Preliminary Hydrogeological Investigation

Proposed Residential Development 3056 Neyagawa Boulevard Oakville, ON

Prepared For:

NEATT Communities

Project #: 22-012-101 **Date:** September 8, 2023

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8

Telephone: (905) 264-9393 www.dsconsultants.ca 22-012-101

September 8, 2023

NEATT Communities 775 Main Street East Milton, ON L9T 3Z3

Attention: Mr. Evan Kernaghan via email: Evan.Kernaghan@neattcommunities.com

RE: Preliminary Hydrogeological Investigation – 3056 Neyagawa Boulevard, Oakville, Ontario

DS Consultants Limited (DS) was retained by NEATT Communities to complete a preliminary hydrogeological investigation for the proposed development located at 3056 Neyagawa Boulevard in Oakville, Ontario (Site). The Site is approximately 8 ha (19.77 acre) parcel of land located on the northwest corner of the intersection of Neyagawa Boulevard and Dundas Street West. It is DS's understanding that at this stage, the east portion of the subject property is to be developed for residential purposes and will include the construction of three (3) blocks (Block 1, 2 and 3) including 8-27 story towers with podium buildings with four (4) levels of underground parking (P4).

The ground elevation at the site ranges between 154 to 159 meters above sea level (masl). No belowgrade design was available at the time of writing this report. The assumed finished floor elevation of P4 level as part of the preliminary design for proposed development considering the footing and elevator shaft would be approximately 14 meters below the existing ground surface (mbgs).

This preliminary hydrogeological assessment includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, impacts of the proposed development on the local groundwater and provides an estimation of construction dewatering during the proposed development phase. This investigation is based on monitoring wells installed by DS in support of the preliminary geotechnical, hydrogeological and environmental investigations at the Site.

If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment, Conservation and Parks (MECP).

Based on the results of our investigation, the following conclusions and recommendations are presented:

- Based on the MECP water well records search, there were thirty-one (31) water wells within a 500 m radius of the Site. All wells were noted as monitoring/test holes or not in use except for seven (7) records for domestic use purposes, one (1) well recorded as public supply and one (1) well listed for irrigation purpose. The study area is deemed to be fully serviced by municipal water and therefore, no groundwater users are expected in the area. Closer to construction, it is prudent to complete a door-to-door water well survey to confirm absence of any active water wells.
- 2. Between June 5 and 25, 2023, DS drilled twenty-one (21) boreholes as part of this hydrogeological investigation concurrently with the geotechnical and environmental investigation. Boreholes were

ii

und surface (mbms) A total of t

advanced to depths ranging from 1.4 to 18.8 meters below ground surface (mbgs). A total of ten (10) drilled boreholes were converted into monitoring wells and screened at depths ranging from 3.1 to 18.4 mbgs. DS also utilized five (5) existing monitoring wells installed by SHAD and Associates Inc. as part of preliminary geotechnical investigation in 2022. Boreholes were drilled to depths ranging from 8.2 to 9.4 mbgs and screened at depths ranging from 1.5 to 7.1 mbgs.

- 3. The surficial geology of the Site has been mapped as Till and consists of clay to silt-textured till derived from glaciolacustrine deposits or shale. The overburden geology at the Site generally consists of silty clay deposits, till/shale complex, and shale bedrock at approximate depths ranging from 2.3 to 3.3 m below existing ground surface, corresponding to elevations varying from 152.2 to 157.0 masl.
- 4. DS measured groundwater levels in all installed monitoring wells on June 26th and July 19th, 2023. Based on groundwater level measurements, the shallow groundwater table at the site was found at depths ranging from 2.66 to 5.01 mbgs (Elev. 150.83-157.04 masl) and deep groundwater levels were found at the depth ranging from 9.43 to 13.09 mbgs (141.16 -147.49 masl). Based on groundwater elevations, the flow direction within the Site is inferred to be southwesterly toward East Sixteen Mile Creek located approximately 350 meters west of the Site.
- 5. DS completed fourteen (14) Single Well Response Tests (SWRTs) in monitoring wells on June 26th and July 19th, 2023, to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. The values of calculated hydraulic conductivity (k) range from 9.65×10^{-9} to 1.46×10^{-5} m/s. Due to the heterogeneous nature of soils and the hydrogeological setting of the site, the geomean K-value of of 6.17×10^{-7} m/s was considered in the dewatering assessment.
- 6. One (1) unfiltered groundwater sample was collected from monitoring well BH23-6 on June 27th, 2023. The sample was analyzed and compared against the parameters listed under the Town of Oakville and Halton Region sewer use by-laws and Provincial Water Quality Objectives (PWQO) for surface water. The reported analytical results indicate that only TSS exceeded the Halton sanitary sewer limits. There were no exceedances against the Halton Region storm limits. Comparing the results against Town of Oakville storm criteria indicated that parameters such as TSS and Manganese exceeded the Town's storm limits. Therefore, water cannot be discharged to the Region/Town's storm and sanitary sewers without treatment. Multiple parameters exceeded the Provincial Water Quality Objectives (PWQO) criteria for surface water. Therefore, groundwater at the Site is not suitable for direct discharge without pre-treatment into the nearby surface water systems. Higher concentrations of total metals are typically associated with suspended solids and can be reduced with water filtration.
- 7. Considering the unsealed excavation method, the recommended flow rates for the proposed buildings are summarised in table below. This estimated value incorporates a safety factor of x3 and a theoretical 10 mm storm event into the open excavation during construction.

Block #	Assumed deepest excavation Elevation	Flow Rate Q- without a safety factor (L/day)	Flow Rate Q- with a safety factor x3 (L/day)	Storm water (@ 10 mm/24 hrs.) (L/day)	Design Flow Rate Or Total Flow Rate (L/day)
Block 1		86,000	258,000	100,000	358,000
Block 2	P4	92,000	276,000	115,000	391,000
Block 3		78,000	234,000	77,000	311,000

8. Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and drainage along the foundation wall. Based on the assumed design, depth to water and given k-value, the estimated permanent theoretical flow for each block is summarised in table below:

Block #	Permanent Drainage- without a safety factor (L/day)	Permanent Drainage-with a safety factor x3 (L/day)
Block 1	6,000	18,000
Block 2	7,000	21,000
Block 3	5,000	15,000

- 9. Since the expected design dewatering rate considering unsealed excavation for Blocks 1, 2 and 3 is between the MECP water taking limit of 50,000 and 400,000 L/day, an EASR application is required to be submitted to the MECP for short-term dewatering prior to construction of each block. Based on current groundwater conditions, permanent groundwater flow or permanent drainage is expected to be less than the water-taking limit of 50,000 L/day. Therefore, a PTTW is not required to be submitted on a permanent basis.
- 10. A discharge permit will be required from the Halton Region and/or Town of Oakville if private water is to be sent to the sewer system. Unless the future development is designed as a water-tight structure, all groundwater (temporary and permanent) will be sent to the sewer system and therefore will require a discharge approval from the Halton Region and/or Town of Oakville.
- 11. Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering.
- 12. There are structures and utilities within the maximum predicted zone of influence (ZOI) about 95 meters when considering an unsealed excavation. Since the majority of proposed underground construction is anticipated to be constructed within the low permeable till deposits and bedrock, an effect of settlement due to dewatering would be negligible.
- 13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Meysam Jafari, M.Sc., P.Geo. Project Manager

Reviewed By:

Marti Ceder

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

1.0	IINTRO	DUCTION1
	1.1	Purpose1
	1.2	Scope of Work
2.0	FIELD I	NVESTIGATION2
3.0	PHYSIC	CAL SETTING2
	3.1 Pł	hysiography and Drainage
	3.2	Geology2
	3.2.1	Quaternary Geology
	3.2.2	Bedrock Geology
	3.2.3	Site Geology
	3.3	Hydrogeology
	3.3.1	Local Groundwater Use
	3.3.2	Groundwater Conditions
	3.3.3	Hydraulic Conductivity
	3.3.4	Groundwater Quality5
4.0	CONST	RUCTION DEWATERING
	4.1	Estimation of Flow Rate - Unsealed Excavation
	4.2	Estimation of Flow Rate- Storm Water Consideration7
	4.3	Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)7
	4.4	Permanent Drainage (Long-term Discharge)8
	4.5	Permit Requirements
	4.5.1	Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW)
		Application
	4.5.2	Discharge Permits (Construction Dewatering)9
5.0	POTEN	TIAL IMPACTS9
	5.1	Local Groundwater Use9
	5.2	Point of Discharge and Groundwater Quality9
	5.3	Settlement Due to Dewatering Activities9
	5.4	Well Decommissioning
6.0	MONIT	FORING AND MITIGATION10
7.0	LIMITA	TIONS
8.0	CONSU	JLTANT QUALIFICATIONS
9.0	REFERE	ENCES12

FIGURES

Figure 1Site Location and MECP Water Well Record MapFigure 2Surficial Geology MapFigure 3Borehole and Monitoring Well Location PlanFigure 4Groundwater Elevation Contours and Flow Direction MapFigure 5Geological Cross Section A-A'

APPENDICES

- Appendix A Borehole Logs
- Appendix B Hydraulic Conductivity Analysis
- Appendix C Groundwater Quality Certificate of Analysis
- Appendix D MECP Water Well Records

1.0 IINTRODUCTION

DS Consultants Limited (DS) was retained by NEATT Communities to complete a preliminary hydrogeological investigation for the proposed development located at 3056 Neyagawa Boulevard in Oakville, Ontario (the Site). The Site is approximately 8 ha (19.77 acre) parcel of land located on the west corner of the intersection of Neyagawa Boulevard and Dundas Street West. It is DS's understanding that at this stage, the east portion of the subject property is to be developed for residential purposes and will include the construction of three (3) blocks (Block 1, 2 and 3) including 8-27 story towers with podium buildings with four (4) levels of underground parking (P4). **Figure 1** presents the site location map that highlights the location of the site and the surrounding area.

The ground elevation at the site ranged between 154 to 159 meters above sea level (masl). The assumed finished floor elevation of potential P4 Level as part of the conceptual proposed development considering the footing and elevator shaft would be approximately 14 meters below the existing ground surface (mbgs). No below-grade design was available at the time of writing this report.

This investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, provides an assessment of the hydrogeological constraints and impacts of the proposed development on the local groundwater and estimation of construction dewatering requirements.

1.1 Purpose

The purpose of this investigation was to review and determine the need for dewatering, estimate dewatering rates, assess groundwater quality and determine the need for a Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) from the Ministry of Environment and Conservation and Parks (MECP). The hydrogeological investigation will also be needed in support of Site Plan Approval (SPA). Potential impacts related to construction dewatering and associated monitoring/mitigation measures were also to be investigated.

1.2 Scope of Work

The scope of work for this investigation included:

- (i) Site visits;
- (ii) Collecting and interpreting available reports and data including the MECP Water Well Records (WWR), geotechnical, hydrogeological and environmental studies completed at the Site;
- (iii) In-situ hydraulic conductivity testing of existing monitoring wells;
- (iv) Estimation of temporary groundwater flow rate during the construction;
- (v) Asses permanent drainage requirements;
- (vi) Assessing groundwater quantity and quality to evaluate discharge options; and
- (vii) Data analyses and report preparation.

2.0 FIELD INVESTIGATION

A total of twenty-one (21) boreholes were drilled at the subject site by DS as part of the hydrogeological investigation concurrently with the geotechnical and environmental investigation. All boreholes were advanced between June 5 and 25, 2023, to a depth ranging from 1.4 to 18.8 mbgs. A total of ten (10) drilled boreholes were converted into monitoring wells and screened at depths ranging from 3.1 to 18.4 mbgs. Monitoring wells were constructed using 50 mm diameter PVC riser pipes and screens, which were installed in each of the boreholes in accordance with O.Reg. 903. To help better understanding of geological setting, DS utilized five (5) existing monitoring wells installed by SHAD and Associates Inc. as part of preliminary geotechnical investigation in 2022. Boreholes were drilled to a depth ranging from 8.2 to 9.4 mbgs and screened at depths ranging from 1.5 to 7.1 mbgs. All monitoring wells were developed before use to allow for groundwater level monitoring, hydraulic conductivity testing, and assess groundwater quality. A total of fourteen (14) single well response tests (SWRTs) were completed by performing a rising head test to estimate hydraulic conductivity values of the overburden at the Site. One (1) unfiltered groundwater sample was collected and analyzed against the Town of Oakville and Halton Region sewer use by-laws and Provincial Water Quality Objectives (PWQO) to assess groundwater discharge options during construction. The locations of the BHs/MWs are shown in Figure 3 and detailed subsurface conditions are presented on the geological cross-section (Figure 5) and the borehole Logs in Appendix A.

3.0 PHYSICAL SETTING

Available topographic maps, environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. The borehole logs from all investigations at the site as well as the MECP water well records (WWRs) were used to interpret the geological and hydrogeological conditions at the Site.

3.1 Physiography and Drainage

The site is situated within the Sixteen Mile Creek Watershed within the jurisdiction of the Conservation Halton. The area is characterised by gently rolling land, and slopes south towards Lake Ontario. The topography at the Site is relatively flat with a surface elevation ranging from approximately 154 to 159 masl. The nearest surface water body to the Site is East Sixteen Mile Creek which runs approximately 350 meters west of the Site and ultimately discharged into Lake Ontario. Drainage is generally controlled by streams, artificial channels, topography and underground utilities.

3.2 Geology

The following presents a brief description of regional and site geology based on the review of available information and site-specific soil investigations.

3.2.1 Quaternary Geology

The study area (500 m radius) lies within the Till Plains (Drumlinized) physiographic region of Southern Ontario (as per OGS Earth). Quaternary geology characterized by Halton Till predominately consists of silt to silty clay matrix, high in carbonate content and clast poor deposits of Pleistocene. The surficial geology

of the Site has been mapped as Till consists of clay to silt-textured till derived from glaciolacustrine deposits or shale. The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

Available published mapping shows that bedrock in the area is predominantly shale, limestone, dolostone, siltstone as part of the Queenston Formation (MNDM Map 2544 Bedrock Geology of Ontario. Bedrock was encountered during the current investigation at the depth ranging from 2.3 to 3.3 mbgs.

3.2.3 Site Geology

On-site subsurface soils were interpreted according to the preliminary geotechnical investigation report performed by DS (August 2023) based on the boreholes/monitoring wells (BHs/MWs) drilled by DS. The locations of the BHs/MWs are shown in **Figure 3** and detailed subsurface conditions are presented on the borehole Logs in **Appendix A**. The subsurface conditions in the boreholes are summarized in the following paragraphs, and the geologic cross-sections are presented in **Figure 5**.

Topsoil: A surficial topsoil layer with thickness ranging from 150 to 250 mm was encountered at the ground surface in Boreholes BH23-5, BH23-6, and BH23-7.

It should be noted that the thickness of the topsoil explored at the borehole locations may not be representative for the site and should not be relied on to calculate the amount of topsoil at the site. Shallow hand-dug test-pits should be carried out to further explore the topsoil conditions.

Asphaltic Concrete and Granular Material: Asphaltic concrete with thickness of 150 mm was encountered at the ground surface in Borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in BH23-2.

Fill Materials: Fill materials consisting of clayey silt to silty clay with occasional inclusions of rootlets/organics, organic staining, weathered shale, and cobble fragments were present in all boreholes, and extended to depths ranging from 0.8 to 1.5 m below existing ground surface. Trace asphalt fragments was present in the fill in BH23-6.

Silty Clay Till Deposit: Silty clay till was encountered in all boreholes and extended to depths ranging from 1.6 to 3.1 m below existing ground surface.

Silty Clay Till / Shale Complex: Overlying shale bedrock, silty clay till/shale complex with thicknesses ranging from 0.2 to 0.9 m was found in BH23-1, BH23-4, BH23-5, BH23-6, and BH23-8. This deposit consisted of glacial till with clayey texture mixed with highly weathered shale.

Shale Bedrock: Shale bedrock of Queenston Formation was found at approximate depths ranging from 2.3 to 3.3 m below existing ground surface, corresponding to elevations varying from 152.2 to 157.0 masl.

3.3 Hydrogeology

The hydrogeology at the Site was evaluated using the on-site monitoring wells installed by DS and other consultants, local domestic wells and existing hydrogeological and geotechnical reports for the area.

3.3.1 Local Groundwater Use

As part of the hydrogeological investigation, DS completed a search of the MECP water well records (WWRs) database. Based on the MECP WWR search, there are thirty-one (31) water wells within 500 meters of the site (**Appendix D**). All wells were noted as monitoring/test holes or not in use except for seven (7) records for domestic use purposes, one (1) well recorded as public supply and one (1) well listed for irrigation purpose. **Figure 1** shows the MECP water well location plan. The study area is deemed to be fully serviced by municipal water and therefore, no groundwater users are expected in the area. Closer to construction, it is prudent to complete a door-to-door water well survey to confirm absence of any active water wells.

3.3.2 Groundwater Conditions

DS measured groundwater levels in all available monitoring wells on June 26th and July 19th, 2023. **Table 2** presents the groundwater levels in all monitoring wells. Based on groundwater level measurements, the shallow groundwater table at the site was found at the depth ranging from 2.66 to 5.01 mbgs (Elev. 150.83-157.04 masl) and deep groundwater level was found at the depth ranging from 9.43 to 13.09 mbgs (141.16 - 147.49 masl). The interpreted groundwater contour map for the water level measurements is shown in **Figure 4**. Based on groundwater elevations, the flow direction within the Site is inferred to be southwesterly toward East Sixteen Mile Creek located approximately 350 meters west of the Site.

	Ground	Screened	June 26, 2023		July	19, 2023
Well ID	Elevation (masl)	Interval (mbgs)	Depth to Water (mbgs)	Groundwater Elevation (masl)	Depth to Water (mbgs)	Groundwater Elevation (masl)
BH23-1	158.13	12.2-18.3	4.33	153.8	4.38	153.75
BH23-2	159.56	9.1-12.2	2.52	157.04	2.78	156.78
BH23-3	158.19	7.6-15.2	3.02	155.17	3.12	155.07
BH23-4	156.92	7.6-15.2	9.43	147.49	10.51	146.41
BH23-5	157.62	7.6-15.2	4.18	153.44	4.12	153.5
BH23-6	155.41	7.6-15.2	4.09	151.32	4.19	151.22
BH23-7	157.58	4.6-12.2	5.01	152.57	5	152.58
BH23-8	154.25	9.1-15.2	12.94	141.31	13.09	141.16
BH23-9	158.21	3.1-6.2	4.07	154.14	4.12	154.09
BH23-17	154.51	3.1-6.2	3.68	150.83	3.67	150.84
BH1	158.19	2.4-5.4	3.24	154.95	3.02	155.17
BH2	159.56	4.1-7.1	-	-	3.28	156.28
BH3	158.13	1.5-3	2.71	155.42	2.66	155.47
BH4	158.13	3.1-6.1	3.53	154.6	3.49	154.64
BH5	156.92	2.3-5.3	4.07	152.85	3.21	153.71

Table 2: Groundwater Levels in Monitoring Wells

3.3.3 Hydraulic Conductivity

A total of fourteen (14) Single Well Response Tests (SWRTs) were completed by DS in monitoring wells on June 26th and July 19th, 2023, to estimate hydraulic conductivity (k) for the representative geological units in which the wells were completed. SWRTs were completed by performing a rising head test (slug test) with

the use of Waterra[®] tubing to 'instantaneously' remove water from the well. A datalogger was placed at the bottom of the wells to monitor recovery. Hydraulic conductivity (k) values were calculated using the Hvorslev method. **Table 3-1** presents a summary of the hydraulic conductivity (k) results for the representative geological units. The values of calculated hydraulic conductivity (k) range from 9.65×10^{-9} to 1.46×10^{-5} m/s. The hydraulic testing results are provided in **Appendix B.** Due to the heterogeneous nature of soils and the hydrogeological setting of the site, the geo-mean K-value of 6.17×10^{-7} m/s was considered in the dewatering assessment.

Well ID	Screen Interval	Screened Formation	K- Value(m/s)	Geomean (m/s)	
BH23-1	12.2-18.3	Shale Bedrock	1.13 x 10 ⁻⁷		
BH23-2	9.1-12.2	Shale Bedrock	5.48 x 10 ⁻⁷		
BH23-4	7.6-15.2	Shale Bedrock	9.65 x 10 ⁻⁹		
BH23-5	7.6-15.2	Shale Bedrock	4.49 x 10 ⁻⁷		
BH23-6	7.6-15.2	Shale Bedrock	2.11 x 10 ⁻⁷		
BH23-7	4.6-12.2	Shale Bedrock	5.15 x 10 ⁻⁷		
BH23-8	9.1-15.2	Shale Bedrock	3.47 x 10 ⁻⁷		
BH23-9	3.1-6.2	Shale Bedrock	1.79 x 10⁻ ⁶	6.17 x 10 ⁻⁷	
BH23-17	3.1-6.2	Shale Bedrock	2.94 x 10 ⁻⁷		
BH1	2.4-5.4	Till-Shale Bedrock	5.13 x 10 ⁻⁶		
BH2	4.1-7.1	Weathered Shale Bedrock	1.46 x 10⁻⁵		
ВНЗ	1.5-3	Silty Clay/Clayey Silt Till-Shale Bedrock	1.12 x 10⁻ ⁶		
BH4	3.1-6.1	Weathered Shale Bedrock	4.11 x 10 ⁻⁶		
BH5	2.3-5.3	Weathered Shale Bedrock	6.04 x 10 ⁻⁷		

3.3.4 Groundwater Quality

To assess the suitability for discharge of groundwater to Halton Region's sanitary and storm sewer criteria and the Town of Oakville storm sewer criteria one (1) unfiltered groundwater sample was collected from monitoring well BH23-6 on June 27th, 2023. The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The analytical results were compared to the parameter limits listed under the Town of Oakville and Halton Region sewer use by-laws and Provincial Water Quality Objectives (PWQO) for surface water. The reported analytical results indicate that only TSS exceeded the Halton sanitary sewer limits. There were no exceedances against the Halton Region storm limits. Comparing the results against Town of Oakville storm criteria indicated that parameters such as TSS and Manganese exceeded the Town's storm limits. Therefore, water cannot be discharged to the Region/Town's storm and sanitary sewers without treatment. Multiple parameters exceeded the Provincial Water Quality Objectives (PWQO) criteria for surface water. Therefore, groundwater at the Site is not suitable for a discharge without pre-treatment into the nearby surface water systems. Higher concentrations of total metals are typically

associated with suspended solids and can be reduced with water filtration. **Table 3-2 and 3-3** presents a summary of the exceeded parameters, and the certificate of analysis is provided in **Appendix D.**

Table 3-2: Parameters in Groundwater Exceeding the Town of Oakville Storm Sewer Use Bylaw andHalton Region Storm and Sanitary Sewer Use Bylaw

Parameter	Unit	Halton Sanitary Sewer Use By-Law Criteria	Oakville Storm Sewer Use By- Law Criteria	Halton Storm Sewer Use By- Law Criteria	BH23-6
Total Suspended Solids (TSS)	mg/L	350	15	-	<u>446</u>
Manganese	mg/L	5	0.05	-	<u>0.222</u>
0.00-Exceeds Halton Region storm sewer criteria; 0.00-Exceeds Halton Region sanitary sewer criteria; 0.00-					

Exceeds Oakville storm sewer criteria

Parameter	Unit	PWQO Criteria	BH23-6 Concentration	
Cobalt	mg/L	0.0009	0.00148	
Copper	mg/L	0.001	0.0054	
Iron	mg/L	0.3	2.20	
Phosphorus	mg/L	0.01	0.165	
Silver	mg/L	0.0001	0.00016	
4AAP Phenolics	mg/L	0.001	0.004	

Table 3-3: Parameters in Groundwater Exceeding the PWQO

4.0 CONSTRUCTION DEWATERING

The proposed residential development consists of constructing multiple high-rise buildings. Based on the preliminary conceptual design, the project is divided into three (3) Blocks on the eastern portion of the Site. The current scope of the work includes Blocks 1, 2 and 3. It is anticipated to have four (4) separate levels of underground parking (P4) in each block. The ground elevation at the site ranged between 154 to 159 meters above sea level (masl). No below grade design was available at the time of writing this report. The assumed finished floor elevation of P4 level as part of the preliminary design for proposed development considering the footing and elevator shaft would be approximately 14 meters below the existing ground surface (mbgs). For construction dewatering purposes, the groundwater level should be lowered at least one (1) m below the footings and elevator shaft elevation. The unsealed construction excavation method for each separated block with separated excavation dimensions were considered for the proposed development. Since the proposed underground structure will be below the groundwater table, dewatering will be required during the excavation of overburden material. It is important to note that all dewatering values have to be re-assessed when detail design become available along with shoring design and construction sequencing.

4.1 Estimation of Flow Rate - Unsealed Excavation

This section calculates the estimated dewatering required during the construction of the proposed building based on the geo-mean k-value, the highest groundwater elevations at the site using the steady-state flow

equation for unsealed excavation as follows. The estimated flow rates for the proposed buildings are summarised in **Table 4-1**.

$$Q_R = K x \frac{H^2 - h^2}{0.733} x \log (R_0/r_e)$$
$$r_e = \left(\frac{(a x b)}{\pi}\right)^{0.5}$$

 $R_0 = (r_s + 3000)(H - h)(k^{0.5})$

Table: 4-1 Estimation of Flow Rate (Short-term Discharge) - Unsealed Excavation

Parameters	Block 1	Block 2	Block 3
Parameters		P4 Level	
K -Hydraulic conductivity(geomean) (m/s)		6.17 x 10 ⁻⁷	
H-Distance from water level to the bottom of an aquifer (m)	15.8	15.8	15.8
h -Depth of water in the well while pumping (m)	1	1	1
a- length of excavation (m)	130	125	110
b- Width of excavation (m)	77	92	70
$r_{e\!}\!-\!equivalent$ radius, where a and b excavation dimensions (m)	56	60	49
R₀- Radius of the cone of depression	91	95	84
Estimated Flow Rate- L/day (without safety factor)	86,000	92,000	78,000

4.2 Estimation of Flow Rate- Storm Water Consideration

During construction, additional removal of stormwater from precipitation into the open excavation will be required. The estimated flow rate is based on the excavation dimensions for the phase of development and a theoretical 10 mm precipitation event in 24 hours. The total estimated dewatering that might be needed as a result of a 10 mm precipitation event for would be approximately 100,000 L/day for Block 1, 115,000 L/day for Block 2 and 77,000 L/day for Block 3.

4.3 Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)

Considering the unsealed excavation method, the recommended pumping rate for Block 1 would be approximately 383,000 L/day, for Block 2 would be 391,000 L/day and for Block 3 would be 311,000 L/day. These values incorporate a safety factor of x3 and account for stormwater as a result of a 10 mm precipitation event. The recommended flow rates for the proposed buildings are summarised in **Table 4-2**.

Block #	Assumed deepest excavation Elevation	Flow Rate Q- without a safety factor (L/day)	Flow Rate Q- with a safety factor x3 (L/day)	Storm water (@ 10 mm/24 hrs.) (L/day)	Designed Flow Rate Or Total Flow Rate (L/day)
Block 1	P4	86,000	258,000	100,000	358,000
Block 2	P4	92,000	276,000	115,000	391,000

Table 4-2: Total Construction Dewatering (Short-term Discharge) - Unsealed Excavation

Block 3	78,000	234,000	77,000	311,000

It is expected that the initial dewatering rate will be higher to remove groundwater within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation. The maximum flow calculation is intended to provide a conservative value to account for unforeseeable conditions that may arise during construction.

4.4 **Permanent Drainage (Long-term Discharge)**

Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and from drainage along the foundation wall. The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on July 19th, 2023. The Darcy flow equation was used to estimate permanent drainage to the building as follows:

Q = K x i x A

Where,

K- Hydraulic Conductivity (m/day)

i- Hydraulic Gradient

A- Area (m²)

Based on the assumed design, depth to water and given k-value, the estimated permanent theoretical flow rates for the development for each block are summarised in **Table 4-3**. The drainage control system around and beneath the buildings should be designed with enough capacity to handle the expected permanent volume. This value is recommended to be verified once the underground construction is completed and access is provided to DS to assess actual flow rates at the sumps.

Block #	Permanent Drainage-without a safety factor (L/day)	Permanent Drainage-with a safety factor x3 (L/day)
Block 1	6,000	18,000
Block 2	7,000	21,000
Block 3	5,000	15,000

Table 4-3: Permanent Drainage (Long-term Discharge)

4.5 Permit Requirements

4.5.1 Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application

An EASR is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is only

required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/day.

Since the expected design dewatering rate considering unsealed excavation for Blocks 1, 2 and 3 is between the MECP water taking limit of 50,000 and 400,000 L/day, an EASR application is required to be submitted to the MECP for short-term dewatering prior to construction of each block. Based on current groundwater conditions, permanent groundwater flow or permanent drainage is expected to be less than the watertaking limit of 50,000 L/day. Therefore, a PTTW is not required on a permanent basis.

4.5.2 Discharge Permits (Construction Dewatering)

A discharge permit will be required from the Halton Region and/or Town of Oakville if private water is to be sent to the sewer system. Unless the future development is designed as a water-tight structure, all groundwater (temporary and permanent) will be sent to the sewer system and therefore will require a discharge approval from the Halton Region and/or Town of Oakville.

5.0 POTENTIAL IMPACTS

The following are the predicted potential impacts as a result of construction dewatering:

5.1 Local Groundwater Use

The study area is deemed to be fully serviced by municipal water and it is not expected that there will be any groundwater users within the zone of influence. Therefore, it is not anticipated that there will be shortterm or long-term impacts on private water wells occurring from the proposed dewatering activities. Closer to construction, it is prudent to complete a door-to-door water well survey to confirm absence of any active water wells.

5.2 Point of Discharge and Groundwater Quality

The reported analytical results indicate that only TSS exceeded the Halton sanitary sewer limits. There were no exceedances against the Halton Region storm limits. Comparing the results against Town of Oakville storm criteria indicated that parameters such as TSS and Manganese exceeded the Town's storm limits. Therefore, water cannot be discharged to the Region/Town's storm and sanitary sewers without treatment. When compared against the PWQO guideline, concentrations of various total metals and phenols exceeded the PWQO standards. Therefore, groundwater at the Site is not suitable for a discharge without pretreatment into the nearby surface water systems. Higher concentrations of total metals are typically associated with suspended solids and can be reduced with water filtration.

5.3 Settlement Due to Dewatering Activities

There are structures and utilities within the maximum predicted zone of influence (ZOI) about 95 meters when considering an unsealed excavation. Since the majority of proposed underground construction is anticipated to be constructed within the low permeable till deposits and bedrock, an effect of settlement due to dewatering would be negligible.

5.4 Well Decommissioning

Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

6.0 MONITORING AND MITIGATION

Based on the preliminary hydrogeological investigation, the following monitoring and mitigation program is recommended:

- Baseline groundwater quality has been assessed and established prior to construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and Halton Region.
- A discharge permit is required to be submitted to the Region for short-term dewatering if private water is sent to the sewer system.
- Once a groundwater dewatering system is set up at the Site, a daily and weekly monitoring program should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering.

7.0 LIMITATIONS

This report was prepared for the sole use of the addressee to provide an assessment of the hydrogeological conditions on the property. The information presented in this report is based on information collected during the completion of the hydrogeological investigation. DS Consultants Limited was required to use and rely upon various information sources produced by other parties. The information provides in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions, and recommendations represented herein, is at the sole risk of said users. The conclusions drawn from the Hydrogeological report were based on information at selected observation and sampling locations. Different conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. DS Consultants Ltd. cannot be held responsible for hydrogeological conditions at the site that was not apparent from the available information.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Meysam Jafari, M.Sc., P.Geo Project Manager

Reviewed By:

Marti Ceder

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

8.0 CONSULTANT QUALIFICATIONS

Martin Gedeon, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with over 26 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental Site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations and provincial infrastructure projects across the province.

Meysam Jafari, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with DS Consultants Ltd. Meysam holds two master's degrees in Engineering Geology and Geology (Soil & Groundwater) and has several years of experience working in the geoscience industry. Meysam has experience with conducting Phase One and Phase Two Environmental Site Assessments, hydrogeological and geotechnical investigations in the Greater Toronto Area (GTA), and has been involved with project coordination, field assessments, data interpretation and reporting.

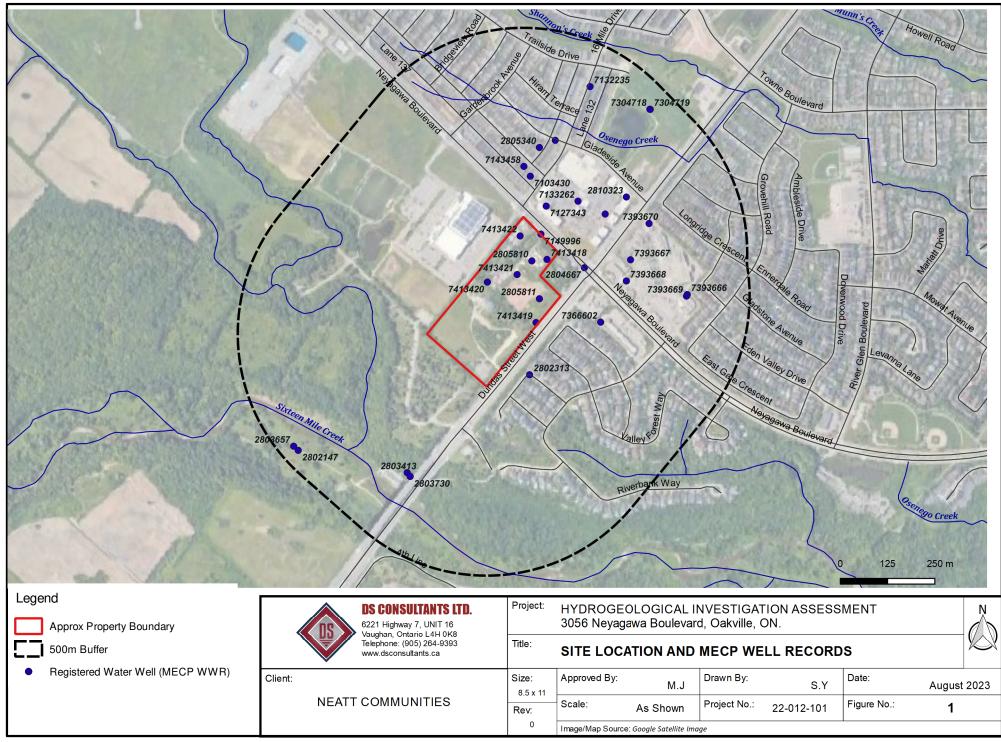
9.0 **REFERENCES**

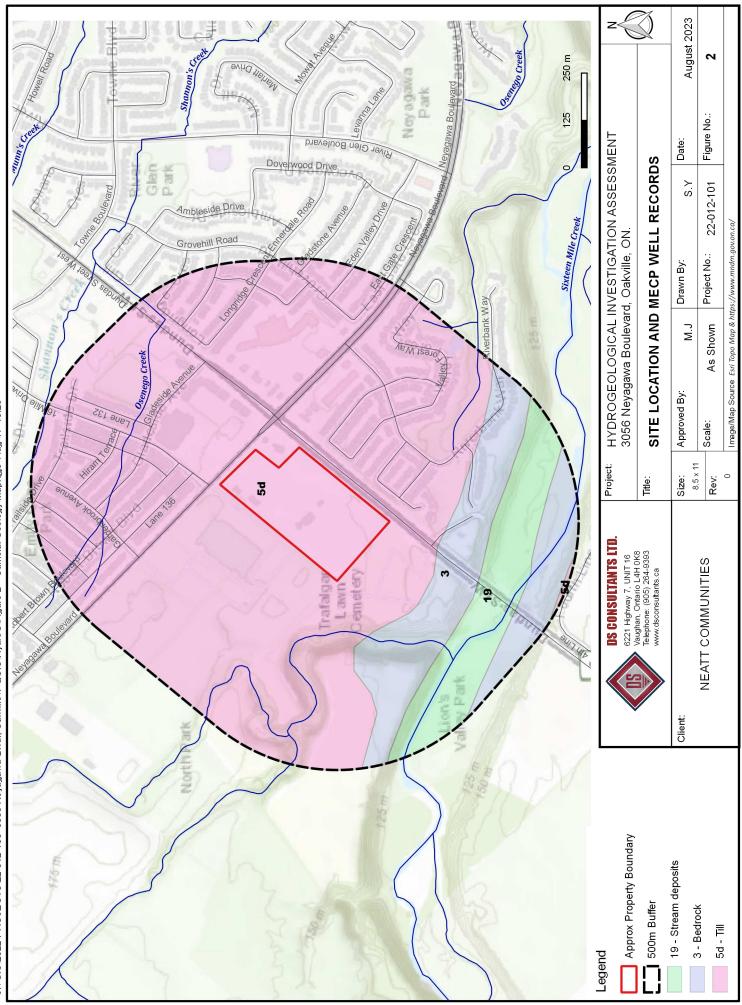
Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

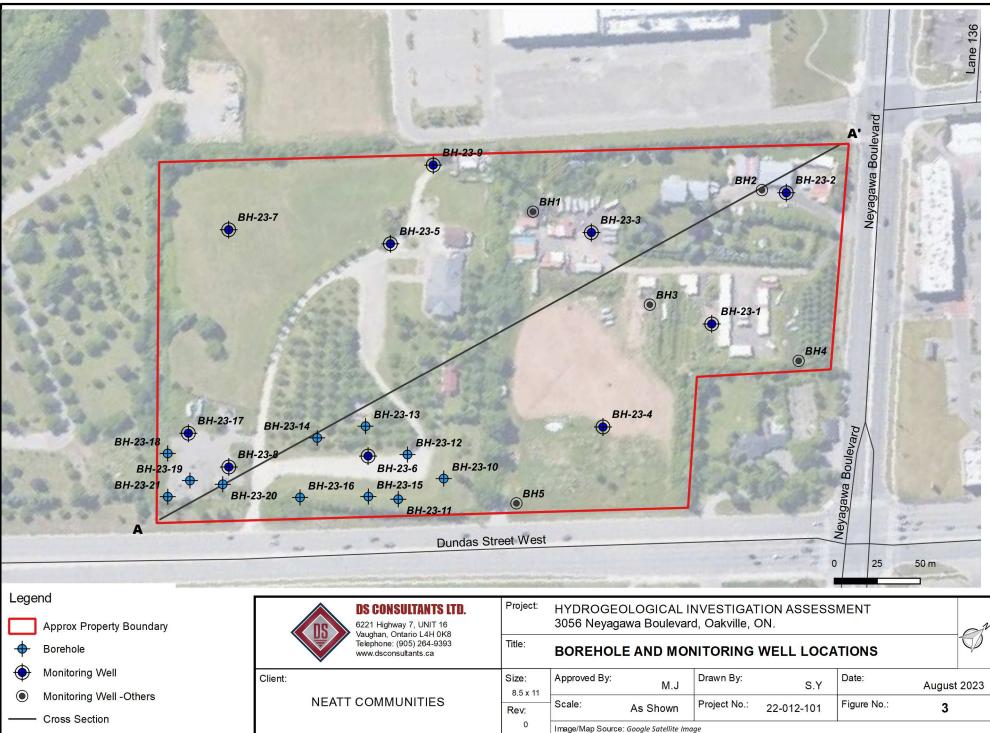
Ontario Regulation 153/04 made under the Environmental Protection Act, July 1, 2011.

Preliminary Geotechnical Report Proposed Residential Development 10-16 Wellesley Street West, 5-7 Nicholas Street & 586 Yonge Street, Toronto, Ontario., by McClymont & Rak Engineers Inc., November 2017.

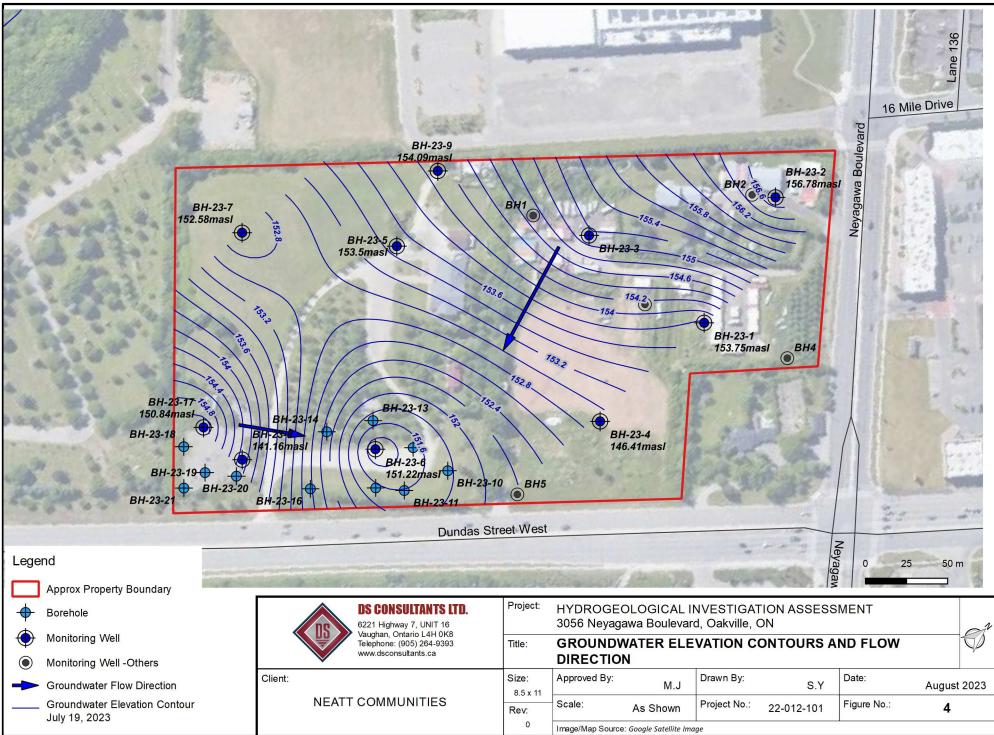

www.mndm.gov.on.ca/ogsearth.

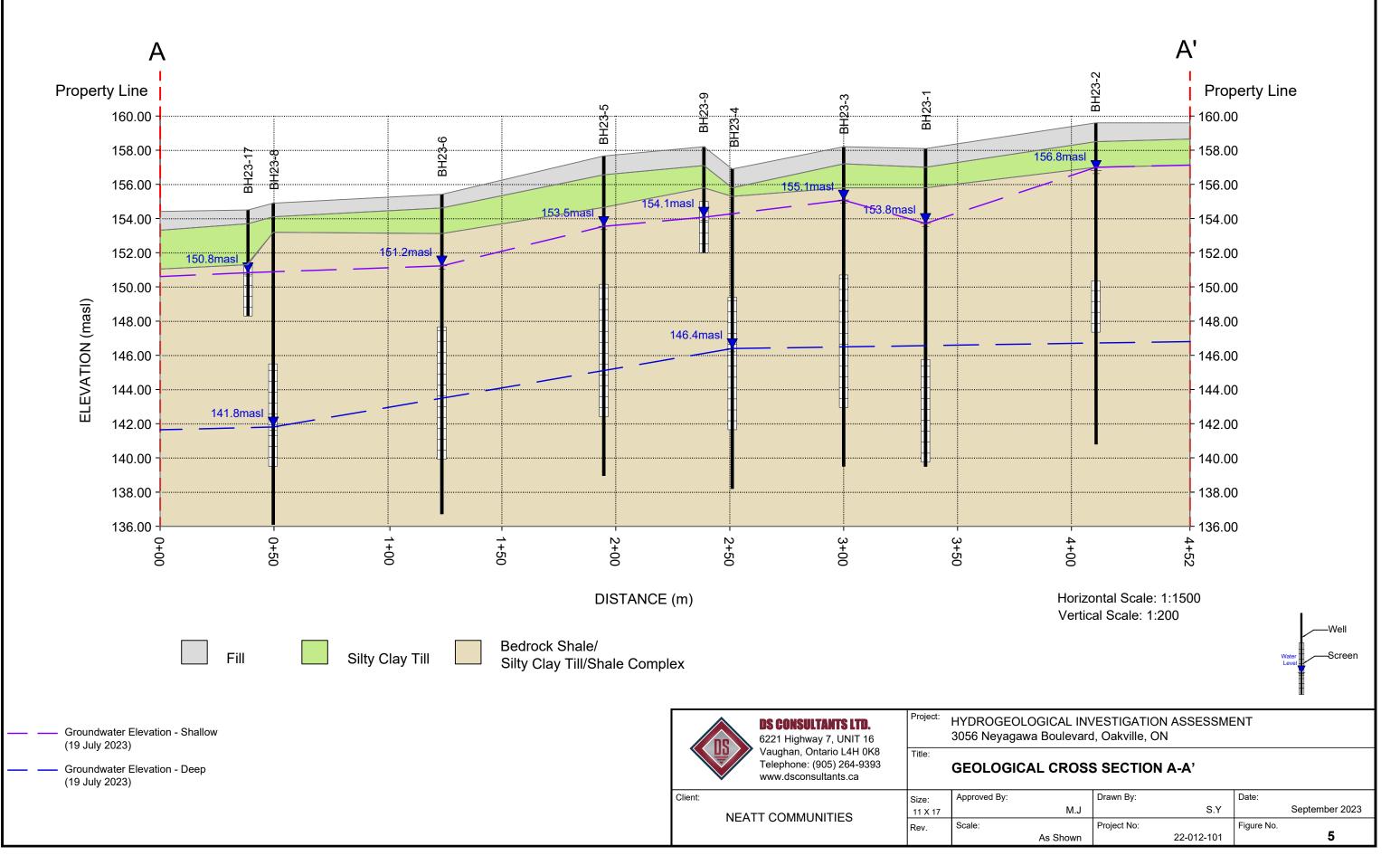

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

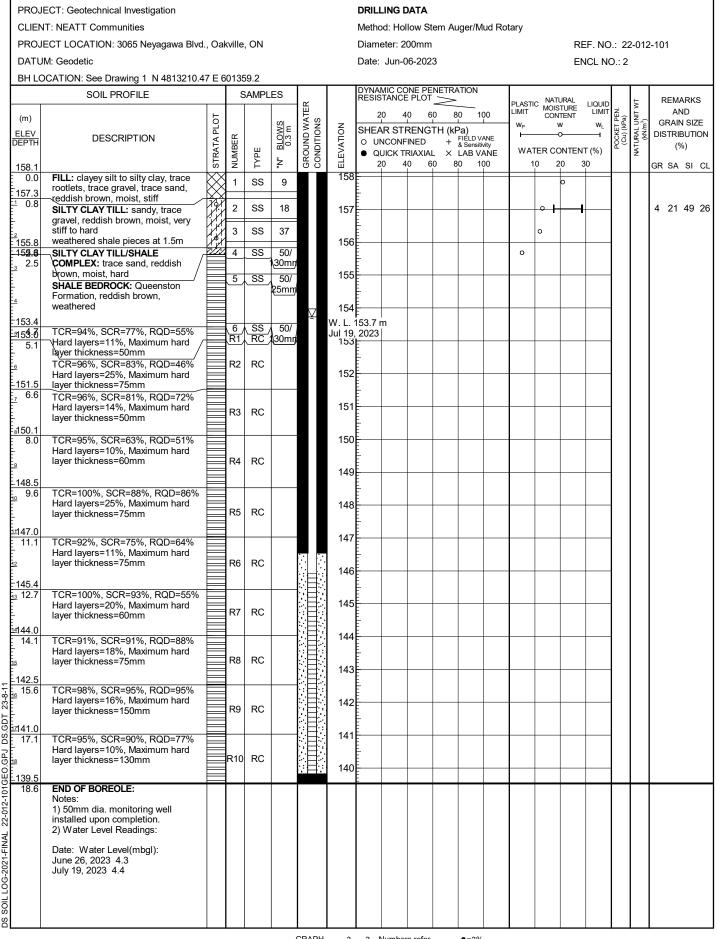

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

Figures





J:\cGIS\2022 PROJECTS\22-012-100 3056 Neyagawa Blvd., Oakville(1-QGIS\HydroG\Figure 2 - Surficial Geology Map.qgs Aug-11 15:26

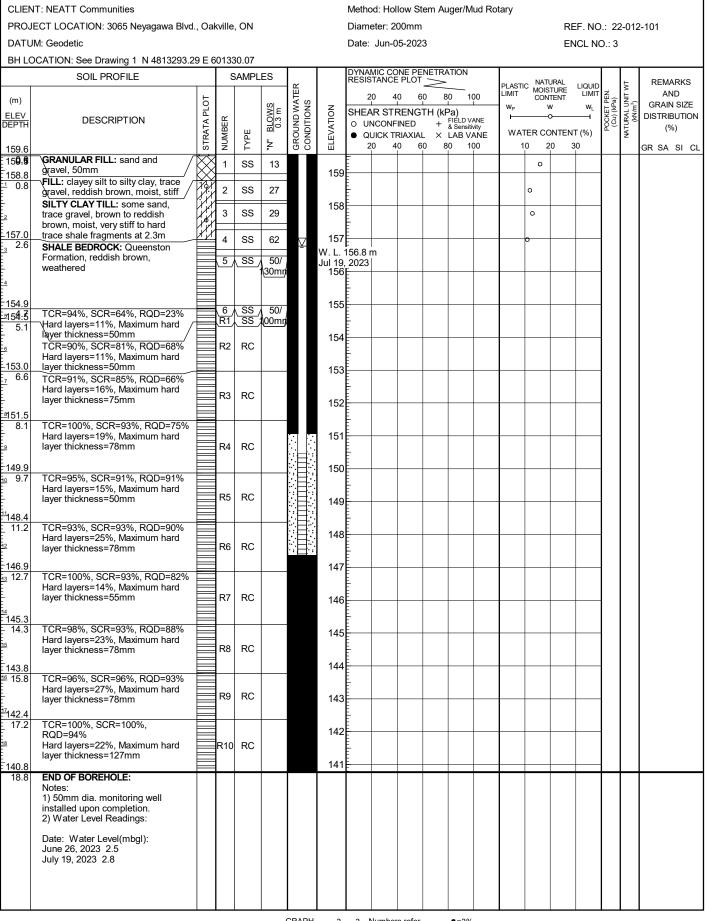

J:\-GIS\2022 PROJECTS\22-012-100 3056 Neyagawa Blvd., Oakville\1-QGIS\HydroG\Figure 4 - Groundwater Elevation Contours and Flow Direction.qgs Aug-11 15:59

Appendices

Appendix A: Borehole Logs

LOG OF BOREHOLE BH23-1

1 OF 1


23-8-11

DS.GDT

22-012-101GEO.GPJ

DS CONSULTANTS LTD.

Geotechnical Environmental Materials Hydrogeology

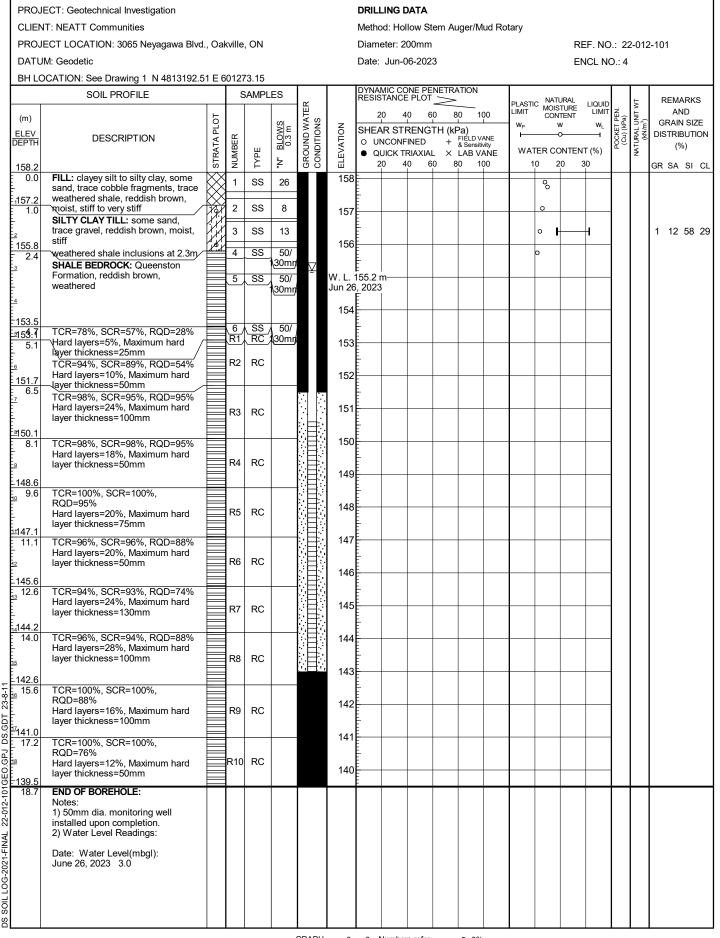
DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

PROJECT: Geotechnical Investigation

DRILLING DATA

LOG OF BOREHOLE BH23-2

1 OF 1


23-8-11

DS.GDT

22-012-101GEO.GPJ

SOIL LOG-2021-FINAL

S

LOG OF BOREHOLE BH23-3

1 OF 1

GROUNDWATER ELEVATIONS

DS CONSULTANTS LTD.

Geotechnical Environmental Materials Hydrogeology

23-8-11

DS.GDT

22-012-101GEO.GPJ

DS CONSULTANTS LTD. Geotechnical ♦ Environmental ♦ Materials ♦ Hydrogeology

LOG OF BOREHOLE BH23-4

SAMPLES

۲

PROJECT: Geotechnical Investigation

CLIENT: NEATT Communities

PROJECT LOCATION: 3065 Neyagawa Blvd., Oakville, ON

DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4813123.32 E 601363.01

SOIL PROFILE

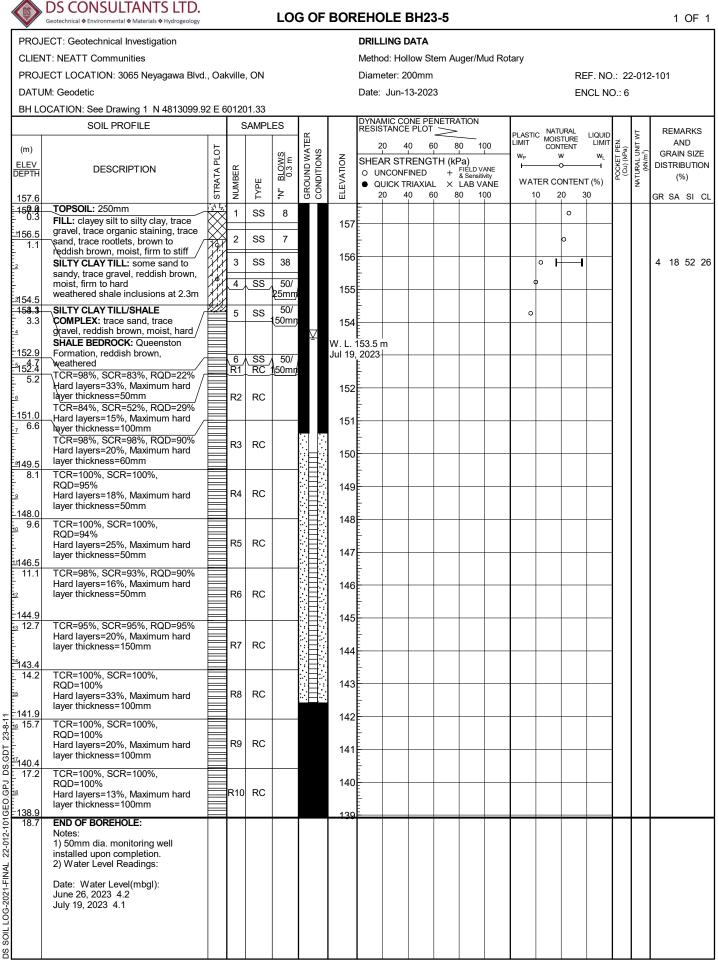
DRILLING DATA

Method: Hollow Stem Auger/Mud Rotary

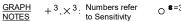
Diameter: 200mm

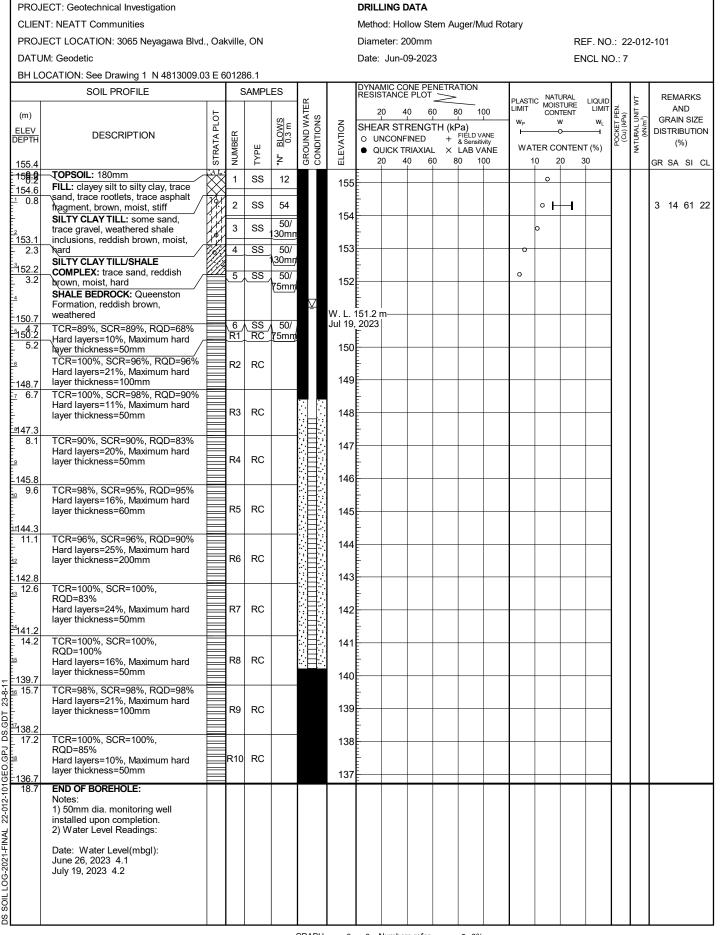
REF. NO.: 22-012-101

Ę


Date: Jun-07-2023

ENCL NO.: 5


PLASTIC NATURAL LIQUID


(m)		5				GROUND WATE CONDITIONS		2	20 4	ю е	60 H	80 1	00	LIMIT	CON	TENT	LIMIT	POCKET PEN (Cu) (kPa)	NATURAL UNIT (kN/m ³)	AND GRAIN SIZ	~
ELEV		STRATA PLOT	~		BLOWS 0.3 m	N NO	ELEVATION	SHEA	R ST	RENG	TH (k	Pa)		W _P	\	N 0	WL) (kF	AL L N/m	DISTRIBUTI	
DEPTH	I DESCRIPTION	₹.	NUMBER		<u>3LO</u>	ΪĘ	ITA	0 U	NCONF	INED	+	FIELD V & Sensit	'ANE ivity					DOC CU	TUR (k	(%)	
		₽.	Ψ	ТҮРЕ		N N	Ъ				LΧ	LAB V	ANE		FER CO			–	¥	(/0)	
156.9		ST	ž	È	"N	ΰö	Ш	2	20 4	0 6	60 i	80 1	00	1	0 2	20 3	30			GR SA SI	CL
E 0.0		\boxtimes	1	SS	11			E								0					
156.1	sand, trace rootlets, reddish brown,	\mathbb{K}	<u> </u>					Ē													
1 0.8		<u>Î</u>	2	SS	18		156					+			0			-			
155.3	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist,	12	1					Ē.													
E 1.6		1/	3	SS	50/			Ē							o						
F		V//			<u>00mr</u>		155	=													
154.5	COMPLEX: trace sand, trace	1.12	4	SS	50/			E						0							
E 2.4	gravel, reddish brown, moist, hard				75mm		154	Ē													
Ē	SHALE BEDROCK: Queenston		-		50/		134	Ē													
E	Formation, reddish brown,		5	SS	75mm			Ē													
4	weathered						153	<u> </u>													
E								Ē													
152.2			6 /	SS	50/			Ē													
±15 1 :8			R1		75mm		152	Ē													
E 5.1	Hard layers=19%, Maximum hard		<u> </u>	<u> </u>	<u>,</u>			E.													
Ē,	TCR=98%, SCR=93%, RQD=73%		R2	RC			454	É				1									
<u>-6</u>	Hard layers=20%, Maximum hard		112				151	Ē										1			
-150.3								Ē				1									
F, 6.6							150	É					1								
Ē	Hard layers=20%, Maximum hard		D 2	RC		:: I :		Ē													
Ē	layer thickness=60mm		R3	RU		l:H:		Ē				1									
E₫48.8						:日:	149											-			
8.1						l:Ħ:		Ē.													
Ē	RQD=98%			50		l: E:		Ē													
<u>- 9</u>	Hard layers=11%, Maximum hard		R4	RC		I H	148	-													
E147.3	layer thickness=50mm					日		Ē.													
5. 9.6						l: H:	147	Ē													
=	Hard layers=22%, Maximum hard					[∵⊟:	147	-													
E	layer thickness=130mm		R5	RC				E.													
145.8						::日:	. W. L. Jul 19														
= 11.1		_				l: H:	Jui 19	, 2023 F													
Ē	Hard layers=11%, Maximum hard					i E		Ē													
12	layer thickness=50mm		R6	RC		l: Ħ:	145	-										-			
E144.3						に日:		Ē													
E 144.0		_				k H	: I	Ē													
13	Hard layers=25%, Maximum hard					[::日:	144														
Ē.	layer thickness=100mm		R7	RC		に日に	·	E .													
4142.9						1:日:	143	E													
14.0						1:目:	143	Ē													
E	Hard layers=12%, Maximum hard					E:⊟:	÷	Ē													
15	layer thickness=50mm		R8	RC		:日:	142	<u> </u>										-			
E								Ē					1								
÷ 141.3	TCR=100%, SCR=91%, RQD=67%	F	1					Ē					1								
15.6	Hard layers=19%, Maximum hard						141	Ē				-	1			-		1			
8 E	layer thickness=150mm		R9	RC				E.													
<u>5</u>							4.40	E					1								
of 139.7	,						140	Ē					1					1			
<u>-</u> 17.2	2 TCR=100%, SCR=100%,							È.				1									
÷.	RQD=91%		R10	RC			139	E													
öĔ	Hard layers=25%, Maximum hard layer thickness=100mm		1				158	Ē													
DS SOIL LOG-2021-FINAL 22-012-101GEO.GPJ DS.GDT 22-012-101GEO.GPJ DS.GDT 22-012-101GEO.GPJ DS.GDT 22-012-101GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-012-100GEO.GPJ 22-000-000-000-000-000-000-000-000-000-								Ē													
è 18.7	END OF BOREHOLE:																				
42	Notes:																				
2-0	1) 50mm dia. monitoring well											1									
1	installed upon completion. 2) Water Level Readings:											1									
NAL	2/ Water Lever Readings.											1									
Ψ,	Date: Water Level(mbgl):											1									
021	June 26, 2023 9.4											1									
3-2	July 19, 2023 10.5	1					1						1			1					
Ď		1					1						1			1					
ᅴ		1					1						1			1					
Š												1									
DS																		1			

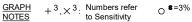
REMARKS

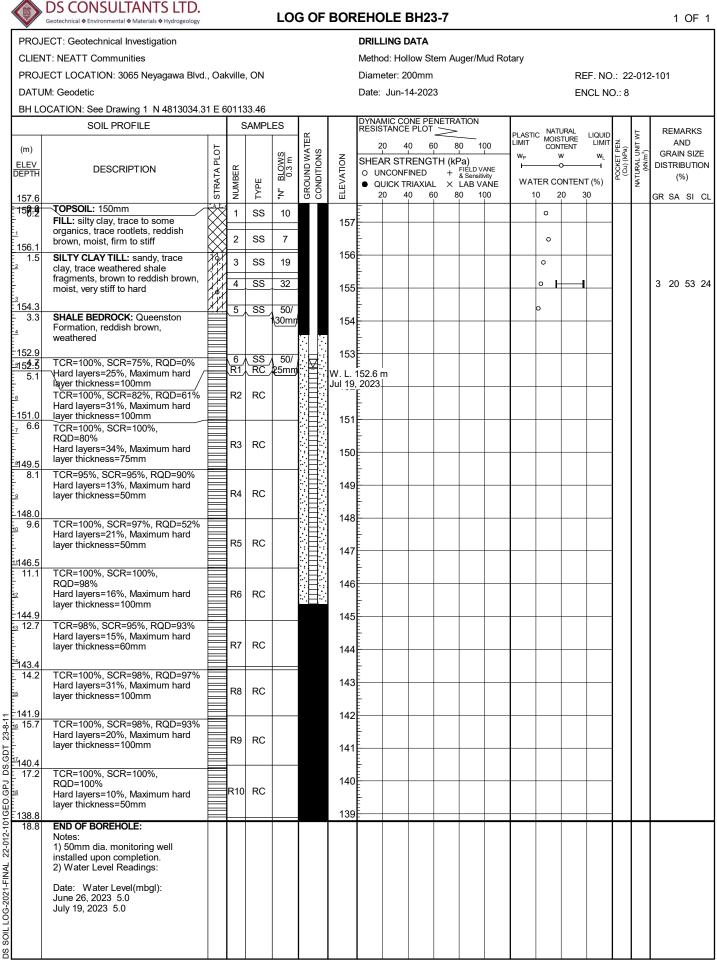
GROUNDWATER ELEVATIONS Measurement $\overset{1st}{\checkmark} \overset{2nd}{\checkmark} \overset{3rd}{\checkmark} \overset{4th}{\checkmark}$

LOG OF BOREHOLE BH23-6

1 OF 1

GROUNDWATER ELEVATIONS Measurement $\overset{1st}{\checkmark} \overset{2nd}{\checkmark} \overset{3rd}{\checkmark} \overset{4th}{\checkmark}$


23-8-11


DS.GDT

22-012-101GEO.GPJ

DS CONSULTANTS LTD.

Geotechnical Environmental Materials Hydrogeology

(m)

DS CONSULTANTS LTD. Geotechnical Environmental Materials Hydrogeology

LOG OF BOREHOLE BH23-8

SAMPLES

PROJECT: Geotechnical Investigation

CLIENT: NEATT Communities

PROJECT LOCATION: 3065 Nevagawa Blvd., Oakville, ON

DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4812943.74 E 601237.76

SOIL PROFILE

DRILLING DATA

Method: Hollow Stem Auger/Mud Rotary

DYNAMIC CONE PENETRATION RESISTANCE PLOT

60 80 100

40

Diameter: 200mm Date: Jun-15-2023

20

REF. NO.: 22-012-101

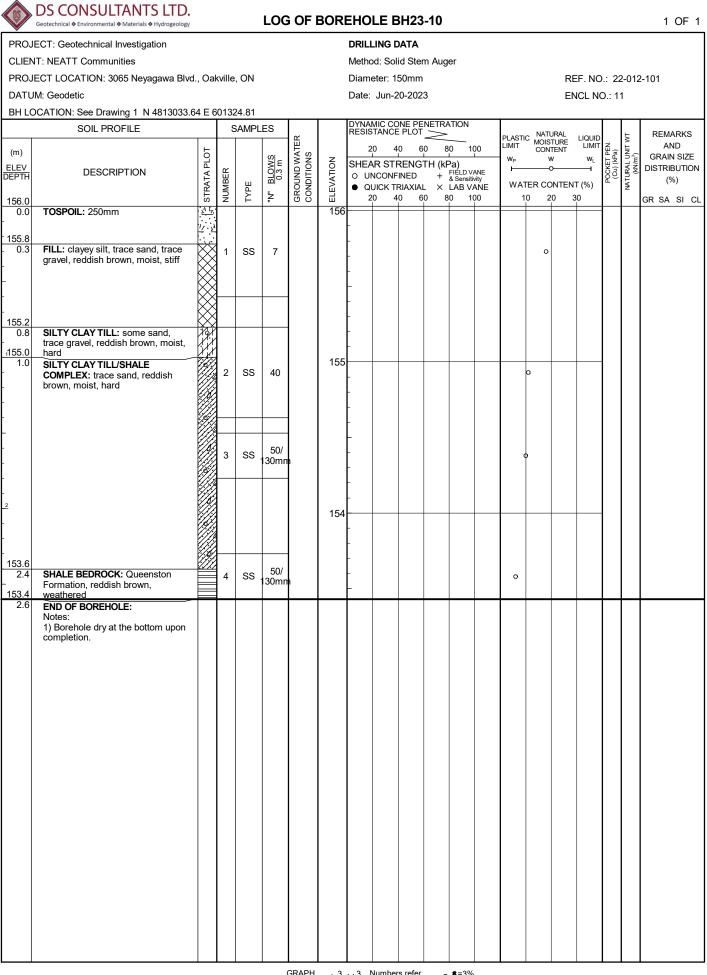
ENCL NO.: 9

LIQUID

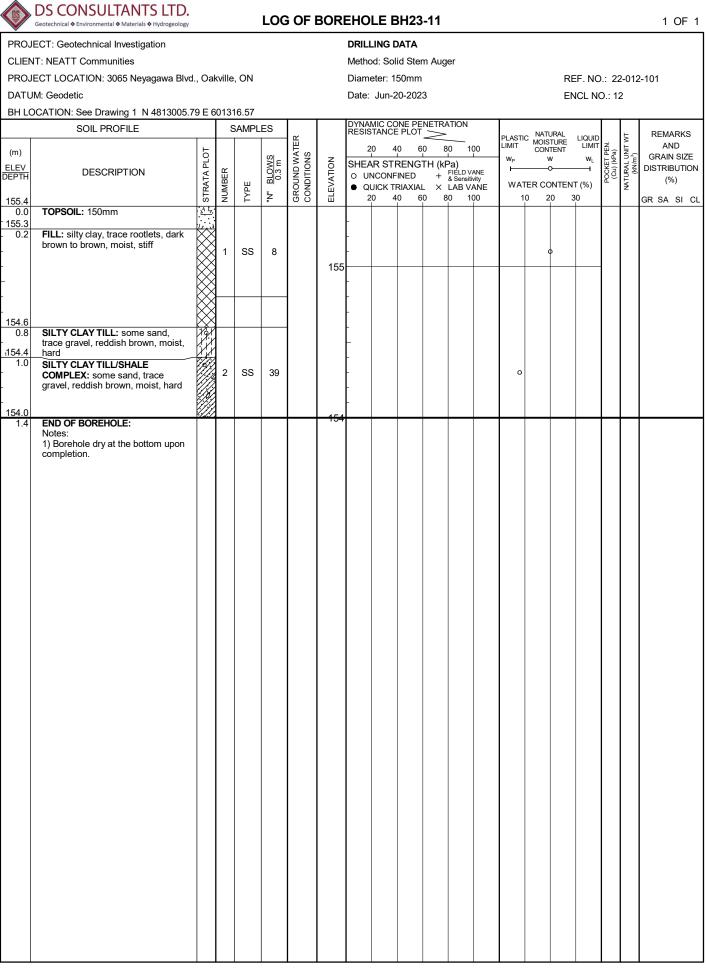
PLASTIC NATURAL MOISTURE CONTENT

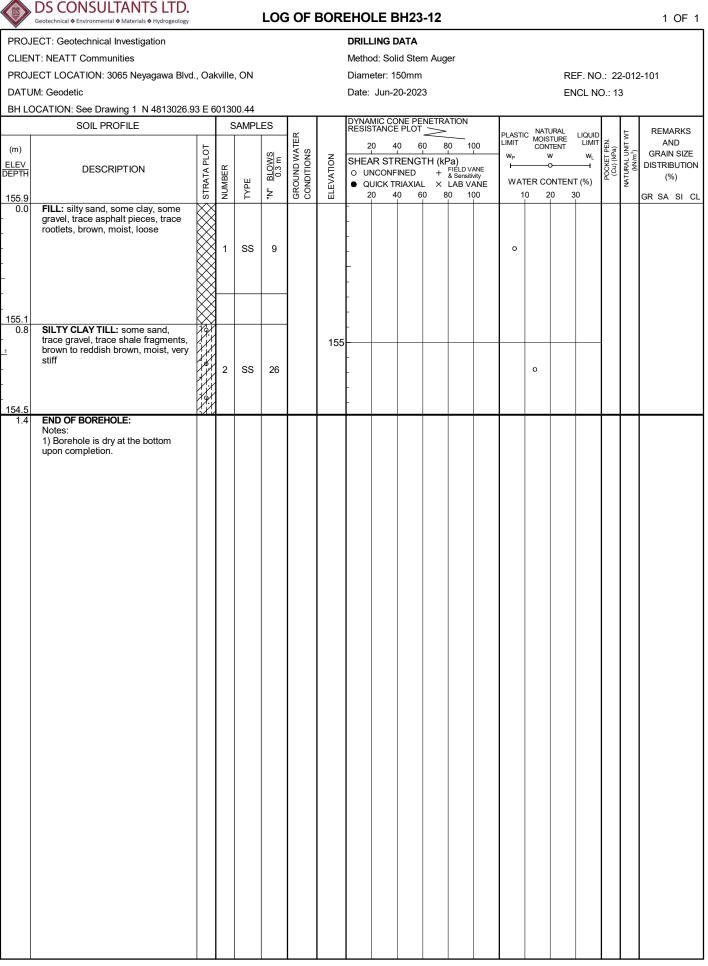
GROUND WATER CONDITIONS POCKET PEN. (Cu) (kPa) NATURAL UNIT M (kN/m³) STRATA PLOT BLOWS 0.3 m Wp w W ELEVATION SHEAR STRENGTH (kPa) + FIELD VANE & Sensition ELEV DISTRIBUTION -0 -DESCRIPTION NUMBER DEPTH O UNCONFINED (%) WATER CONTENT (%) TYPE QUICK TRIAXIAL × LAB VANE ż 40 80 10 20 30 20 60 100 154.9 GR SA SI CL ASPHALT: 150mm 158.9 1 SS 13 FILL: silty clay, trace rootlets, trace 154 1 gravel, brown, moist, stiff 154 1 0.8 2 SS 23 9 20 48 23 • H -SILTY CLAY TILL: sandy, trace gravel, reddish brown, moist, very 153.2 50/ 3 SS stiff 153 1.7 30m SILTY CLAY TILL/SHALE 152.5 50/ 0 4 SS COMPLEX: trace sand, reddish 2.4 brown, moist, hard 75mn 152 SHALE BEDROCK: Queenston 50/ 5 SS Formation, reddish brown, 00mr weathered 151 150.2 6 SS 50/ R1 RC 50mm TCR=98%, SCR=75%, RQD=35% 150 ±14**9**:8 R1 Hard layers=9%, Maximum hard 5.1 layer thickness=25mm TCR=93%, SCR=93%, RQD=85% R2 RC 149 Hard layers=10%, Maximum hard 148.3 layer thickness=30mm TCR=100%, SCR=97%, RQD=66% Hard layers=18%, Maximum hard 6.6 148 -7 R3 RC laver thickness=50mm 147 a146.8 TCR=100%, SCR=100%, 8.1 RQD=90% Hard layers=19%, Maximum hard R4 RC 146 laver thickness=50mm 145.3 _ TCR=89%, SCR=63%, RQD=54% 9.6 145 0 Hard layers=10%, Maximum hard R5 RC laver thickness=50mm 143.9 144 TCR=100%, SCR=100%, 11.0 RQD=84% Hard layers=13%, Maximum hard RC R6 143 layer thickness=50mm 142.3 TCR=100%, SCR=94%, RQD=94% 12.6 142 Hard layers=16%, Maximum hard W. L. 141.8 m R7 RC layer thickness=50mm Jul 19, 2023 ¹⁴140.7 TCR=100%, SCR=100%, 14.2 RQD=93% Hard layers=20%, Maximum hard R8 RC 140 laver thickness=50mm 139.2 23-8-11 TCR=99%, SCR=99%, RQD=91% 15.7 <u>16</u> 139 Hard layers=15%, Maximum hard R9 layer thickness=50mm RC DS.GDT 138 ¹⁷137.7 TCR=100%, SCR=100%, 17.2 22-012-101GEO.GPJ RQD=100% Hard layers=16%, Maximum hard layer thickness=150mm 137 R10 RC 136 1 END OF BOREHOLE: 18.8 Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: SOIL LOG-2021-FINAL Date: Water Level (mbgl): June 26, 2023 12.9 July 19, 2023 13.1

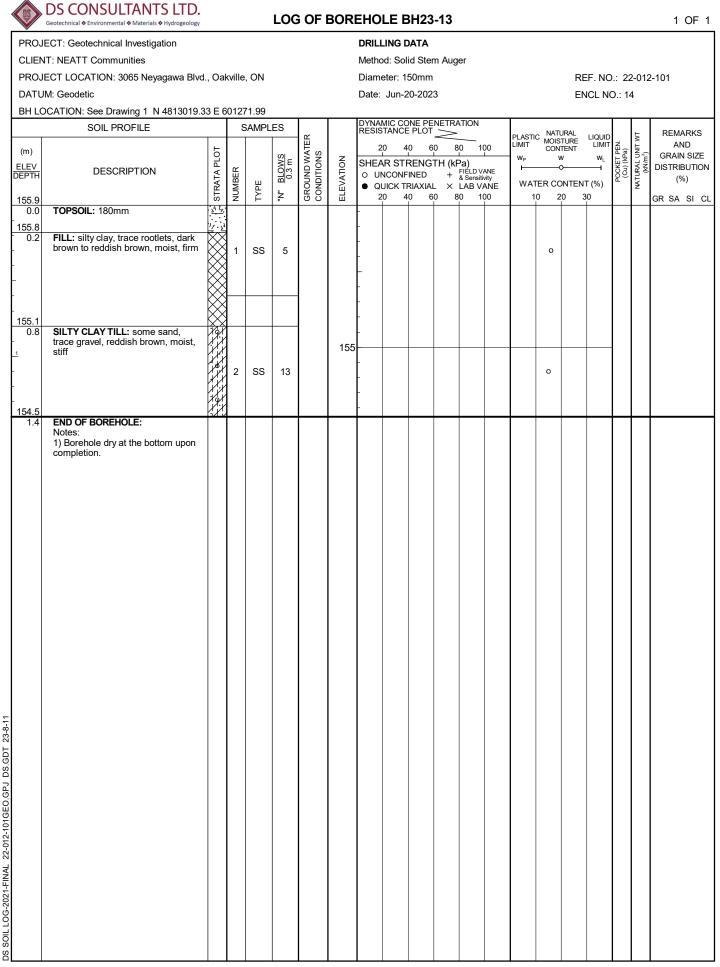
S

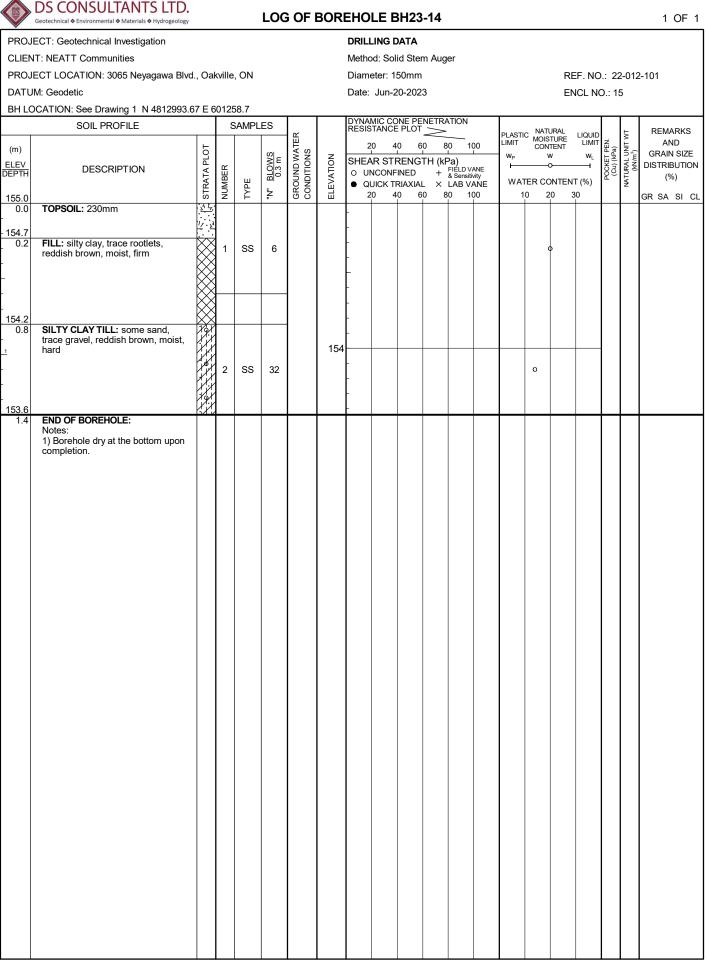

REMARKS

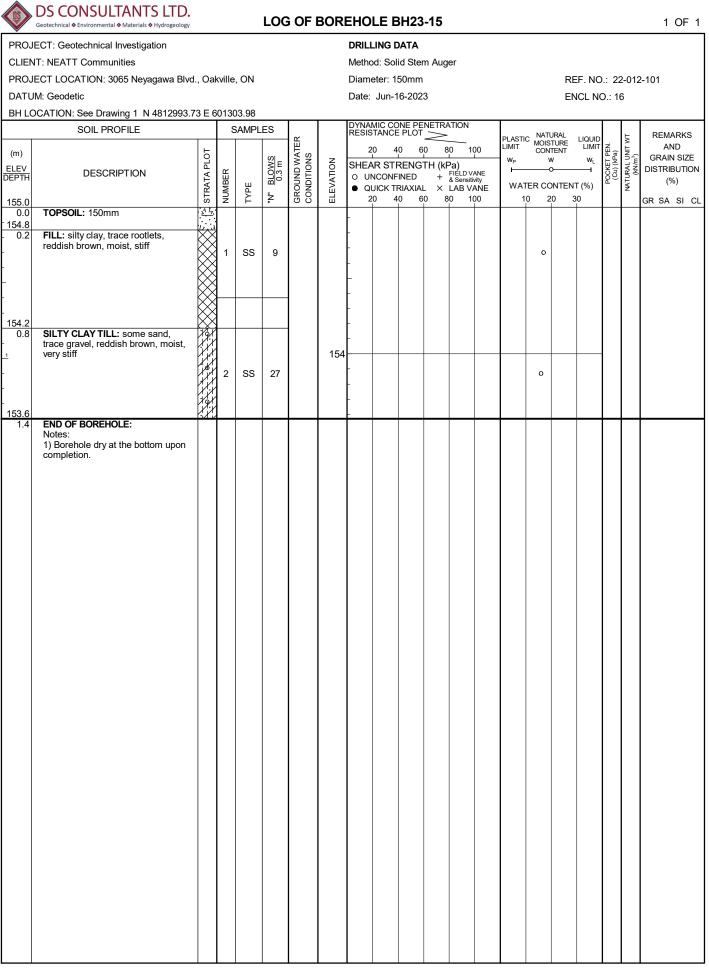
AND

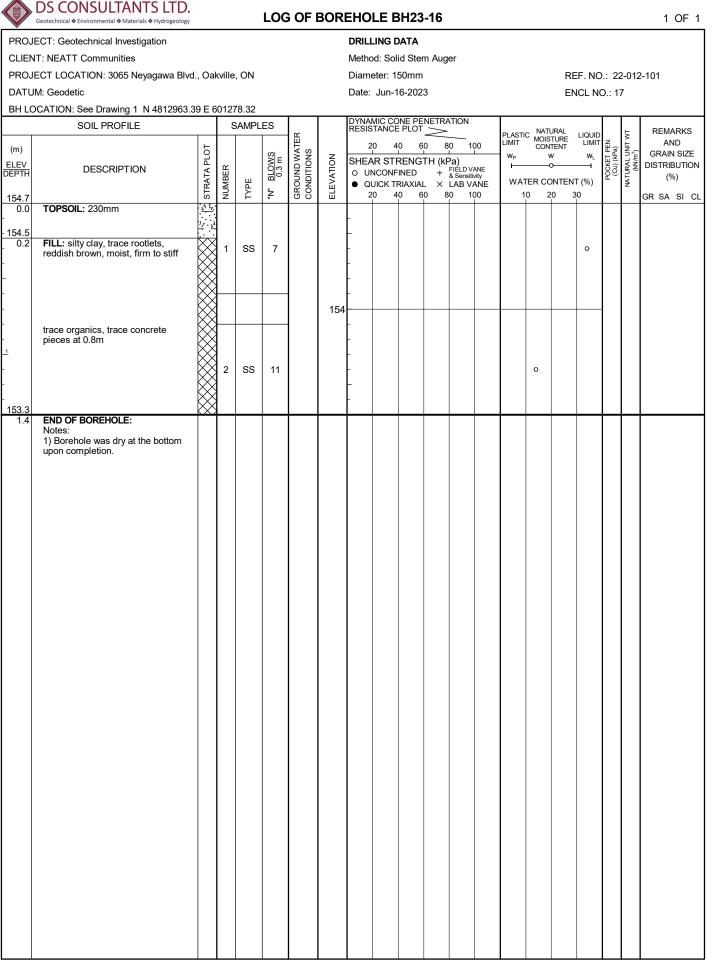

GRAIN SIZE

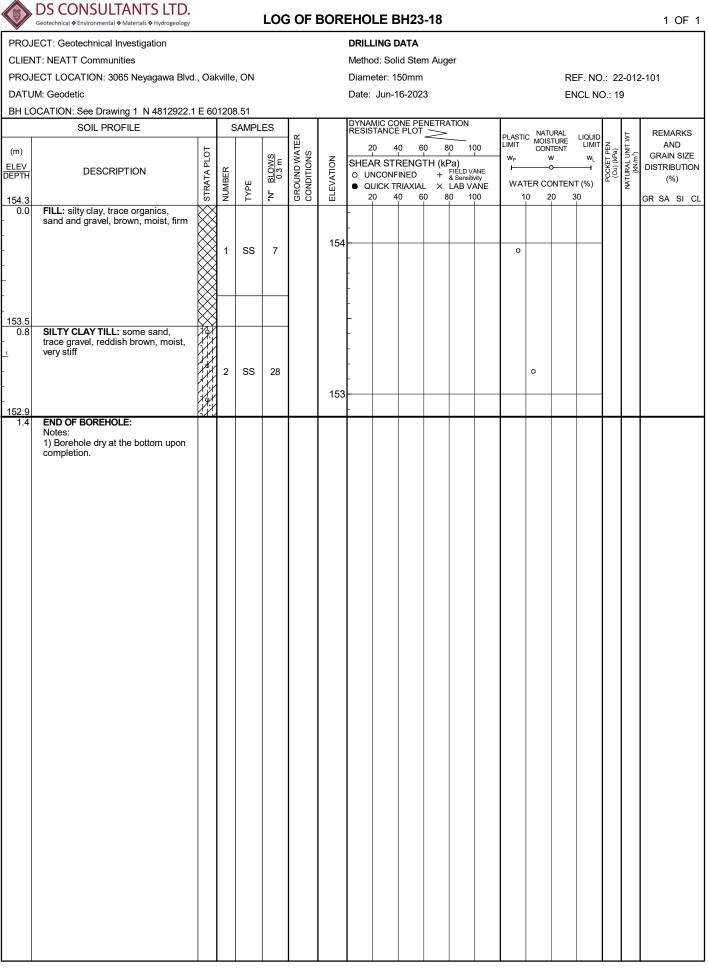

	DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHC	DLE	BH2:	3-9									1 OF 1			
PROJECT: Geotechnical Investigation								DRILI	LING [DATA													
CLIENT: NEATT Communities								Method: Solid Stem Auger															
PROJECT LOCATION: 3065 Neyagawa Blvd., Oakville, ON								Diam	eter: 1	50mm						RE	EF. NC).: 22	2-012	-101			
DATUM: Geodetic								Date: Jun-19-2023 ENCL NO.										D.: 10	: 10				
BH LC	CATION: See Drawing 1 N 4813148.7	75 E 6	0118	3.14										_									
			DYNA RESIS	MIC CO	one pe E plot		ATION		PLASTIC NATURAL LIQUID					т	REMARKS								
(m)		F				GROUND WATER CONDITIONS							00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND			
ELEV	RECORDETION	STRATA PLOT	~		BLOWS 0.3 m		NO	SHEA	R ST	RENG	TH (kf	Pa)		W _P		v >	WL	iket F (kPa	kAL UI kN/m ³)	GRAIN SIZE DISTRIBUTION			
DEPTH	DESCRIPTION	ATA	NUMBER	ш	<u>BLC</u> 0.3		ELEVATION			INED RIAXIAI	+	FIELD V. & Sensiti	ANE vity	WA	TER CO		T (%)	DO DO	IATUR (F	(%)			
158.2		STR	NUN	ТҮРЕ	ż	GRC	ELE										30		2	GR SA SI CL			
158.0	TOPSOIL: 100mm						450	-															
- 0.1	FILL: limestone screening, sand and gravel, surface vegetation,	\otimes	1	SS	22		158	-							>								
E I	brown, moist, compact	\mathbb{X}						-						0									
157.4		\otimes						F															
- 0.8	SILTY CLAY TILL: some sand, trace gravel, weathered shale							-															
-	inclusions, reddish brown, moist,		2	SS	31		157	-						· ·	>								
-	hard	(1)						-															
-								-															
			3	SS	46			-							o								
-								-															
155.8					50/		156	-															
- 2.4	SILTY CLAY TILL/SHALE		4	SS	130mn			-						•									
	COMPLEX: some sand, reddish brown, moist, hard							-															
3								-															
155.0			5	SS	50/		155	-															
- 3.2	SHALE BEDROCK: Queenston Formation, reddish brown,		5	33	130mn		100	-							1								
-	weathered							-															
-						目		E															
4								E															
							W. L. Jul 19	154.1 i 2023	m 														
-								F															
-			6	SS	50/			-															
- - 5					50mm			-															
							153	_															
						目		-															
-								-															
-						目		-															
6								-															
152.0 6.2	END OF BOREHOLE:		7	SS	50/ \$0mm	·· ···		-															
	Notes: 1) 50mm dia. monitoring well				<u>voiiii</u>																		
	installed upon completion.																						
	2) Water Level Readings:																						
	Date: Water Level(mbgl):																						
	June 26, 2023 4.1 July 19, 2023 4.1																						
						GRAPH		3 1				8=3%											

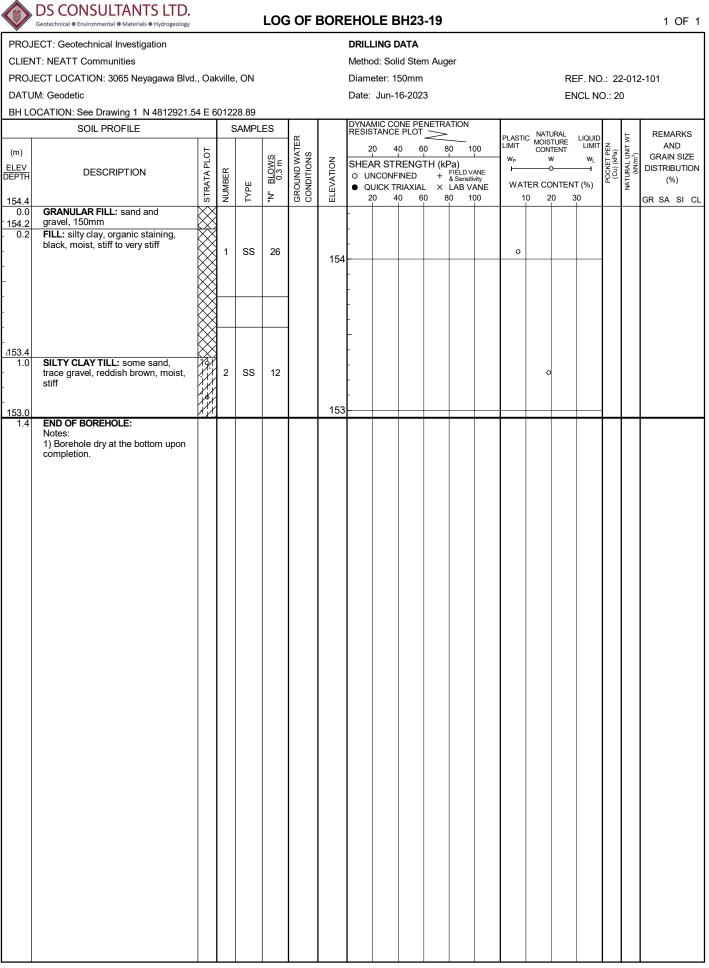

DS SOIL LOG-2021-FINAL 22-012-101GE0.GPJ DS.GDT 23-8-11

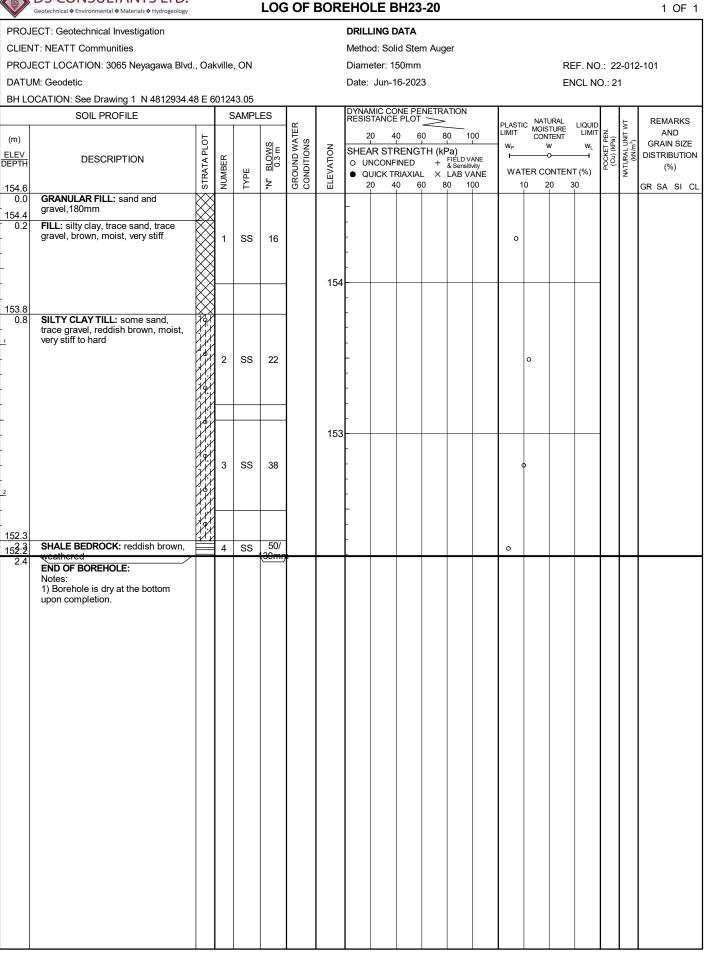



DS SOIL LOG-2021-FINAL 22-012-101GEO.GPJ DS.GDT 23-8-11



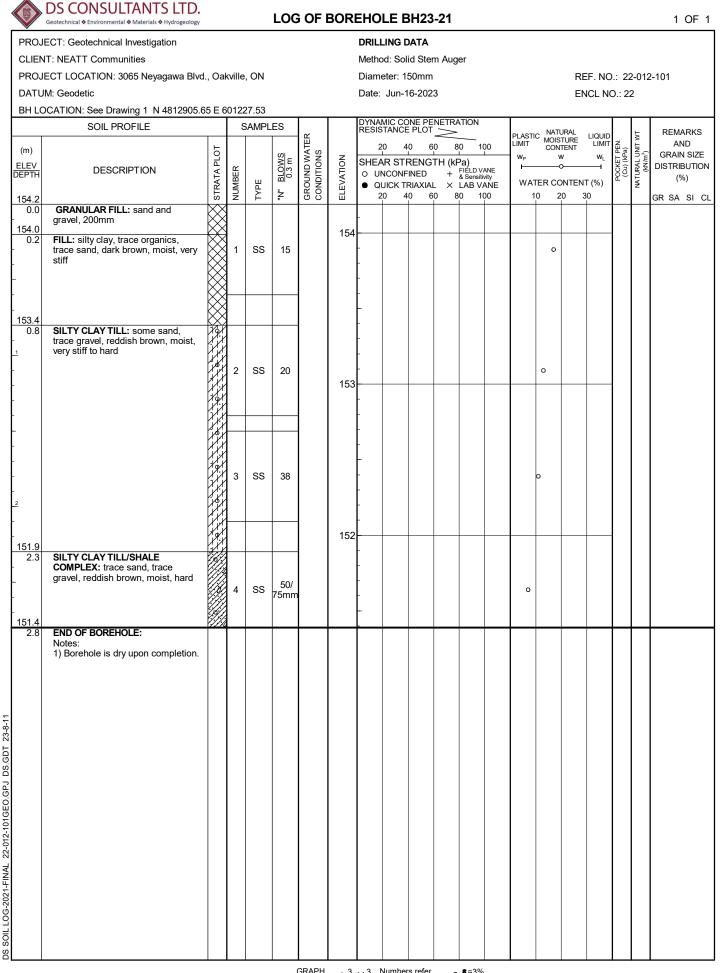






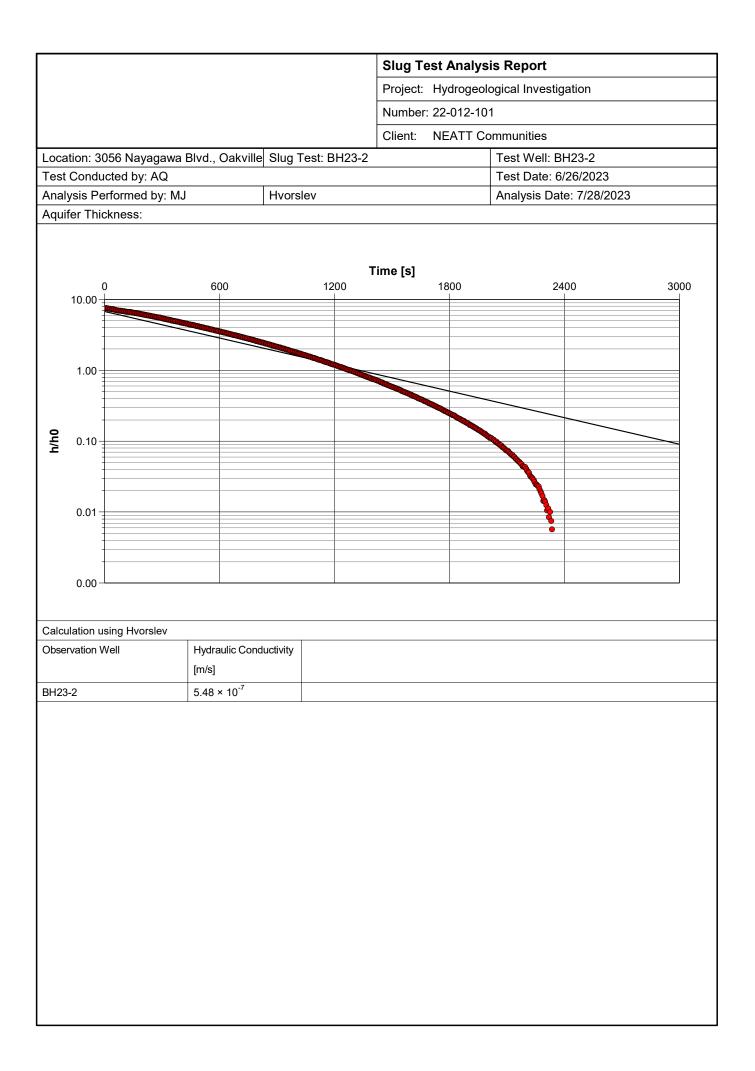
DS SOIL LOG-2021-FINAL 22-012-101GEO.GPJ DS.GDT 23-8-11

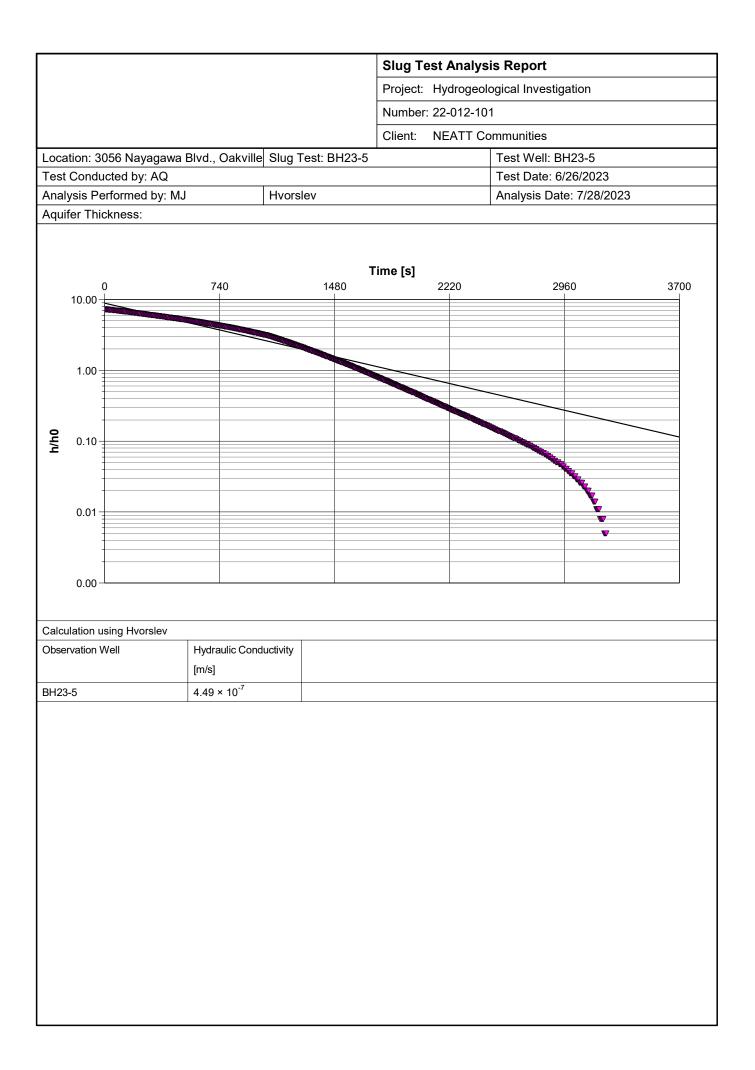
	DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LOG	6 of	BOR	EHO	LE E	3H23	8-17									1 (OF 1
PROJ	ECT: Geotechnical Investigation							DRIL	LING I	DATA											
CLIEN	T: NEATT Communities							Meth	od: So	lid Ste	m Aug	jer									
PROJ	ECT LOCATION: 3065 Neyagawa Blvd	, Oał	wille	, ON				Diam	eter: 1	50mm	ı					R	EF. NC	D.: 22	2-012	-101	
DATU	M: Geodetic							Date:	Jun-	16-202	23					E١	NCL N	0.: 1	8		
BH LC	CATION: See Drawing 1 N 4812938.8	8 E 6	0120)7.53														_			
	SOIL PROFILE		S	SAMPL	ES	_ ~		DYNA RESIS	MIC CO	DNE PE E PLOT		ATION		PLASTI	_ NAT	URAL STURE	LIQUID		ь	REMAR	RKS
(m)		ЭΤ				GROUND WATER CONDITIONS			20 4	io e	30 E	30 1	oo	LIMIT	CON	ITENT	LIMIT	a) EN	NATURAL UNIT WT (kN/m ³)	ANE	
ELEV	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m	NON SU	EVATION			RENG	TH (kl	Pa)		W _P		w o	WL	u) (kP	RN/m ³	GRAIN : DISTRIBL	
DEPTH	DESCRIPTION	ATA	NUMBER	щ	BLO		VAT			FINED RIAXIA	+ ×	FIELD V & Sensiti		WA	TER CO	ONTEN	T (%)	0 0 0 0	NATU)	(%))
154.5			ΝŇ	ТҮРЕ	ŗ	GR	ELE						00				30		-	GR SA S	SI CL
- 0.0	TOPSOIL: 280mm	<u>x' //</u>						E													
154.2	FILL: silty clay, trace rootlets, trace	XX	1	SS	11			E								0					
-	asphalt, trace organics, black to brown, moist, stiff	\bigotimes					154											1			
153.7	SILTY CLAY TILL: some sand,	X						-													
- 0.8	trace gravel, reddish brown, moist,		~	~~~	00			-													
-	very stiff to hard		2	SS	26			-							0						
							153	E													
							100	È													
-			3	SS	21			-							o						
-								-													
[]			4	SS	50/			-						0							
-					00mr	h :] [:	152											-			
								E													
- - 151.4								È.													
- 3.1	SHALE BEDROCK: Queentson		5	ss	50/	目		F						0							
-	Formation, reddish brown, weathered				75mm	[:目:		-													
E							151	-													
[目:	W. L.	150.8 , 2023													
-							Jui 18	, 2023 F													
						[]目:		-													
-							150											-			
			6	SS	50/ 30mr	1:目:		-						0							
5					50111		·	Ē													
							·	È.													
								-													
-							149	-													
-						「目		F													
6						[:目:		Ē													
148.3 6.2	END OF BOREHOLE:		7	SS	50/ \$0mm	<u> </u>								0							
	Notes: 1) 50mm dia. monitoring well				<u>to</u>																
	installed upon completion.																				
	2) Water Level Readings:																				
	Date: Water Level(mbgl): June 26, 2023 3.7																				
	July 19, 2023 3.7																				
																		1			
																		1			
																		1			
																		1			
																		1			
																		1			
						СРАРН		2				e - 20/									



DS SOIL LOG-2021-FINAL 22-012-101GEO.GPJ DS.GDT 23-8-11

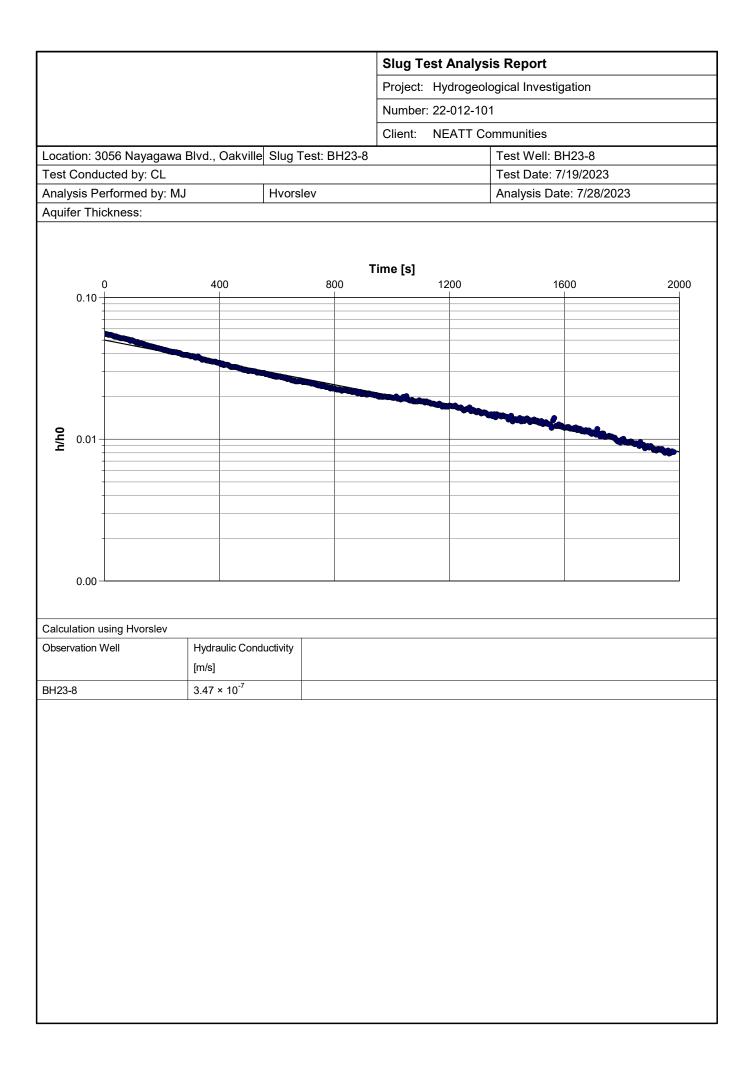
DS CONSULTANTS LTD.

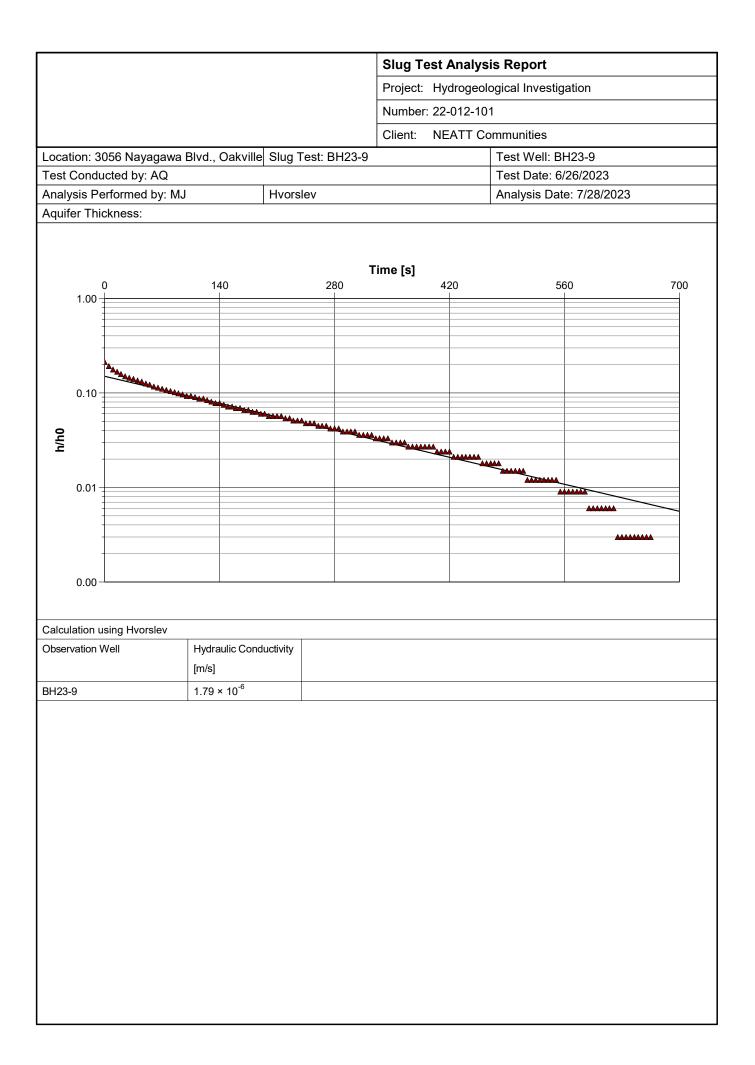

O ^{8=3%} Strain at Failure

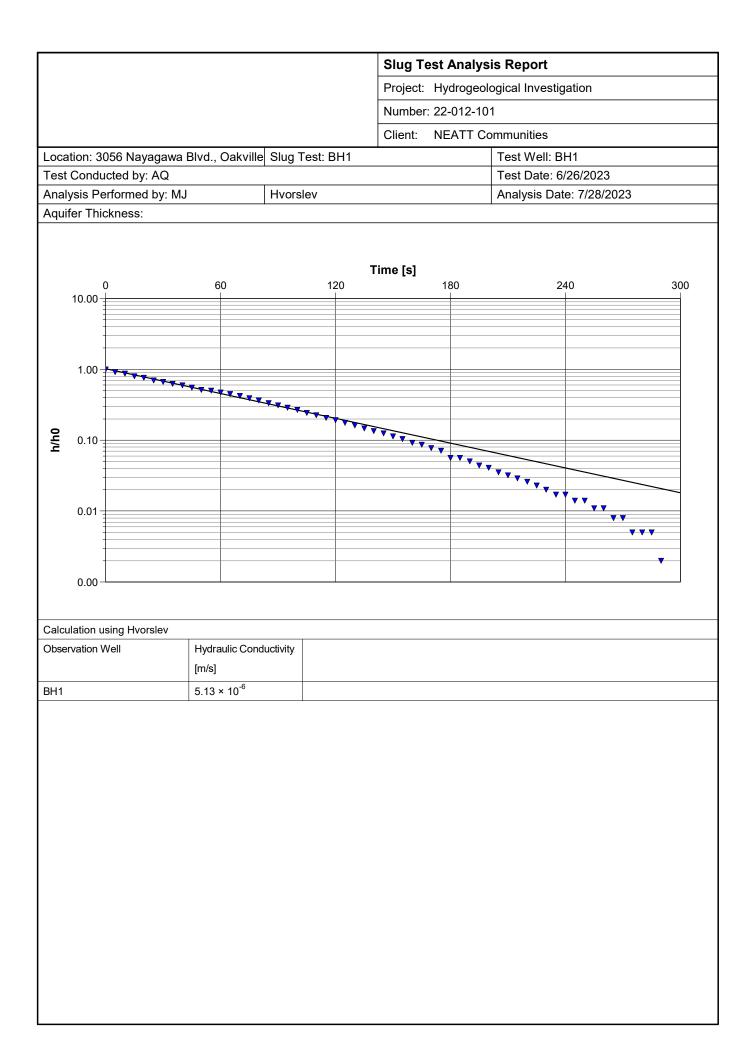

SOIL LOG-2021-FINAL 22-012-101GEO.GPJ DS.GDT 23-8-11

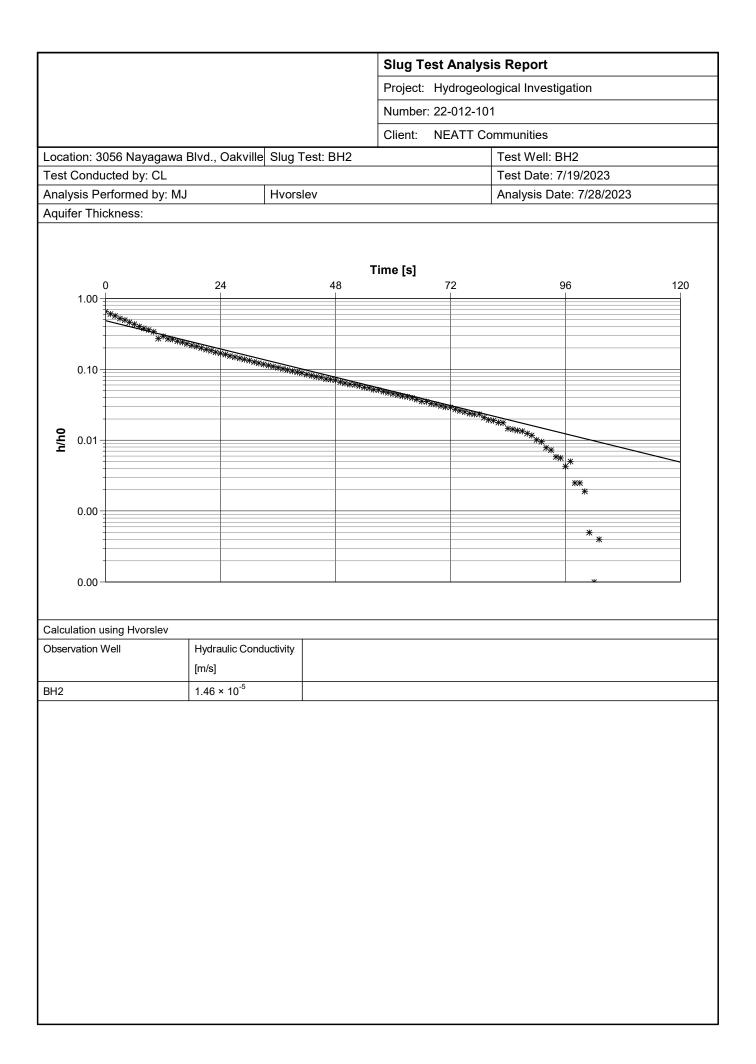
Appendix B: Hydraulic Conductivity Analysis

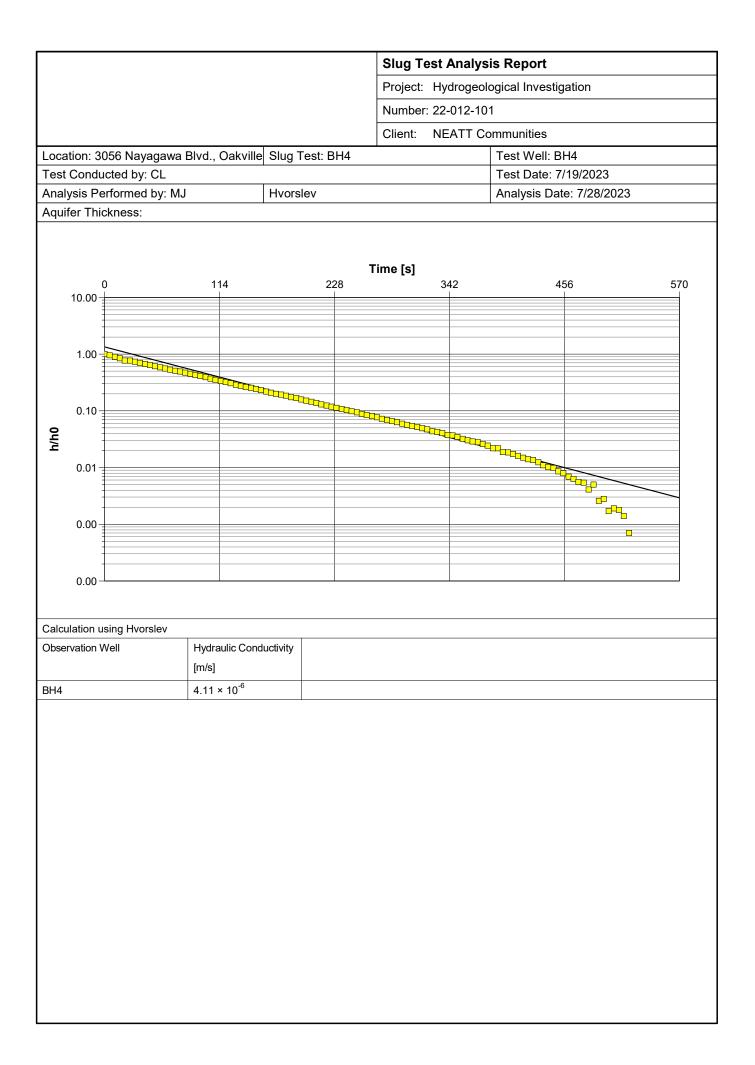
					Slug Te	est A	nalysi	is Report			
					Project:	Hyd	Irogeolo	ogical Investig	ation		
					Number	: 22-0	012-10 ⁻	1			
					Client:	NEA	ATT Co	ommunities			
)56 Nayagawa I	Blvd., Oakville	Slug Test:	BH23-1	4			Test Well: Bl			
	cted by: AQ							Test Date: 6/			
	erformed by: MJ		Hvorslev					Analysis Dat	e: 7/28/202	3	
Aquifer Thio	kness:										
				Т	'ime [s]						
(10.00)	2000		4000		600)0	80	000	1000	00
10.00											
-											
-											
-											
1.00											
-				1							
0Ч/Ч				_		_					
-				_		\rightarrow					
0.10											
						_					
-						_					
-											
0.01-		l				[]	
	sing Hvorslev	 T									
Observation V	Vell	Hydraulic Cond	luctivity								
		[m/s]									
BH23-1		1.13 × 10 ⁻⁷									

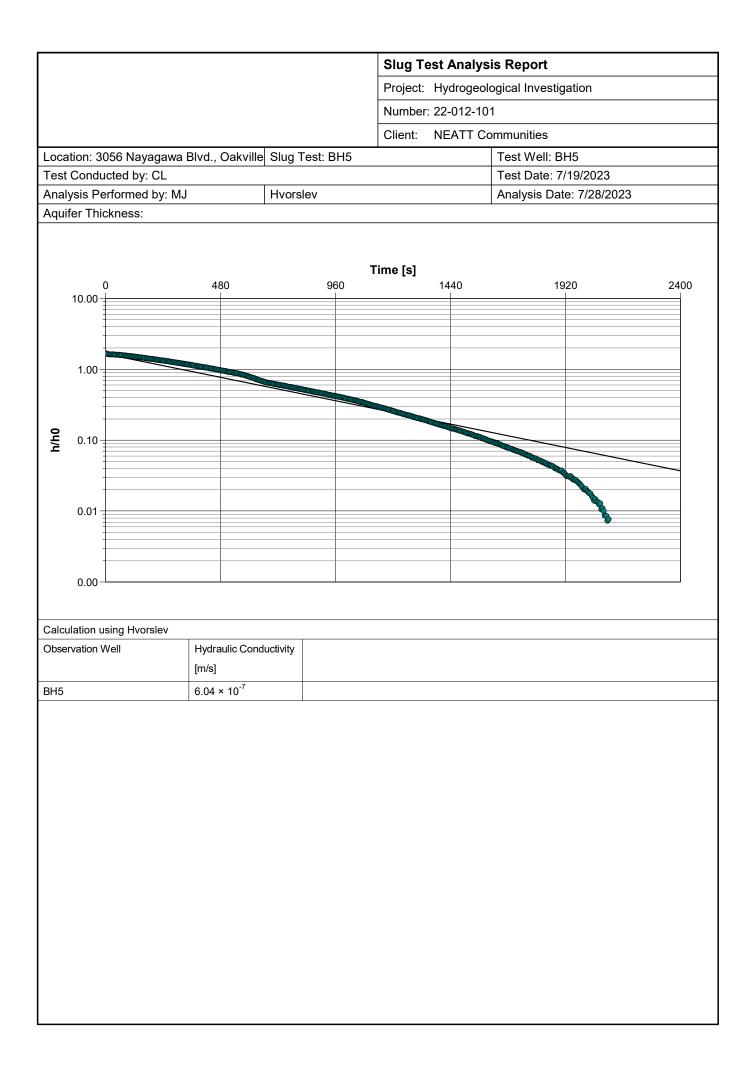



				Slug Te	est A	nalysi	is Report		
				Project:	Hyd	rogeolo	ogical Investig	ation	
				Number	: 22-0	012-101	1		
				Client:	NEA	ATT Co	mmunities		
Location: 3056 Nayagawa	Blvd., Oakville	Slug Test:	BH23-4	1			Test Well: Bl	H23-4	
Test Conducted by: AQ							Test Date: 6/		
Analysis Performed by: MJ		Hvorslev					Analysis Dat	e: 7/28/202	3
Aquifer Thickness:									
			т	ime [s]					
0	13200	20	• 6400	iiie [5]	396	00	528	300	66000
1.00									
0.10									
					_				
оч/ч									
<u>ک</u>									
0.01									4
0.00									
Coloulation using Liverplay									
Calculation using Hvorslev Observation Well	Hydraulic Cond	uctivity							
	[m/s]	douvity							
BH23-4	9.65 × 10 ⁻⁹								
Di 123-4	9.03 ~ 10								




						Slug Te	st Analy	sis Report	
						Project:	Hydrogeo	ological Investigation	
						Number:	22-012-1	01	
						Client:	NEATT C	Communities	
Loca	ation: 30)56 Nayagawa I	Blvd., Oakville	Slug Test	: BH23-6			Test Well: BH23-6	
		cted by: AQ						Test Date: 6/26/2023	
		rformed by: MJ		Hvorslev				Analysis Date: 7/28/	2023
Aqui	ifer Thio	kness:							
					т	ime [s]			
	()	1120		2240		3360	4480	5600
	10.00								
	-								
	-								
	1.00								
	-								
	-								
04/4	0.10								
	-								
	-								
	0.01-								* * *
	-								*
	-								
	0.00								
	0.00-								
	vilation u ervation V	sing Hvorslev	Hydraulic Cond	uctivity					
Obse			[m/s]	ucuvity					
BH23	3-6		2.11 × 10 ⁻⁷						
	-0		2.11.10						


							Slug T	est An	alysi	s Report			
							Project:	Hydro	geolo	ogical Investig	ation		
							Number	: 22-01	2-101				
							Client:	NEAT	Т Со	mmunities			
)56 Nayagawa I	3lvd., Oakv	ille Slug 7	Fest: B	H23-7				Test Well: Bl			
		cted by: AQ								Test Date: 6/			
		rformed by: MJ		Hvors	lev					Analysis Dat	e: 7/28/20)23	
Aquite	erinic	kness:											
							ime [s]						
1	0)	320		64	-0		960		12	80		1600
	-												_
	1 00												
	1.00										() Item		
	-												
•	-												
04/H	0.10												
	-												
	-												1
	0.01												L
	-												
	-												_
	0.00												
Calcula	ation u	sing Hvorslev											
Observ			Hydraulic C	onductivity									
			[m/s]										
BH23-7	7		5.15 × 10 ⁻⁷										



						Slug Te	est Analys	is Report		
						Project:	Hydrogeol	ogical Investiga	ation	
						Number	: 22-012-10	1		
						Client:	NEATT Co	ommunities		
Loca	ation: 30)56 Nayagawa I	3lvd., Oakville	Slug Test	BH23-17			Test Well: BH	123-17	
		cted by: AQ						Test Date: 6/2		
		rformed by: MJ		Hvorslev				Analysis Date	e: 7/28/2023	
Aqui	fer Thio	kness:								
					т	ime [s]				
	()	800		1600	iiie [3]	2400	320	00	4000
	10.00									
	-									
	-									
	1.00-									
	-									
	-									
e	0.40							Martin and Andrews		
04/4	0.10									
	-									
	-									
	0.01									
	-									
	-									
	0.00-									
	0.00									
-										
		sing Hvorslev								
Obse	rvation V	veli	Hydraulic Cond [m/s]	uctivity						
BH23	3-17		2.94 × 10 ⁻⁷							

Appendix C: Groundwater Quality Certificate of Analysis

CA40311-JUN23 R1

23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oakville, ON.

Prepared for

DS Consultants

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Meysam Jafari	Telephone	2165
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	meysam.jafari@dsconsultants.ca	SGS Reference	CA40311-JUN23
Project	23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St We	Received	06/27/2023
Order Number		Approved	07/06/2023
Samples	Ground Water (1)	Report Number	CA40311-JUN23 R1
		Date Reported	07/06/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 032469

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-16
Legend	17
Annexes	18

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

				Sample Number	8
MATRIX: WATER			2	Sample Number	o BH23-6
		Discharge		Sample Name	
L1 = SANSEW / WATER / Halton Sewer Use ByLaw - Sar BL_2_03	nitary and Combined Sewe	r Discharge -		Sample Maurix	Orbund Water
L2 = SANSEW / WATER / Halton Sewer Use ByLaw - Sto	orm Sewer Discharge - BL_	_2_03		Sample Date	27/06/2023
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Carbonaceous Biochemical Oxygen	mg/L	2			4
Demand					
Total Suspended Solids	mg/L	2	350	/	446
Total Kjeldahl Nitrogen	as N mg/L	0.5	100		1.2
Metals and Inorganics					
Cyanide (total)	mg/L	0.01	2		< 0.01
Fluoride	mg/L	0.06	10		0.31
Sulphate	mg/L	2	1500		400
Aluminum (0.2µm)	mg/L	0.001			0.007
Aluminum (total)	mg/L	0.001	50		1.95
Antimony (total)	mg/L		5		0.0014
Arsenic (total)	mg/L		1		0.0035
Beryllium (total)		0.000007	5		0.000092
Cadmium (total)		0.000003	1		0.000032
Chromium (total)	mg/L		3		0.00467
Cobalt (total)			5		0.00148
Copper (total)	mg/L		3		0.0054
Iron (total)	mg/L		50		2.20
Lead (total)	mg/L	0.00009	3		0.00128
Manganese (total)	mg/L	0.00001	5		0.222
Molybdenum (total)	mg/L	0.00004	5		0.0119

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

			e	Sample Number	8
MATRIX: WATER				Sample Name	
L1 = SANSEW / WATER / Halton Sewer Use ByLaw - Sanitary	y and Combined Sewer	r Discharge -		Sample Matrix	
BL_2_03				Sample Date	27/06/2023
L2 = SANSEW / WATER / Halton Sewer Use ByLaw - Storm S				•	
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Nickel (total)	mg/L	0.0001	3		0.0042
Phosphorus (total)	mg/L	0.003	10		0.165
Selenium (total)	mg/L	0.00004	5		0.00023
Silver (total)	mg/L	0.00005	5		0.00016
Tin (total)	mg/L	0.00006	5		0.00148
Titanium (total)	mg/L	0.00007	5		0.0378
Zinc (total)	mg/L	0.002	3		0.017
Microbiology					
E. Coli	cfu/100mL	0		200	6
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

MATRIX: WATER			Sa	ample Number	8
			:	Sample Name	BH23-6
L1 = SANSEW / WATER / Halton Sewer Use ByLaw - Sanit	tary and Combined Sewer	Discharge -	:	Sample Matrix	Ground Water
BL_2_03				Oamala Dota	07/06/0000
L2 = SANSEW / WATER / Halton Sewer Use ByLaw - Storm	n Sewer Discharge - BL_2	2_03		Sample Date	27/06/2023
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	10	8.5	7.50
Mercury (total)	mg/L	0.00001	0.05		< 0.00001
Mercury (dissolved)	mg/L	0.00001			< 0.00001
Phenols					
4AAP-Phenolics	mg/L	0.002	1		0.004
SVOCs - PAHs					
Naphthalene	mg/L	0.0005	0.14		< 0.0005
VOCs					
Chloroform	mg/L	0.0005	0.04		0.0010
1,4-Dichlorobenzene	mg/L	0.0005	0.08		< 0.0005
Methylene Chloride	mg/L	0.0005	2		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1		< 0.0005
Trichloroethylene	mg/L	0.0005	0.4		< 0.0005

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

MATRIX: WATER			Si	ample Number	8
				Sample Name	BH23-6
L1 = SANSEW / WATER / Halton Sewer Use ByLaw	I - Sanitary and Combined Sewer D	Discharge -		Sample Matrix	Ground Water
BL_2_03 L2 = SANSEW / WATER / Halton Sewer Use ByLaw	v - Storm Sewer Discharge - BL_2_(_03		Sample Date	27/06/2023
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01		< 0.0005
Ethylbenzene	mg/L	0.0005	0.16		< 0.0005
			0.016		< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER	SANSEW / WATE
				/ Halton Sewer	/ Halton Sew
				Use ByLaw -	Use ByLaw - Sto
				Sanitary and	Sewer Discharg
				Combined Sewer	BL_2_03
				Discharge -	
				BL_2_03	
Parameter	Method	Units	Result	L1	L2
23-6					
Total Suspended Solids	SM 2540D	mg/L	446	350	

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD AC (%)	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5104-JUN23	mg/L	2	<2	ND	20	111	80	120	105	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch Ur Reference	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonaceous Biochemical Oxygen	BOD0058-JUN23	(CBOD5)	2	< 2	8	30	93	70	130	NV	70	130
Demand		mg/L										

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Rel	
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0286-JUN23	mg/L	0.01	<0.01	ND	10	96	90	110	77	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	<i>i</i> .
	Reference			Blank		AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0672-JUN23	mg/L	0.06	<0.06	1	10	100	90	110	101	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0059-JUN23	mg/L	0.00001	< 0.00001	ND	20	82	80	120	85	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Rei	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Selenium (total)	EMS0024-JUL23	mg/L	0.00004	<0.00004	4	20	103	90	110	99	70	130
Silver (total)	EMS0259-JUN23	mg/L	0.00005	<0.00005	ND	20	100	90	110	89	70	130
Aluminum (total)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Aluminum (0.2µm)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Arsenic (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	3	20	104	90	110	104	70	130
Beryllium (total)	EMS0259-JUN23	mg/L	0.000007	<0.000007	4	20	98	90	110	109	70	130
Cadmium (total)	EMS0259-JUN23	mg/L	0.000003	<0.000003	5	20	102	90	110	111	70	130
Cobalt (total)	EMS0259-JUN23	mg/L	0.000004	<0.000004	3	20	102	90	110	90	70	130
Chromium (total)	EMS0259-JUN23	mg/L	0.00008	0.003989	1	20	102	90	110	82	70	130
Copper (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	1	20	103	90	110	107	70	130
Iron (total)	EMS0259-JUN23	mg/L	0.007	<0.007	2	20	105	90	110	95	70	130
Manganese (total)	EMS0259-JUN23	mg/L	0.00001	<0.00001	2	20	107	90	110	111	70	130
Molybdenum (total)	EMS0259-JUN23	mg/L	0.00004	<0.00004	2	20	104	90	110	103	70	130
Nickel (total)	EMS0259-JUN23	mg/L	0.0001	<0.0001	5	20	105	90	110	88	70	130
Lead (total)	EMS0259-JUN23	mg/L	0.00009	<0.00009	1	20	101	90	110	106	70	130
Phosphorus (total)	EMS0259-JUN23	mg/L	0.003	<0.003	3	20	103	90	110	NV	70	130
Antimony (total)	EMS0259-JUN23	mg/L	0.0009	<0.0009	ND	20	109	90	110	77	70	130
Tin (total)	EMS0259-JUN23	mg/L	0.00006	<0.00006	8	20	100	90	110	NV	70	130
Titanium (total)	EMS0259-JUN23	mg/L	0.00007	<0.00005	13	20	105	90	110	NV	70	130
Zinc (total)	EMS0259-JUN23	mg/L	0.002	<0.002	1	20	100	90	110	94	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		N	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9467-JUN23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0453-JUN23	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	-
	Reference			(%) Recove	Spike	Recover (%	•	Spike Recovery	Recover (%	•		
					(%)	(%)	Low	High	(%)	Low	High	
Oil & Grease (animal/vegetable)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0668-JUN23	No unit	0.05	NA	1		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD AC	Spike		ery Limits %)	Spike Recovery	Recover	•	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0288-JUN23	mg/L	0.002	<0.002	ND	10	98	80	120	100	75	125

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	(%) Recov	Spike	Recove	•	Spike Recovery	Recove	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Naphthalene	GCM0025-JUL23	mg/L	0.0005		ND	30				88	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0737-JUN23	mg/L	2	< 2	7	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0294-JUN23	as N mg/L	0.5	<0.5	2	10	102	90	110	102	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
1,4-Dichlorobenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	96	60	130	93	50	140
Benzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Chloroform	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Ethylbenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Methylene Chloride	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	98	50	140
Tetrachloroethylene (perchloroethylene)	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Toluene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Trichloroethylene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

CA40311-JUN23 R1

23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oakville, ON.

Prepared for

DS Consultants

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Meysam Jafari	Telephone	2165
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	meysam.jafari@dsconsultants.ca	SGS Reference	CA40311-JUN23
Project	23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St We	Received	06/27/2023
Order Number		Approved	07/06/2023
Samples	Ground Water (1)	Report Number	CA40311-JUN23 R1
		Date Reported	07/18/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 032469

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-6
Exceedance Summary	7
QC Summary	8-15
Legend	16
Annexes	17

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

MATRIX: WATER			Sample Number	
			Sample Name	
L1 = SANSEW / WATER / Oakville Sewer Use By Law - Sto	rm Sewer Discharge - BL	L_2009_031	Sample Matrix	
			Sample Date	
Parameter	Units	RL	L1	Result
General Chemistry			,	
Carbonaceous Biochemical Oxygen	mg/L	2		4
Demand Total Suspended Solids	mg/L	2	15	446
Total Kjeldahl Nitrogen	as N mg/L	0.5		1.2
		0.0	<u> </u>	
Metals and Inorganics				10.04
Cyanide (total)	mg/L		0.02	< 0.01
Fluoride	mg/L	0.06		0.31
Sulphate	mg/L	2		400
Aluminum (0.2µm)	mg/L	0.001		0.007
Aluminum (total)	mg/L	0.001		1.95
Antimony (total)	mg/L	0.0009		0.0014
Arsenic (total)	mg/L	0.0002	0.02	0.0035
Beryllium (total)	mg/L	0.000007		0.000092
Cadmium (total)	mg/L	0.000003	0.008	0.000032
Chromium (total)	mg/L	0.00008	0.08	0.00467
Cobalt (total)	mg/L	0.000004		0.00148
Copper (total)	mg/L	0.0002	0.04	0.0054
Iron (total)	mg/L	0.007		2.20
Lead (total)	mg/L	0.00009	0.12	0.00128
Manganese (total)	mg/L	0.00001	0.05	0.222
Molybdenum (total)	mg/L	0.00004		0.0119
Nickel (total)	mg/L	0.0001	0.08	0.0042

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

MATRIX: WATER			Sample Numbe	er 8
			Sample Nam	ne BH23-6
L1 = SANSEW / WATER / Oakville Sewer Use By Law - Storm	m Sewer Discharge - BL	2009_031	Sample Matri	rix Ground Water
			Sample Dat	27/06/2023
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Phosphorus (total)	mg/L	0.003	0.4	0.165
Selenium (total)	mg/L	0.00004	0.02	0.00023
Silver (total)	mg/L	0.00005	0.12	0.00016
Tin (total)	mg/L	0.00006		0.00148
Titanium (total)	mg/L	0.00007		0.0378
Zinc (total)	mg/L	0.002	0.04	0.017
Microbiology				
E. Coli	cfu/100mL	0	200	6
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4
Other (ORP)				
рН	No unit	0.05	8.5	7.50
Mercury (total)	mg/L	0.00001	0.0004	< 0.00001
Mercury (dissolved)	mg/L	0.00001		< 0.00001

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

			Sample Numb	ber 8
MATRIX: WATER			-	
			Sample Nan	
L1 = SANSEW / WATER / Oakville Sewer Use By Law - Sto	orm Sewer Discharge - BL_	_2009_031	Sample Mat	
			Sample Da	
Parameter	Units	RL	L1	Result
Phenols				
4AAP-Phenolics	mg/L	0.002	0.008	0.004
SVOCs - PAHs				
Naphthalene	mg/L	0.0005		< 0.0005
VOCs			1	
Chloroform	mg/L	0.0005	0.002	0.0010
1,4-Dichlorobenzene		0.0005	0.0068	< 0.0005
,				
Methylene Chloride	mg/L	0.0005	0.0052	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.0076	< 0.0005
VOCs - BTEX				
Benzene	mg/L	0.0005	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.002	< 0.0005
Toluene	mg/L	0.0005	0.002	< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER
				/ Oakville Sewer
				Use By Law -
				Storm Sewer
				Discharge -
				BL_2009_031
Parameter	Method	Units	Result	L1
23-6				
Total Suspended Solids	SM 2540D	mg/L	446	15
Manganese	SM 3030/EPA 200.8	mg/L	0.222	0.05

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5104-JUN23	mg/L	2	<2	ND	20	111	80	120	105	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
Carbonaceous Biochemical Oxygen	BOD0058-JUN23	(CBOD5)	2	< 2	8	30	93	70	130	NV	70	130
Demand		mg/L										

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Rel	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
					RPD AC Spike (%) Recovery (%) (%)	•	Low	High	(%)	Low	High	
Cyanide (total)	SKA0286-JUN23	mg/L	0.01	<0.01	ND	10	96	90	110	77	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	(%) Recove	Spike		ery Limits %)	Spike Recovery	Recover	•	
					(%)	(%)	Low	High	(%)	Low	High	
Fluoride	EWL0672-JUN23	mg/L	0.06	<0.06	1	10	100	90	110	101	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference		В		RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0059-JUN23	mg/L	0.00001	< 0.00001	ND	20	82	80	120	85	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (۹	•	Spike Recovery	Recover (9	ry Limits 6)
							(%)	Low	High	(%)	Low	High
Selenium (total)	EMS0024-JUL23	mg/L	0.00004	<0.00004	4	20	103	90	110	99	70	130
Silver (total)	EMS0259-JUN23	mg/L	0.00005	<0.00005	ND	20	100	90	110	89	70	130
Aluminum (total)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Aluminum (0.2µm)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Arsenic (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	3	20	104	90	110	104	70	130
Beryllium (total)	EMS0259-JUN23	mg/L	0.000007	<0.000007	4	20	98	90	110	109	70	130
Cadmium (total)	EMS0259-JUN23	mg/L	0.000003	<0.000003	5	20	102	90	110	111	70	130
Cobalt (total)	EMS0259-JUN23	mg/L	0.000004	<0.000004	3	20	102	90	110	90	70	130
Chromium (total)	EMS0259-JUN23	mg/L	0.00008	0.003989	1	20	102	90	110	82	70	130
Copper (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	1	20	103	90	110	107	70	130
Iron (total)	EMS0259-JUN23	mg/L	0.007	<0.007	2	20	105	90	110	95	70	130
Manganese (total)	EMS0259-JUN23	mg/L	0.00001	<0.00001	2	20	107	90	110	111	70	130
Molybdenum (total)	EMS0259-JUN23	mg/L	0.00004	<0.00004	2	20	104	90	110	103	70	130
Nickel (total)	EMS0259-JUN23	mg/L	0.0001	<0.0001	5	20	105	90	110	88	70	130
Lead (total)	EMS0259-JUN23	mg/L	0.00009	<0.00009	1	20	101	90	110	106	70	130
Phosphorus (total)	EMS0259-JUN23	mg/L	0.003	<0.003	3	20	103	90	110	NV	70	130
Antimony (total)	EMS0259-JUN23	mg/L	0.0009	<0.0009	ND	20	109	90	110	77	70	130
Tin (total)	EMS0259-JUN23	mg/L	0.00006	<0.00006	8	20	100	90	110	NV	70	130
Titanium (total)	EMS0259-JUN23	mg/L	0.00007	<0.00005	13	20	105	90	110	NV	70	130
Zinc (total)	EMS0259-JUN23	mg/L	0.002	<0.002	1	20	100	90	110	94	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9467-JUN23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0453-JUN23	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	-
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recover (%	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0668-JUN23	No unit	0.05	NA	1		100		NA			

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	
	Reference			Blank	RPD AC Spike (%) Recove	Spike		ery Limits %)	Spike Recovery	Recover	•	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0288-JUN23	mg/L	0.002	<0.002	ND	10	98	80	120	100	75	125

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Naphthalene	GCM0025-JUL23	mg/L	0.0005		ND	30				88	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0737-JUN23	mg/L	2	< 2	7	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	latrix Spike / Re	əf.
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0294-JUN23	as N mg/L	0.5	<0.5	2	10	102	90	110	102	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recover (%	•	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
1,4-Dichlorobenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	96	60	130	93	50	140
Benzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Chloroform	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Ethylbenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Methylene Chloride	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	98	50	140
Tetrachloroethylene (perchloroethylene)	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Toluene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Trichloroethylene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Sampled By (NAME): Kon Kim Signature: Low Signature: Date: 06 12 33 (mm/dd/y) 36 37	12 12 Deservations/Comments/Special Instructions					1 15H23-6 27 Dung Am 16 GWN	F1-F4 + BTE F1-F4 only no BTEX VOCS all incl BTEX BTEX only Pesticides Organochlorine or spe Seewer Use: H Specify pkg: Water Charact General E	clify othe	iics c,SAR) Hg, (b,As,Bi 2n ion I d	Aroclor	O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: M & I SVOC PCB PHC VOC Pest Other (please specify) SPLP TCL	NS ANAL	Email: Specify Due Date: NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED	Phone: 20 42431-73457 RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days Fax: Phone: PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	Address: TAT's are quote Samples receive	Neysam Jaffary Company & Company & Company & Project #: 23-012-101 5221 Have 7 Unit Contact: TURNAROUND TIME (000000	e: 06/27/2624mm/dd/yy) Custody Seal Present: Yes No Cooling Agent Present: Yes Alo Trype: 100 Trype	Received By: Received By (signature): Leboratory Information Section - Lab use only
mm dodyy) Pink Copy - Client (mm dodyy) Pink Copy - Client mododyy) P / So Section of the White Copy - SGS					U	Nonfilter	General Genera	Litendec	- Metals	Specify tests	SPLP TCLP		HUMAN CONSUMPTION MUST BE SUBMITTED CHAIN OF CUSTODY		or on weekends: TAT begins next business day	6 Neya gawa 1511013 59 Jundas St Westlork	5	LABLIMS # CA 40311-Jan 23	

CA40311-JUN23 R1

23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oakville, ON.

Prepared for

DS Consultants

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Meysam Jafari	Telephone	2165
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	meysam.jafari@dsconsultants.ca	SGS Reference	CA40311-JUN23
Project	23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St We	Received	06/27/2023
Order Number		Approved	07/06/2023
Samples	Ground Water (1)	Report Number	CA40311-JUN23 R1
		Date Reported	07/06/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 032469

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

-irst Page	1-2
ndex	3
Results	4-6
Exceedance Summary	7
QC Summary	3-15
.egend	. 16
Annexes	. 17

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

		Comple Number	0
ATRIX: WATER		Sample Number	
		Sample Name	
= PWQO_L / WATER / Table 2 - General - July 1999 PIB	JS 3303E	Sample Matrix	
Parameter	Units RL	Sample Date	27/06/2023 Result
Beneral Chemistry		LI	Result
·			
Carbonaceous Biochemical Oxygen Demand	mg/L 2		4
Total Suspended Solids	mg/L 2		446
Total Kjeldahl Nitrogen	as N mg/L 0.5	+	1.2
Vetals and Inorganics			·
_			0.01
Cyanide (total)	mg/L 0.01		< 0.01
Fluoride	mg/L 0.06		0.31
Sulphate	mg/L 2		400
Aluminum (0.2µm)	mg/L 0.001	0.075	0.007
Aluminum (total)	mg/L 0.001		1.95
Antimony (total)	mg/L 0.0009	0.02	0.0014
Arsenic (total)	mg/L 0.0002	0.005	0.0035
Beryllium (total)	mg/L 0.000007	0.011	0.000092
Cadmium (total)	mg/L 0.000003	3 0.0001	0.000032
Chromium (total)	mg/L 0.00008	0.1	0.00467
Cobalt (total)	mg/L 0.000004	0.0009	0.00148
Copper (total)	mg/L 0.0002	0.001	0.0054
Iron (total)	mg/L 0.007	0.3	2.20
Lead (total)	mg/L 0.00009		0.00128
Manganese (total)			
	mg/L 0.00001		0.222
Molybdenum (total)	mg/L 0.00004	0.04	0.0119
Nickel (total)	mg/L 0.0001	0.025	0.0042

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

			O	
MATRIX: WATER			Sample Numbe	
			Sample Name	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 33038	Ē		Sample Matrix	
			Sample Date	te 27/06/2023
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Phosphorus (total)	mg/L	0.003	0.01	0.165
Selenium (total)	mg/L	0.00004	0.1	0.00023
Silver (total)	mg/L	0.00005	0.0001	0.00016
Tin (total)	mg/L	0.00006		0.00148
Titanium (total)	ma/L	0.00007		0.0378
Zinc (total)	mg/L		0.02	0.017
		0.002	0.02	0.017
Microbiology			T	
E. Coli	cfu/100mL	0	100	6
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4
Other (ORP)]	<u>.</u>	
	No unit	0.05	2.6	7.50
pH			8.6	
Mercury (total)		0.00001	0.0002	< 0.00001
Mercury (dissolved)	mg/L	0.00001	0.0002	< 0.00001

CA40311-JUN23 R1

Client: DS Consultants

Project: 23-012-101, 3056 Neyagawa Blvd & 1013, 1059 Dundas St West, Oa

Project Manager: Meysam Jafari

MATRIX: WATER			Sample N	Number 8
			Sample	le Name BH23-6
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample	e Matrix Ground Water
			Samr	ple Date 27/06/2023
Parameter	Units	RL	L1	Result
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	0.004
SVOCs - PAHs				
Naphthalene	mg/L	0.0005	0.007	< 0.0005
VOCs		1	I	I
Chloroform		0.0005		0.0010
	mg/L			
1,4-Dichlorobenzene	mg/L	0.0005	<u> </u>	< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005
VOCs - BTEX				i
Benzene	mg/L	0.0005	0.1	< 0.0005
Ethylbenzene	mg/L	0.0005	0.008	< 0.0005
Toluene	mg/L	0.0005	0.0008	< 0.0005

EXCEEDANCE SUMMARY

				PWQO_L / WATER
				/ Table 2 -
				General - July 1999
				PIBS 3303E
Parameter	Method	Units	Result	L1
23-6	SM 3030/EPA 200.8	mg/L	0.00148	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0054	0.0009
Iron	SM 3030/EPA 200.8	mg/L	2.20	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.165	0.01
Silver	SM 3030/EPA 200.8	mg/L	0.00016	0.0001
4AAP-Phenolics	SM 5530B-D	mg/L	0.004	0.001

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5104-JUN23	mg/L	2	<2	ND	20	111	80	120	105	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ret	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonaceous Biochemical Oxygen	BOD0058-JUN23	(CBOD5)	2	< 2	8	30	93	70	130	NV	70	130
Demand		mg/L										

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	F.
	Reference			Blank	RPD AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0286-JUN23	mg/L	0.01	<0.01	ND	10	96	90	110	77	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Rei	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0672-JUN23	mg/L	0.06	<0.06	1	10	100	90	110	101	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0059-JUN23	mg/L	0.00001	< 0.00001	ND	20	82	80	120	85	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	•
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						. ,	(%)	Low	High	(%)	Low	High
Selenium (total)	EMS0024-JUL23	mg/L	0.00004	<0.00004	4	20	103	90	110	99	70	130
Silver (total)	EMS0259-JUN23	mg/L	0.00005	<0.00005	ND	20	100	90	110	89	70	130
Aluminum (total)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Aluminum (0.2µm)	EMS0259-JUN23	mg/L	0.001	<0.001	2	20	98	90	110	108	70	130
Arsenic (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	3	20	104	90	110	104	70	130
Beryllium (total)	EMS0259-JUN23	mg/L	0.000007	<0.000007	4	20	98	90	110	109	70	130
Cadmium (total)	EMS0259-JUN23	mg/L	0.000003	<0.000003	5	20	102	90	110	111	70	130
Cobalt (total)	EMS0259-JUN23	mg/L	0.000004	<0.000004	3	20	102	90	110	90	70	130
Chromium (total)	EMS0259-JUN23	mg/L	0.00008	0.003989	1	20	102	90	110	82	70	130
Copper (total)	EMS0259-JUN23	mg/L	0.0002	<0.0002	1	20	103	90	110	107	70	130
Iron (total)	EMS0259-JUN23	mg/L	0.007	<0.007	2	20	105	90	110	95	70	130
Manganese (total)	EMS0259-JUN23	mg/L	0.00001	<0.00001	2	20	107	90	110	111	70	130
Molybdenum (total)	EMS0259-JUN23	mg/L	0.00004	<0.00004	2	20	104	90	110	103	70	130
Nickel (total)	EMS0259-JUN23	mg/L	0.0001	<0.0001	5	20	105	90	110	88	70	130
Lead (total)	EMS0259-JUN23	mg/L	0.00009	<0.00009	1	20	101	90	110	106	70	130
Phosphorus (total)	EMS0259-JUN23	mg/L	0.003	<0.003	3	20	103	90	110	NV	70	130
Antimony (total)	EMS0259-JUN23	mg/L	0.0009	<0.0009	ND	20	109	90	110	77	70	130
Tin (total)	EMS0259-JUN23	mg/L	0.00006	<0.00006	8	20	100	90	110	NV	70	130
Titanium (total)	EMS0259-JUN23	mg/L	0.00007	<0.00005	13	20	105	90	110	NV	70	130
Zinc (total)	EMS0259-JUN23	mg/L	0.002	<0.002	1	20	100	90	110	94	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike Recovery (%)	Recove	ry Limits %)	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9467-JUN23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0453-JUN23	mg/L	2	<2	NSS	20	106	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	-
	Reference			Blank	RPD	(%) Recover	Spike	Recover (%	•	Spike Recovery	Recover (%	•
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0453-JUN23	mg/L	4	< 4	NSS	20	NA	70	130			

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference	Reference	Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0668-JUN23	No unit	0.05	NA	1		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	•
	Reference			Blank		AC	Spike		ery Limits %)	Spike Recovery	Recover	•
						(%)	Recovery	(/6)	(%)	(9	0)
							(%)	Low	High		Low	High
4AAP-Phenolics	SKA0288-JUN23	mg/L	0.002	<0.002	ND	10	98	80	120	100	75	125

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ret	•
	Reference			Blank	RPD	(%) Rec	Spike	Recover	•	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Naphthalene	GCM0025-JUL23	mg/L	0.0005		ND	30				88	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0737-JUN23	mg/L	2	< 2	7	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
							Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0294-JUN23	as N mg/L	0.5	<0.5	2	10	102	90	110	102	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
1,4-Dichlorobenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	96	60	130	93	50	140
Benzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Chloroform	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Ethylbenzene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Methylene Chloride	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	98	50	140
Tetrachloroethylene (perchloroethylene)	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Toluene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Trichloroethylene	GCM0060-JUL23	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140

FINAL REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Sampled By (NAME): Kon Kim Signature: Low Signature: Date: 06 12 03 (mm/dd/y) 36 27 26 27 23 (mm/dd/y) 36 27 26 27 23 (mm/dd/y) 36 27 26 27 28 27 26 27 28 27 26 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	12 12 Deservations/Comments/Special Instructions					1 15H23-6 27 Dung Am 16 GWN	F1-F4 + BTE F1-F4 only no BTEX VOCS all incl BTEX BTEX only Pesticides Organochlorine or spe Seewer Use: H Specify pkg: Water Charact General E	clify othe	iics c,SAR) Hg, (c) p,As,Bi 2n ion I d	Aroclor	O.Reg 153/04 O.Reg 406/19 Other Regulations: Sewer By-Law: M & I SVOC PCB PHC VOC Pest Other (please specify) SPLP TCL	NS ANAL	Email: Specify Due Date: NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED	Phone: 20 42431-73457 RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days Fax: Phone: PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	Address: TAT's are quote Samples receive	Neysam Jaffary Company & Company & Company & Project #: 23-012-101 5221 Have 7 Unit Contact: TURNAROUND TIME (000000	e: 14 27 20 2mm/dd/yy) Custody Seal Present: Yes No Cooling Agent Present: Yes Ano Trype: 100 100 100 100 100 100 100 100 100 10	Received By: Received By (signature): Leboratory Information Section - Lab use only
mm dodyy) Pink Copy - Client (mm dodyy) Pink Copy - Client mododyy) P / So Section of the White Copy - SGS					U	Nonfilter	General Genera	Litendec	- Metals	Specify tests	SPLP TCLP		HUMAN CONSUMPTION MUST BE SUBMITTED CHAIN OF CUSTODY		or on weekends: TAT begins next business day	6 Neya gawa 1511013 59 Jundas St Westlork	5	LABLIMS # CA 40311-Jan 23	

Appendix D: MECP Water Wells Records

			Prel	iminary Hydro	geologi	cal Invest	tigation- 3()56 Neya	gawa Boul	evard, Oakvil	le, ON	
TOWNSHIP C	UTM	Е	N	DATE CNTR	CASIN G	WATER	PUMP TEST	WELL USE	SCREEN	WELL		1 FORMATION
											(Z255619)	BRWN LOAM 0001 BRWN SILT
OAKVILLE TOWN	17 W	601668	4813624	2017-11 6607	2			TH MO	0003 5	7304719	A241224	TILL SHLE 0008
OAKVILLE TOWN OAKVILLE TOWN	17 W 17 W	601667 601393		2017-11 6607 2007-11 7241	2			ТН МО	0010 10	7304718 7127343		BRWN LOAM 0001 BRWN SILT TILL DRY 0007 BRWN SHLE 0020
OARVILLE TOWN	17 VV	001393	4015500	2007-117241						/12/343	U A	BRWN LOAM LOOS 0001
OAKVILLE TOWN	17 W	601351	4813447	2007-12 7230	1.97	UK 0010		NU	0011 6		(Z70162) A054855	BRWN CLAY SILT DNSE 0013 RED SHLE DNSE 0016
OAKVILLE TOWN	17 W	601537	40120(1	2020-03 6988							(C49166) A276677 P	
OAKVILLE TOWN	17 VV	601537	4813061	2020-03 6988						/300002	A2/00// P	
01 020	17 W	601605	4813392	2005-02 1663	2.6		10///:	NU		2810323	(Z23996) A	27
OAKVILLE TOWN 01 021	17 W	601379		2010-07 7407	6		10///.	DO			(Z115148) A100856	
OAKVILLE TOWN	17 11	001077	1010271	2010 07 7107				20		, 11, , , , 0	11100000	LOAM CLAY 0008 RED SHLE
DS N 01 020	17 W	601549	4813347	1955-08 2415	66	FR 0021	5/15/5/:	DO		2802138	0	0025
OAKVILLE TOWN							5/80/4/1:				0	LOAM 0002 RED CLAY 0020
DS N 01 020	17 W	601375	4813523	1978-05 1458	6	FR 0065	0	DO		2805340		RED SHLE 0086
OAKVILLE TOWN DS N 01 020	17 W	601509	4813684	2009-10 7219				NU		7132235	(Z098408) A085717 A	
OAKVILLE TOWN DS N 01 020	17 W	601417	4813542	2009-10 7219	36		10///:	NU			(Z098407) A085725 A	0012 0013 0014
OAKVILLE TOWN DS N 01 020	17 W	601477	4813381	2009-08 3030						7133262	(Z104591) A	0032
OAKVILLE TOWN DS N 01 020	17 W	601334	4813473	2010-03 3030						7143458	(Z112011) A	FILL 0007 0009 0063
OAKVILLE TOWN DS N 01 021	17 W	601494	4813205	1974-09 1660	66	FR 0030	12/30/4/ 1:0	DO		2804667	0	BRWN CLAY LOAM 0009 RED SHLE 0040
OAKVILLE TOWN DS N 01 021	17 W			2022-01 7472	2		///:	МО	0008 10	7413419	(RTAFHK2L) A341695	GREY CLAY SILT PCKD 0008 GREY SHLE HARD 0018
OAKVILLE TOWN DS N 01 021	17 W			2022-01 7472	2		///:	мо	0009 10		(YO8OM2BY) A341687	GREY CLAY SILT PCKD 0008 GREY SHLE HARD 0019
OAKVILLE TOWN DS N 01 021	17 W			2022-01 7472	2		///:	мо	0013 10		(SFLTM6DL) A341663	GREY CLAY SILT PCKD 0008 GREY SHLE HARD 0023
OAKVILLE TOWN DS N 01 021	17 W			2022-01 7472	2		///:	мо	0008 10		(HSJPOVCT) A341693	GREY CLAY SILT PCKD 0008 GREY SHLE HARD 0018

OAKVILLE TOWN												(G3J5BEBB)	GREY CLAY SILT PCKD 0008
DS N 01 021	17 W	601316	4813187	2022-01 7472		2		///:	МО	0005 5	7413421		GREY SHLE HARD 0010
OAKVILLE TOWN								7/50/6/2:			-		LOAM 0003 BRWN CLAY 0005
DS N 01 021	17 W	601375	4813123	1981-12 2803		6	FR 0012		DO		2805811	0	RED SHLE 0053
OAKVILLE TOWN								6/35/15/				0	LOAM 0003 BRWN CLAY 0006
DS N 01 021	17 W	601355	4813223	1981-12 2803		6	FR 0018		DO		2805810	0	RED SHLE 0045
OAKVILLE TOWN													
DS N 01 023	17 W	600737	4812722	1955-08 1642	6	6	FR 0065	12///:	PS		2802147	0	CLAY 0018 RED SHLE 0067
OAKVILLE TOWN								12/39/21					BRWN CLAY STNS 0002 RED
DS N 01 023	17 W	601025	4812663	1970-02 3903	2	1	FR 0017	/0:4	NU	0046 2	2803413	0	CLAY 0012 RED SHLE 0050
OAKVILLE TOWN							MN	7/18/15/					RED CLAY 0005 RED SHLE
DS N 01 023	17 W	600725	4812733	1971-07 4602		6	0023	1:0	DO		2803657	0	0023
OAKVILLE TOWN													BRWN CLAY STNS 0002 RED
DS N 01 023	17 W	601033	4812653	1971-08 9999	2	1		17///:	NU	0048 2	2803730	0	CLAY 0010 RED SHLE 0051
													BRWN CLAY 0005 RED SILT
OAKVILLE TOWN												(M7LF9ZQU)	CLAY TILL 0007 WHIT ROCK
DSS 01 020	17 W	601605	4813170	2021-05 7282		2		///:	MO	0005 10	7393668	A326943	WTHD 0015
OAKVILLE TOWN												(MQPGZ9OX)	BRWN CLAY 0005 RED SILT
DSS 01 020	17 W	601764	4813130	2021-05 7282		2		///:	MO	0002 5	7393669	A326944	CLAY TILL 0006
													BRWN CLAY 0005 RED SILT
OAKVILLE TOWN												(QR3JJDTW)	CLAY TILL 0007 WHIT ROCK
DSS 01020	17 W	601766	4813134	2021-05 7282		2		///:	MO	0040 10	7393666	A326941	WTHD 0050
													BRWN CLAY 0005 RED SILT
OAKVILLE TOWN												(DUVN8MND)	CLAY TILL 0007 WHIT ROCK
DSS 01020	17 W	601665	4813322	2021-05 7282		2		///:	MO	0003 5	7393670	A326945	WTHD 0008
													BRWN CLAY 0005 RED SILT
OAKVILLE TOWN												(FRIVK9QE)	CLAY TILL 0007 WHIT ROCK
DSS 01 020	17 W	601616	4813226	2021-05 7282		2		///:	MO	0004 5	7393667	A326942	WTHD 0010
OAKVILLE TOWN		(040.10	1010000						10				BRWN LOAM 0002 RED SHLE
DSS 01021	17 W	601349	4812922	1965-11 1307		30	FR 0015	5//10/:	IR		2802313	U	0015