chloride (Cl-)	790	2800	25	mg/L
BH/MW 102	VEV995-02	Dissolved Sodium (Na)	490000	1500000	500	ug/L
DUP 1020	VEV996-01	Dissolved Chloride (Cl-)	790	2700	25	mg/L
DUP 1020	VEV996-02	Dissolved Sodium (Na)	490000	1500000	500	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 224

> Report Date: 2023/08/31 Report #: R7792275 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C372941 Received: 2023/03/15, 13:16

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	3	N/A	2023/03/21	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	2	2023/03/20	2023/03/20	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2023/03/17	2023/03/17	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2023/03/21	2023/03/21	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2023/03/17	2023/03/17	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	1	2023/03/17	2023/03/20	CAM SOP-00436	EPA 3060/7199 m
Acid Extractable Metals by ICPMS	2	2023/03/20	2023/03/20	CAM SOP-00447	EPA 6020B m
Moisture	4	N/A	2023/03/17	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	3	2023/03/17	2023/03/18	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT	2	2023/03/20	2023/03/20	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2023/03/21	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 12

Your Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Your C.O.C. #: n/a

Attention: Rebecca Morrison

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2023/08/31 Report #: R7792275 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C372941 Received: 2023/03/15. 13:16

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Neroshun Govinthathas Project Manager Assistant 31 Aug 2023 19:20:57

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 12 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID				VHG526			VHG527	VHG528		
Sampling Date				2023/03/01			2023/02/17	2023/03/01		
COC Number				n/a			n/a	n/a		
		UNITS	Criteria	BH/MW 106-SS1	RDL	QC Batch	BH/MW 112-SS2	DUP10601	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption R	5.0	13		8554949						
Inorganics										
Conductivity	onductivity mS/cm 0.7					8564078				
Moisture %			-	17	1.0	8558331	16	8.8	1.0	8558331
Available (CaCl2) pH p		рН	-	7.37		8561793				
WAD Cyanide (Free)		ug/g	0.051	ND	0.01	8558101				
No Fill	No Ex	ceedanc	e							
Grey	Excee	eds 1 crite	eria polic	y/level						
Black	Excee	ds both	criteria/le	evels						
RDL = Reportable Det	tection L	imit								
QC Batch = Quality C	ontrol Ba	atch								
Criteria: Ontario Reg.	153/04	(Amende	ed April 1	5, 2011)						
Table 2: Full Depth G	eneric Si	te Condit	ion Stand	dards in a Potable (Ground	Water Con	dition			

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Bureau Verit	as ID			VHG529					
Sampling Da	te			2023/02/17					
COC Number	r			n/a					
		UNITS	Criteria	DUP10201	RDL	QC Batch			
Calculated Pa	arameters					<u>.</u>			
Sodium Adso	orption Ratio	N/A	5.0	6.5		8554949			
Inorganics									
Conductivity		mS/cm	0.7	0.96	0.002	8564078			
Moisture		%	-	21	1.0	8558032			
Available (Ca	Cl2) pH	рН	-	7.46		8561793			
WAD Cyanide	e (Free)	ug/g	0.051	ND	0.01	8558101			
No Fill	No Exceedance	е							
Grey	Exceeds 1 crite	eria polic	y/level						
Black	Exceeds both o	criteria/le	evels						
RDL = Report	able Detection L	imit							
QC Batch = O	uality Control Ba	atch							
Criteria: Onta	ario Reg. 153/04	(Amende	ed April 1	5, 2011)					
Table 2: Full I	Depth Generic Si	te Condi	tion Stand	dards in a Pot	able Gr	ound			
Water Condit	Water Condition								
Soil - Resider	Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil								
ND = Not Det	tected at a conce	ntration	equal or	greater than	the indi	cated			
Detection Lin	nit.								

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID			VHG526		VHG529		
Sampling Date			2023/03/01		2023/02/17		
COC Number			n/a		n/a		
	UNITS	Criteria	BH/MW 106-SS1	QC Batch	DUP10201	RDL	QC Batch
Inorganics							
Chromium (VI)	ug/g	8	ND	8558148	ND	0.18	8558158
Metals							
Hot Water Ext. Boron (B)	ug/g	1.5	0.28	8561462	0.35	0.050	8561462
Acid Extractable Antimony (Sb)	ug/g	7.5	ND	8561464	0.30	0.20	8561464
Acid Extractable Arsenic (As)	ug/g	18	6.1	8561464	4.1	1.0	8561464
Acid Extractable Barium (Ba)	ug/g	390	84	8561464	73	0.50	8561464
Acid Extractable Beryllium (Be)	ug/g	4	0.58	8561464	0.74	0.20	8561464
Acid Extractable Boron (B)	ug/g	120	ND	8561464	9.9	5.0	8561464
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.16	8561464	ND	0.10	8561464
Acid Extractable Chromium (Cr)	ug/g	160	16	8561464	19	1.0	8561464
Acid Extractable Cobalt (Co)	ug/g	22	8.8	8561464	9.0	0.10	8561464
Acid Extractable Copper (Cu)	ug/g	140	50	8561464	88	0.50	8561464
Acid Extractable Lead (Pb)	ug/g	120	8.6	8561464	11	1.0	8561464
Acid Extractable Molybdenum (Mo)	ug/g	6.9	1.9	8561464	1.5	0.50	8561464
Acid Extractable Nickel (Ni)	ug/g	100	18	8561464	21	0.50	8561464
Acid Extractable Selenium (Se)	ug/g	2.4	ND	8561464	ND	0.50	8561464
Acid Extractable Silver (Ag)	ug/g	20	ND	8561464	ND	0.20	8561464
Acid Extractable Thallium (Tl)	ug/g	1	0.084	8561464	0.088	0.050	8561464
Acid Extractable Uranium (U)	ug/g	23	0.91	8561464	1.4	0.050	8561464
Acid Extractable Vanadium (V)	ug/g	86	29	8561464	30	5.0	8561464
Acid Extractable Zinc (Zn)	ug/g	340	39	8561464	51	5.0	8561464
Acid Extractable Mercury (Hg)	ug/g	0.27	ND	8561464	ND	0.050	8561464

No Exceedance

No Fill Grey Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID			VHG526	VHG527			VHG527		
Sampling Date			2023/03/01	2023/02/17			2023/02/17		
COC Number			n/a	n/a			n/a		
	UNITS	Criteria	BH/MW 106-SS1	BH/MW 112-SS2	RDL	QC Batch	BH/MW 112-SS2 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	-	ND	ND	0.0071	8554854			
Polyaromatic Hydrocarbo	ns								
Acenaphthene	ug/g	7.9	ND	ND	0.0050	8558843	ND	0.0050	8558843
Acenaphthylene	ug/g	0.15	ND	ND	0.0050	8558843	ND	0.0050	8558843
Anthracene	ug/g	0.67	ND	ND	0.0050	8558843	ND	0.0050	8558843
Benzo(a)anthracene	ug/g	0.5	ND	ND	0.0050	8558843	ND	0.0050	8558843
Benzo(a)pyrene	ug/g	0.3	ND	ND	0.0050	8558843	ND	0.0050	8558843
Benzo(b/j)fluoranthene	ug/g	0.78	ND	ND	0.0050	8558843	ND	0.0050	8558843
Benzo(g,h,i)perylene	ug/g	6.6	ND	ND	0.0050	8558843	0.0079	0.0050	8558843
Benzo(k)fluoranthene	ug/g	0.78	ND	ND	0.0050	8558843	ND	0.0050	8558843
Chrysene	ug/g	7	ND	ND	0.0050	8558843	ND	0.0050	8558843
Dibenzo(a,h)anthracene	ug/g	0.1	ND	ND	0.0050	8558843	ND	0.0050	8558843
Fluoranthene	ug/g	0.69	ND	ND	0.0050	8558843	ND	0.0050	8558843
Fluorene	ug/g	62	ND	ND	0.0050	8558843	ND	0.0050	8558843
Indeno(1,2,3-cd)pyrene	ug/g	0.38	ND	ND	0.0050	8558843	ND	0.0050	8558843
1-Methylnaphthalene	ug/g	0.99	ND	ND	0.0050	8558843	ND	0.0050	8558843
2-Methylnaphthalene	ug/g	0.99	ND	ND	0.0050	8558843	ND	0.0050	8558843
Naphthalene	ug/g	0.6	ND	ND	0.0050	8558843	ND	0.0050	8558843
Phenanthrene	ug/g	6.2	ND	ND	0.0050	8558843	ND	0.0050	8558843
Pyrene	ug/g	78	ND	ND	0.0050	8558843	ND	0.0050	8558843
Surrogate Recovery (%)		-			-				
D10-Anthracene	%	-	102	100		8558843	98		8558843
D14-Terphenyl (FS)	%	-	104	98		8558843	98		8558843
D8-Acenaphthylene	%	-	97	91		8558843	93		8558843
No Fill N	lo Exceeda	nce							
Grey	xceeds 1 c	riteria po	licy/level						
Black Exceeds both criteria/levels		/levels							
RDL = Reportable Detectio	n Limit								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID			VHG528				
Sampling Date			2023/03/01				
COC Number			n/a				
	UNITS	Criteria	DUP10601	RDL	QC Batch		
Calculated Parameters		<u> </u>	•				
Methylnaphthalene, 2-(1-)	ug/g	-	ND	0.0071	8554854		
Polyaromatic Hydrocarbons							
Acenaphthene	ug/g	7.9	ND	0.0050	8558843		
Acenaphthylene	ug/g	0.15	ND	0.0050	8558843		
Anthracene	ug/g	0.67	ND	0.0050	8558843		
Benzo(a)anthracene	ug/g	0.5	ND	0.0050	8558843		
Benzo(a)pyrene	ug/g	0.3	ND	0.0050	8558843		
Benzo(b/j)fluoranthene	ug/g	0.78	ND	0.0050	8558843		
Benzo(g,h,i)perylene	ug/g	6.6	ND	0.0050	8558843		
Benzo(k)fluoranthene	ug/g	0.78	ND	0.0050	8558843		
Chrysene	ug/g	7	ND	0.0050	8558843		
Dibenzo(a,h)anthracene	ug/g	0.1	ND	0.0050	8558843		
Fluoranthene	ug/g	0.69	0.0076	0.0050	8558843		
Fluorene	ug/g	62	ND	0.0050	8558843		
Indeno(1,2,3-cd)pyrene	ug/g	0.38	ND	0.0050	8558843		
1-Methylnaphthalene	ug/g	0.99	ND	0.0050	8558843		
2-Methylnaphthalene	ug/g	0.99	ND	0.0050	8558843		
Naphthalene	ug/g	0.6	ND	0.0050	8558843		
Phenanthrene	ug/g	6.2	ND	0.0050	8558843		
Pyrene	ug/g	78	0.0071	0.0050	8558843		
Surrogate Recovery (%)				-	-		
D10-Anthracene	%	-	99		8558843		
D14-Terphenyl (FS)	%	-	99		8558843		
No Fill No Exceedanc	е						
Grey Exceeds 1 crite	eria poli	cy/level					
Black Exceeds both	criteria/	levels					
RDL = Reportable Detection L	.imit						
QC Batch = Quality Control Ba	atch						
Criteria: Ontario Reg. 153/04	(Amend	led April 3	15, 2011)				
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground							
Water Condition							
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil							
Detection Limit.							

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Verit	reau Veritas ID VHG528							
Sampling Da	te	2023/03/01						
COC Numbe	r	n/a						
		UNITS	Criteria	DUP10601	RDL	QC Batch		
D8-Acenaph	thylene	%	-	- 95 8558				
No Fill	No Exceedance							
Grey	Exceeds 1 criteria policy/level							
Black	Exceeds both criteria/levels							
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)								
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground								
Water Condition								
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil								

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to thi	ree cooler temperatures taken at receipt

Package 1 8.3°C

Revised Report [2023/08/31]: Updated criteria from Table 6 to Table 2 as per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8558843	D10-Anthracene	2023/03/18	94	50 - 130	107	50 - 130	98	%		
8558843	D14-Terphenyl (FS)	2023/03/18	93	50 - 130	108	50 - 130	93	%		
8558843	D8-Acenaphthylene	2023/03/18	89	50 - 130	106	50 - 130	93	%		
8558032	Moisture	2023/03/17							0.39	20
8558101	WAD Cyanide (Free)	2023/03/17	95	75 - 125	98	80 - 120	ND, RDL=0.01	ug/g	NC	35
8558148	Chromium (VI)	2023/03/20	49 (1)	70 - 130	94	80 - 120	ND, RDL=0.18	ug/g	NC	35
8558158	Chromium (VI)	2023/03/17	78	70 - 130	92	80 - 120	ND, RDL=0.18	ug/g	NC	35
8558331	Moisture	2023/03/17							3.8	20
8558843	1-Methylnaphthalene	2023/03/18	110	50 - 130	116	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	2-Methylnaphthalene	2023/03/18	100	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Acenaphthene	2023/03/18	102	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Acenaphthylene	2023/03/18	103	50 - 130	107	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Anthracene	2023/03/18	106	50 - 130	108	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Benzo(a)anthracene	2023/03/18	116	50 - 130	116	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Benzo(a)pyrene	2023/03/18	100	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Benzo(b/j)fluoranthene	2023/03/18	97	50 - 130	101	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Benzo(g,h,i)perylene	2023/03/18	108	50 - 130	110	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Benzo(k)fluoranthene	2023/03/18	96	50 - 130	99	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Chrysene	2023/03/18	105	50 - 130	108	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Dibenzo(a,h)anthracene	2023/03/18	100	50 - 130	98	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Fluoranthene	2023/03/18	112	50 - 130	116	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Fluorene	2023/03/18	102	50 - 130	105	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Indeno(1,2,3-cd)pyrene	2023/03/18	108	50 - 130	109	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Naphthalene	2023/03/18	92	50 - 130	102	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Phenanthrene	2023/03/18	101	50 - 130	104	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8558843	Pyrene	2023/03/18	110	50 - 130	114	50 - 130	ND, RDL=0.0050	ug/g	NC	40
8561462	Hot Water Ext. Boron (B)	2023/03/20	110	75 - 125	104	75 - 125	ND, RDL=0.050	ug/g	2.3	40
8561464	Acid Extractable Antimony (Sb)	2023/03/20	107	75 - 125	98	80 - 120	ND, RDL=0.20	ug/g	NC	30
8561464	Acid Extractable Arsenic (As)	2023/03/20	105	75 - 125	99	80 - 120	ND, RDL=1.0	ug/g	7.5	30
8561464	Acid Extractable Barium (Ba)	2023/03/20	NC	75 - 125	96	80 - 120	ND, RDL=0.50	ug/g	1.5	30
8561464	Acid Extractable Beryllium (Be)	2023/03/20	111	75 - 125	102	80 - 120	ND, RDL=0.20	ug/g	1.7	30

Page 9 of 12

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554D Site Location: 590 ARGUS ROAD Sampler Initials: PS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8561464	Acid Extractable Boron (B)	2023/03/20	110	75 - 125	102	80 - 120	ND, RDL=5.0	ug/g	NC	30
8561464	Acid Extractable Cadmium (Cd)	2023/03/20	106	75 - 125	96	80 - 120	ND, RDL=0.10	ug/g	NC	30
8561464	Acid Extractable Chromium (Cr)	2023/03/20	106	75 - 125	100	80 - 120	ND, RDL=1.0	ug/g	0.19	30
8561464	Acid Extractable Cobalt (Co)	2023/03/20	104	75 - 125	96	80 - 120	ND, RDL=0.10	ug/g	2.2	30
8561464	Acid Extractable Copper (Cu)	2023/03/20	103	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	3.8	30
8561464	Acid Extractable Lead (Pb)	2023/03/20	101	75 - 125	98	80 - 120	ND, RDL=1.0	ug/g	3.9	30
8561464	Acid Extractable Mercury (Hg)	2023/03/20	106	75 - 125	107	80 - 120	ND, RDL=0.050	ug/g	NC	30
8561464	Acid Extractable Molybdenum (Mo)	2023/03/20	109	75 - 125	97	80 - 120	ND, RDL=0.50	ug/g	NC	30
8561464	Acid Extractable Nickel (Ni)	2023/03/20	105	75 - 125	98	80 - 120	ND, RDL=0.50	ug/g	2.3	30
8561464	Acid Extractable Selenium (Se)	2023/03/20	105	75 - 125	99	80 - 120	ND, RDL=0.50	ug/g	NC	30
8561464	Acid Extractable Silver (Ag)	2023/03/20	105	75 - 125	98	80 - 120	ND, RDL=0.20	ug/g	NC	30
8561464	Acid Extractable Thallium (TI)	2023/03/20	101	75 - 125	98	80 - 120	ND, RDL=0.050	ug/g	2.1	30
8561464	Acid Extractable Uranium (U)	2023/03/20	106	75 - 125	100	80 - 120	ND, RDL=0.050	ug/g	1.4	30
8561464	Acid Extractable Vanadium (V)	2023/03/20	104	75 - 125	98	80 - 120	ND, RDL=5.0	ug/g	2.8	30
8561464	Acid Extractable Zinc (Zn)	2023/03/20	100	75 - 125	96	80 - 120	ND, RDL=5.0	ug/g	5.1	30
8561793	Available (CaCl2) pH	2023/03/20			99	97 - 103			0.57	N/A
8564078	Conductivity	2023/03/21			107	90 - 110	ND, RDL=0.002	mS/cm	2.2	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was re-analyzed with the same results

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH/MW 106-SS1	VHG526-01	Conductivity	0.7	1.0	0.002	mS/cm
BH/MW 106-SS1	VHG526-01	Sodium Adsorption Ratio	5.0	13		N/A
DUP10201	VHG529-01	Conductivity	0.7	0.96	0.002	mS/cm
DUP10201	VHG529-01	Sodium Adsorption Ratio	5.0	6.5		N/A

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.