SAW-WHET GOLF COURSE 1401 BRONTE ROAD OAKVILLE, ONTARIO L6M 4G3

ATTENTION: MR. GARI INGERTSA

RE:

GEOTECHNICAL INVESTIGATION FOR THE PROPOSED RESIDENTIAL SUBDIVISION (SAW-WHET GOLF COURSE) 1401 BRONTE ROAD, OAKVILLE, ONTARIO

REPORT NO.: 2012-23813

APRIL 17, 2012

DISTRIBUTION

3 COPIES : SAW-WHET GOLF COURSE

ORIGINAL : (FILE SP-3256)

SOIL PROBE LTD.

TABLE OF CONTENT

1.0	Ι	NTRODUCTION	1
2.0	F	PROJECT & SITE DESCRIPTION	1
3.0	F	FIELD WORK	2
	3.1	ITEMS OF FIELD WORK	2
	3.2	METHOD OF FIELD WORK	2
4.0	Ι	LABORATORY TESTS	2
5.0	S	SUBSOIL CONDITIONS	3
	51	Τοργοπ	3
	5.2	FILL/POSSIBLE FILL	3
	5.3	NATURAL GROUND	4
6.0	(GROUND WATER CONDITIONS	5
7.0	Ι	DISCUSSIONS AND RECOMMENDATIONS	5
	7.1	SITE RE-GRADING AND ENGINEERED FILLING	5
	7.2	BEDDING AND INSTALLATION OF UNDERGROUND SERVICES	8
	7.3	EXCAVATION AND DEWATERING	8
	7.4	SERVICE TRENCH BACKFILLING	9
	7.5	ROAD PAVEMENT DESIGN	.10
	7.6	CONSTRUCTION OF HOUSES	.11
	7.7	EARTH PRESSURES	.12
	7.8	GEOTECHNICAL PARAMETERS	.13
	7.9	EARTHQUAKE CONSIDERATIONS	.13
	7.10	0 SITE PREPARATION (EXISTING STRUCTURS/DRIVEWAY/ORGANIC-RICH FILL/TREE REMOVAL)	.13
8.0	S	STATEMENT OF LIMITATIONS	.14

ENCLOSURES

RECORDS OF BOREHOLE	1 - 12
SYMBOLS AND TERMS USED ON BOREHOLE RECORDS	13
PLAN SHOWING BOREHOLE LOCATIONS	14
GRAIN SIZE DISTRIBUTION	15-16
STANDARD PROCTOR TEST RESULTS	17-18

SOIL PROBE LTD.

CONSULTING GEOTECHNICAL, INSPECTION & TESTING ENGINEERS

110 IRONSIDE CRESCENT, UNIT 20, SCARBOROUGH, ONTARIO, M1X 1M2 TEL: (416) 754-7055 FAX: (416) 754-1259 e-mail: info@soilprobe.ca

DATE: April 17, 2012

REPORT NO.: 2012-23813 FILE NO.: SP-3256

1.0 INTRODUCTION

Mr. Gari Ingertsa of Saw-Whet Golf Course authorized Soil Probe Ltd. (SPL), through his approval of our Proposal No. 2011-1441, dated February 28, 2012, on March 13, 2012 to conduct a soil investigation for the proposed Residential Subdivision at 1401 Bronte Road, Oakville, Ontario

The purpose of this investigation was to determine the subsoil and groundwater conditions at the subject site and to provide the following but not limited to recommendations

- 1.0 Engineered Fill Construction
- 2.0 Installation of Services (excavation, bedding, backfilling, etc.)
- 2.0 Road Pavements
- 3.0 House Foundations & Basement Construction
- 4.0 Excavations & Dewatering
- 5.0 Earth Pressures
- 6.0 Seismic Site Classification

2.0 **PROJECT & SITE DESCRIPTION**

The subject site comprises an irregularly shaped golf course located south-east corner of Bronte Road and Upper Middle Road West. It is bounded on the east by the Fourteen Mile Creek lands and on the south by the Halton Regional Police Service Compound (western part) and Deerfield Golf Course (Eastern part).

The golf play area is in the southern part of the site (where most of the boreholes were drilled) with the northern part covered by trees; however, the location of Borehole No. 2 is outside the play area. There is an east to south-easterly downslope across the site with the maximum difference in existing grade elevations at borehole locations of about 7.8 m.

There is a club house building in the central area with a curved driveway entrance from Bronte Road and with parking lot at its south; a metal garage is located north of this building as also another relatively smaller auxiliary building on the south; also a one-storied Maintenance Building (metal frame) is located in the S-W corner area (Near B.H. No. 4 location). There is a relatively shallow and narrow creek with meandering alignment and running across the northern part of the site.

3.0 FIELD WORK

3.1 ITEMS OF FIELD WORK

The field work was carried out on April 2 & 3, 2012 which comprised drilling of a total of twelve (12) boreholes to an approximate depth of 5.0 m. The borehole locations are presented on Enclosure No. 14.

3.2 METHOD OF FIELD WORK

The boreholes were advanced using a bombardier mounted, 115 mm diameter, and solid stem auger machine, equipped for soil sampling. Standard penetration tests (SPTs) were conducted according to ASTM Method D1586 at frequent intervals. Representative soil samples were recovered from the split spoon sampler used in these SPTs. The results of the SPT, in terms of the number of blows per 0.3 m of penetration after 1st 15 cm, designated as "N-value", have been used to estimate the consistency of the native cohesive soil layers and relative density of the native cohesionless soil layers.

One standpipe piezometer was installed in Borehole No. 4. The presence of water was checked inside every borehole on completion of drilling, and the depth to water level (below existing grade) measured wherever water was found.

Two bulk soil samples were collected from Borehole Nos. 3 & 8 and brought to our laboratory for grading analysis and standard Proctor compaction test; also the soil samples recovered from the SPT spoon sampler were properly sealed, labelled and brought to our laboratory for classification and testing.

A soils technologist under the direction of a Senior Engineer supervised the fieldwork. The locations of the boreholes were selected and laid out by SPL. The existing grade elevations at borehole locations were determined by the client's surveyors.

4.0 LABORATORY TESTS

The soil samples recovered from the SPT spoon were properly sealed, labelled and brought to our laboratory. They were visually examined to classify each sample. The natural moisture content of each sample was determined by drying in the oven, in the laboratory.

The natural moisture contents, the description and classification of each sample and the N-values (of SPTs) are presented in the borehole logs of Enclosure Nos. 1 thru 12, while the terms and symbols used to describe the soils on these logs are summarized on Enclosure No. 13.

The two bulk soil samples (from Borehole Nos. 3 and 8) were subjected to grading analysis (using a set of sieves) and standard Proctor compaction tests. The results of the grading analyses are presented on Enclosure Nos. 15 and 16, and the moisture-dry density relationship curves on Enclosure Nos. 17 & 18.

5.0 SUBSOIL CONDITIONS

Details of subsoil conditions are given on the borehole log of Enclosure Nos. 1 thru 12, and a brief summary is as follows.

In general the underlying soil comprised native, mostly undisturbed clayey silt/clayey silt till with a topsoil/fill cover and underlain at some locations by weathered limestone.

5.1 TOPSOIL

Immediately below the existing grade, a thin layer of topsoil was found at all the Borehole locations. Its thickness varied between 75 mm (B.H. No. 3) and 200 mm (B.H. Nos. 4 & 12).

5.2 FILL/POSSIBLE FILL

Below the topsoil, fill was encountered at all the boreholes. Also a layer of wet brown fine sand encountered below fill at B.H. No. 4 is suspected to be a fill, and it is designated here as 'Possible Fill". The fill consisted of material varying from brown to mixed brown-red clayey silt with some sand, occasional pockets of topsoil, brown clayey silt with trace of sand and gravel and pocket of topsoil, brown sand-silt-clay with trace of gravel, wet silty sand with trace of plant remains, reddish brown clayey silt with some roots, red clayey silt, occasionally with some pieces of stone. These layers extend mostly to about 1.0 m below existing grade except B.H. No. 4 where it was about 3.2 m and possibly related to the construction of the Maintenance Building.

These fill/possible fill are generally moist, but occasionally wet (B.H. No. 4) as indicated by their natural moisture contents in the range of about 14% (B.H. Nos. 2 & 4) 31% (B.H. No. 7) with some of the relatively higher values reflecting their organic/topsoil content rather than moisture condition.

The grading curves of the 2 bulk samples of fill +Native soil are is presented on Enclosure Nos. 15 & 16; their moisture-density curves, Enclosure Nos. 17 & 18, show that the maximum dry densities are 1852 kg/m^3 and 1900 kg/m^3 , respectively and the optimum moisture contents 13.7 % and 12.9%.

5.3 NATURAL GROUND

The above layers were followed by undisturbed native ground consisting mostly of glacial till/clayey silt, except for localised occurrence of granular soils, as described below.

5.3.1 Clayey Silt Till

Clayey silt till with trace to some sand and gravel was encountered below fill at B.H. Nos. 1, 2, 3, 5, etc., below clayey silt (B.H. No. 4) and below silty sand (B.H. No. 12) (both to be discussed later), and extending generally to the ends of boreholes; however, at B.H. No. 8 this layer is underlain by a limestone and at B.H. No. 12 by sand-gravel layer (Both discussed later).

The natural moisture contents of the till samples (in the range of about 6% at B.H. No. 7 to 18% at B.H. No.12) indicated that these soils to be moist condition. Based on the N-Values (19 to over 100), these layers are very stiff to hard in consistency.

5.3.2 Clayey Silt

Clayey silt was encountered below fill at B.H. Nos. 4, 6, 9, 10 & 11 extending to the ends of the boreholes. It is mostly red in color, but occasionally lenses of hard grey silty clay or brown wet sand-gravel seam was encountered within this layer.

The natural moisture contents of these cohesive samples (in the range of about 6% at B.H. No. 10 to 22% at B.H. No. 6) indicated that these soils to be in moist to wet conditions. Based on the N-Values (7 to over 100), these layers are firm to hard in consistency.

5.3.3 Granular Soils

Localised layers of granular soil were encountered above and below glacial till at B.H. No. 12., these comprised brown wet silty very fine sand (upper layer) and brownish grey sand-gravel (lower layer).

The natural moisture contents of these 2 granular layers are about 21% and 9.6% respectively, indicating their wet conditions and their N-values 19 and over 100 indicating compact and very dense relative density.

5.3.4 Weathered Limestone

A very thin localised layer of weathered limestone was hit at the lower end of B.H. No. 8. The drilled thickness was only about 130 mm.

6.0 GROUND WATER CONDITIONS

The boreholes were advanced using dry augering, and ground seepage water was found at the depths of 1.8 m (B.H. No. 4), 4.1 m (B.H. No. 5), 3.2 m (B.H. Nos. 6 & 9), 2.8 m (B.H. No. 10) and 3.7 m (B.H. No. 12) below the existing grade.

Based on the above information and visual examination of the soil samples obtained, the ground seepage water encountered represents perched water in the overlying fill or wet pockets of silt/sand/gravel trapped in the impervious native clayey silt/till subsoils. The true water lies below the extremities of the boreholes.

7.0 DISCUSSIONS AND RECOMMENDATIONS

It is understood that the subject residential development will be fully serviced. The houses will be built after installation of services; however the alignments of internal roads/services are not available at this time. Also, due to the difference in existing grade elevations (Maximum about 7.8 m between borehole locations) and subject to the proposed design grades (which are not known at this point in time) some site re-grading comprising cutting in the relatively high ground areas and engineered filling in the lower areas will be required. Based on the information presented in preceding chapters, our preliminary comments and recommendations are given in general terms in the ensuing paragraphs.

7.1 SITE RE-GRADING AND ENGINEERED FILLING

As noted above, site re-grading and engineered filling will be required at the subject site, and this regrading, comprising cut and fill operations can be carried out using the methodology given below:

Engineered Fill Construction Methodology: The engineered fill construction to raise the grades (in the currently low ground areas of the south east) using on-site excavated relatively clean fill and native soils (glacial till, clayey silts) from the high ground on the west & north-west areas will require strict quality control, and as such will need full time supervision and inspection of earthworks during construction.

The methodology to satisfactorily construct engineered fill for supporting the underground services, foundations for the proposed new homes, driveway pavements and other related structures is as follows.

A) Method & Target

- a) Prior to raising the grades with engineered fill:
 - i) All the highly organic rich fill, over the cut and fill areas of the site, should be completely removed and discarded or stockpiled for re-use in landscaping areas.
 - ii) Any tree within the proposed development boundary should also be cut and removed along with their major root systems;
 - iii) The existing structures on the site should be removed.
- b) The exposed sub-grade should be inspected by an SPL's soils engineer before upfilling. If any unsuitable soils (including any spongy, wet or soft/loose spots) become apparent at this time should be sub-excavated to stable subgrade and replaced with compactable approved soil compatible with subgrade conditions. as directed by the geotechnical engineer.
- c) Any relatively clean portions of existing fill/possible fill can remain in place provided they are approved by Soil Probe's field inspector, and compacted to at least 98% of standard Proctor Maximum Dry Density (SPMDD).
- d) The approved fill soil should be placed in layers not exceeding 200 mm before compaction; Oversize particles (cobbles and boulders) larger than 120 mm should be discarded and each fill layer should be uniformly compacted to at least 98% of the material's SPMDD. Continuous compaction testing should be conducted on each layer of fill placed using nuclear gauge equipment to ensure the above-noted density.
- e) The engineered fill should be extended at least 2 times its thickness, but not less than 2.0 m beyond the limit of the house structures to be supported. Once the envelope is set, the house structures cannot be moved towards engineered fill margins without consulting the soil engineer. Similarly, no excavation or any other operations affecting competency of the engineered fill should be undertaken without consultation with the soil consultant.

- f) The engineered fill envelope should be clearly and accurately defined in the field and documented by qualified surveyors and recorded, and a copy given to the soils consultant. This should include its outer limits, and top and bottom elevations.
- g) The engineered fill should not be constructed during winter months when persistent or intermittent freezing temperatures occur. This is to ensure that the fill is free of frozen soils, ice and snow.
- h) If the proposed engineered fill areas are to be left for a period of time that includes winter months, a minimum of 1.2 m soil cover must be provided to prevent frost action and disturbance.

B) Material & Equipment

- a) On-site excavated, clean inorganic earth (native and/or fill) may be reused as an engineered fill material, provided the moisture contents are strictly controlled to keep it within +/- 2% of its optimum value.
- b) The moisture–density relationship curves of two (2) representative samples of the on-site materials, presented on Enclosure Nos. 15 & 16 may be used as ready general references when on-site material is used. For example, as shown on the borehole logs, most of the relatively clean fill and native soils at upper levels are at about the optimum moisture content; as such these soils may be re-used in engineered filling without any moisture adjustments; also it is expected that some mixing of on-site soils will occur during construction, and this may decrease the variability.
- c) If imported inorganic mineral soils are used for engineered fill construction, they must meet the Ministry of the Environment and Energy's (MOEE) Decommissioning Landfill Guidelines, and their moisture contents should preferably be close to their respective optimum values.
- d) For the mixture of on-site excavated clean fill and/or silt dominated till/silty clay soils or similar imported soils, a heavy sheepsfoot roller should be employed be achieve abovespecified degree of field density. However, if the imported earth is relatively coarse textured granular soil, a smooth drum roller shall be required.

C) Related Recommendations during House Construction

- a) The final footing sub-grade for houses on engineered fill should be inspected by the Geotechnical Engineer supervising the engineered fill prior to placement of concrete to ensure that foundations are placed within the structural fill envelope.
- b) The footings resting on engineered fill, constructed as above, can generally be designed using an allowable soil pressure of up to 150 kPa (SLS) and 220 kPa (ULS).
- c) It is good engineering practice to increase the rigidity of foundations of structures erected over engineered fill, and this is generally achieved by making the footings at least 0.5 m wide, and providing nominal reinforcing to such footings and foundation walls in consultation with the project structural engineer. This measure helps to bridge over eventual weak spots in the fill. SPL's recommendation in this regard will be provided after completion of engineered filling taking into consideration the age, quality and nature of the engineered fill mantle.

7.2 BEDDING AND INSTALLATION OF UNDERGROUND SERVICES

The borings have indicated that the undisturbed native subsoils (as well as engineered fill) are favorable for supporting the service pipes, manholes, catch basins and other related structures.

Based on the above said subsoil findings, an OPSS Class 'B' Type bedding (i.e.OPSD-802) shall perform satisfactorily. The class 'B' bedding material should consist of either 20 mm crusher-run limestone or OPSS Granular 'A' compacted to 100% of their SPMDD.

Alternatively, HL 8 stone bedding may be used in the drier areas. However, in the wetter subgrade areas, the HL 8 stone should be wrapped around with a filter cloth 270R Terrafix (or equivalent).

7.3 EXCAVATION AND DEWATERING

The excavations for laying of the underground services will pose little difficulty, if any; however. The excavation equipments should be capable of dealing with boulders that are frequently encountered in tills and also limestone if excavations extend into it (Ref. B.H. No. 8 location). All excavations should be carried out in accordance with the latest version of the Occupational Health and Safety Act (OHSA) and applicable regulations for construction projects.

The subsoils that will be encountered during service excavations are classified (as per OHSA) below in **Table 1**.

SOIL DESCRIPTION	SOIL CLASS, ACCORDING TO OHSA
Existing fill/possible fill /silty sand/sand-gravel	3
Native Tills, Clayey Silt	2
Limestone	1

TABLE 1 - SOIL CLASSIFICATION AS PER	OCCUPATIONAL HEALTH AND S	SAFETY ACT (OHSA)
--------------------------------------	----------------------------------	-------------------

An excavation side slope of 1 (Vertical): 1 (Horizontal) is expected to be generally satisfactory for excavation within the upper soil layers; however, steeper slopes may be feasible within the very stiff to hard tills at lower levels.

No unusual ground water problems are anticipated during laying of the underground sewer pipes. Any seepage water encountered due to bleeding of wet pockets/seams in the native soils may be controlled by conventional means such as pumping from sumps.

7.4 SERVICE TRENCH BACKFILLING

The on-site excavated relatively clean inorganic earth can be reused as a compacted backfill, provided the moisture contents are strictly controlled; i.e. the moisture content of the backfill material should be within 2% of its optimum value.

Since the natural moisture contents of the native soils at upper levels at the subject site are close to the optimum moisture content values (Ref. B.H. Logs on Enclosure Nos. 1 to 12 and moisture-density relationship curves on Enclosure Nos. 17 & 18, a relatively high degree of field density will not be too difficult to achieve through mixing and reworking during backfilling and simultaneous compaction effort.

It is recommended that the compaction of the backfill earth should be carried out in thin uniform lifts (not exceeding 200 mm per lift in loose state) and compacted generally to 95% SPMDD using a heavy duty sheepsfoot roller. However, the top 600 mm of the final subgrade should be compacted to at least 98% SPMDD.

In confined areas such as beside and immediately above or between the two sewer pipes, around the manholes and catch basins, imported sand should be used for backfilling and compacted to the specified degree of compaction with portable, light equipment.

7.5 ROAD PAVEMENT DESIGN

On-site excavated backfill earth in the sewer trenches forming the final subgrade structure supporting the subdivision roads is anticipated to be predominantly frost susceptible mixture of clean fill and native glacial till and clayey silt. Therefore, based on the frost susceptibility characteristics and expected volume of vehicular traffic in a residential subdivision, the following minimum pavement designs shall perform satisfactorily.

PAVEMENT COMPONENT	PAVEMENT THICKNESS (mm)				
	LOCAL ROADS	COLLECTOR ROAD			
Asphalt Wearing Course (OPSS 150) HL-3	40	50			
Asphalt Base Course (OPSS150) HL8	50	75			
20 mm Crusher-run Limestone (CRL) base	150	125			
50 mm Crusher-run Limestone (CRL) subbase	200	375			

RECOMMENDED ROAD PAVEMENT DESIGNS

The 20 mm diameter CRL shall meet the Ontario Provincial Standard Specification (OPSS) Granular "A" gradation specification. The 50 mm diameter CRL shall meet the OPSS Granular B "Type I" gradation specification. The stone bases should be compacted to at least 100% of their SPMDD.

The asphaltic concretes are to be hot-mixed, hot-laid in accordance with current OPSS specifications, Forms 310 and 150 (Ontario PGAC grades PG 58-28 equivalency), and compacted to a minimum of 97% of maximum Relative Density (mRD).

Non-ideal Conditions: The pavement design, presented above, is based on the assumption that construction will be undertaken under dry weather conditions and that the sub-grade is stable and not heaving under construction equipment traffic. However, if under non-ideal conditions, the final sub-grade is wet and/or unstable, then additional imported sub-base material may become necessary.

Prior to placing the granular bases, the final sub-grade should be proof-rolled to identify soft spots, if any, and rectified as required in consultation with a soils engineer from this office.

To ensure the longevity of the pavement, the roadbed should be well drained at all times. We recommend that full-length perforated sub-drain pipes of 150 mm diameter be installed along both sides of the road, below the roadbed level, to ensure effective drainage. The sub-drain pipes should be surrounded by 20 mm size clear stone drainage zone of minimum 150 mm thickness, wrapped around with filter cloth to minimize infiltration of fines in pipes which would reduce their effectiveness. Also, the subgrade surface should be crowned to promote flow of water towards the sub-drains and catch basins.

7.6 CONSTRUCTION OF HOUSES

7.6.1 <u>Foundations</u>

The borings have revealed that the undisturbed native subsoil is capable of supporting the proposed houses through conventional strip and/or strip footing foundations. The footings should be founded at a minimum depth of 1.25 m (B.H. No. 1), 1.55 m (B.H. No. 2), 1.05 m (B.H. Nos. 3, 8 thru 12), 4.1 m (B.H. No. 4) and 0.76 m (B.H. Nos. 5 & 6) all below existing grade. An allowable soil bearing pressure of 150 kPa at SLS and 220 kPa at ULS is recommended.

Similarly, footings embedded in engineered fill placed and compacted according to the 'Methodology of Engineering Filling' given above may also be designed for an allowable soil bearing pressures of 150 kPa (SLS) and 220 kPa (ULS). The footings and foundation walls of houses on engineered fill should be nominally reinforced in consultation with the project structural engineer.

All exterior footings should have a minimum soil cover of 1.2 m for frost protection.

Prior to pouring concrete, the subsoil at the footing founding levels should be inspected by a soils engineer.

7.6.2 <u>Basement Construction</u>

The installation of perimeter weepers enclosed in filter socks around exterior footings and damp-proofing of exterior basement walls would be required as per the Ontario Building Code requirement. The weeping tiles should be connected to a positive frost free outlet from which the water is removed.

Basement floor slabs can rest on engineered fill and/or undisturbed natural ground. For bedding and to serve as a moisture barrier under the basement floor slabs, a minimum of 100 mm thick layer of crushed stone should be placed.

7.6.3 Garages, Driveways and Landscaping

In view of the predominance of frost-susceptible silt-dominated soils at this site, one must realize that heaving of the pavement will occur during the cold weather. As such the following recommendations shall apply.

- The driveways at the entrances to the garages must be backfilled with non-frostsusceptible granular material, with a frost taper at a slope of 1 (vertical): 2 (horizontal).
- The garage floor slab must be insulated with 50-mm Styrofoam or equivalent.
- Interlocking stone pavement must be constructed on a free-draining granular base at least 1.0 m thick, with proper drainage which will prevent water from ponding in the granular base.
- Post foundations for wooden decks, lampposts, etc., must either be backfilled with non-frost-susceptible granular, or if backfilled with silt-dominated on-site soils, these must be shielded with a folded polyethylene membrane.

7.6.4 Excavation and Dewatering for House Construction

The same guidelines as given earlier in Sub-section 7.3 "Excavation for Service Installation" will apply for excavation for house foundation/basement construction, etc.

7.7 EARTH PRESSURES

The following equation should be used to estimate the intensity of the lateral earth pressure acting against any earth retaining structure, such as the manhole/basement walls.

$$P = K (\gamma h + q)$$

Where K = Appropriate coefficient of earth pressure;

- γ = Unit weight of compacted backfill, adjacent to the walls;
- h = Depth (below adjacent highest grade) at which P is calculated;
- q = intensity of any surcharge distributed uniformly over the backfill surface.

PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED RESIDENTIAL SUBDIVISION AT 1401 BRONTE ROAD, OAKVILLE, ONTARIO

The coefficient of the earth pressure at rest (K_0) should be used in the calculation of the earth pressure on the manhole/basement walls, which are expected to be rather rigid and not to deflect.

7.8 GEOTECHNICAL PARAMETERS

For the on-site soils, the following geotechnical parameters may be assumed:

i) Wet unit weight $(\gamma) \text{ kN/m}^3 = 19.0$

ii)	Co-efficients of Earth P	ressure:	
	at Rest (K _o)	=	0.5
	Active (K _a)	=	0.3
	Passive (K_p)	=	3.0

- iii) Co-efficient of permeability:
 - a) In-situ tills/clayey silt: $< 10^{-6}$ cm/sec;

iv) Allowable soil bearing pressure for the design of thrust block structure:

- a) in the native soil @ 1.5 m below existing grade or lower: 100-150 kPa
- b) in engineered fill @ 1.5 m below finished grade or lower: 75 kPa.
- v) Bulking factor: <10%

7.9 EARTHQUAKE CONSIDERATIONS

In accordance with the Ontario Building Code 2006 (O. Reg. 350/06, as amended) (OBC), the proposed houses including their foundation elements should be designed to resist earthquake loads.

Based on the OBC, the subject site should be classed as "Site Class D" for designing against earthquake forces.

7.10 SITE PREPARATION (EXISTING STRUCTURS/DRIVEWAY/ORGANIC-RICH FILL/TREE REMOVAL)

It is recommended that prior to starting any earthworks for re-grading and subsequent construction of sewers, roads, new homes etc., and the following site preparations should be carried out:

- i) All organically rich fill should be completely stripped and discarded and/or stockpiled for re-use in the landscaping areas. Notwithstanding, any relatively clean existing fills/possible fill may be stockpiled and re-used where deemed necessary.
- ii) The existing buildings within the development area (e.g. the club house, the garage, the maintenance building) should be demolished and the resulting debris removed off-site; the building foundations should also be dug out and removed.
- iii) The asphalt of the existing driveway entrance (to club house) and parking lot should be demolished and removed off-site, leaving the underlying granulars.
- iv) Any tree within the proposed development boundary should also be cut and removed along with its major root systems.

8.0 STATEMENT OF LIMITATIONS

The comments and recommendations presented in this report are based on the geotechnical data gathered from the boreholes at the locations indicated on the Plot Plan of Enclosure No. 14, and are intended as a guide for the design engineers of the project. Soil and groundwater conditions between and beyond the borehole locations may differ from those encountered at the time of our soil investigation and may become apparent during construction. Our responsibility is limited to an accurate interpretation of the soil and groundwater conditions prevailing at the locations investigated.

Additional Borehole investigations should be carried out once the internal road alignments are selected.

ED PROFESSION A Respectfully Submitted, SOIL PROBE LTD. D. HOSSAIN 90442617 ROUNCE OF ON

Aemon, D.I.C., M.Phil, P.Eng.

Principal

Delwar Hossain, Ph.D., P.Eng. Senior Vice President AM-DH:dh-am\SHARE2M12\S3256813-SAW-WHET-GOLF-OAKVILLE-APRIL-2012

Encl.

<u>PRELIMINARY GEOTECHNICAL INVESTIGATION</u> PROPOSED RESIDENTIAL SUBDIVISION AT 1401 BRONTE ROAD, OAKVILLE, ONTARIO

SOIL PROBE LTD.

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 129.94 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

1

ELEVATION/	SOIL		MC	ST	ANDARD PENETR	ATION T	EST
DEPTH (m)	SYMBOLS	DESCRIPTION	WI.C.	N	DEPTH/	CUF	R V E
· · · ·					ELEVATION (m)	N (Blow	/s/0.3m)
- - -		• • • • • • • • • • • • • • • • • • • •				10 3	0 50
± °		TOPSOIL - about 200 mm thick			0 -		
100 5		FILL - brown to mixed brown-red clayey silt with some	22.6	8			
129.5 - 0.5		sand, occasional pockets of topsoil (upper 300 mm or		-			
1		so), moist			-		
129 -					1 129		
- -			133	28			
-		CLAY SILT TILL - with some sand, trace of gravel,		20			
128.5 - 1.5		grayish brown, moist, hand.					
1							-\ - -
128 -			12.3	40			÷.
1					2	┟╾╂╼╌┠╼┦	
1						╞┼┼┼┦	
127.5 - 2.5						┟━┠━╏╼┦	- h
L L			12.8	56		┟━╾┠╌╌┠╼╌┦	<u></u> •
						┝┼┼┼┤	
±2′-}3					3-1-127	┝╾┼╾╌┦	
ŧ							
126.5			8.9	86		┝─┼─┤─┥	
- 3.5						┝━┫━┛┙	
					-		
126 - 4					4 - 126		
Ę.		- colour changes to brownish grey below about 4.0 m					
125.5							_
4.5	6				1		
1							
125 - 5	2.2.14		7.5	96/		●9	6/25* →
		End of Borenole @ 4.98 m		25*			
		Borehole dry on completion					
124.5 - 5.5							
-		$96/25^* = 96$ blows for 25 cm of sampler penetration			-		
124 - 6		after 1st 15 cm			124		
					6		·
^{123.5} – 6.5						╾╏┠┛┨	
1							
123						╼╍╁╴┟╼┧	
					7		
122.5 - 7.5						╶╍╂╾╂━╂	
t _r t _r						─┼ ┼─╡	
122					-		
8					8 - 122		++
L 1							
121.5							
7	1						
					Englower		
					Enclosure IN	J. I	
		SOIL PROBE ITD					

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 127.83 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/ DEPTH (m) SOIL SYMBOLS DESCRIPTION NC 5000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·			,			4 101 01		
DEPTH (m) SYMBOLS DESCRIPTION % N DEPTH (m) SYMBOLS 127.5 0.5 1 1 10.30 20 127.5 0.5 1 10.30 20 127.5 0.5 1 10.30 20 127.5 1 10.30 20 10.30 20 127.5 1 10.30 20 10.30 20 126.3 1.5 11.5 11.5 12.5 7 11.7 10.30 20 126.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.4 33 2 1.7 1.6 <td>ELEVATION/</td> <td>SOIL</td> <td>DESCRIPTION</td> <td>М.С.</td> <td>ST</td> <td>ANDARD PENETR</td> <td>ATION</td> <td>TES</td> <td>51</td>	ELEVATION/	SOIL	DESCRIPTION	М.С.	ST	ANDARD PENETR	ATION	TES	51
127.5 0.5 1 TOPSOIL - about 150 mm thick (Non-play area with surficial grass) 12.5 7 0 0 0 0 127.5 1 0.5 1.4 2.5 7 0 1.3 0	DEPTH (m)	SYMBOLS	DESCRIPTION	%	Ν	DEPTH/	UU N (RF	K V	/ 15 ()3mn)
127.5 0.5 10PSOIL - about 150 mm thick (Non-play area with sufficial grass) 22.5 7 0 10 30 127.5 0.5 1 5 11.5 12.5 7 12.7						ELEVATION (III)		20	ِ (۵۵. د
127.5 0.5 0.5 1	τo	1	TOPSOIL shout 150 mm thick Olon play area with			0]		<u> 1</u>	
1275 0.5 1 127 1 127 1 126.5 1.5 126 2 126.5 1.5 126 2 127 1 126.5 1.5 126 2 127 1 128 2 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 2.5 128.5 4.5 128.5 5.5 129 5.5 121.5 6.5 122.5 6.5 122.5 6.5 122.5 6.5 122.5 6.5 122.5 6.5 122.5 6.5 129.5 6.5 <td></td> <td></td> <td>(Non-play alea with</td> <td></td> <td>_</td> <td></td> <td></td> <td>+</td> <td>++</td>			(Non-play alea with		_			+	++
127 1 127 1 139 25 1 127 1 139 25 1 127 1 139 25 1 127 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 139 25 1 1 139 25 1 1 139 25 1 1 139 25 1 1 139 25 1 1 139 25 1 1 139 25 1 <td>127.5</td> <td></td> <td>Surficial grass)</td> <td>22.5</td> <td>7</td> <td>l j</td> <td>+</td> <td>+-</td> <td>++-</td>	127.5		Surficial grass)	22.5	7	l j	+	+-	++-
127 1 126.5 1.5 126.5 1.5 126.5 2.5 125.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 2.5 126.5 3.5 126.5 5.5 127 4 128.5 4.5 128.5 5.5 129 5 120.5 6 121.5 6.5 122.5 7.5 120 6 121.5 6.5 122.5 7.5 120 6 121.5 6.5 122.5 7.5 120 6 121.5 6.5 122.5 7.5 120 6 121.5 6.5 122.5 7.5	- 0.5		FILL - brown clayey silt with traces of sand & gravel,				-+++	+	++-
1 1.5	127 -	2	pockets of topsoil, moist			- 127	\rightarrow	+	┼╍┼╌╴
126.5 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 <td< td=""><td> 1</td><td></td><td></td><td>13.0</td><td>~-</td><td>1-</td><td>\rightarrow</td><td></td><td>╆╌┼━</td></td<>	1			13.0	~-	1-	\rightarrow		╆╌┼━
124.5 1.5 1.5 1.5 1.4 3.3 2 1.2 1.3 3.3 2 1.2 1.3 3.3 2 1.2 1.4 1.3 3.3 2 1.2 1.4 1.3 3.3 2 1.2 1.5 1.5 1.5 1.4 1.5 2.5 1.5 1.5 1.5 1.1.8 4.5 1.1.8 4.5 1.1.8 4.5 1.1.8 4.5 1.1.8 4.5 1.1.8 4.5 1.1.5 1.1.0 5.3 1.1.5 1.1.5 1.1.5 1.1.5 1.5<				13.9	25	-		\parallel	┼╾┼╾╸
125 -2 <t< td=""><td>126.5</td><td></td><td>CLAVEN SILT THELE troop of and & group group</td><td></td><td></td><td></td><td></td><td>╢</td><td>++-</td></t<>	126.5		CLAVEN SILT THELE troop of and & group group					╢	++-
126 - - - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 134 33 2 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 127 - 126 - 127 - 126 - 127 - 126 - 127 - 126 - 127 - 127 - 126 - 127		3	brown moist hand					-	+
125.5	126 –		brown, moist, nand	13.4	33	126		1	++-
125.5 2.5 126.5 3.5 126.5 3.5 126.5 3.5 126.5 5.5 122.5 6 122.5 5.5 122.5 5.5 122.5 6.5 122.5 6.5 122.5 6.5 122.5 6.5 122.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.5 7.5 120.6 8.5 119.5 8.5 121.5 6.5 122.6 7.5 120.7 8 121.9 9 8.5 9 9.5 9 120.6 9 9.7 9 9.7 9	<u></u> 2			15.4	33	2 -		+	+-+-
122.5 2.5 11.8 45 124.5 3.5 11.0 53 124.4 4 11.0 53 124.4 4 11.0 53 122.5 5.5 11.0 53 122.5 5.5 11.0 53 122.5 5.5 11.5 11.5 29 5 5.5 122 6 12.5 121.5 6.5 121.5 6.5 122 120.5 7.5 120 8 120 8 133.5 8.5 119 11.0 11.5 120.5 7.5 120 8 120 11.0 133.5 8.5 119 110 11.5 120 110 133.5 8.5 119 110 110 110 110 133.5 8.5 110 110 110 110 110 110 120.6 110 110 110 110 110 110 110 120.7 100 110			- colour changes to brownish gray below about 2.1 m					+	╉┈┼╌
123 3 11.8 45 -125 124 - - - - - 124 - - - - - - 124 - <td>125.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\mathbb{A}</td>	125.5								\mathbb{A}
125 3 3 5 124 4 5 124 4 5 124 4 6 123.5 4.5 6 122.5 5.5 12 6 5.5 12 120.5 7.5 12 120.6 7.5 6 121.5 6.5 6.5 122 6 11.5 29 130.5 6.5 12 130.5 6.5 12 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 8.5 19 130.5 9.5 19 130.5	- 2.5			11.8	45		-++	+	┼┿┼┈
124.3 3.5 124.4 - colour changes to gray below about 4.7 m 123.5 - colour changes to gray below about 4.7 m 122.5 - 5.5 122 - 6 121.5 - 6.5 122.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.5 - 7.5 120.6 - 120 9.5 - 120 139.5 - 5.5 120.6 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5 - 120 9.5	125 -					- 125			+
124.5 3.5 124.4 4 123.5 4.5 124.5 5 124.5 5 123.5 4.5 5 5 122.5 5.5 122.6 6 121.5 6.5 121.7 6 121.5 6.5 121.7 6 121.8 6.5 121.7 6 121.7 6 121.8 6.5 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 121.9 6 122.9 6 123.9 6 124.9 6 125.9 6 126.9 6 127.9 6 128.9 6 129.9 6 120.9 <td><u>-</u>3</td> <td></td> <td></td> <td></td> <td></td> <td>3-</td> <td></td> <td>_ _</td> <td>┨─┦──</td>	<u>-</u> 3					3-		_ _	┨─┦──
124.5 3.5 124 4 123.5 4.5 123 5 123 5 123.5 5.5 122 6 121.5 5.5 122 6 121.5 6.5 122 6 121.5 6.5 122 6 121.5 6.5 122 6 121.5 6.5 122 6 121.5 6.5 122 7 120.5 7.5 120 8 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5							┍─┼─┼╴		┼─╢─
124 4 123.5 4.5 122.5 5.5 122 5 122.5 5.5 122 6 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 7.5 120 8 121.5 9.5 122 9 8 120 9 120 9 120 9 120 9 120 9 120 9 120 9 120 9 120 9 120 9 120 9 <	124.5			11.0	53		┝╋╋	_	↓ ∲
124 4 123.5 4.5 123 5 123 5 123 5 123 5 123 5 124 4 123.5 5.5 122 5 5.5 5.5 122 6 121.5 6.5 121 7 120.5 7.5 120 8 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 8.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5 139.5 9.5	- 3.5 					-	┝╧╋╍╋	_ _	+
4 - colour changes to gray below about 4.7 m 123.5 - 5.5 122.5 - 5.5 122 - 6 121.5 - 6.5 121 - 6 121.5 - 6.5 121 - 6 121.5 - 6.5 122 - 6 121.5 - 6.5 122 - 6 121.5 - 6.5 122 - 6 121.5 - 6.5 122 - 6 121.5 - 6.5 122 - 6 121.5 - 7.5 120 - 6 8 - 120 8 - 120 9 - 121 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120	124					1 124			+/-
123.5 4.5 123.5 5 123.5 5 122.5 5.5 122.6 5.5 122.6 6 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 120.5 7.5 120.6 8 119.5 8.5 120.5 7.5 120.6 8 119.5 8.5 120.5 7.5 120.5 7.5 120.5 8.5 121.5 6.5 122.7 10 120.8 10 8 11.5 120.5 10 120.6 10 120.7 10 120.8 10 120.9 10 120.9 10 120.9 10 120.9 10 120.9 10 120.9 10 120.9 10 120.9 10 </td <td>-4</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>┟╌╄╌┼╸</td> <td></td> <td>₩⊢</td>	-4					4	┟╌╄╌┼╸		₩⊢
123.5 4.5 123 5 122.5 5.5 122.6 6 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 6.5 121.5 7.5 120 8 119.5 8.5 119.5 8.5 120 9 121.5 9 122.6 123 123.5 124 124.6 125 125.7 126 120 127 121.5 128 122.6 129 123.7 120 124.7 128 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td>├─-}─- </td> <td></td> <td>\downarrow</td>		1				-	├ ─- } ─- 		\downarrow
123 - colour changes to gray below about 4.7 m 122.5 - 5.5 122.5 - 5.5 122 - 6 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 7.5 120 - 8 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 8.5 119.5 - 9.5 119.5 - 9.5 119.5 - 9.5	123.5						┝╼┫┻┻┝	\perp	4
123 - colour changes to gray below about 4.7 m 122.5 5.5 122.6 - 5.5 122.6 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 6.5 121.5 - 7.5 120.5 - 7.5 120 - 9 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 120 9 - 119 9 - 119 9 - 119 9 - 119 9 - 119 9 - 11	↓- 4.5 ↓	6					┝┻╋		\downarrow
122.5 5.5 122.5 5.5 122.6 5.5 122.6 6 121.5 6.5 121.7 6.5 121.7 7 120.5 7.5 120.6 8 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5	123 -		- colour changes to gray below about 4.7 m			1 1 1 2 2	┟╴┇╺┠╸		\perp
End of Borehole @ 5.03 m Borehole dry on completion 122.5 6 121.5 6.5 121 7 120.5 7.5 120 8 119.5 8.5 119.5 119.5 8.5 119.5 11				11.5	29	5		•	\square
122.5 5.5 122 6 121.5 6.5 121 7 120.5 7.5 120 8 119.5 8.5 119.5 8.5 119.5 8.5 120 8 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 8.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5 119.5 9.5<			End of Borehole @ 5.03 m				┝╍┶┷		
122 6 121.5 6.5 121.7 7 120.5 7.5 120 8 119.5 8.5 119 8.5 119 Enclosure No. 2	122.5 -		Borehole dry on completion				i		
122 6 121.5 6.5 121 7 120.5 7.5 120 8 119.5 8.5 119 Enclosure No. 2	5.5					-			
121.5 6.5 121.5 6.5 121.5 7 120.5 7.5 120 8 119.5 8.5 119 8.5 119 119 Enclosure No. 2	122 -					1 100		_	
121.5 6.5 121 -7 120.5 -7.5 120 -8 119.5 -8.5 119 -8.5 119 -8.5 119 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 120 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5 119 -7.5						6	Ш		
121.5 121 121.5 120 8 119.5 119 Enclosure No. 2 SOIL PROBE LTD.	-								
121 7 120.5 7.5 120 8 119.5 8.5 119 Enclosure No. 2	121.5 -					-			
121 - 7 120.5 - 7.5 120 - 8 119 - 8.5 119 - 8.5 119 - Enclosure No. 2	- 6.5					-			
120.5 7 120.5 7 7 120 8 119.5 119 119 Enclosure No. 2 SOIL PROBE LTD.	121 -								
120.5 7.5 120 8 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 119.5 120 8.5 119.5 Enclosure No. 2	- 7								
120.5 120 8 119.5 119.5 119.5 119.5 119.5 Enclosure No. 2 SOIL PROBE LTD.	· _^								
^{-7.5} ¹²⁰ - ⁸ ¹¹⁹⁻⁵ - ^{8.5} ¹¹⁹ - ¹¹⁹ Enclosure No. 2 SOIL PROBE LTD.	120.5-								
120 8 119.5 119 119 119 119 119 119 119 11	7.5								
119.5 119.5 119.5 119.5 119.5 Enclosure No. 2 SOIL PROBE LTD.									
119.5 119- 119- Enclosure No. 2 SOIL PROBE LTD.						a 120			
119.5 119-5 119-5 119-5 Enclosure No. 2 SOIL PROBE LTD.									
Enclosure No. 2	119.5								
119 [‡] Enclosure No. 2 SOIL PROBE LTD.	- 8.5								
Enclosure No. 2 SOIL PROBE LTD.									
Enclosure No. 2 SOIL PROBE LTD.	- 412 J			1	<u> </u>	119			
SOIL PROBE LTD.						Enclosure N	o. 2		
SUIL PROBE LID.									
			<u>SUIL PRUBE LID.</u>						

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 126.09 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

1

ELEVATION/	N/ SOIL	SOIL	мс	ST	TANDARD PENETRATION TEST				
DEPTH (m)	SYMBOLS	DESCRIPTION	%	N	DEPTH/		R V	E 2m)	
					ELEVATION (m)		ws/U.	.5111)	
126 — 0	1	TOPSOIL - about 75 mm thick (thick surficial grass			0 - 126		<u>30</u> 	<u>- 50</u>	
- -		present)	20.7	10	-	•		+	
125 5 - 0.5		FILL - brown clayey silt with some sand and fine gravel,	20.7						
		moist						_	
		CLAYEY SILT TILL - traces of sand & gravel, gravish			1	_ _ `			
125		brown to brown, moist, hard	13.1	34	125		\mathbb{R}		
- 1.5					-		┼╌┡	+	
124.5							┼╌┼	-\{	
, <u>†</u>		- includes some medium gravel below about 1.8 m	10.3	53			1+		
124 - 2					2				
	4				-				
123.5 - 2.5			68	51			+	_₩_	
			0.0				+		
123 + 3	5				3-123		+	+	
100 5 - 3.5			7.2	90	-		┼╀	94-	
122.5					-			\top	
					4				
122 -					- 122				
							⊢	+	
121.5	6						+		
		End of Borehole @ 4.83 m	7.6	90/			90/2	!5* •	
121 + 5		Borehole dry on completion		25*	5				
120.5									
+							┥┥		
120 - 6					6-130				
							+	_	
+ 6.5									
119.9 -								\top	
÷ 7									
119 					119				
- 7 5									
118.5 + '					-		┼╌┼	+	
+					-		+		
118 + 8					8-118		+		
]				
117.5 + 8.5							\square		
<u>}</u>									
					Enclosure N	0 3	<u> </u>		
					Lifetosate In	0. 5			
	···	<u>SOIL PROBE LTD.</u>							

BOREHOLE LOG

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 128.75 CAVED AT DEPTH (m): 2.45 N=Blow Count in Standard Penetration Test (Blows/0.3m)

PROJECT NO.: SP-3256 DATE: April 3, 2012 WATER LEVEL DEPTH (m): 1.8 M.C. = Natural Moisture Content

STANDARD PENETRATION TEST ELEVATION/ SOIL M.C. DESCRIPTION CURVE DEPTH/ SYMBOLS DEPTH (m) % Ν N (Blows/0.3m) ELEVATION (m) 10 30 50 n TOPSOIL - about 200 mm thick 0 128.5 FILL - brown, sand-silt-clay with trace fine gravel, moist 15.2 ۰ 6 0.5 128 128 1 1 14.2 9 127.5 - layer of brown wet silty sand with trace of plant -1.5 remains below about 1.4 m 127 127 19.9 10 2 2 POSSIBLE FILL - brown fine sand, wet 126.5 2.5 24.8 7 126 126 з з 125.5 CLAYEY SILT - grey, wet, firm 20.2 7 3.5 125 125 4 4 CLAYEY SILT TILL - traces of sand and gravel, gray, 124.5 moist, hand. 4.5 124 124 12.3 42 5 5 End of Borehole @ 5.03 m 123.5 - 5.5 Water level @ 1.8 m in piezometer on installation and 123 123 6 6 122.5 6.5 122 122 7 7 121.5 7.5 121 121 8 8 120.5 - 8.5 120 120 Standpipe piezometer installed in borehole Enclosure No. 4 SOIL PROBE LTD.

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 124.96 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

PROJECT NO.: SP-3256 DATE: April 3, 2012 WATER LEVEL DEPTH (m): 4.1

	Juni ni Standaru .	renetration rest (Diows/0.511)	IVI	.C. –	Inatural moisu	ire Co	nte	
ELEVATION/	SOIL	DESCRIPTION	M.C.	ST	ANDARD PENETR	ATION	TES R V	T E
DEPTH (m)	SYMBOLS		%	N	ELEVATION (m)	N (Blo	ws/0	.3m)
•		· · · · · · · · · · · · · · · · · · ·				10	30	50
		TOPSOIL - about 100 mm thick (root mat) (Surficial grass present) FILL - brown clayey silt with trace gravel, moist CLAYEY SILT TILL - traces of sand and gravel, reddish brown, moist, hard	22.5	10				
			12.6	33				
123.5	3							
		- includes some coarse gravel below about 1.8 m	8.9	76	2 - 123			76 →
122.5		- colour changes to reddish grey below about 2.4 m	0.2	50/				
122 - 3			9.2	10*	3 - 122			
121.5 - 3.5 			7.5	50/ 13+				•
	X				4 121			
120.5 - 4.5	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		81	50/				
		End of borehole @ 4.68 m Water level @ 4.1 m on drilling completion		11+	5 120			
119.5 - 5.5 - 5.5								
	-				6 - 119			
					7 - 118			
117.5 								
117 - 8					8			
116.5 - 8.5								
1								
				l				
					Enclosure N	o. 5		
		SOIL PROBE LTD.						

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 123.6 CAVED AT DEPTH (m): 4.4 N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	8011		MC	ST	ANDARD PENETRATION TEST
DEPTH (m)	SYMBOLS	DESCRIPTION	M.C. %	N	DEPTH/ CURVE ELEVATION (m) N (Blows/0.3m)
123.5 - 0 - 0.5 123 - 1		TOPSOIL - about 100 mm thick (Thick surficial grass present) FILL - reddish brown, clayey silt with some roots, moist CLAYEY SILT - red (with occasional grey lense), moist stiff	21.2	10	
122.5			12.1	23	
122 + 1.5	3	- becomes hard below about 1.4 m 9.0 81 25	81/ 25*		
121 - 2.5		- thin lense of hard grey silty clay at about 2.7 m	7.3	78	121
120.5 + 3 + 3.5 120 + 3.5	▼ 5		8.6	50/ 10+	3-1-120
119.5 +		- becomes wet below about 4.0 m			
119 - 4.5	1 • 6	End of Borehole @ 4.62 m Water Level @ 3.2 m on completion drilling	22.2	50/5+	
					118
117.5 + 6					6
117 + 6.5					
116.5 -+ - - - 116 - 7.5					116
115.5 - 8					8-
115 - 8.5					- 115
					Enclosure No. 6
		SOIL PROBE LTD.			

BOREHOLE LOG

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 125.27 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	SOIL	DESCRIPTION		ST	TANDARD PENETRATION TEST				
DEPTH (m)	SYMBOLS			N	DEPTH/	CURV N (Blows/0	E 2m)		
					ELEVATION (m)	10 20	(mc. 60		
-⊊ o	1 <u> </u>	TOPSOIL - about 100 mm thick (root mat)			0 - T		30		
125 –		FILL - brown clavey silt with some packets of topsoil	20.4	_	- 125				
÷ 0.5		moist	30.6	7					
		moist			-				
124.5	2 ²								
}~1 ↓			28.5	21	1-				
124			20.5	21	- 124				
-1.5		CLAYEY SILT TILL - trace fine gravel reddish brown			-	╺╍┼╸╂┧┼╶┤			
	·/··/·/·/·/·	with some grey spots moist very stiff			-				
123.5 -		- includes some medium gravels below about 1.8 m	13.1	27		╾┼╸┤┿┤╶┤			
1-2		hierardes some medium gravers below about 1.0 m			2-				
123 -	Δ	- becomes hard below about 2.1 m			- 123				
-2.5									
1			11.7	35		┥┊┤┩	•		
122.5 -					-		<u></u>		
1-3	5				3-		\uparrow		
122 -				/	122				
			10.1	50/					
1				13**					
121.5 -					-				
1-4					4				
121					- 121				
1- 1-4.5					_				
	6								
120.5 -		- sand-gravel seam at about 4.7 m	6.5	50/		─┤ ─┤ ┤ ─┤	-+-		
1 5		End of Borehole @ 4.85 m	0.0	13*	5-				
120 -		Borehole dry on completion			- 120				
- 5.5		$50/13^* = 50$ blows for 13 cm of sampler penetration							
		after 1st 15 cm			-				
119.5									
<u>-</u> 6					6-				
119 –					- 119				
- - 6.5						╺╼┤╴┼╍┤─┤			
						╺┼╌╎╶┤─┤			
TTR'2						-{			
<u>}</u> −7									
118 🕂					- 118	┥┼┼┤┤			
7.5						╍┼┼┅┼╾╡			
		•				┥┼┼┼┊			
·····						╌┼╾┼╴┼			
1 2 8					₿ -]	╶┟╶╽┈╽╸ ┤			
117 –					- 117	┤┼┼┤			
÷8.5									
116 5 -									
					l f		<u> </u>		
					Enclosure N	o. 7			
							i		
·		<u>SOIL PROBE LTD.</u>							

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 123.35 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	SOU		MC	ST	ANDARD PENETR	ATION	TES	T
DEPTH (m)	SYMBOLS	DESCRIPTION	1vi.C. %	N	DEPTH/	C U	R V	Е (2m)
					ELEVATION (m)	10 (DIO	WS/U 20	(mc.)
	. 1	TOPSOIL - about 150 mm thick			0-		<u> </u>	
123 -		FILL - brown clayey silt with some fine gravel, moist	14.4	9	- 123	•		
<u>}</u> −0.5					-	⊢╢╟		
122.5	2			ļ		+ +		
1-1		CLAYEY SILT TILL - trace to some sand, reddish	12.2	22	1-		+	
122		brown, moist, very stiff	13.3	22	- 100			
							1-1	
							$\boldsymbol{\Lambda}$	
121.5 - 2		- becomes hard & includes occasional layer of gray silt	13.3	36	2		1	
							- -	
121 - 121		- colour changed to red below about 2.3 m			1- 121		+	
			12.2	44			+	•
120.5-[-3								1
	5							
120			10.2	58	- 120		$\left \right $	
					-		-	
119.5							+	
					4-			
119 –					- 119			
<u>-</u> 4.5	6				-			
118.5								
- 5		LIMESTONE- highly weathered, gray	9.3	73/	5	┍┥╍┤╸	13/2	
118 -		End of Borehole @ 4.98 m		23.			+	
5.5		Borehole dry on completion			- 110			
117 5		· · · · · · · · · · · · · · · · · · ·			-			
		$73/25^* = 73$ blows for 25 cm of sampler penetration			6	┝╋╋		
		after 1st 15 cm					┥╴╎	
11/					- 117		┥┤	
							+	
116.5 - - 7								
						┝╍┼┼┷		
116 - [- 116	<u> </u>	-	
					-			
115.5			.	ļ	-			
					8-			
115					- 115			_
- 8.5					-			
114.5]				-	
Enclosure No. 8								
SOLL BROBELTD								
		<u>SUIL PRUBE LID.</u>						

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 122.18 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	SOIL		M.C.	ST	TANDARD PENETRATION TEST			
DEPTH (m)	SYMBOLS	DESCRIPTION		N	DEPTH/ ELEVATION (m)	CURVE N (Blows/03m)		
					LEE VATION (III)	10 30 50		
100 F 0	1	TOPSOIL - about 200 mm thick (Green grassy Play			0-1-122			
122		area)	22.9	6				
- 0.5		FILL - brown clayey silt, moist			-			
121.5 -					-			
- - 1		CLAYEY SILT - red, moist, hard			1-			
121 -			20	43	- 121			
- 					-			
120.5	3	- lense of grey hard silty clay at about 1.65 m	10.1	50/5+	-1 	···∤··∤··∤··∳·		
÷.								
120 - 2					2 - 120			
-	4							
- 2.5			0.0	10	-			
119.5			2.0	42				
- 3					3 -			
119 –	₹ IIII'		00	50/	- 119			
			0.0	10*	-			
118.5								
<u>}</u>								
118 -		- becomes wet below about 4.0 m						
<u>-</u> 4.5	all and a		12.0	50/5+				
117.5		End of Borehole (a) 4.62 m	12.0	50/5-	-			
		Water Lavel @ 2.2 m on completion of drilling			5 -			
117 -		water Lever (2.5.2 m on completion of arming			- 117			
 5.5		50/13 + = 50 blows for 13 cm of sampler penetration			-			
116.5 -		$50/10^{*} = 50$ blows for 10 cm of sampler penetration						
		after 1st 15 cm						
116					- 116			
1- 1-								
					-			
113.3					[]			
÷ 7					7-			
115 -					- 115			
- 7.5					-			
114.5								
114 7					- 114			
<u>}</u>								
113.5 -			1					
} <u>}</u>			1					
					Enclosure N	0.9		
		SOIL PROBE LTD.						

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 123.56 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	SOIL		мс	ST	STANDARD PENETRATION TEST			
DEPTH (m)	SYMBOLS	DESCRIPTION		N	DEPTH/	CURVE N (Blows/03m)		
123.50	1	TOPSOIL - about 150 mm thick (root mat) (Green			0	10 30 50		
123 - 0.5		grassy play area) FILL - red clayey silt, moist	19.1	9	- 123			
122.5 - 1	2 -	CLAYEY SILT - red (some hard grey spots), moist to	81	18	1 1 1			
122 - 1.5	3	damp, hand	0.1		- 122			
121.5 - 2			5.9	50/5*	2 -	••••••••••••••••••••••••••••••••••••••		
121 - 2.5	- 4		7.1	50/		••••••••••••••••••••••••••••••••••••••		
120.5	▼ - 5	- wet layer at about 2.9 m	17.6	50/5+	3 –			
120 - 3.5		- lense of moderately weathered limestone at about 3.3 m	17.0	50001	- 120			
119.5 - 4		- wet red clavey silt layer at about 4.0 m			4			
119 — ¹ - 119 — 4.5					- - - 			
118.5 - ¹ - 118.5		End of Borehole @ 4.65 m $50/5^* = 50 \text{ blows for 5 cm of sampler penetration after}$	8.6	50/8+	5 -			
118 - 5.5		50/11 + = 50 blows for 11 cm of sampler penetration			- - 			
117.5-6		Water @ 2.74 m on completion of drilling	ļ		6 -			
117 - 6.5					- - - 			
116.5 - 7					- - 7 _			
116 - 7.5								
					8-			
115 - 8.5	-							
					- 115			
	Enclosure No. 10							
		SOLL PROBELTD						

BOREHOLE LOG

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 124.77 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ÉLEVATION/	SOIL		M.C. %	ST	ANDARD PENETR	RATION TEST			
DEPTH (m)	SYMBOLS	DESCRIPTION		N	DEPTH/	CURVE			
					ELEVATION (m)	N (Blows/0.5m)			
$124.5 - \frac{1}{10} 0$ $124.5 - \frac{1}{10} 0.5$ $124 - \frac{1}{10} 0.5$		TOPSOIL - about 150 mm thick (root mat) (Green grassy play area) FILL - red clayey silt with some stone pieces, moist.	15.2	34	0	• • • • • • • • • • • • • • • • • • •			
		CLAYEY SILT - red with some grey spots to layers, wet, moist damp, hard	15.4	31					
123	3		9.9	57	2 - 2 -				
122.5 			9.8	58					
121.5 	5	- grey moderately weathered limstone lense at about 3.3	8.9	97/ 25*	34	●97/25* →			
		111		25	4-121				
120.5	6	End of Borehole @ 4.67 m	6.8	50/ 10+					
119.5 		$97/25^* = 97$ blows for 25 cm of sampler penetration after 1st 15 cm $50/10^+ = 50$ blows for 10 cm of sampler penetration			5				
		Borehole dry on completion							
118.5									
117.5					7				
117					8 - 117				
** 0 _					- 116				
		SOIL PROBE LTD			Enclosure N	0. 11			

PROJECT: Proposed Residential Subdivision LOCATION: 1401 Bronte Road, Oakville, Ontario ELEVATION (m) 127.26 CAVED AT DEPTH (m): N=Blow Count in Standard Penetration Test (Blows/0.3m)

ELEVATION/	SOF		M.C. %	ST	ANDARD PENETR	ATION	TES	ST
DEPTH (m)	SYMBOLS	DESCRIPTION		N	DEPTH/		IR V	VE
					ELEVATION (m))WS/C	0.3M)
-[o	1	TOPSOIL about 200 mm thick (root mot) (Thick green			د ۵		30	
127 -		(Thick green)			- 127		+-	
- - 0.5		FILL brown cond silt alow moist	16.7	6	-	\square	+	
		FILE - brown sand-snt-clay, moist			-	+ + +		+
126.5 -	2				1	\vdash	+	++-
1		SILTY VERY FINE SAND - brown, wet, compact	20.8	19	1-		+	
126 -			20.0		- 126			1
<u>-</u> 1.5		CLAYEY SILT TILL - trace of sand, brown, moist, stiff			-			
125.5					1			
÷.			18.0	15			T	
		- wet seam at about 2.1 m			2		\square	∇
125 -	4				- 125			
2.5		- includes some coarse gravel, becomes hard and color	10.0	0.00	-			358-
124.5		changes to brownish grev below about 2.5 m	12.9	90/		\square	1.	Ĩ
1- 3				2.5	3-		\perp	<u> </u>
1 A A	5							
124			8.9	50/	- 124	\square	╇	╷╹
1-3.5	-			10*		+ +	\perp	++
123.5						┡━┥┥┥	+	
- 4	<u> </u>				4	╞─┼╌┾		
123		SAND-GRAVEL - brownish grey, wet to very moist,			- 123	\vdash		++
		very dense				┝┼┼┼	╋	╉╼╞╼╸
	б		0.6	50/	-			┼╼┢─
122.5		End of Borehole @ 4.71 m	9.0	14+		╞╍┠╍┞	+-	
] 5]-		Water Level @ 3.7 m on completion drilling			5-	$\left \right $	╧	
122 –		$90/25^* = 90$ blows for 25 cm of sampler penetration			122	<u>├</u> ─┼─┼		++
5.5		after 1st 15 cm			-		+	+
121.5		50/14 + = 50 blows for 14 cm of sampler penetration						++
 E.,					1			·
- 0					61			
121 -					- 121			
<u>1</u> -6.5						\square		
120.5 -						┝╼┥┥┙┥	\perp	
- 7					7	\vdash		
120 -						┝┼╌┥		$\downarrow \downarrow$
						┝╍┝╼┊┥	+	<u> </u>
£ '``						┝─┼─┼		
119.5						┝╌┼╌┼	+	
÷ 8					8 -	┝┼┼		++
119 –					119	┝┼┼		
 } 8.5						+ +		+
118 5						 -	+-	
			L					-{}
					Enclosure N	o. 1	2	

KEY TO SYMBOLS

Enclosure No.: 13 File No.: SP- 3256 Report No.: 2012-23813

<u>Notes:</u>

1

TERMS DESCRIBING RELATIVE DENSITY, BASED ON STANDARD PENETRATION TEST N-VALUE FOR COARSE GRAINED SOILS (major portion retained on No.200 sieve).

DESCRIPTIVE TERM	"N"-VALUE (blows/0.3m)	RELATIVE DENSITY (%)				
Very Loose	< 4	< 15				
Loose	4 to 10	15 to 35				
Compact or Medium	10 to 30	35 to 65				
Dense	30 to 50	65 to 85				
Very Dense	> 50	> 85				

TERMS DESCRIBING CONSISTENCY, BASED ON STANDARD PENETRATION TEST N-VALUE, FOR FINE GRAINED SOILS (major portion passing No. 200 sieve)

DESCRIPTIVE TERM	UNCONFINED COMPRESSIVE STRENGTH (kPa)	"N"-VALUE (blows/0.3m)
Very Soft	< 25	< 2
Soft	25 to 50	2 to 4
Firm	50 to 100	4 to 8
Stiff	100 to 200	8 to 15
Very Stiff	200 to 400	15 to 30
Hard	> 400	> 30

