Appendix B. Modelling Memo		

Midtown Oakville Travel Demand Modelling

Revision: Draft Report

Town of Oakville

Midtown Implementation Program November 24, 2025

Contents

1.	Over	view	5
	1.1	Purpose and Limitations	5
2.	Mod	el Network & Zones	7
	2.1	Overview	7
3.	Mod	ellingelling	9
	3.1	Trip Generation	10
		3.1.1 Model Inputs	10
		3.1.2 Comparator Areas	12
		3.1.3 Residential Trip Rates	12
		3.1.4 Employment Trip Rates	13
		3.1.5 Commercial Trip Rates	14
		3.1.6 Trip Generation Formulas	14
	3.2	Trip Distribution	15
	3.3	Mode Choice	17
		3.3.1 Application of the Model	18
		3.3.2 Calibration and Validation	18
	3.4	Assignment	20
		3.4.1 Transport Vehicle Speeds	20
		3.4.2 Other Assumptions	21
		3.4.3 Travel Time Benefits	21
		3.4.4 Calibration and Validation	22
4.	Scen	ario Testing Overview	25
	4.1	Preliminary Road Network Elements Testing	25
	4.2	Transportation Plan Network Solutions	25
	4.3	Phasing and Sensitivity to Growth	25
	4.4	Key Findings	27
5.	Scen	ario Testing Results	29
	5.1	Business-as-Usual	29
		5.1.1 Scenario 2051a: Business-as-Usual (with North-South Road)	29
	5.2	Preliminary Road Network Elements Testing	31
		5.2.1 Scenario 2051b: Without North-South Road	31
		5.2.2 West Connection-Related Scenarios	33
		5.2.3 Scenario 2051e: Exclude Royal Windsor Drive (RWD) Interchange	35
		5.2.4 Chartwell Road-Related Scenarios	37
	5.3	Sensitivity Testing-Related Scenarios	41

Midtown Oakville Travel Demand Modelling

	5	3.1 Scenario 2051g: Road Priority	41				
	5	3.2 Scenario 2051f: Transit/AT Priority	44				
	5	3.3 Scenario 2051k: Mixed Priority	45				
į	5.4 F	hasing Related Results	48				
	5	4.1 2031 Interim Horizon	48				
	5	4.2 2041 Interim Horizon	49				
į	5.5 2	051 Population and Employment as Per Official Plan Amendment (OPA)	51				
		5.1 Summary of Results					
6. (ions					
· ·	correta.		50				
Table 1		la Midtaun Camparabla Areas	0				
		le Midtown Comparable Areasfor Trip Generation, employment, and commercial area for 2051 base, JBP					
	•	ential Trip Rates Midtown Oakville	•				
		nercial Trip Rates Midtown Oakville					
Table 5	5: Resid	ential, Employment and Commercial Trip Rates Midtown Oakville	15				
	_	Model Parameters					
		port Mode Assumptions					
		Assumptions					
		nline Results					
		ridual Locations (Counts)arios and Elements					
		e Shares (2051a BAU)					
		mary of Volumes, V/C Ratios and Speeds (2051a, h, and i)					
		e Shares Change (2051g) – AM Peak					
		e Shares Change (2051g) – PM Peak					
Table 1	16: Mod	e Shares Change (2051f) – AM Peak	44				
		e Shares Change (2051f) – PM Peak					
		e Shares Change (2051k) – AM Peak					
		e Shares Change (2051k) – PM Peak					
		e Shares (2031 Interim Horizon)					
		e Shares (2041 Interim Horizon)					
rable 2	ıble 22: Population & Employment Forecast53						

Figures

Figure 1: Oakville and Midtown Subarea Model Extents	5
Figure 3: Midtown Area Proposed Street Network	7
Figure 4: Midtown Area New Zones	8
Figure 5: Model Structure	9
Figure 6: Population and Employment	12
Figure 7: Residential Trip Rates	13
Figure 8: Employment Trip Rates	14
Figure 9: Trip Length Distribution Comparison	17
Figure 10: Mode Shares (All Trips)	
Figure 11: Trips and Locations (2051 AM Peak for all Oakville at the Same Scale)	20
Figure 12: Screenline Results	
Figure 13: Traffic Volumes (2051a BAU)	29
Figure 14: V/C Ratios (2051a BAU)	
Figure 15: Transit Volumes (2051a BAU)	
Figure 16: Comparison of Traffic, Transit Volumes and V/C ratios (2051a BAU vs 2051b)	32
Figure 17: Comparison of V/C Ratios (2051a Base vs 2051c - New Crossing of 16mi Creek) AM Peak.	33
Figure 18: Traffic Volume Comparison (2051a BAU vs 2051b – New Crossing of 16mi Creek)	34
Figure 19: V/C Ratios (Comparison of Base vs Widened Cross Avenue)	
Figure 20: Comparison of Traffic on Network (Scenario vs Base)	35
Figure 21: Traffic Comparisons – 2051e (No RWD Interchange vs Base)	36
Figure 22: Traffic Comparisons – 2051e (No RWD Interchange vs Base)	
Figure 23: Traffic Comparisons – 2051h (No-North-South South of Cross Avenue vs Base)	
Figure 24: Traffic Comparisons – 2051i (No Chartwell Road South of Cross Avenue vs Base)	
Figure 25: Traffic Comparisons – 2051j (No-North-South Road or Chartwell Road South of Cross Aver	
vs Base)	
Figure 26: V/C Comparisons – 2051j (No-North-South Road or Chartwell Road South of Cross Avenue	
Base)	
Figure 27: Proposed Mode Shares (Sensitivities)	
Figure 28: V/C ratio comparison – 2051g (Less Aggressive Transit Policies)	
Figure 29: Traffic Volume Comparison - 2051g Road Priority vs 2051a BAU	
Figure 30: Transit Volume Comparison – 2051g Road Priority vs 2051a BAU	
Figure 31: V/C Ratio Comparison – 2051f (Aggressive Transit Policies)	
Figure 32: Traffic Volume Comparison - 2051f (Aggressive Transit Policies)	
Figure 33: Transit Volume Comparison - 2051f (Aggressive Transit Policies)	
Figure 34: V/C Ratio Comparison	
Figure 35: Traffic Volume Comparison – 2051k Mix Priority vs 2051a Base	
Figure 36: Transit Volume Comparison – 2051k Mix Priority vs 2051a Base	
Figure 37: Traffic Volumes	
Figure 38: V/C Ratios	
Figure 39: Transit Volumes	
Figure 40: Traffic Volumes	
Figure 41: V/C Ratios	
Figure 42: Transit Volumes	
Figure 43: Traffic Comparisons – Mix Priority – JBPE vs. OPA	
Figure 44: V/C Comparisons	55

1. Overview

The Midtown Subarea model aims at providing a tool for testing different development and growth forecasts proposed for Midtown, including road networks and modal splits on a block-by-block level. The model is based primarily on the Oakville Subarea Model, which is a subarea model of the Halton Region model (managed and developed by Halton Region), which is based on the GTAModel V4.0 travel demand model developed by the Travel Modelling Group (TMG) at the University of Toronto.

The Oakville Subarea Model covers the areas of the Town of Oakville, bounded by the 407 in the north, Lake Ontario in the south, Winston Churchill Boulevard in the east, and Burloak Drive/ Tremaine Road in the west. Figure 1 below indicates the extents of the model network of the Oakville subarea model compared to the Midtown subarea network, which covers the extents of the Midtown area only.

Oakville Subarea Model Extents (EMME)

Midtown Subarea Network Extents (EMME)

Figure 1: Oakville and Midtown Subarea Model Extents

1.1 Purpose and Limitations

The goal of the subarea model for Midtown is to provide a more detailed understanding of travel patterns within the study area. It relies on existing information from Regional and Town-wide transportation models for trips to and from the broader Town and Region. Other organizations maintain other transportation models that do cover Oakville (including Midtown), which includes the following:

- GTAModel V4.0 travel demand model Developed and maintained by TMG at the University of Toronto;
- Halton Regional Model Maintained by Halton Region; and,
- Town of Oakville Model, variants used in Transportation Master Plan (TMP) and elsewhere Maintained by Consultants and Town of Oakville

However, regional and town-wide models do not include detailed local and collector roads, nor do they include individual development blocks. This subarea model for Midtown was used to identify potential

Midtown Oakville Travel Demand Modelling

pinch points and areas of congestion to help evaluate potential solutions that are reflective of actual development and localized travel patterns.

The subarea model relies heavily on existing regional models. The model inherently assumes that the broader town-wide and region-wide travel demand models are reasonably calibrated, and travel demands through the Midtown area are an accurate reflection of travel patterns.

This report assumes that the Halton Regional Model and Town of Oakville Model networks account for the majority of the committed and planned transit and road projects. This model development report in addition, benchmarks and adjusts mode splits for future trips to and from Midtown as these are anticipated to be impacted by the proposed infrastructure and recommendations. The Chartwell Grade Separation Class EA is also completed as part of this modelling memo.

Readers of this report should note that while some scenario results are presented, the intent of this report is to document the model development process. The majority of scenario results are discussed in detail within a wider transportation context in companion reports including:

- Midtown Transportation Plan Report (2025)
- Midtown Transit Needs and Opportunities Report (2025)
- Midtown Active Transportation Report (2025)

2. Model Network & Zones

2.1 Overview

The Midtown subarea model network was modified from the Oakville subarea model to include the proposed changes related to the Midtown redevelopment and new/finer zones. The proposed road network of the Midtown model is shown in Figure 2 below and covers an area of approximately 103 hectares plus additional areas north and east of the urban growth centre limits. This figure displays the road network of the Midtown subarea model 2051 base network, which includes anticipated future road and transit projects. This figure is displayed for context and information purposes, a detailed review of what is included in model scenarios is discussed later in this memo. The number of lanes per link is also displayed in this figure.

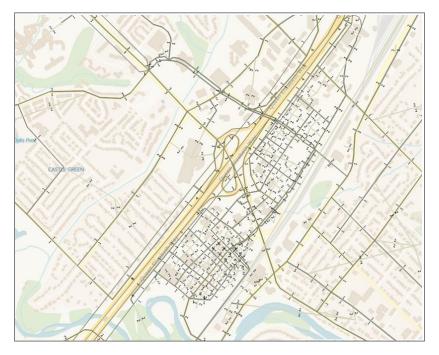


Figure 2: Midtown Area Proposed Street Network

Twenty-nine internal zones were added in Midtown to replace the five zones present in the Oakville subarea model. These zones are significantly smaller and will therefore give finer precision and information specifically within the Midtown area. The new internal zones are based on the Midtown OPA and have been numbered from Z1 to Z29, as shown below in Figure 3. These zones can be aggregated to correspond to zones in the Halton regional model / Oakville subarea model, which are indicated in Figure 3 as different colours (e.g. zones coloured purple correspond to the Halton Region zone 4329).



Figure 3: Midtown Area New Zones

3. Modelling

To forecast future demand in the Oakville Midtown area, we developed a basic origin-to-destination transportation modelling and forecasting tool, which is structured as shown in Figure 4 below. This relatively simple model structure represents a good compromise between accuracy and efficiency and makes significant use of existing models where possible. The diagram shows inputs, dependencies, modules, and gives a high-level overview of data flows.

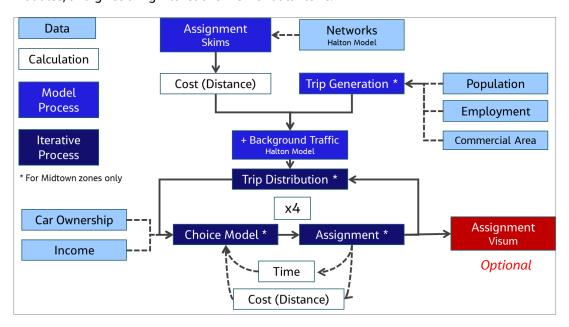


Figure 4: Model Structure

Table 1: Oakville Midtown Comparable Areas

	Residents	Urban Design	Rapid Transit	Distance from Core
Midtown (Oakville)	32,000	Dense High Rise	Oakville Go	37 km
Midtown (Toronto)	61,000	Very Dense High Rise	Line 1: Eglinton Station Future: Line 5 Eglington Station	7 km
North York (Toronto)	50,000	Dense High Rise	Line 1/4: Sheppard-Yonge Station	27 km
Mississauga City Centre/ Square One (Mississauga)	50,000	Dense High Rise	MiWay (BRT) Future: Hurontario Line Mississauga City Centre	27 km
Scarborough Centre (Toronto)	~100,000 (district)	Dense High Rise	Scarborough Centre (defunct) Future: Line 3 Scarborough Centre	27 km
Coquitlam Centre (Metro Vancouver)	32,000	Dense High Rise	Coquitlam Central Station/Lincoln Station	27 km

3.1 Trip Generation

Trip generation models in transportation planning are analytical tools used to estimate and predict the number of trips generated by a population within a specified geographic area. Specifically focusing on the land use of specific zones, these models assess various demographic elements such as household size, income, and other socio-economic variables to quantify the demand for travel.

For the Midtown subarea model, trip generation functions were developed for the AM (6am to 9am) and PM (4pm to 7pm) peaks and included residential, employment and commercial trips. Similar urban areas in the Greater Toronto Area (GTA) were used as reference for the estimation of the residential and employment trip generation rates. Commercial trip rates were extracted from the Institute of Transportation Engineers (ITE) Trip Generation Manual 10th Edition. Sections below describe the process of estimating trip generation rates.

3.1.1 Model Inputs

For the Midtown subarea model, trip generation is based on three inputs: population, employment, and commercial space by zone¹. The Joint Best Planning Estimates (JBPE), which are forecasts of housing, population, and employment for Halton Region, are used for the base scenario. These estimates were developed through a 'joint' planning exercise with Halton Region and local municipalities in late 2023 and are the basis for the Halton Regional model and many other planning purposes across the Town. The JBPE may be considered an upper limit of population and employment growth by 2051, which is useful for planning for the purpose of this study only. All background transportation outside the Midtown zones also utilizes the JBPE estates for generating trips, using the Halton region model zone system.

For the finer Midtown area zones, values of population, employment, and commercial areas are based on the JBPE and distributed to Gross Development Blocks (GDB) based on the planned distribution of building and land uses in Midtown reflecting the approved Midtown Oakville Official Plan Amendment (OPA 70). The data from GDBs was converted into the Midtown subarea model zone system. Table 2 below shows the values by zone for the 2051 base scenario.

One alternative set of population and employment forecast inputs by zone was developed for scenario testing purposes. This sensitivity test was based on the Growth Analysis Study completed by Watson & Associates Economists² in November 2024. The Watson study was commissioned by the Town of Oakville to provide a refined understanding of long-term population, housing, and employment growth possibilities, with a particular focus on Midtown Oakville. While JBPE offered a region-wide framework for growth across Halton, this study responded to more recent demographic and policy shifts such as changes to immigration, evolving housing needs, provincial legislation like Bill 23 and 185, development pressures, and strategic priorities. Midtown is identified as a key growth node within the Town, and this report provides allocations for residential and employment growth in that area. Compared to the JBPE, the Watson report forecasts of housing, population, and employment are lower. The Watson sensitivity is only applied to the finer Midtown subarea model zones and does not affect background traffic. While the Watson report also includes some Town-wide estimates, these are not available by zone. It is noted that previous versions of the OPA are not applicable to the site as they are not in-force policy.

-

¹ Different from Halton Regional model, where the trip generation model is based on population and employment only, as Industrial, Commercial, and Institutional (ICI) area a subset of employment.

² Source: Growth Analysis Study, Town of Oakville (2024). Retrieved on October 20, 2025 from: https://www.oakville.ca/getmedia/4fc97c8e-6e53-4aed-ae46-62757c71fa69/planning-growth-analysis-study.pdf#page=98.10

Further, 2031 and 2041 versions for the Midtown subarea model zones were also developed which share similar distributions as 2051, but the total values are lower than the JBPE. These scenario inputs are described later in this memo.

Table 2: Input for Trip Generation (population, employment, and commercial area for 2051 base, JBPE)

	2051 Base Scenario (Based on JBPE)		
Zone Number	Population	Employment	Commercial Area
201	1,781	621	2,099
202	1,010	0	0
203	1,905	665	2,349
204	1,960	684	2,517
205	1,248	436	1,513
206	1,821	636	2,737
207	0	0	0
208	413	450	0
209	1,102	385	1,648
210	917	320	1,042
212	480	167	798
213	805	281	1,163
214	691	241	1,163
215	576	201	1,163
216	557	194	891
217	1,618	565	2,117
218	1,137	397	1,715
219	1,435	501	2,519
220	0	5,963	10,124
221	2,634	919	3,336
222	848	94	0
223	1,445	504	660
224	1,309	457	2,980
225	1189	415	2,676
226	2,556	892	4,635
227	896	1,267	6,404
228	1,158	404	1,460
229	645	225	1,597
230	331	116	583
Total	32,468	17,998	59,887

Data source: Derived from JBPE and distributed by zone based on 2051 planned buildings for Midtown by Gross Development Block, provide by Town of Oakville staff

Figure 5 below indicates the same zonal data as Table 2 above including population (blue) and employment (yellow) by zone in the Midtown subarea model.

Figure 5: Population and Employment

Data source: Derived from JBPE and distributed by zone based on 2051 planned buildings for Midtown by Gross Development Block, provide by Town of Oakville staff.

3.1.2 Comparator Areas

The Midtown Oakville area will be unlike anything else in the Town of Oakville or the Halton Region. Existing vehicular trip data available for the future site of Midtown Oakville from the 2016 Transportation Tomorrow Survey (TTS) was deemed inadequate for model calibration purposes, since existing development in Midtown is limited and land-use configuration significantly different from what is envisaged for the area in the future. To determine if the model is correctly calibrated, we look at other similar developed areas inside and outside of the GTA. In general, these areas can be characterized as being dense urban developments surrounded by far less dense suburban development. They're all centered on a rapid transit station. Many of these areas are developed on land formerly used as malls or strip malls. This type of development is becoming relatively more common in Canada, and the following places will be used as comparators. Midtown Oakville future residents forecast is based on Halton's Joint Best Planning Estimates (JBPEs), which allocates which allocate 32,468 people and 17,998 jobs in Midtown by 2051, broken down to a disaggregated zonal system.

3.1.3 Residential Trip Rates

Residential trip rates for Midtown were calculated based on the total number of existing residents living within each comparable area (2006 TTS zones of household), and the total number of trips to and from these areas. Attracted and produced residential trips across comparable urban areas were averaged to obtain trip rates for Midtown (see Figure 6).

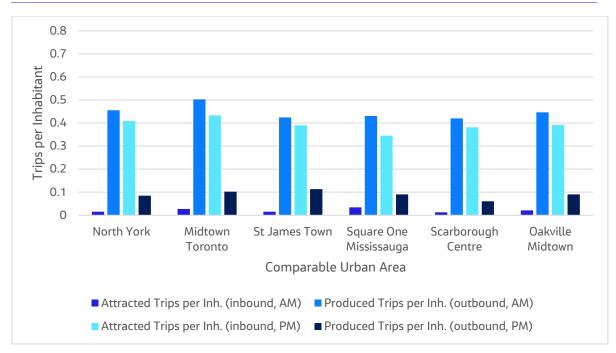


Figure 6: Residential Trip Rates

Table 3: Residential Trip Rates Midtown Oakville

Residential Trip Rates	Attracted Trips per Sqm (inbound)	Produced Trips per Sqm (outbound)
AM Peak (6am to 9am)	0.021	0.447
PM Peak (4pm to 7pm)	0.39	0.09

Data source: Residential trip attraction and production rates for comparable urban areas in the GTA from Transportation Tomorrow Survey (2016).

3.1.4 Employment Trip Rates

Employment trip generation rates for Midtown were calculated based on the total number of existing full-time employees working within each comparable area (2006 TTS zones of employment), and the total number of trips to and from these areas. Attracted and produced employment trips across comparable urban areas were averaged to obtain trip rates for Midtown (see Figure 7).

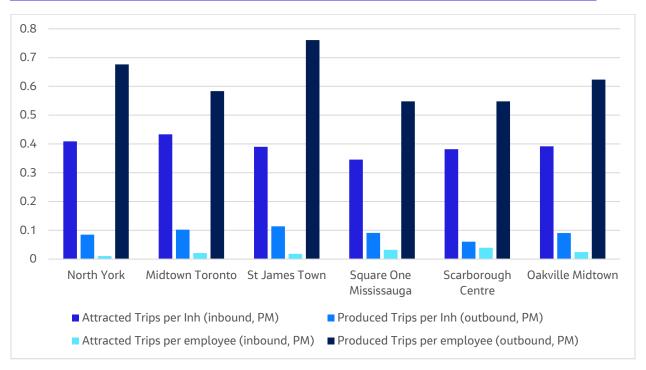


Figure 7: Employment Trip Rates

Data source: Residential trip attraction and production rates for comparable urban areas in the GTA from Transportation Tomorrow Survey (2016).

3.1.5 Commercial Trip Rates

Retail/commercial trip generation rates for Midtown were extracted from the ITE Trip Generation Manual 10th Edition Shopping Centre (820) Person Trip Rates. Commercial trip rates for Midtown are presented in Table 4.

Table 4: Commercial Trip Rates Midtown Oakville

Commercial Trip Rates	Attracted Trips per Sqm (inbound)	Produced Trips per Sqm (outbound)
AM Peak (6am to 9am)	0.029	0.025
PM Peak (4pm to 7pm)	0.042	0.042

 ${\it Data source: Commercial trip\ attraction\ and\ production\ from\ the\ ITE\ Trip\ Generation\ Manual\ 10th\ Edition.}$

3.1.6 Trip Generation Formulas

The average trip generation rates estimated above were used to develop trip generation formulas for the Midtown subarea model. Summary of trip rates is presented in Table 5 and the subsequently developed trip generation equations are shown below.

Table 5: Residential, Employment and Commercial Trip Rates Midtown Oakville

Residential Trip Rates	Attracted trips per inhabitant (inbound)	Produced trips per inhabitant (outbound)
AM Peak (6am to 9am)	0.020	0.461
Work Trip Rates	Attracted trips per employee (inbound)	Produced trips per employee (outbound)
AM Peak (6am to 9am)	0.640	0.013
Commercial Trip Rates	Attracted Trips per square metre (inbound)	Produced trips per square metre (outbound)
AM Peak (6am to 9am)	0.029	0.025
Residential Trip Rates	Attracted trips per inhabitant (inbound)	Produced trips per inhabitant (outbound)
PM Peak (4am to 7am)	0.392	0.090
Work Trip Rates	Attracted trips per employee (inbound)	Produced trips per employee (outbound)
AM Peak (4pm to 7pm)	0.024	0.640
Commercial Trip Rates	Attracted trips per square metre (inbound)	Produced Trips per square metre (outbound)
PM Peak (4pm to 7pm)	0.042	0.042

3.1.6.1 Trip Generation Formula - AM Peak Hour

 $Attractions_{am} = A_{am,j} = 0.020 \times Population_j + 0.640 \times Employment_j * 0.029 \times Commercial Area_j$

 $Productions_{am} = P_{am.i} = 0.461 \times Population_i + 0.013 \times Employment_i * 0.025 \times Commercial Area_i$

3.1.6.2 Trip Generation Formula - PM Peak Hour

 $Attractions_{pm} = A_{pm,j} = 0.392 \times Population_j + 0.024 \times Employment_j * 0.042 \times Commercial Area_j$

 $Productions_{pm} = P_{pm,i} = 0.090 \times Population_i + 0.640 \times Employment_i * 0.042 \times Commercial Area_i$

Source: The table and formulas above are the derived trip generation formulas which are coded into the Midtown subarea model.

3.2 Trip Distribution

Trip distribution is accomplished by using a gravity model to "distribute" the productions and attractions as full origin-to-destination trips. A gravity model posits that the number of trips produced at an origin zone and attracted to a destination zone is related to the total trip productions and attractions. In other words, higher/denser areas of population and more attractive destinations lead to increased trip flows. To calculate the trip flow, two sub-calculations are needed, which are **Friction Factor** and **Balancing of Productions and Attractions**. The trip flow (T_{ii}) between zones *i* and *j* is given by:

$$T_{ij} = BF_i \cdot P_i \cdot BF_j \cdot A_j \cdot f(c_{ij})$$

Friction Factor F(C_{ij}). As travel times increase, travelers become less likely to make longer trips. The friction factor captures this reluctance. Calibration involves adjusting this factor to match observed trip distributions. The following friction factor was used:

$$F(C_{ij}) = C_{ij}^{-\alpha} \cdot \exp(-\beta \cdot C_{ij})$$

Variables:

- BFi or BFj = Balancing factors
- Pi: Total trip productions at zone i
- A_j: Total trip attractions at zone j
- f(C_{ij}): Calibration term (friction factor) accounting for the effort required to travel between zones (origin to destination)
- $\alpha = 0.05$
- β = 0.2
- C_{ij} = Cost

Balancing Productions and Attractions. Ensuring that the total productions and attractions for the study area are balanced is crucial for an accurate model. The standard balancing method available in the Emme model was used to undertake the balancing.

3.2.1.1 Calibration and Validation

Before using the gravity model for future predictions, it must be calibrated based on observed data. Typically, a trip distribution model can be calibrated by observing travel length distributions. In the case of the Midtown subarea model, we compared the resulting trip distribution with those of comparable areas within the GTA and elsewhere, as previously discussed. Figure 8 below indicates the result of validation / calibration of the trip distribution model. To calibrate distribution models, typically trip length distributions (i.e. a histogram of trip lengths) are used. As indicated above, the modelled trip length histogram for the Midtown subarea model reasonably matches the comparable urban areas

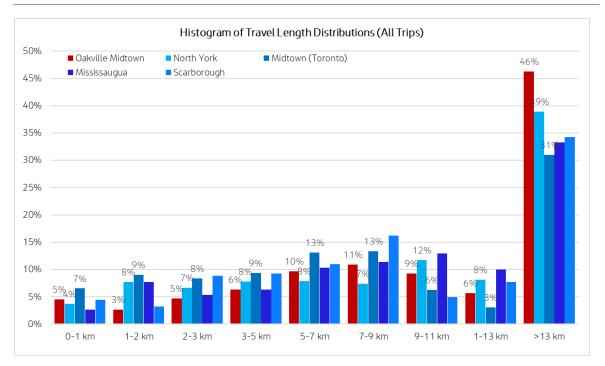


Figure 8: Trip Length Distribution Comparison

Data source: Transportation Tomorrow Survey (2016) for comparable urban areas.

3.3 Mode Choice

An existing multinomial logit choice model was applied to the Midtown subarea model. This model was originally developed for the Waterloo region. Multinomial logit choice models posit that a choice of which mode (in this case, car, transit, walking and cycling) are a function of a variety of inputs related to the full origin-to-destination trip. These inputs generally include time, but also in this case income (at the origin zone), car ownership (at the origin zone) employment density (at the origin zone), and population density (at the origin zone).

To measure choice, first the utility of each mode is calculated and compared. Utility is a unitless measurement of "satisfaction". Modes with relatively higher utilities for each given origin-to-destination pair would have a higher probability of being selected.

Table 6: Logit Model Parameters

	Car (Driver)	Car (Passenger)	Transit	Walk	Bike
Intercept	-	-2.9	-0.15	1.36	-1.8
Time	-0.03530	-0.10018	-0.02810	-0.03960	-0.1
Income	-	-	-0.21328	_	-
Car ownership	-	-	-	-0.6937	-
Employment Density	-	-	-	-0.0035	-
Population Density	-	-	-	-0.0035	-

3.3.1 Application of the Model

The model is applied according to the following equations:

$$\begin{split} &U_{n_{ij}} = Intercept_n + \beta_{time_n} \cdot Time_{ij} + \beta_{other_n} \cdot Other_{ij} \\ &logsum = e^{U_{car\,driver_{ij}}} + e^{U_{car\,pass_{ij}}} + e^{U_{transit_{ij}}} + e^{U_{walk_{ij}}} + e^{U_{bike_{ij}}} \\ &P_{n_{ij}} = \frac{e^{U_{n_{ij}}}}{logsum_{ij}} \\ &D_{n_{ij}} = D_{total_{ij}} \cdot P_{n_{ij}} \end{split}$$

Where,

- U_n = Utility of the mode n
- P_n = Probability of choosing mode n for a specific O-D (i-j)
- D_n = Demand for mode n for a specific O-D (i-j)
- β_n = Coefficient (from model)

Further restrictions are placed on the model including not allowing any walk trips longer than 5km, or any bike trips longer than 10km. In these cases, the probability is automatically set to 0.

3.3.2 Calibration and Validation

The resulting mode shares were compared to the comparator areas and are shown below in Figure 9. Results show that the model predicts the mode shares within range of comparable areas. In the case of Midtown Oakville, a 60% mode share (for driver and passenger) is estimated. This is between the values found for North York and Midtown Toronto (37-38%) and those of Scarborough, Mississauga City Centre, and Coquitlam City Centre (46-55%). North York and Midtown Toronto are certainly more urban than Mississauga, Coquitlam, and Scarborough Centre, all of which are similar suburban redevelopments centered around shopping malls and rapid transit. The resultant mode share of Midtown subarea model is compared to comparable urban areas; the Midtown subarea model base scenario closely matches these comparable areas, indicating that the calibration is reasonable. Assumed mode split is also discussed in Section 6.1.1 of the Transportation Plan.

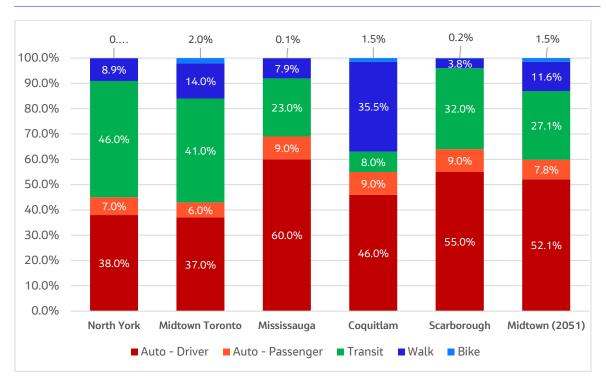


Figure 9: Mode Shares (All Trips)³

The figure above shows that the distribution of trips by mode is sensible. In the AM Peak, the destinations of many trips are concentrated in the area in the northeast of Midtown, which is the main identified office space area for Midtown, which is to be expected.

Jacobs Consultancy Canada Inc.

³ Data source / information: Transportation Tomorrow Survey (North York, Mississauga, Scarborough, Midtown Toronto). Coquitlam data is from 2023, the high walk percentage and relatively low transit could be due to generally less trips overall post -pandemic (Coquitlam is home to many persons who would have previously commuted to Vancouver every day).

Figure 10: Trips and Locations (2051 AM Peak for all Oakville at the Same Scale)

3.4 Assignment

The assignment procedure is the fourth and final stage in a 4-stage transportation model, responsible for distributing trips generated and distributed to specific routes within the transportation network. This stage aims to determine the number of vehicles using each link in the network, helping in evaluating the network's performance and identifying potential bottlenecks or congestion points. By assigning trips to specific routes, the model can identify the most efficient use of the transportation network and inform decisions about infrastructure improvements or traffic management strategies.

In this modelling tool, assignments for traffic and transit are undertaken using the standard Emme SOLA (equilibrium) assignment, with some changes, noted below.

3.4.1 Transport Vehicle Speeds

In the assignments, vehicle speeds are defined by the following functions. These functions were developed from the Halton Region model and GGHM. Not all vehicle travel time formulas are shown below, but the majority use the following equations. Walking and cycling used fixed speeds of 5 km/hr and 12 km/hr respectively while transit and automobile speeds do vary by route/road type, refer to Table 7 below.

Table 7: Transport Mode Assumptions

Mode	Function	Travel Time Formulas	Unit
Walking	N/A	Fixed speed: length/5*60	mins
Cycling	N/A	Fixed speed: length/12*60	mins
Car: Local / Collector Roads	fd30-fd43	(length*60/speed limit) * (1+4*((volume)/(lanes*capacity))^4)	mins
Cars: Highways	fd11	(length*60/speed limit) * (1+6*((volume)/(lanes*capacity))^6)	mins
Transit	ft0	Uses average speed, which varies by line. 15 – 77 km/hr. Weighted average = 28 km/hr	km/hr

3.4.2 Other Assumptions

Other various assumptions required for the assignment stage are shown in Table 8 below. In the below table, vehicles are defined in terms of Passenger Car Units (PCU), or equivalents of a standard car (e.g. a motorcycle in less than 1 PCU and a heavy truck is more than 1 PCU).

Table 8: Other Assumptions

Item	Value	Unit	Data Source
Car Passenger Car Units (PCU)	1.0	None	ITE Manual
Light Truck PCU	1.5	None	ITE Manual
Medium Truck PCU	2.5	None	ITE Manual
Heavy Truck PCU	3.5	None	ITE Manual
Bus PCU	3.0	None	ITE Manual
Motorcycle PCU	0.5	None	ITE Manual
Car Avenue. Occupancy	1.14		TTS 2016 survey data

3.4.3 Travel Time Benefits

Travel time benefits, for cars and transit users, were calculated by applying the Rule of Half (RoH) socioeconomic theory to calculate consumer surplus. The following formula was used:

$$C.S.(RoH) = \frac{1}{2}(D_{new} - D_{BAU}) * (TT_{new} - TT_{BAU}) + (D_{BAU}) * (TT_{new} - TT_{BAU})$$

Where,

- C.S. = Consumer surplus, or travel time benefits
- D = O-D demand matrix (new or Business as Usual (BAU)), for respective mode (car or transit)
- TT = O-D travel time matrix, for respective mode (car or transit)

3.4.4 Calibration and Validation

This model's assignment is reused from the existing Halton Regional model and is generally assumed to be calibrated. However, 2024 counts from a variety of points in the Midtown area were available. These counts are limited in utility, as they are from a variety of time periods, data sources, and seasons. A 2024 version of the model was created by interpolating between 2016 (Base) and 2031, with the 85% COVID reduction applied, these values are shown below in Figure 11 and Table 9. Actual values (from traffic counts) are compared with modelled models; the results are reasonably close indicating a good calibration of the model.

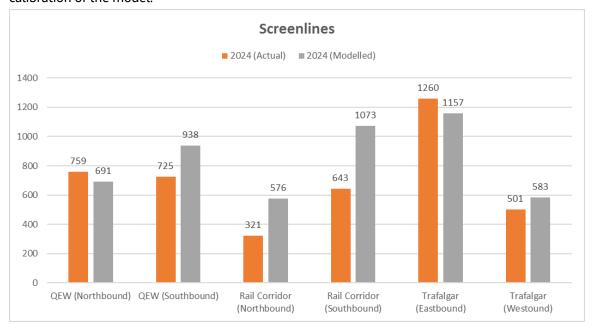


Figure 11: Screenline Results

Data source: Model results and traffic counts (from Town of Oakville website)

The screenline values are shown below in Table 9. In addition to the actual (counts) and modelled results, the differences by link and the Geoffrey E. Havers (GEH) values are presented. GEH values are a standard method for determining if a calibration is reasonable. A lower GEH value indicates a better (closer) match and therefore better calibration. GEH values under 5 are considered good and under 10 are considered reasonable. GEH values for screenline totals range from 4-12 while the majority of GEH for individual counts are less than 10, indicating a reasonable calibration.

Table 9: Screenline Results

	Dir.	Segment	2024 (Actual)	2024 (Modelled)	Diff.	GEH ¹
QEW	NB	Trafalgar Road	759	691	-67	2.5

	Dir.	Segment	2024 (Actual)	2024 (Modelled)	Diff.	GEH ¹
	SB	Trafalgar Road	725	938	213	7.4
Rail	NB	Cross Avenue	10	7	-3	1.1
Corridor		Trafalgar Road	179	490	311	17.0
		Chartwell Road	131	79	-52	5.1
		Total	321	576	256	12.1
Rail	SB	Cross Avenue	10	14	4	1.0
Corridor		Trafalgar Road	583	769	187	7.2
		Chartwell Road	50	290	240	18.4
		Total	643	1073	430	14.7
Trafalgar	EB	Argus Road	20	343	323	24.0
		Cross Avenue	545	322	-223	10.7
		Cornwall Road	695	492	-203	8.3
		Total	1260	1157	-103	3.0
Trafalgar	WB	Argus Road	74	94	20	2.2
		Cross Avenue	74	117	43	4.4
		Cornwall Road	353	371	18	1.0
		Total	501	583	82	4.0

¹ Geoffrey E. Havers Statistic
$$GEH = \sqrt{\frac{2(M-C)^2}{M+C}}$$

Additional locations within Midtown were also used, and the results are shown below in Table 10. As the majority of GEH are less than 10, results indicate a reasonable calibration / validation.

Table 10: Individual Locations (Counts)

	Direction	2024 Count	2024 Modelled	Difference	GEH
Trafalgar Road and	NB	1026	809	-217	7.1
Leighland Avenue / Iroquois Shore Road	SB	1076	587	-489	17.0
Trafalgar Road and Cross	NB	674	604	-70	2.8
Avenue / South Service Road	SB	1100	1087	-13	0.4
Trafalgar Road and	NB	179	490	311	17.0
Cornwall Road	SB	583	769	187	7.2
	EB	257	224	-33	2.1
	WB	353	355	2	0.1

Midtown Oakville Travel Demand Modelling

Cornwall Road &	NB	131	79	-52	5.1
Chartwell Road	SB	50	82	32	3.9
	EB	296	196	-100	6.4
	WB	222	60	-163	13.7
				GEH (<10)	75%
				GEH (<5)	42%

4. Scenario Testing Overview

Several scenarios were tested using the model for different purposes. These can be broadly grouped into three categories, preliminary network testing, transportation plan solutions, and phasing/sensitivity.

4.1 Preliminary Road Network Elements Testing

Several network elements were brought forward from 2014 Midtown EA and Midtown Official Plan Amendment. Initial tests were completed for the 2051 horizon to understand the impacts/benefits of each network elements (i.e. the new North-South Road from Cross Avenue to White Oaks Boulevard/Trafalgar Road). The goal was to confirm the needs for each network element and investigate the need for other additional crossings.

It should be noted that at this stage, due to the concurrency of work between the Midtown Implementation Program and the Townwide Transportation Master Plan, the base model being utilized did not yet include the widening of Cornwall Road from 4 to 6 lanes as it was one of the scenarios tested in coordination with the broader Oakville Townwide Transportation Master Plan. The initial base model also included the connection of the North-South Road from Cross Avenue to Cornwall Road, though multiple iterations of with and without the rail crossing were tested. While these elements were updated for the Business-as-Usual Model, this initial base model was used for the purposes of these preliminary network tests which still helped provide the same level of understanding of the impacts/benefits of each network element.

4.2 Transportation Plan Network Solutions

To understand the network impacts of the proposed solutions in the Midtown Transportation Plan, each solution was modeled and compared against the Business-as-Usual scenario. Modal split parameters were adjusted for the Road Priority and Active Transportation and Transit Priority solutions to better reflect a potential future with policies/infrastructure which further support those uses.

4.3 Phasing and Sensitivity to Growth

Interim horizon years of 2031 and 2041 aligned with Town-wide Transportation Master Plan modelling work were also completed with the preferred road network. The goal was to understand any underutilized road links and help define a phasing strategy to accommodate Midtown's growth through the years. It was also noted from the Growth Analysis Study (Watson 2024) produced in support of the Midtown OPA, forecasted growth in Midtown may significantly differ from the Joint Best-Planning-Estimates (JBPE). While the JBPE's were used to better align with Town and Region-wide studies at the time of the review in 2023, which all collectively work with the same estimates, a sensitivity test of the Watson Forecast for 2051 was completed in 2024 to understand the potential impacts of reduced growth.

The following table illustrates all the scenarios that were tested as part of the modelling for this project.

Table 11: Scenarios and Elements

Assessment	Scenario elements			
rissessificite	Section Citements			
Business As Usual (BAU) Scenario 2051a	 Business As Usual: Carried forward from 2014 EA Royal Windsor Interchange Upgrades and Associated Links Cross Avenue Realignment and Widening North South Road – Cross Avenue to White Oaks Boulevard/Trafalgar Road with transit lanes All bus routes (where possible) along NS Road Network volumes from Halton Region Integrated Master Plan (IMP) Model 15% covid adjustment factor per Oakville TMP Chartwell Road Improvements (2 lane Chartwell Road same as existing) Speers Road/Cornwall Road 6 Lanes across study area per Town-Wide TMP Recommendations Cross Avenue – 4 general purpose lanes and 2 transit priority lanes Local road network from OPA 			
Preliminary Road Network Elem				
North-South Road Test Scenario 2051b	 BAU Without N-S Road Removed NS Road north of South Service Road, and south of Cross Avenue Trafalgar Road General Purpose (GP) lanes⁴ decreased from 3 to 2 pd between Iroquois and White Oaks Boulevard to accommodate transit lanes 			
West Connection – New Crossing to Kerr Street Via Cross Avenue Scenario 2051c	BAU with new 2 lane road connection to Kerr Street Via Cross Avenue			
West Connection – Widening of Speers Road/Cornwall Road Scenario 2051d	BAU with widening of Speers Road/Cornwall Road from 4 to 6 lanes between Cross Avenue and Kerr Street			
Exclude RWD Interchange Scenario 2051e	BAU without RWD interchange Exclude the proposed RWD interchange			
Chartwell Scenarios - Crossing Via Chartwell Road Only Scenario 2051h	BAU with widened Chartwell Road to 4 lanes			
Chartwell Scenarios - Closure of Chartwell Road	BAU with North-South Crossing of rail only and disconnection of Chartwell Road across rail tracks			

⁴ General Purpose lanes refer to standard (non-restricted) travel lines.

Assessment	Scenario elements			
Scenario 2051i				
Chartwell Scenarios - Closure of Chartwell Road and North-South Road Scenario 2051j	BAU with no crossing of rail tracks at Chartwell or North-South Road			
Transportation Plan Network Sc	lutions			
Road Priority Scenario 2051g	 BAU with additional road improvements Adjust modal split parameters to be more car oriented Crossing rail tracks via both Chartwell Road and North-South Road Crossing of 16 Mile creek via Cross Avenue 			
Transit and Active Transportation Priority Scenario 2051f	 BAU with priority for transit and active transportation Adjust modal split parameters to be more transit/AT oriented Cross Avenue reduced to 2 lanes general purpose and 2 lanes of transit priority No new crossing of rail tracks, Chartwell to remain as is 			
Mix Priority Scenario 2051k	 BAU with mix of improvements Segmentation of Cross Avenue 4 general purpose lanes between Speers Road/Cornwall Road and Argus Road 4 general purpose + 1 transit priority EB lane from Argus Road to Trafalgar Road 2 general purpose + 2 transit priority lanes from Trafalgar Road to North-South Road 			
Phasing and Sensitivity to Grow	th			
2031 Interim Horizon	Mixed Priority (Preferred Solution)			
2041 Interim Horizon	Mixed Priority (Preferred Solution)			
2051 Population and Employment as Per OPA	Mixed Priority (Preferred Solution) with adjusted growth in Midtown for 2051 Population and employment forecasts are per the OPA 70 supplementary Watson Report, which total to 18,500 people and 11,400 jobs.			

4.4 Key Findings

Results for both AM and PM peak hours for each scenario tested are shown in Section 5, however some general findings of the overall network assessment of the above scenarios include:

Midtown Oakville Travel Demand Modelling

- The Midtown area is fairly congested particularly with major arterials into and out of Midtown including Trafalgar Road, Cross Avenue, and Cornwall Road;
- Proposed improvements have a meaningful impact on adding capacity and helping relieve existing congestion particularly along Trafalgar Road and the Trafalgar Road/QEW interchange;
- Improvements such as the North-South Road and Royal Windsor Drive interchange will help to ease capacity restrictions on Trafalgar Road and elsewhere in the Midtown area. However, due to general expected growth, vehicular capacity on Trafalgar Road (especially across the QEW) will be constrained in the future.
- The local and collector road system will function well within the Midtown area as once completed the extensive grid network will provide high route choice and connectivity; and,
- Congestion is primarily driven by a mix of existing traffic and growth beyond the Midtown area, sensitivity testing shows that Midtown's growth itself has limited impact on the congestion of major arterials.

Scenario testing results provide a base for the evaluation of alternative solutions presented in Section 6 of the Midtown Oakville Transportation Plan.

5. Scenario Testing Results

Several scenarios were developed to test infrastructure improvements / changes or transit route changes for a variety of proposed changes. Note that the main "base" scenario is the Business as Usual (BAU) scenario, which is not a "do nothing" scenario. The BAU represents a future scenario which includes anticipated regional road improvements including the North-South Road.

In all future scenarios, elevated Volume over Capacity (v/c) ratios can be noted throughout midtown and Oakville, especially on major arterials. In general, this is due to the Town road network being generally built, and with the impacts of new traffic demand due to population and employment growth in the Town, as well as background traffic growth, A small portion of this additional traffic is due to Midtown. The increase in traffic and resulting congestion is in line with other municipalities in the GTHA.

The results presented below are summaries of modelling results which are presented for information / validation purposes in this memo. Detailed discussions of the implications of modelled results including policy recommendations, infrastructure recommendations, phasing of infrastructure, infrastructure alternatives and benefits are discussed in the main Transportation Plan, Active Transportation, and Transit Assessment Reports.

5.1 Business-as-Usual

5.1.1 Scenario 2051a: Business-as-Usual (with North-South Road)

The results of the traffic (car) assignment are shown below in Figure 12 while the volume/capacity (V/C) ratios are shown in Figure 13, and finally transit volumes in Figure 14. Results are analyzed in Section 6.1.2.1 and Section 6.2 of the Midtown Oakville Transportation Plan.

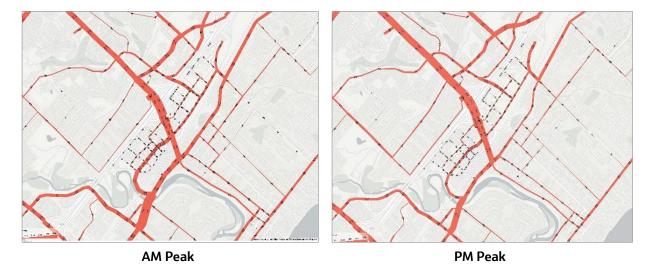


Figure 12: Traffic Volumes (2051a BAU)

Figure 13: V/C Ratios (2051a BAU)

Figure 14: Transit Volumes (2051a BAU)

In Table 12 below, the mode shares for the AM Peak and PM peak periods are shown. The total car mode share is predicted to be in the range of 57% - 60%, which is in the range of other similar regions.

Table 12: Mode Shares (2051a BAU)

	AM	Peak	PM Peak		
Mode	Value	Value Share		Share	
Car driver	5,726	51%	5,709	47%	
Car passenger	1,004	9%	1,165	10%	
Transit	3,014	27%	3,425	28%	
Walk	1,358	12%	1,536	13%	
Bike	150	1%	189	2%	
Total	11,261	100%	12,024	100%	

5.1.1.1 Summary of Results

- Pockets of significant congestion can be found on Trafalgar Road especially between Leighland and Argus-Davis Road (over the QEW).
- Congestion also occurs at other pinch points including the Speers Road/Cross Avenue bridge over 16-mi Creek, and the proposed new North-South Road, to the east of Trafalgar Road.
- Transit is concentrated, generally, on the dedicated transit lanes along Cross Avenue and the new North-South Road.
- Volumes of up to 2,600 passengers per hour per direction (PPHPD) can be seen in this section.

5.2 Preliminary Road Network Elements Testing

5.2.1 Scenario 2051b: Without North-South Road

In this scenario, the base network is the same as 2051a, however the North-South Road is not included. Results of a comparison between these scenarios are presented below, where green indicates less volume, and red indicates more volume. As expected, significantly more traffic will use Trafalgar Road in the scenario where the North-South Road crossing of QEW is not available, which is forecasted to be more than 1,000 vehicles in the peak direction during the peak hour.

Results show a significant increase in volumes and congestion on Trafalgar Road, and therefore increased travel times. These results are analyzed in Section 6.1.2.1 and Section 6.2 of the Midtown Oakville Transportation Plan.

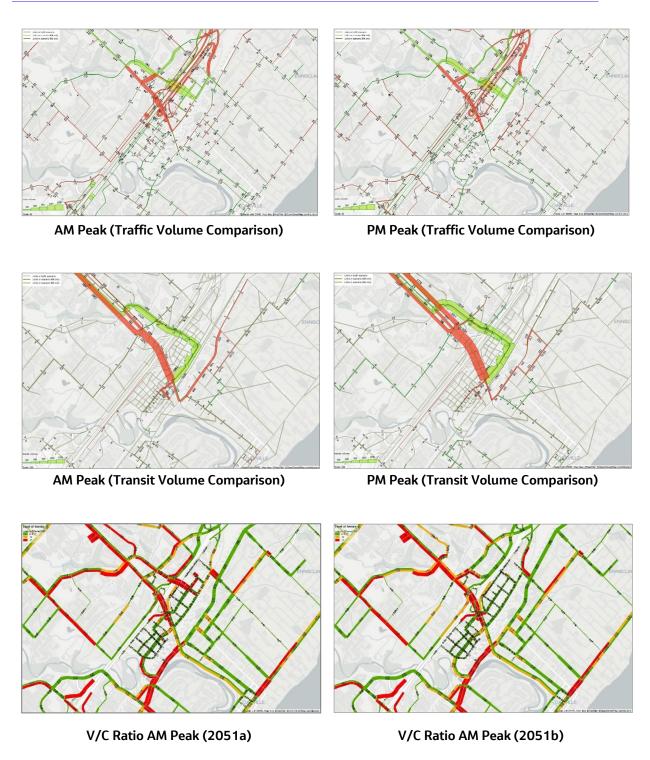


Figure 15: Comparison of Traffic, Transit Volumes and V/C ratios (2051a BAU vs 2051b)

5.2.1.1 Summary of Results

The result of not having the North-South crossing of the QEW results in 500-1,000 vehicles using
 Trafalgar Road in the AM peak hour, instead of the North-South crossing. Additionally, transit vehicles

would be required to use Trafalgar Road, which would use General Purpose (GP) lanes as it is not possible to build dedicated lanes on Trafalgar Road in this area.

- The volume over capacity (V/C) ratio increases by up to 29% at the peak point.
- Travel speeds could decrease 20% -30% on Trafalgar Road to 12 km/hour (SB in AM Peak) or 13 km/hour (NB in PM Peak).
- Transit bus speeds (over QEW) could decrease by ~50% (to 12 km/hour).

5.2.2 West Connection-Related Scenarios

5.2.2.1 Scenario 2051c: New Crossing to Kerr Street via Cross Avenue

In this scenario, an additional crossing of the 16-mile creek from Cross Avenue to Kerr Street has been added to provide more capacity for connections east-west within Oakville. The following images indicate that the introduction of a new crossing of 16-Mile Creek could potentially result in several benefits to the overall traffic network. The new crossing would be well-used and would attract approximately **2,000 cars** per direction per hour in peak hours. Results are also analyzed in Section 6.1.2.2 and Section 6.2 of the Midtown Oakville Transportation Plan.

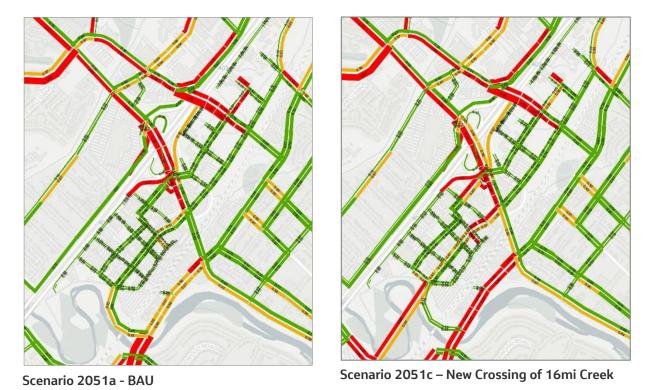


Figure 16: Comparison of V/C Ratios (2051a Base vs 2051c - New Crossing of 16mi Creek) AM Peak

AM Peak - New Crossing of 16mi Creek


PM Peak - New Crossing of 16mi Creek

Figure 17: Traffic Volume Comparison (2051a BAU vs 2051b – New Crossing of 16mi Creek)

5.2.2.2 Scenario 2051d: Widening of Speers Road/Cornwall Road

As a potential alternative to building a new crossing over 16-mile creek, it is possible to widen the existing crossing of 16-mile creek, on Speers Road/Cornwall Road. In this scenario, the width was widened by one lane per direction.

Results show that the newly widened road would attract significantly more traffic but that overall, the V/C reduces on the crossing link by about 27%, in the short term. Compared to Scenario 2051c, the V/C ratio on the Speers Road/Cornwall Road crossing of 16mi creek is reduced slightly less. Results are analyzed in Section 6.1.2.2 and Section 6.2 of the Midtown Oakville Transportation Plan.

2051d – Widening of Speers Road/Cornwall Road

Figure 18: V/C Ratios (Comparison of Base vs Widening of Speers Road/Cornwall Road)

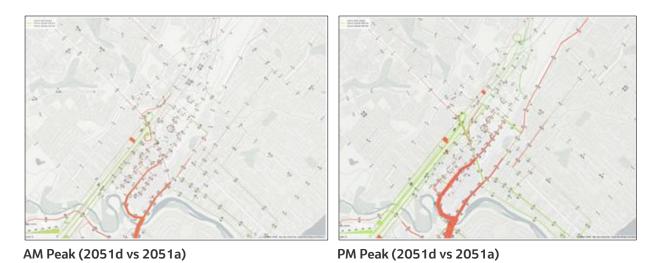


Figure 19: Comparison of Traffic on Network (Scenario vs Base)

5.2.2.3 Summary of Results (for 2051c and 2051d)

- The V/C ratio on Speers Road/Cornwall Road crossing of 16mi creek is reduced by about 27%;
 - The auto speed would by increase significantly by 48-58% (from 9-10 km/hr in the base to 13-16 km/hr with a new crossing).
- Widening of Speers Road/Cornwall Road is slightly less effective than scenario 2051c (new crossing) at reducing congestion on the existing crossing at Speers Road/Cornwall Road;
- This analysis does not account for the significant cost which would be required from building a new connection;
- Results indicate short term changes only, and do not reflect the long-term changes to travel patterns that may occur when additional capacity is introduced in a road network; and,
- As with Scenario 2051c, in Scenario 2051d some traffic is attracted from the QEW due to the additional capacity, as through traffic. Overall, congestion increases across Cornwall Road, as more vehicles are using this road due to increased capacity.

5.2.3 Scenario 2051e: Exclude Royal Windsor Drive (RWD) Interchange

In this scenario, the Royal Windsor Drive (RWD) Interchange improvements, which are estimated to be in place by 2051, are removed to understand their impact. By removing the RWD interchange, in the AM Peak impacts are mostly local to the RWD area, with slightly more traffic on Trafalgar Road, and on local streets. However, in the PM peak, the impacts are more significant, with impacts seen on the local road network, and additionally on Trafalgar Road. Results are analyzed in Section 6.1.2.3 and Section 6.2 of the Midtown Oakville Transportation Plan.



Figure 20: Traffic Comparisons – 2051e (No RWD Interchange vs Base)

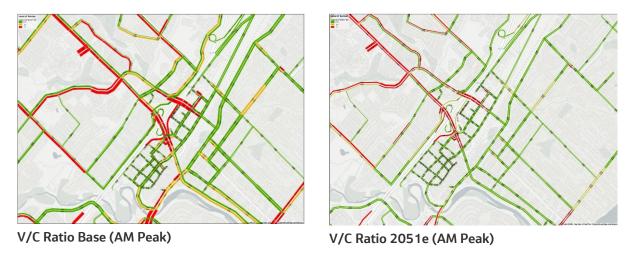


Figure 21: Traffic Comparisons – 2051e (No RWD Interchange vs Base)

5.2.3.1 Summary of Results

- The removal of the interchange will significantly increase traffic volumes on the existing Trafalgar Road interchange, increasing volumes and V/C ratios;
 - Traffic on Trafalgar Road could be increased by up to 950 vehicles per direction, in the PM peak hour. Traffic on the new N-S link would also increase; and,
 - This will result in slower travel times and increased congestion.
- In general, the model does not indicate that the interchange is being used by vehicles to bypass the busy QEW highway.
- Results indicate short-term changes only, and do not reflect the long-term changes to travel patterns that may occur when additional capacity is introduced in a road network.

5.2.4 Chartwell Road-Related Scenarios

Results presented below are further discussed in Section 4.1.4 and Section 6.2 of the Midtown Oakville Transportation Plan.

5.2.4.1 Scenario 2051h: Crossing Via Chartwell Road Only

In this scenario, the North-South Road south of Cross Avenue to Cornwall Road is not included. Chartwell Road is widened to 2 lanes per direction.

Figure 22: Traffic Comparisons – 2051h (No-North-South South of Cross Avenue vs Base)

5.2.4.1.1 Summary of Results

- Majority of approximately 1,100 vehicles in the peak hour using the N-S road between Cross Avenue and Cornwall Road switch to using Chartwell Road, where the average speed would be reduced by about 17% (in the peak direction, southbound); and,
- Traffic on Trafalgar Road would also increase slightly.

5.2.4.2 Scenario 2051i: Closure of Chartwell Road

In this scenario, Chartwell Road between Cross Avenue and Cornwall Road, is closed. North-South Road between Cross Avenue and Cornwall Road exists.

Figure 23: Traffic Comparisons – 2051i (No Chartwell Road South of Cross Avenue vs Base)

5.2.4.2.1 Summary of Results

- The majority of the approximately 700 900 vehicles in the peak hour using the Chartwell Road between Cross Avenue and Cornwall Road switch to using the North-South, where the average speed would be reduced by about 11-30% (in the peak direction, southbound);
- In the northbound direction, the effects are less pronounced; and,
- Overall, the effects of this scenario (2051i) are less disruptive than scenario 2051h;
- For reference, Table 13 below is a summary of the volumes on specific important links e.g. Chartwell Road, the North-South Road, and Trafalgar Road.

Table 13: Summary of Volumes, V/C Ratios and Speeds (2051a, h, and i)

Road Name	Volume 2051a	Volume 2051h	Volume 2051i	V/C 2051a	V/C 2051h	V/C 2051i	Speed (km/h) 2051a	Speed (km/h) 2051h	Speed (km/h) 2051i
Chartwell Road SB	312	1,197	-	0.42	0.70	-	48.54	40.12	-
Chartwell Road NB	925	1,986	-	1.23	1.17	-	17.05	18.70	-
North-South Road SB	1,129	-	1,299	0.66	-	0.76	41.86	-	37.28
North-South Road NB	1,136	-	1,579	0.67	-	0.93	41.68	-	28.66
Trafalgar Road SB	2,352	2,522	2,383	0.92	0.99	0.93	28.18	24.77	27.55
Trafalgar Road NB	1,437	1,485	1,638	0.56	0.58	0.64	44.95	44.34	42.12
Cross Avenue SB	1,713	1,744	1,719	1.01	1.03	1.01	27.64	26.75	27.47
Cross Avenue NB	1,331	1,326	1,349	0.78	0.78	0.79	41.01	41.23	40.37
Kerr Street SB	1,593	1,602	1,584	0.94	0.94	0.93	27.96	27.70	28.26
Kerr Street NB	1,585	1,599	1,601	0.93	0.94	0.94	28.20	27.77	27.71

5.2.4.3 Scenario 2051j: Closure of Chartwell Road and North-South Road

In this scenario, both the North-South Road and Chartwell Road crossings of the rail corridor have been removed from the model. This scenario represents a situation where the North-South Road is not yet completed across the rail corridor Chartwell Road is closed instead of grade-separating it.

Figure 24: Traffic Comparisons – 2051j (No-North-South Road or Chartwell Road South of Cross Avenue vs Base)

Figure 25: V/C Comparisons – 2051j (No-North-South Road or Chartwell Road South of Cross Avenue vs Base)

5.2.4.3.1 Summary of Results

- In this relatively extreme scenario, modelled results indicate that Trafalgar Road would be significantly impacted;
 - Traffic on Trafalgar Road (South of Cross Avenue) would increase by around 950 vehicles in the AM Peak;
 - The V/C ratio would increase to 1.1, further congesting the corridor;
 - Auto (and transit) speeds would be reduced to around 35 40%, down to 20 30 km/hr from 35 45 km/hr; and,
- Cross Avenue would also be affected, as vehicles seek to use it to access Trafalgar Road.

5.3 Sensitivity Testing-Related Scenarios

Modal priority sensitivity scenarios were developed to reflect the network solutions per the Midtown Transportation Plan and provide a range of possible results. The scenarios represent possibilities with either more or less aggressive policies that would increase the transit mode share and correspondingly decrease the car mode share from between 51% (Transit/AT Priority) to 76% (Car Priority) in the AM peak. In the figure below 2051f is a scenario which represents a hypothetical future where transit is more heavily used by Midtown residents.

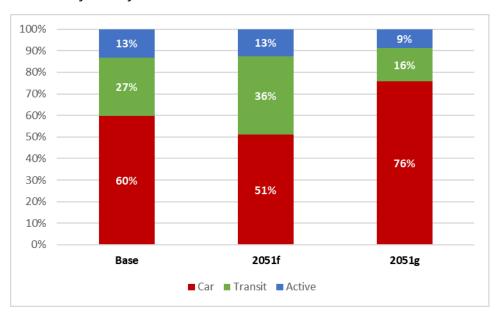


Figure 26: Proposed Mode Shares (Sensitivities)

5.3.1 Scenario 2051g: Road Priority

Mode share results are shown below in Table 14 and Table 17. Traffic volumes and v/c ratios comparison between this scenario and the BAU are presented in Figure 27 and Figure 28.

Table 14: Mode Shares Change (2051g) – AM Peak

	Base		2051g		
AM Peak	Value	Share	Value	Share	Change
Car driver	5726	51%	7837	70%	2111
Car passenger	1004	9%	654	6%	-349
Transit	3014	27%	1754	16%	-1261
Walk	1358	12%	924	8%	-433
Bike	160	1%	95	1%	-65

Table 15: Mode Shares Change (2051g) – PM Peak

	Base		2051g		
PM Peak	Value	Share	Value	Share	Change
Car driver	5709	47%	8182	68%	2473
Car passenger	1165	10%	768	6%	-397
Transit	3425	28%	1891	16%	-1534
Walk	1536	13%	1072	9%	-464
Bike	189	2%	113	1%	-76

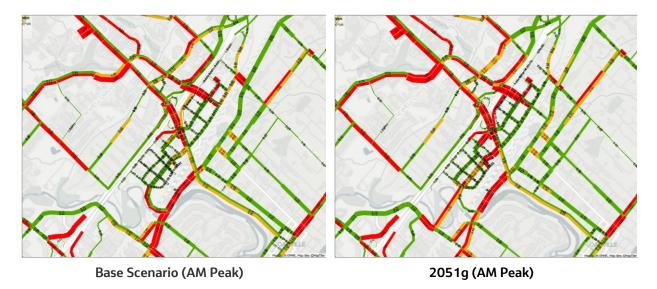


Figure 27: V/C ratio comparison – 2051g (Less Aggressive Transit Policies)

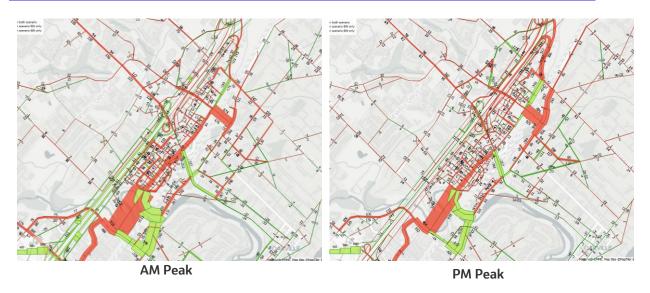


Figure 28: Traffic Volume Comparison - 2051g Road Priority vs 2051a BAU

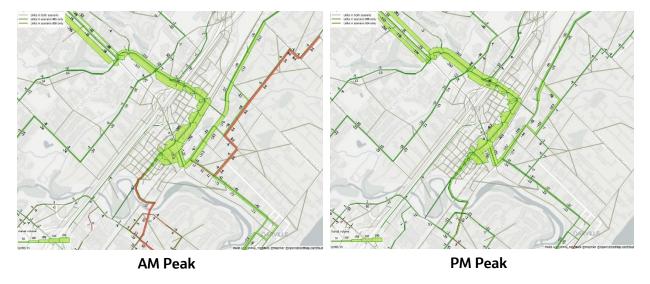


Figure 29: Transit Volume Comparison - 2051g Road Priority vs 2051a BAU

The figures above indicate modelled network results for sensitivity scenario 2051g.

5.3.1.1 Summary of Results

- In this scenario, the transit mode share is decreased to 16% of the total demand in the AM peak, while the total car mode share (drivers and passengers) is increased to 76% (from 60%), or 16 percentage points;
- Policies aimed at Midtown only do not affect wider traffic, which is contributing to congestion in the Midtown area; and,
- Pinch points remain congested (Trafalgar Road, Speers Road/Cornwall Road).

5.3.2 Scenario 2051f: Transit/AT Priority

Results for mode shares are shown below in Table 16 and Table 17. V/C ratio comparisons are shown below in Figure 30 for the AM Peak only. Comparisons with the base scenario are shown in Figure 31 and Figure 32 for traffic and transit, respectively.

Table 16: Mode Shares Change (2051f) - AM Peak

	Base		2051f		
AM Peak	Value	Share	Value	Share	Change
Car driver	5726	51%	4694	42%	-1032
Car passenger	1003	9%	1061	9%	58
Transit	3014	27%	4038	36%	1024
Walk	1357	12%	1245	11%	-112
Bike	159	1%	224	2%	65

Table 17: Mode Shares Change (2051f) - PM Peak

	Base		2051f		
PM Peak	Value	Share	Value	Share	Change
Car driver	5709	47%	4426	37%	-1283
Car passenger	1165	10%	1204	10%	39
Transit	3425	28%	4745	39%	1320
Walk	1536	13%	1387	12%	-149
Bike	189	2%	260	2%	71

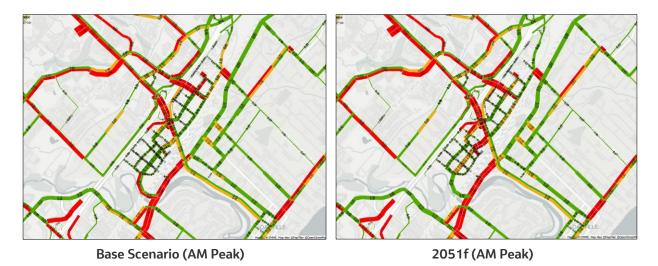


Figure 30: V/C Ratio Comparison – 2051f (Aggressive Transit Policies)

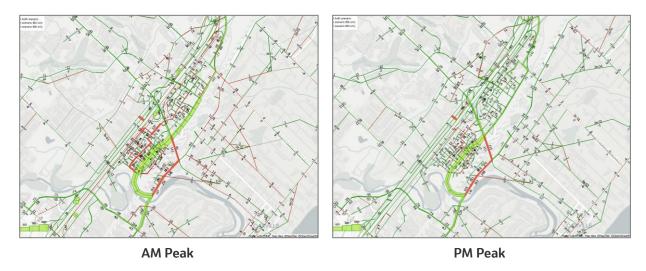


Figure 31: Traffic Volume Comparison - 2051f (Aggressive Transit Policies)

Figure 32: Transit Volume Comparison - 2051f (Aggressive Transit Policies)

5.3.2.1 Summary of Results

- In this scenario, the transit mode share is increased to 36% of the total demand in the AM peak, while the total car mode share (drivers and passengers) is decreased to 51% (from 60%), or 9 percentage points;
- Policies will result in a generalized decrease in traffic volume and improved V/C ratios across the network; and,
- Pinch points remain congested (Trafalgar Road, Speers Road/Cornwall Road).

5.3.3 Scenario 2051k: Mixed Priority

Results are shown below in Table 18 and Table 21. Traffic and transit volumes as well as v/c ratios comparison between this scenario and the BAU are presented in Figure 33, Figure 34, and Figure 35.

Table 18: Mode Shares Change (2051k) - AM Peak

	Base		2051k		
AM Peak	Value	Share	Value	Share	Change
Car driver	5726	51%	5724	51%	-2
Car passenger	1004	9%	1001	9%	-3
Transit	3014	27%	3010	27%	-4
Walk	1358	12%	1364	12%	6
Bike	160	1%	160	1%	0

Table 19: Mode Shares Change (2051k) – PM Peak

	Base		2051k		
PM Peak	Value	Share	Value	Share	Change
Car driver	5709	47%	5706	47%	-3
Car passenger	1165	10%	1164	10%	-1
Transit	3425	28%	3418	28%	-7
Walk	1536	13%	1543	13%	7
Bike	189	2%	189	2%	0

Base Scenario (AM Peak)

Mix Priority (AM Peak)

Figure 33: V/C Ratio Comparison

Figure 34: Traffic Volume Comparison – 2051k Mix Priority vs 2051a Base

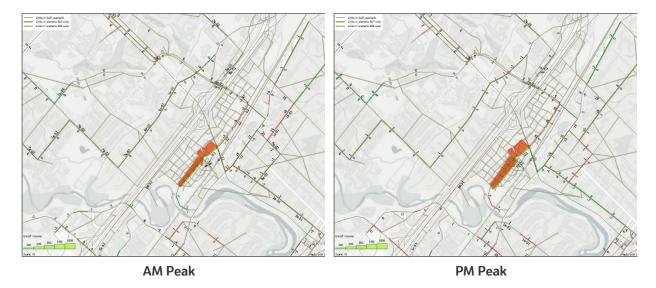


Figure 35: Transit Volume Comparison - 2051k Mix Priority vs 2051a Base

The figures above indicate modelled network results for sensitivity scenario 2051k.

5.3.3.1 Summary of Results

- In this scenario, the transit and car (drivers and passengers) mode share remain almost unchanged with 27% and 51% of the total demand in the AM peak, respectively;
- Decrease in traffic volume along Cross Avenue and Trafalgar Road. Increase in traffic volume along North South Road, partially due to the closure of the Chartwell Road crossing of the railway; and,
- Pinch points remain congested (Trafalgar Road, Speers Road/Cornwall Road).

5.4 Phasing Related Results

5.4.1 2031 Interim Horizon

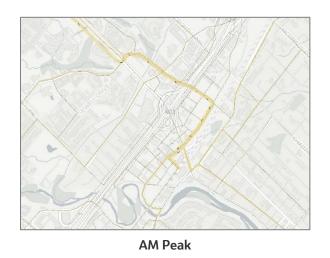

The results of the traffic (car) assignment are shown below in Figure 36 while the volume/capacity (V/C) ratios are shown in Figure 37, and finally transit volumes in Figure 38.

Figure 36: Traffic Volumes

Figure 37: V/C Ratios

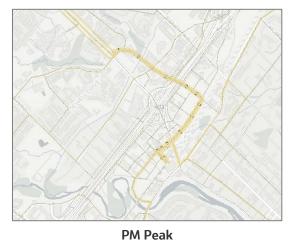


Figure 38: Transit Volumes

The figures above indicate modelled network results for 2031 base.

In Table 20 below, the mode shares for the AM Peak and PM peak periods are shown.

Table 20: Mode Shares (2031 Interim Horizon)

	AM	Peak	PM Peak			
Mode	Value	Share	Value	Share		
Car driver	2206	50%	2189	48%		
Car passenger	513	12%	550	12%		
Transit	1095	25%	1163	26%		
Walk	510	12%	575	13%		
Bike	61	1%	70	2%		
Total	4385	100%	4548	100%		

5.4.2 2041 Interim Horizon

The results of the traffic (car) assignment are shown below in Figure 39 while the volume/capacity (V/C) ratios are shown in Figure 40, and finally transit volumes in Figure 41.

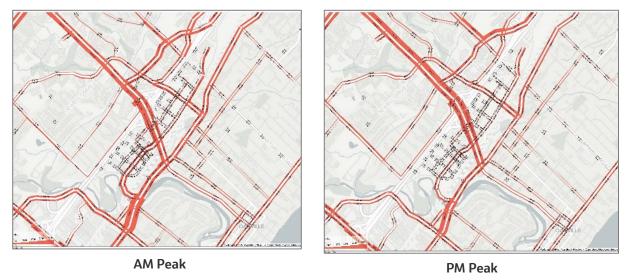


Figure 39: Traffic Volumes

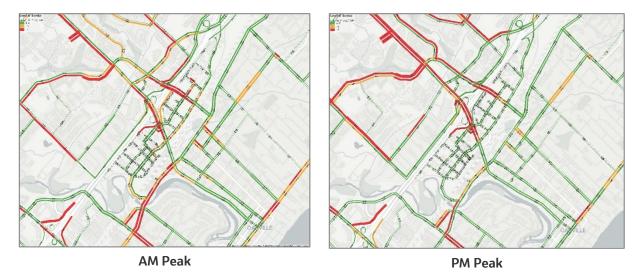


Figure 40: V/C Ratios

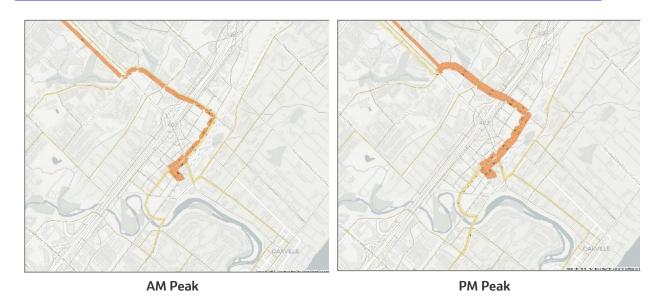


Figure 41: Transit Volumes

In Table 21 below, the mode shares for the 2041 AM Peak and PM peak periods are shown.

Table 21: Mode Shares (2041 Interim Horizon)

	AM	Peak	PM Peak			
Mode	Value	Share	Value	Share		
Car driver	4356	52%	4388.249	48%		
Car passenger	786	9%	927.5481	10%		
Transit	2229	26%	2506.723	28%		
Walk	966	11%	1118.207	12%		
Bike	116	1%	138.167	2%		
Total	8453	100%	9079	100%		

5.4.2.1 Summary of Results (for 2031 and 2041)

In general, results from the 2031 and 2041 results are similar to the 2051 base with reductions in overall demand. For a summary detailed of the results of these scenarios, which affects phasing, refer to the main Midtown Transportation Plan report.

5.5 2051 Population and Employment as Per Official Plan Amendment (OPA)

In this scenario, population growth in Midtown is not as much as currently anticipated in the Joint Best Planning Estimates (JBPE). Instead, this scenario is based on the population and employment forecasts as per the Official Plan Amendment (OPA) 70 Supplementary Watson Report, which total to 18,500 people and 11,400 jobs which is a reduction of 44% and 37%, respectively, these values are shown in Table 22 below. Results from this sensitivity scenario are shown below, traffic volumes in Figure 42 and v/c

comparison in Figure 43. Refer to Section 3.2.1 for a detailed explanation of the differences between these population forecasts.

Table 22: Population & Employment Forecast

Table 22. Po	pulation & Ei	приоуппен	it Forecast									
			JE	BPE			Watson					
	203	1	204	41	20	51	20	31	20	41	205	51
Zone	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp
201	755	256	1324	467	1,781	621	104	201	416	228	1,015	394
202	428	0	751	0	1010	0	59	0	236	0	576	0
203	807	274	1,416	500	1,905	665	111	215	445	243	1,085	421
204	830	281	1,457	514	1,960	684	115	221	458	251	1,117	433
205	529	179	928	327	1,248	436	73	141	292	160	711	276
206	772	262	1,354	478	1,821	636	107	205	425	233	1,038	403
207	0	0	0	0	0	0	0	0	0	0	0	0
208	175	185	307	338	413	450	24	145	96	165	235	285
209	467	158	820	289	1,102	385	65	124	258	141	628	244
210	389	132	682	241	917	320	54	103	214	117	523	203
212	203	69	357	126	480	167	28	54	112	61	273	106
213	341	116	599	211	805	281	47	91	188	103	459	178
214	293	99	513	181	691	241	40	78	161	88	393	153
215	244	83	428	151	576	201	34	65	134	74	328	127
216	236	80	414	146	557	194	33	63	130	71	317	123
217	686	232	1,203	424	1,618	565	95	182	378	207	922	358
218	482	163	845	298	1,137	397	67	128	266	145	648	251
219	608	206	1,067	376	1,435	501	84	162	335	183	818	317
220	0	2,454	0	4,483	0	5,963	0	1,925	0	2,185	0	3,777

Midtown Oakville Travel Demand Modelling

			JE	PE			Watson					
	203	1	204	¥1	205	51	20	31	20	41	205	1
Zone	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp	Pop	Emp
221	1,116	378	1958	691	2,634	919	154	297	615	337	1501	582
222	359	39	631	71	848	94	50	30	198	34	483	60
223	612	207	1074	379	1,445	504	85	163	338	185	823	319
224	555	188	974	343	1,309	457	77	147	306	167	746	289
225	504	171	884	312	1,189	415	70	134	278	152	677	263
226	1,083	367	1,901	671	2,556	892	150	288	597	327	1456	565
227	379	521	666	952	896	1267	52	409	209	464	510	802
228	491	166	861	304	1,158	404	68	130	271	148	660	256
229	273	93	480	169	645	225	38	73	151	82	367	143
230	140	48	246	87	331	116	19	37	77	42	189	73
Total	13,756	7,407	24,142	13,531	32,468	17,998	1,900	5,810	7,584	6,593	18,500	11,400

Jacobs Consultancy Canada Inc.

Figure 42: Traffic Comparisons - Mix Priority - JBPE vs. OPA

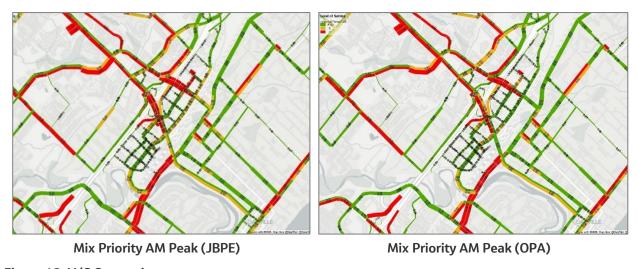


Figure 43: V/C Comparisons

5.5.1 Summary of Results

Compared to the JBPE (base) scenario, in this scenario traffic in and around midtown would be generally reduced. However, effects are relatively minor overall.

- On Trafalgar Road, traffic reduction would be less than 250 vehicles per hour per direction in the AM peak.
- This change in population and employment would make little difference to congestion on the major corridor as the vast majority is caused by background (non-Midtown) traffic. Trafalgar Road remains congested, especially over the QEW in both directions.

6. Conclusions

The purpose of this memo is to summarize and document the development of the Midtown subarea model. This model was developed based on the Halton regional model and Oakville subarea model. These base models were modified by adding additional zones in the Midtown development area and by adding additional / finer grained road and transit network. In addition, trips to, from, and within the new zones in the Midtown area were generated and distributed throughout the network.

The model was validated and calibrated using a variety of data sources including the Transportation Tomorrow Survey for the Greater Toronto Area (GTA). Validation focused on the forecasted base scenario with comparison made to similar urban areas (i.e. relatively dense areas in the GTA centered on rapid transit stations or malls). In addition, the 2024 base scenario assignment was validated against on-street traffic counts (and screenline) in the Midtown area. The Midtown subarea model validated reasonably against the above-described traffic counts and data from comparable urban areas.

Base and testing scenarios networks were developed for the horizon year of 2051 and interim 2031 and 2041 years. Final horizon (2051) scenarios were generally used to plan for the final recommended infrastructure and improvements while interim years were used to determine the phasing of these improvements.

By making use of existing models with additional detail, the developed Midtown subarea transportation model represents a good compromise between accuracy and efficiency. Results from the model were used to test a variety of policy and infrastructure recommendations. The results of this testing scenarios are presented at a high level in this memo. Policy implications, infrastructure improvements including phasing of improvements for the Midtown area are discussed in detail in the main Midtown Oakville Transportation Plan and accompanying Transit Assessment and Active Transportation reports.