

420 and 468 South Service Road East, Oakville, Ontario

L6J 2X6

Hydrogeological Investigation

Client:

420 South Service Limited Partnership 156 Duncan Mill Road, Suite 12, Toronto, ON M3B 3N2

Attention: Mr. Amir Hazar, P.Eng., M.Eng.

Type of Document:

Final Report

Project Name:

420 and 468 South Service Road East, Oakville, Ontario

Project Number:

GTR-23006348-D0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted:

2024-10-02

Table of Contents

1	Introdu	ıction	3
	1.1	Project Description	3
	1.2	Project Objectives	3
	1.3	Scope of Work	3
	1.4	Review of Previous Reports	4
2	Hydrog	eological Setting	5
	2.1	Regional Setting	5
	2.1.1	Regional Physiography	5
	2.1.2	Regional Geology and Hydrogeology	5
	2.1.3	Existing Water Well Survey	5
	2.2	Site Setting	6
	2.2.1	Site Topography	6
	2.2.2	Local Surface Water Features	6
	2.2.3	Local Geology and Hydrogeology	6
3	Results		9
	3.1	Monitoring Well Details	9
	3.2	Water Level Monitoring	9
	3.3	Hydraulic Conductivity Testing	12
	3.3.1	Single Well Response Tests	12
	3.3.2	Pumping Test	13
	3.4	Groundwater Quality	13
4	Dewate	ering Assessment	15
	4.1	Dewatering Flow Rate Estimate and Zone of Influence	16
	4.2	Cooper-Jacob's Radius of Influence	16
	4.3	Stormwater	17
	4.4	Results of Dewatering Rate Estimates	17
	4.4.1	Construction Dewatering Rate Estimate	17
	4.4.2	Post-Construction Dewatering Rate Estimate	18

	4.5	MECP Water Taking Permits	19
	4.5.1	Short-Term Discharge Rate (Construction Phase)	19
	4.5.2	Long-Term Discharge Rate (Post Construction Phase)	. 20
5	Enviror	nmental Impact	. 21
	5.1	Surface Water Features	. 21
	5.2	Groundwater Sources	21
	5.3	Geotechnical Considerations	. 21
	5.4	Groundwater Quality	21
	5.5	Well Decommissioning	. 22
6	Conclu	sions and Recommendations	. 23
7	Limitat	ions	. 25
8	Refere	nces	. 26

List of Figures

Figure 1 – Site Location Plan

Figure 2 – Surficial Geology

Figure 3 – MECP Water Well Records Map

Figure 4 – Borehole/Monitoring Well Location Plan

Figure 5A – Cross Section A-A

Figure 5B – Cross Section B-B

Figure 6A – Overburden Groundwater Flow Map

Figure 6B – Shallow Bedrock Groundwater Flow Map

Figure 6C – Deep Bedrock Groundwater Flow Map

List of Appendices

Appendix A – MECP WWR Summary Table

Appendix B – Borehole Logs

Appendix C – SWRT Procedures and Results

Appendix D – Pumping Test Results

Appendix E – Laboratory's Certificates of Analysis

Appendix F – Construction and Post-Construction Flow Rate Calculations

Appendix G – Architectural Drawings

2

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by 420 South Service Limited Partnership. to prepare a Hydrogeological Investigation Report associated with the proposed development located at 420 and 468 South Service Road East, Oakville, Ontario (hereinafter referred to as the 'Site').

The Site is located on the south side of South Service Road East, approximately 260 metres (m) west of Chartwell Road in Oakville, Ontario. The Site measures approximately 11.4 hectares (28.26 acres) in area and is currently vacant, aside from a portion of the former General Electric building located along the northern portion of the Site which was designated as historically significant, and the foundations of the former buildings are still in place. In addition, there are five areas on-Site where stockpiles were observed, and a berm was located in the southeast portion of the Site.

It is our understanding that the client has recently purchased the site. The proposed development plan is expected to consist of three blocks (1, 2, and 4), each containing a 4-storey podium structure with four or six high-rise tower and a three (3) or four (4) levels of underground parking garage. The blocks would be separated by arterial and collector roads and would include internal driveways and public spaces. The Site location plan is shown on Figure 1.

EXP conducted a Preliminary Geotechnical Investigation and Phase 1 Environmental Site Assessment (ESA) in conjunction with this investigation. The pertinent information gathered from the noted investigations is utilized for this report.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Assess construction flow rates and potential impacts;
- Assess groundwater quality; and
- Prepare a Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological and hydrogeological information for the Site;
- Review private water supply wells on Site within 500 m of the Site (MECP database searches);
- Developed and conducted Single Well Response Tests (SWRT) on twelve (12) monitoring wells to evaluate hydraulic conductivities of the saturated stratigraphic units at the Site;
- Collected one (1) groundwater sample for laboratory testing of the Regional Municipality of Halton/City of Oakville Sanitary and Storm Sewer Use By-Law;
- Evaluated the information collected during the field investigation program, including borehole geological information,
 Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;

- Prepared site plans, cross sections, geological mapping and groundwater contour mapping for the Site;
- Estimate construction dewatering flow rates;
- Assess potential impacts and recommend mitigation measures, and
- Prepare a Hydrogeological Investigation Report

The Hydrogeological Investigation was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, Halton Sanitary & Combined Sewer bylaw (2-03) and The Town of Oakville Storm Sewer bylaw (2009-031). The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

- EXP Services Inc. (September 2024), Preliminary Geotechnical Investigation, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (February 2024), Phase 1 Environmental Site Assessment, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (October 2023), Soil and Groundwater Sampling and Chemical Testing Program, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is within a physiographic region known as the Iroquois Plain. The physiographic landform is named Shale Plains. The South Slope lies to the north of the Iroquois Plain (Chapman & Putnam, 2007).

The Iroquois Plain was created along the shores of former Lake Iroquois, an ancient glacial lake. The noted Plain primarily consists of shallow water sandy deposits.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south and southwest, toward Sixteen Mile Creek and Lake Ontario.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as a mixture of coarse-textured Glaciolacustrine deposits and Paleozoic Bedrock (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the subsurface stratigraphy of the Site from top to bottom is summarized in Table 2-1 (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2023). The overburden thickness is approximately 2.1 m.

Top Elevation of Stratigraphic Unit General Description Stratigraphic Unit This lithologic unit is fine textured glaciolacustrine deposits typically Surficial geology consists of silt and clay, minor sand and gravel, interbedded silt and clay 106.3 and gritty, pebbly flow till and rain out deposits Newmarket Till This lithologic unit mainly consist of a massive and dense silty sand unit. 105.9 (Aquitard) Bedrock primarily consists of interbedded shale, limestone, dolostone Georgian Bay and siltstone. It belongs to the Upper Ordovician, (Ministry of Northern 104.2 Formation Development and Mines, 2012).

Table 2-1: Summary of Subsurface Stratigraphy

Regional groundwater across the area flows southwesterly towards Sixteen Mile Creek and Lake Ontario (Oak Ridge Moraine Groundwater Program, 2023). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

6

The MECP WWR database indicates that one hundred seventy-eight (178) records within a 500 m radius from the Site centroid where fifteen (15) well record is identified onsite (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m.

The database indicates that the offsite wells are at an approximate distance of two hundred (200) m or greater from the Site centroid. All offsite wells were reportedly identified as monitoring and observation wells, test holes, water supply wells, abandoned and/or listed with unknown use.

The Well Identification Number (Well ID No.) of the only offsite water supply well is 2802363 where it is reportedly located 581 m from the Site centroid. Two onsite water supply wells, 2802420 and 2802421, are reported located 147 and 159 m from the Site centroid respectively.

The reported water levels ranged from depths of 1.3 m to 16.8 meters below ground surface (mbgs).

Based on the year of installation of the water supply wells (between 1949 and 1954) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an urban land use setting. The topography is considered relatively flat with a regional gradual south-southeasterly slope towards Sixteen Mile Creek and Lake Ontario.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 101.13 to 105.76 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the West Lake Ontario Shoreline. No Surface water features exist onsite. The nearest surface water features include Morrison Creek and Sixteen Miles Creek, located about 300 meters northeast and 1,150 meters southwest of the Site boundary respectively. Lake Ontario is approximately 2.3 km from the Site boundary to the southeast

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, March 2023). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

Details of the subsurface conditions encountered during the drilling program are summarized on the borehole logs in Appendix B. The logs include textural descriptions of the subsoil and groundwater conditions and indicate the soil boundaries inferred from non-continuous sampling and observations during drilling. These boundaries reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report.

Soil Stratigraphy

The previous investigations generally encountered an upper layer of variable fill material overlying native clayey silt till, with shallow bedrock; this was consistent with the findings of the EXP investigation, which are further detailed in the subsections below.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Asphalt, Concrete, Granular Fill

The boreholes were each advanced through surficial asphalt, concrete, and/or granular fill. Asphalt was encountered at Boreholes MW-312, MW-315, MW-317, MW-320, and MW-324 and ranged in thickness from 25 to 100 mm. Concrete was encountered at Boreholes MW-319 and MW-325 with thicknesses of 75 and 140 mm, respectively. Granular fill was encountered at all boreholes (except MW-319, MW-325, and MW-326) at the ground surface or below the asphalt or concrete and ranged in thickness from 50 to 350 mm.

Fill/Reworked Native Soil

A layer of fill or reworked native soil was encountered below the pavement structure at all boreholes except MW-314 and MW-315 and extended to depths ranging from 0.8 to 3.1 m below grade. The fill was variable and consisted of silty clay, silty sand, sand, or sand and gravel, and traces of deleterious materials (rootlets/organics or asphalt); the colours comprised brown, grey, dark grey, or black; the moisture condition ranged from damp to wet.

Sand

A native sand stratum was encountered at Borehole MW-315 below the pavement structure, extending to a depth of approximately 2.0 m. The sand contained traces of silt and occasional silt seams; was brown in colour; and in a very moist state. Based on SPT N values ranging from 12 to 21 blows per 305 mm of penetration, the stratum is classified as compact.

Silty Clay Till

Silty clay till was encountered at all boreholes below the pavement structure or fill and extended to the bedrock surface or borehole termination at depths ranging from 2.3 to 3.8 m. The stratum contained traces of sand, gravel, and shale fragments; was brown to grey in colour; and in a damp to moist state. SPT N values ranged from 17 to greater than 100 blows per 305 mm penetration. Based on undrained shear strengths ranging from 75 kPa to greater than 225 kPa as determined by pocket penetrometer measurements, the silty clay till is classified as stiff to hard in consistency.

Bedrock

All boreholes (except MW-326) were augered into the weathered shale bedrock. The bedrock surface was encountered at depths ranging from 2.3 to 4.0 m as detailed in the table below. The bedrock contact elevations should not be interpreted as the exact planes of the bedrock surface since the auger will frequently penetrate some distance into the weathered rock before noticeable resistance is encountered. Further, the distinction between highly weathered shale and the overlying stratum, particularly if the latter contains abundant shale fragments, is not always clear and consequently, some of the soil resting on the surface of the bedrock might be very weak and highly weathered shale.

Based on the Ontario Geological Survey (OGS) Map 2544, Bedrock Geology of Ontario, Southern Sheet, the bedrock in the site vicinity consists of grey shale of the Georgian Bay Formation. In general, the upper portion of the Georgian Bay Shale bedrock is usually highly weathered to weathered in the upper layers, generally to depths of about 500 mm to 1.5 m and occasionally the highly weathered/fractured zones can extend to more than 3 m depth. The degree of weathering and presence of silty clay till layers were inferred by auger resistance and limited split spoon samples. Hard limestone lenses are also common within the shale and have been encountered by EXP at various sites in Oakville.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5A (Cross section A-

A') and on Figure 5B (Cross section B-B'). The cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are

provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical and Environmental Investigations at the Site. It consists of the following:

Ten (10) deep bedrock monitoring well (MW308D, MW320D, MW332D, MW333, MW334, MW335, MW336, MW337, MW338, and MW339) were installed.

The diameter of all monitoring wells is 50 mm. All wells were installed with a monument protective casing, except MW320D, MW334, NW335 and MW336, which were installed with flush mount protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels in the monitoring wells installed outside of the existing building were recorded in three (3) monitoring events, including August 26, 27 and 29 of 2024. A summary of all static water level data in overburden, shallow and deep bedrock monitoring wells as it relates to the elevation survey is given in Table 3-1, 3-2 and 3-3 below.

The groundwater elevation recorded in the overburden wells ranged from 100.0 masl (1.13 mbgs at MW308S on August 29, 2024) to 103.55 masl (1.31 mbgs at MW301 on August 27, 2024). The groundwater elevation recorded for the shallow bedrock wells ranged from 98.81 masl (2.32 mbgs at MW308I on August 24 and 29, 2024) to 102.90 masl (2.81 mbgs at MW119A on August 27, 2024). The groundwater elevation recorded for the deep bedrock wells ranged from 94.70 masl (6.43 mbgs at MW308D on August 29, 2024) to 101.73 masl (4.03 mbgs at MW3333 on August 26, 2024).

Table 3-1: Summary of Measured Overburden Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW301	104.86	2.83	102 52	103.52 103.55	mbgs	-	1.31	1.34
10100301	104.80	2.03	103.32		masl	-	103.55	103.52
MW307	307 101.57 2.52 100.86 100.92	101 57	mbgs	-	0.65	0.71		
10100307		masl	-	100.92	100.86			
MW310	101.82	2.71	2.71 100.44 100.47	mbgs	-	1.35	1.38	
IVIVV310	101.82	2./1	100.44	100.47	masl	-	100.47	100.44
MW308S	101 12	2.35	100.00	100.01	mbgs	-	1.12	1.13
101003083	101.13	2.35	100.00		masl	-	100.01	100.00
NAVAZZZC	102.70	mbgs	2.96	2.96	3.11			
MW332S 105.70 4.04 102.5	102.59	102.74	masl	102.74	102.74	102.59		

Table 3-1: Summary of Measured Shallow Bedrock Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW302	104.99	6.90	102.71	102.77	mbgs	-	2.22	2.28
10100302	104.99	0.90	102.71	102.77	masl	-	102.77	102.71
MW304	104.27	7.08	101.66	101.66	mbgs	-	2.61	2.61
10100304	104.27	7.08	101.00		masl	-	101.66	101.66
MW309	101.82	7.10	99.92	99.96	mbgs	-	1.86	1.90
10100309	101.82	7.10	99.92	99.90	masl	-	99.96	99.92
MW119A	105.71	7.07	102.85	102.90	mbgs	-	2.81	2.86
WWII9A	105.71	7.07	102.85		masl	-	102.90	102.85
MANAZOOL	101 12	6.50	00.01	98.81	mbgs	-	2.32	2.32
MW308I	101.13	6.59	98.81		masl	-	98.81	98.81

EXP Services Inc. 11 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Table 3-3: Summary of Measured Deep Bedrock Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW308D	101.13	12.92	94.70	95.09	mbgs	-	6.04	6.43
10100308D	101.15	12.92	94.70	93.09	masl	-	95.09	94.70
MW320D	102.79	12.87	96.06	96.14	mbgs	6.65	6.73	6.67
101003200	102.79	12.07	90.00	30.14	masl	96.14	96.06	96.12
MW332D	105.70	13.22	99.73	99.80	mbgs	5.9	5.94	5.97
101003320	103.70	15.22	33.73	99.80	masl	99.80	99.76	99.73
MW333	105.76	13.11	101.60	101.73	mbgs	4.03	4.16	4.07
IVIVV555	33 105.76 13.11 101.60 101.73	masl	101.73	101.60	101.69			
MW334	104.24 10.424 06.70 06.04	mbgs	7.42	7.40	7.41			
10100554	104.21	13.11	96.79	96.81	masl	96.79	96.81	96.80
N 41 A / 2 2 E	104.21	12.17	98.64	98.68	mbgs	5.57	5.53	5.55
MW335	104.21	12.17	98.04		masl	98.64	98.68	98.66
MW336	102.24	12.87	95.53	95.58	mbgs	6.66	6.70	6.71
IVIVV330	102.24	12.87	95.53	95.58	masl	95.58	95.54	95.53
N 41 A / 2 2 7	102.00	1424	06.67	07.01	mbgs	6.97	7.23	7.31
MW337	103.98	14.24	96.67	97.01	masl	97.01	96.75	96.67
N 41147220	MW338 103.87 14.29 96.42 96.80	mbgs	7.18	7.52	7.56			
10100338		14.29	96.42	98.00	masl	96.80	96.46	96.42
N 414/220	W339 105.72 14.00 99.09 99.47	00.47	mbgs	6.63	6.27	6.25		
10100339		105.72 14.00	99.09	99.47	masl	99.09	99.45	99.47

Three (3) maps were created for the Site to show groundwater contours of the overburden, shallow and deep bedrock waterbearing zones (Figures 6A, 6B and 6C). Accordingly, the groundwater flow directions in the shallow overburden, shallow and deep bedrock are interpreted to be south and southwest of the Site, towards Morrison Creek.

For the design of foundations without perimeter and foundation drainage systems, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

Hydraulic Conductivity Testing

3.3.1 Single Well Response Tests

Ten (10) Single Well Response Tests (SWRT's) were completed on monitoring wells MW308D, MW320D, MW332D, MW333, MW334, MW335, MW336, MW337, MW338, and MW339 on August 27, 2024. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths utilizing data loggers, preprogramed to take measurement on (time in sec/ half sec/minutes) intervals.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Table 3-2.

Table 3-2: Summary of Hydraulic Conductivity Testing

Monitoring Well	Approximate Well Depth			Soil Formation Screened	Estimated Hydraulic Conductivity (m/s)
	(mbgs)	from	to		Conductivity (III/3)
MW308D	12.92	9.92	12.92	Bedrock	7.9E-08
MW320D	12.87	9.87	12.87	Bedrock	4.2E-07
MW332D	13.22	10.22	13.22	Bedrock	7.3E-07
MW333	13.11	10.11	13.11	Bedrock	8.0E-06
MW334	13.11	10.11	13.11	Bedrock	7.1E-06
MW335	12.17	9.17	12.17	Bedrock	2.3E-06
MW336	12.87	9.87	12.87	Bedrock	1.6E-06
MW337	13.07	10.07	13.07	Bedrock	2.3E-06
MW338	13.15	10.15	13.15	Bedrock	3.3E-07
MW339	13.06	10.06	13.06	Bedrock	9.5E-08
	8.0E-06				
	2.3E-06				
	9.0E-07				

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K-value of the tested water-bearing zone is 8.0E-06 m/s, and the arithmetic and geometric mean of the K-values are 2.3E-06 m/s and 9.0E-07 m/s respectively.

3.3.2 Pumping Test

EXP conducted a short constant-rate pumping test at MW332D on August 29, 2024 where drawdown at the pumping well was monitored, followed by a recovery period until the well reach static conditions. The purpose of the pumping test was to determine the hydraulic properties of the bedrock. The locations of the pumping well and the monitoring wells are presented in Figure 4.

The static water level in MW332D prior to the commencement of pumping phase was at a depth of 13.22 mbgs, corresponding to a static water column head of 5.92 m above the screened interval. MW332D equipped with an electronic datalogger programmed at 1 second intervals; additionally, water levels were also taken manually. The data was subjected to barometric compensation to resolve background atmospheric pressure fluctuations before use in hydrographs and curve-fitting pump test analyses.

MW332D was pumped at a rate of 0.26 L/min until maximum available drawdown was reached at 3,614 seconds (approximately 60 mins). To prevent the water level in the well from being lowered to the pump intake, the pump was shut off and recovery period was initiated at 3,614 seconds. The well recovered to 0.14 m below its initial water level (>90% recovery) and stabilized after approximately 60 mins into the recovery period.

The pump test data was analyzed using Aqtesolv Pro. V.4.5 software package. The semi-log plots showing drawdown versus time, as well as the results of detailed data analysis are included in Appendix D.

The maximum drawdown during the test was 1.33 m at MW332D. The Transmissivity of the bedrock, based on the confined Cooper-Jacob analytical solution, was $9.53E-07 \text{ m}^2/\text{s}$. The K-value of the bedrock (1.3E-07 m/s) is calculated based on Transmissivity and a uniform saturated aquifer thickness of 7.3 m, which is comparable to the SWRT results.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the town of Oakville during dewatering activities, one (1) groundwater sample was collected from monitoring well MW332D on August 30, 2024 using a peristaltic pump. Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix E.

Table 3-3 summarizes exceedance(s) of the Town of Oakville Storm (Table 1) and the Halton Sanitary and Combined (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the Town of Oakville Storm Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported

When comparing the chemistry of the collected groundwater samples to the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2), the following parameters reported an exceedance: Total Manganese (Mn).

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.

Based on the environmental sampling, exceedances of O.Reg.153/04 were found in the overburden for PHCs and BTEX, VOCs, PAHs and metals and treatment should be planned to treat these parameters.

Hydrogeological Investigation
GTR-23006348-D0
October 2, 2024

Based on Phase Two O. Reg. 153 groundwater check, there were no parameter exceedances against the Town of Oakville Storm Sewer Drainage Discharge Criteria (Table 1).

Based on Phase Two O. Reg. 153 groundwater check, there were no parameter exceedances against the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2).

Table 3-3: Summary of Analytical Results

Parameter	Units	The Town of Oakville Stormer Sewer Discharge Limit (Table1)	Halton Sanitary and Combined Sewer Discharge Limit (Table 2)	Concentration MW332D August 30, 2024
Total Manganese (Mn)	μg/L	5,000	50	180

Bold – Exceeds Halton Sanitary and Combined Sewer Discharge Limit (Table 2). **Bold & underlined** – Exceeds The Town of Oakville Storm Sewer Discharge Limit (Table 1).

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase, as required by the City.

An agreement to discharge into the sewers owned by the The Town of Oakville will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

4 Dewatering Assessment

The dimensions of the three (3) proposed development blocks (1, 2, and 4, see Appendix G) to support the dewatering assessment are summarized in Table 4-1 below.

Table 4-1 Building Dimensions for Dewatering Assessment

Input Parameter	Block 1	Block 2	Block 4	Units	Notes
Number of Subgrade Levels	3 Levels	3 Levels	4 Levels	-	Based on architectural drawings (Graziani and Corazza Architect, 2024) Cross Section (Drawing No. A501)
Ground Elevations	105.76	104.99	103.98	masl	Based on the ground elevations of the nearest boreholes /Monitoring wells
Groundwater Elevation	103.74	103.77	102.5	masl	Highest shallow groundwater elevation measured at the nearest monitoring wells plus 1 m
Top of Slab Elevation	95	95	92	masl	Based on architectural drawings (Graziani and Corazza Architect, 2024) Cross Section (Drawing No. A501)
Lowest Footing Elevation	93.5	93.5	90.5	masl	Assumed to be approximately 1.5 m below the top of slab elevation
Short-Term Dewatering Elevation Target	92.5	92.5	89.5	masl	Assumed to be one (1) meter below the lowest foundation elevation.
Long-Term Dewatering Elevation Target	94.5	94.5	91.5	masl	Assumed to be 0.5 m below the lowest top slab elevation
Excavation Area (Length x Width)	16,964 (135.6 x 125.3)	15,166 (138.5 x 109.5)	10,227 (114.8 x 89.1)	m² (m x m)	Approximate area (length x width) of Site for the proposed development

4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$

$$r_e = \frac{a+b}{\pi} \qquad \qquad R_o = R_{cj} + r_e$$

Where:

Qw = Rate of pumping (m³/s)

X = Length of excavation (m)

K = Hydraulic conductivity (m/s)

H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)

h = Hydraulic head above the base of aquifer in an excavation (m)

 R_0 = Radius of influence (m)

R_{cj} = Cooper-Jacob's radius of influence (m)

re = Equivalent perimeter (m)

a = Length of the excavation area (m)
 b = Width of the excavation area (m)

b = Width of the excavation area (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

4.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob's formula as follows:

$$R_{cj} = \sqrt{2.25 KDt/s}$$

Where:

Ro = Estimated radius of influence (m)

D = Aquifer thickness (original saturated thickness) (m)

K = Hydraulic conductivity (m/s)

S = Storage coefficient

t = Duration of pumping (s)

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 25 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix F.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff which originated outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 25 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm event over a 24-hour period are 56.5 and 122.6 mm (refer to Appendix F).

4.4 Results of Dewatering Rate Estimates

4.4.1 Construction Dewatering Rate Estimate

event.

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change.

Short-term (construction) dewatering calculations are presented in Appendix F.

Pits (elevator, sump pits) are assumed to have the same excavation depth and dewatering target as the main excavation; deeper pits may require localized dewatering and revised dewatering estimates.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Unit Block 1 Block 2 Block 4 **Parameters Dewatering Flow Rate without Safety** 82 80 76 Factor m³/day Dewatering Flow Rate with Safety 165 161 152 Factor of 2 m^2 Area 16,964 15,166 10,227 Precipitation m^3 425 379 256 (25 mm) Dewatering Flow Rate with Safety Factor of 2 including 25 mm rain m³/day 590 540 407

Table 4-2 Summary of Construction Dewatering Rate

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation.

18

October 2, 2024

Local dewatering may be required for pits (elevator pits, sump pits), if these extend deeper than the dewatering target. Local dewatering is not considered to be part of this assessment. Dewatering estimates should be reviewed once the pit dimensions are available.

Local dewatering may be required for pits (elevator pits, sump pits, raft) and for localized areas with permeable, soft, or wet soil conditions. Local dewatering is not considered to be part of this assessment, but contractor should be ready to install additional system to manage such conditions. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the shoring the systems and ramp/site access to redirect runoff away from excavation.

The dewatering assumptions are based on using shoring system without open cuts and sloped excavations.

If groundwater cutoff systems (ex: caisson walls, sheet piles) are installed, these should be designed for maximal hydrostatic pressure for shallow and deep water levels, without dewatering on the outer side of the groundwater cutoff. Soldier pile and lagging and caisson wall systems should be designed to account for shallow groundwater conditions and take into consideration that dewatering systems may not provide fully dewatered soil conditions.

If groundwater cutoff systems are used for decreasing long-term dewatering rates, these should be designed as permanent structures to cutoff groundwater inflow in the long-term. All perforations should be sealed permanently (ex: tiebacks, breaches, and cold joints) with no leakages and inspected. Fillers should extend into low permeability deposits (ex: sound bedrock or till) to cutoff groundwater from water bearing zones. Inspections should be conducted to confirm the depth of low permeability deposits along shoring system and that fillers are keyed into low permeability soil deposits.

All grading around the perimeter of the construction Site should be graded away from the shoring the system.

The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored using manual measurements and with electronic data loggers; records should be maintained on site to track dewatering progress. Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements should be maintained.

4.4.2 Post-Construction Dewatering Rate Estimate

It is our understanding that the development plan includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system if conventional footings are installed.

The long-term dewatering was based on the same equations as construction dewatering shown in Section 4.1.

The calculation for the estimated flow to the future sub-drain system (with no cutoff walls) is provided in Appendix F. The dewatering target for the foundation drainage system is taken at 0.5 m below the lowest slab elevation.

The foundation drain analysis provides a flow rate estimate. Once the foundation drain is built, actual flow rate measurements of the sump discharge will be required to confirm the estimated flow rate.

Based on the assumptions provided in this report, the estimated sub-drain discharge volumes are summarized in Appendix F. Seasonal and daily fluctuations are expected. These estimates may be affected by hydrogeological conditions beyond those

Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

encountered at this time, fluctuations in groundwater regimes, surrounding Site alterations, and existing and future infrastructures.

For the design of foundations without perimeter and/or foundation drainage system, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

Block 1 Block 2 Block 4 **Parameters** Unit Dewatering Flow Rate without Safety Factor 59 58 57 m³/day 87 Dewatering Flow Rate with Safety Factor of 1.5 89 86

Table 4-3: Summary of Long-Term Dewatering Rate

Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. A safety factor was applied to the flow rate to account for water level fluctuations due to seasonal changes.

These estimates assume that pits (elevator and/or sump pits) are made as watertight structures (without drainage), if their depths extend below the dewatering target, as previously stated.

The sub-drain rate estimate is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the sub-drain discharge volumes.

MECP Water Taking Permits

4.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m³/day but less than 400 m³/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400 m³/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the EASR water taking limit of 400 m³/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The dewatering estimates for all development blocks (i.e., 1, 2 and 4) including a safety factor of 2 are greater than 50 m³/day and less than 400 m³/day as shown in Table 4-2. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering an EASR will be required to facilitate the construction dewatering program for each development block.

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The PTTW/EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

4.5.2 Long-Term Discharge Rate (Post Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m³/day, then an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the dewatering estimates for all development blocks (i.e., 1, 2, and 4) shown in Table 4-3 with a safety factor of 1.5 greater than 50 m³/day, a Category 3 Permit to Take Water (PTTW) will be required to facilitate the post-development phase of each development block.

The safety factor for construction (short-term) dewatering is selected larger than for long-term to account for anticipated greater groundwater volumes during initial dewatering. The applied analytical formula is adequate for long-term (steady state) conditions as it omits specific yield and time dependency. When the formula is used for short-term conditions a larger safety factor is recommended to cover a larger initial dewatering rate, which is required to remove stored groundwater. Moreover, a large initial construction dewatering rate is favorable, as it supports reducing the time to reach the dewatering target elevation.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Environmental Impact

Surface Water Features 5.1

The Site is within the West Lake Ontario Shoreline. No surface water features exist onsite. The nearest surface water features include Morrison Creek and Sixteen Miles Creek, located about 300 meters northeast and 1,150 meters southwest of the Site boundary respectively. Lake Ontario is approximately 2.3 km from the Site boundary to the southeast

Due to the limited extent of zone of influence and the wide distance to the nearest surface water feature, no detrimental impacts on surface water features are expected during construction activities.

Groundwater Sources 5.2

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water wells in the area.

Geotechnical Considerations 5.3

As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

Groundwater Quality 5.4

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the The Town of Oakville Sewer Use By-Law.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the Short-term (construction) discharge to the Sanitary/Storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

For the long-term (post construction) dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by The Town of Oakville will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

EXP Services Inc. 2420 and 468 South Service Road East, Oakville, Ontario
Hydrogeological Investigation
GTR-23006348-D0
October 2, 2024

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When comparing the chemistry of the collected groundwater samples to the Town of Oakville Storm Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.
- When comparing the chemistry of the collected groundwater samples to the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2), the following parameters reported an exceedance: Total Manganese (Mn).
- Based on the assumptions outlined in this report, the estimated peak dewatering rate for proposed construction activities in development block 1, 2, and 4 are approximately 590 m³/day, 540 m³/day and 407 m³/day respectively. These are the rates which will be required to be discharged to the municipal sewer system.
- The estimated MECP short-term (construction) dewatering rate for proposed construction activities in development block 1, 2 and 4 are approximately 165 m³/day, 161 m³/day and 152 m³/day respectively. As these dewatering flow rate estimates are between 50 m³/day and 400 m³/day, an EASR will be required to facilitate the construction dewatering program for each development block.
- The estimated long-term (post-construction) dewatering rate for development blocks 1, 2 and 4 are estimated to be approximately 89 m³/day, 87 m³/day and 86 m³/day respectively. A category 3 PTTW will be required to facilitate the post construction development phase for each Block as their long-term dewatering rates are above 50 m³/day.
- The construction and post-construction dewatering rate estimates are based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to discharge without a treatment system.
- For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment as required.
- As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.
- An agreement to discharge into the sewers owned by The Town of Oakville will be required prior to releasing dewatering effluent.
- The EASR registration allows construction dewatering discharge of up to 400 m³/day. A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction Site for the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since EASR will need to be updated to reflect these

420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

modifications. The hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of
any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for
all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

25

October 2, 2024

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 420 South Service Limited Partnership. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

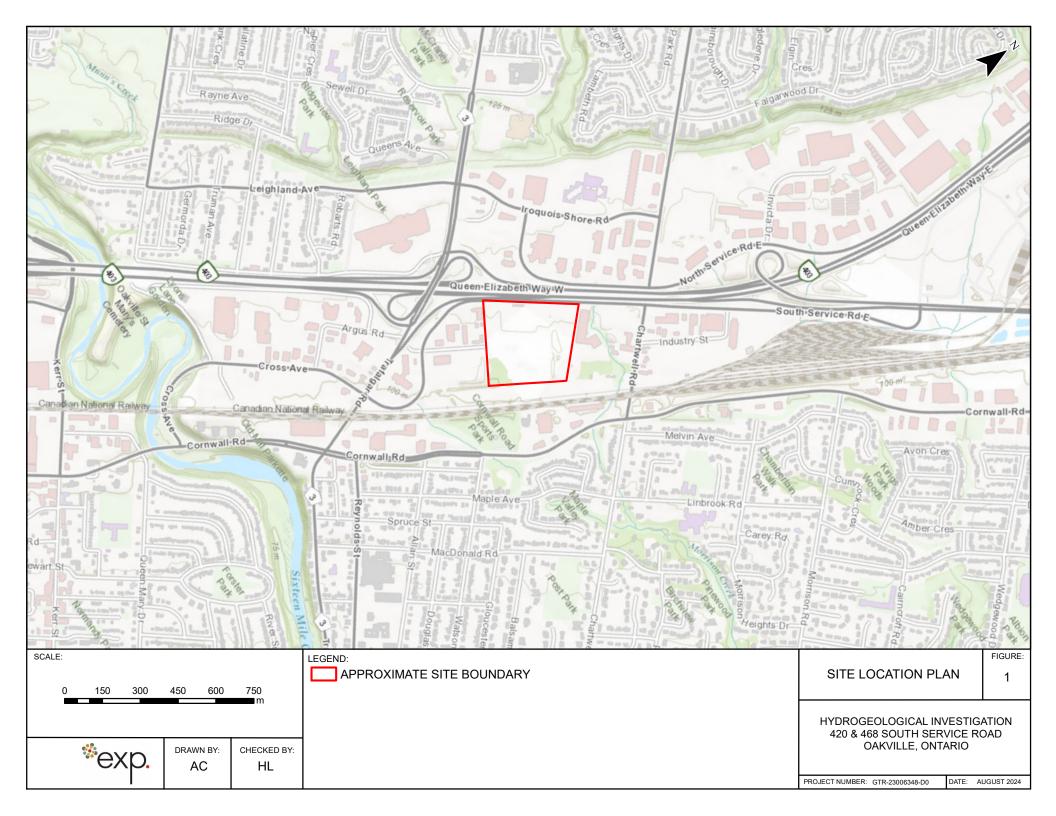
Hammond Lo, M.Eng., P.Eng. Senior Hydrogeologist

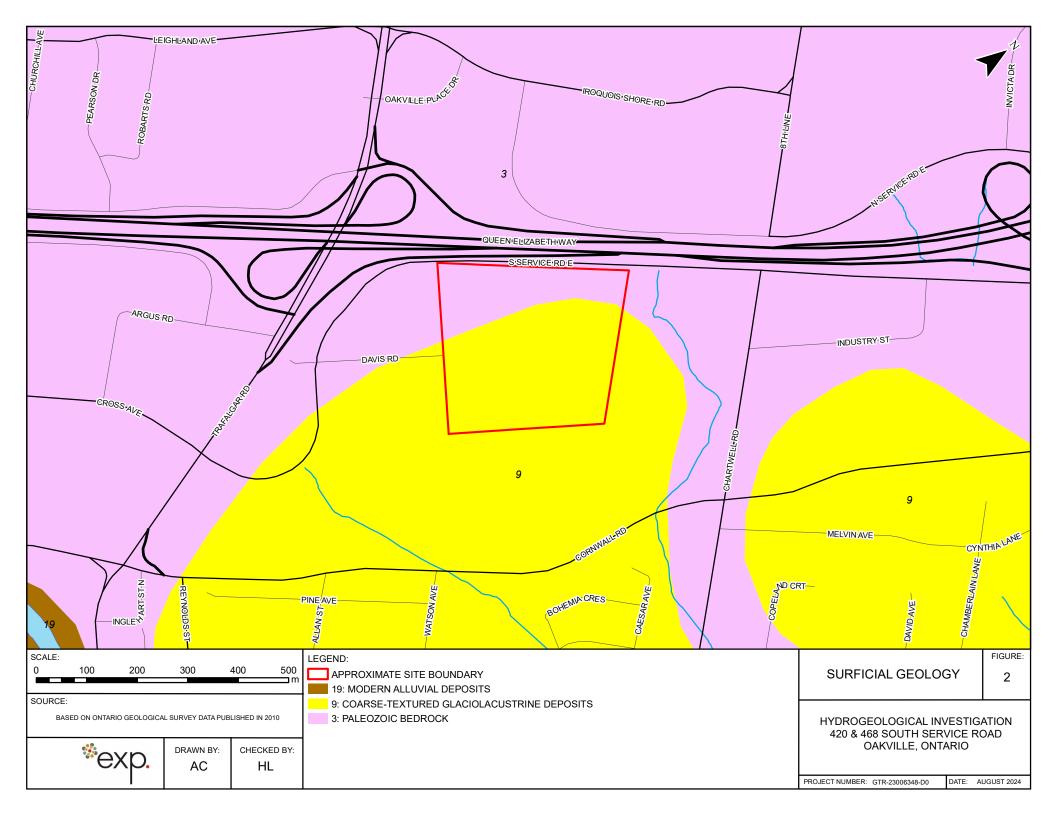
Environmental Services

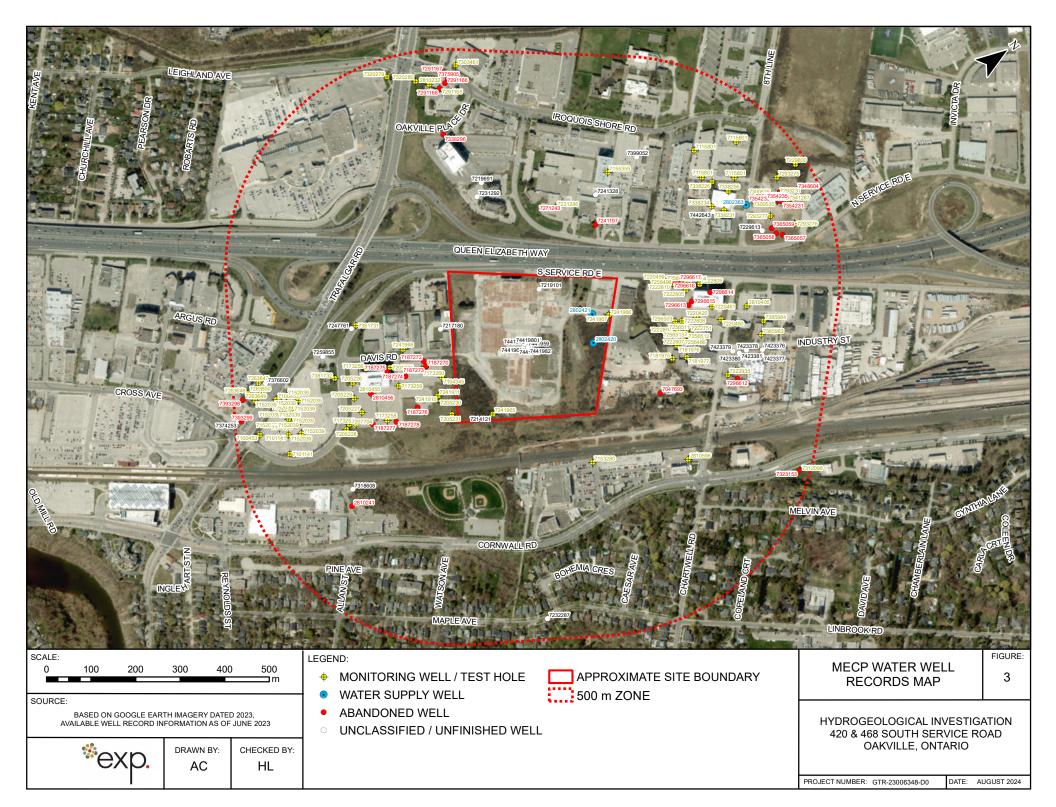
Francois Chartier, M.Sc., P.Geo. Discipline Manager, Hydrogeology Environmental Services

420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

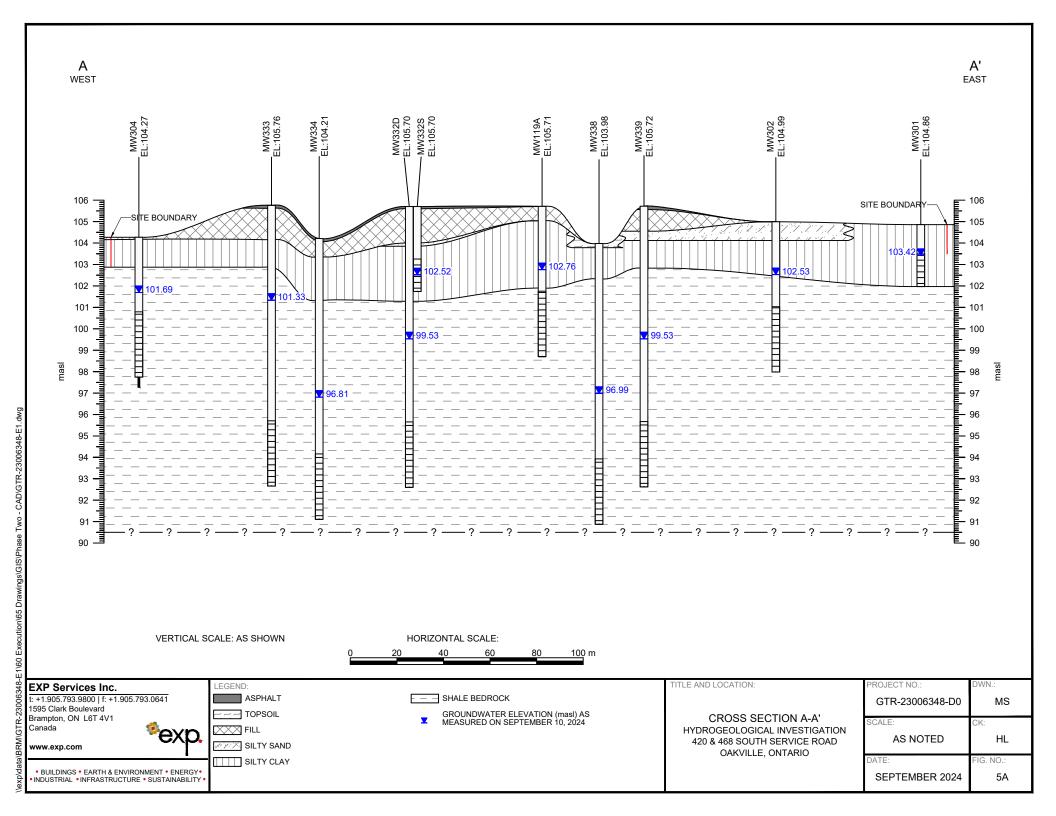
8 References

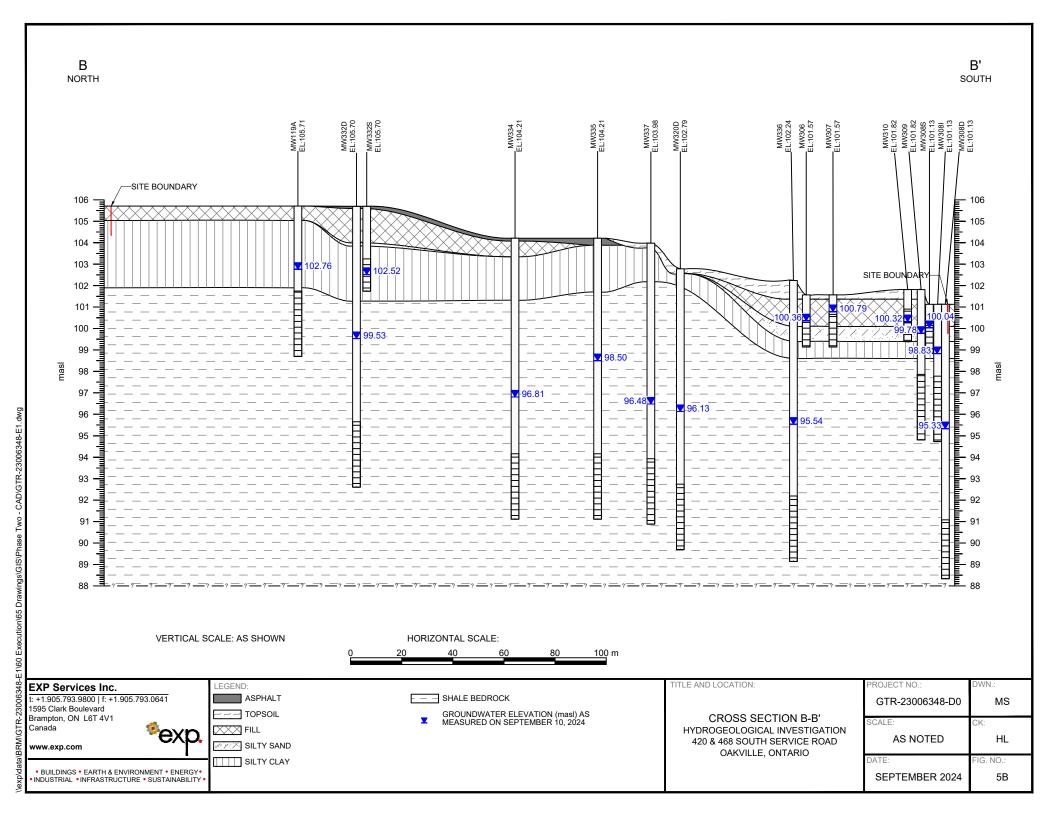

- Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.
- Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
- EXP Services Inc. (September 2024), Preliminary Geotechnical Investigation, 420 and 468 South Service Road East,
 Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (February 2024), Phase 1 Environmental Site Assessment, 420 and 468 South Service Road East,
 Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (October 2023), Soil and Groundwater Sampling and Chemical Testing Program, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
- Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.
- Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) 2023.
- Toronto and Region Conservation (2008/2009), Humber/Don River State of the Watershed Report Geology and Groundwater Resources.




EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Figures





EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix A – MECP WWR Summary Table

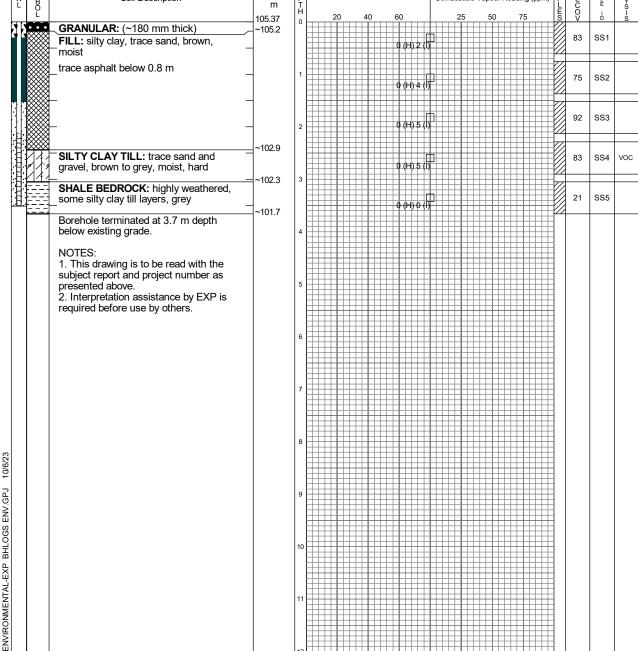
					ELEVATION			On-Site	DISTANCE FROM	a construction	WELL DEPTH	WATER FOUN	CASING			
BORE_HOLE_ID 10148970	WELL_ID 2802420	10/1/1951	EAST83 606961	4813210	(m ASL) 103.8	LOCATION ACCURACY unknown UTM	STREET	CITY	SITE CENTROID (m) 147	METHOD Boring	(m bgs) 2.4	(m bgs)	(cm) 91.4	1st USE Public	2nd USE	FINAL STATUS Water Supply
10148971 1004677311 1004730819	7214121 7219101	7/16/1954 12/6/2013 10/28/201	606963 606791	4812932 4813179	104.6 101.1 105.3	unknown UTM on Water Well Record on Water Well Record			159 178 126	Cable Tool	7.6	3.7	15.2	Commerical		Water Supply
1005384474 1005384477 1005384480	7241965 7241966 7241967	2/3/2015 2/6/2015 2/10/2015	606928	4813273	101.1 104.4 104.4	on Water Well Record on Water Well Record on Water Well Record	420 SOUTH SERVICE RD E 420 SOUTH SERVICE RD E 420 SOUTH SERVICE RD EAST	OAKVILLE OAKVILLE OAKVILLE	176 191 193	DIRECT PUSH DIRECT PUSH DIRECT PUSH	20.1 20.1 20.1		3.8 3.8 3.8	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Observation Wells Observation Wells
1009397482 1009397485	7441959 7441960	1/5/2023 1/5/2023	606880 606877	4813081 4813078	103.7 103.7	on Water Well Record on Water Well Record			7 11							
1009397511 1009397514 1009397517	7441977 7441978 7441979	1/9/2023	606883 606881 606878	4813089	103.7 103.7 103.7	on Water Well Record on Water Well Record on Water Well Record			6 2 2							
1009397520 1009397523 1009397526	7441980 7441981 7441982		606875 606886 606884		103.7 103.7 103.7	on Water Well Record on Water Well Record on Water Well Record			7 7 7							
BORE_HOLE ID	WELL ID	DATE		NORTH83	ELEVATION	LOCATION ACCURACY	STREET	Off-Site CITY	DISTANCE FROM SITE CENTROID	CONSTRUCTION		WATER FOUN	CASING DIAMETER	1st USE	2nd USE	FINAL STATUS
23047693	7047693	6/6/2007	607139	4813268	(m ASL)	on Water Well Record	562 CHARTWELL ROAD	OAKVILLE	(m) 316	METHOD	(m bgs)	(m bgs)	(cm)		2110 032	Abandoned-Other Water Supply
10148913 11319360 11319187	2810405 2810232	2/14/1948 9/20/2004 4/19/2005	607090 606272	4813540 4813241	107.4 103.5 111.7	unknown UTM on Water Well Record on Water Well Record	1012 SOUTH SERVICE RD 350 IROQUOIS SHORE RD	OAKVILLE OAKVILLE	581 499 626	Cable Tool Boring Rotary (Convent.)	24.4 3.0 6.0	2.4 1.5	5.0 4.5	Domestic		Observation Wells Observation Wells
11319196 11552365 11552506	2810455	5/13/2005 12/13/2006 6/12/2006	5 606767	4812735	97.5 101.6 99.8	on Water Well Record on Water Well Record on Water Well Record	271-351 CORNWALL ROAD 354 DAVIS RD 461 CORNWALL RD	OAKVILLE OAKVILLE OAKVILLE	538 371 443	Boring Boring Other Method	5.8	4.0 5.5	5.1 5.1			Abandoned-Other Observation Wells Observation Wells
11552366 1000044211 1002634243	2810456 7100453	12/16/200	606767 606700	4812735 4812477	101.6 99.1 101.1	on Water Well Record Not Applicable i.e. no UTM Not Applicable i.e. no UTM	354 DAVIS RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE Oakville Oakville	371 637 637	Boring Auger	4.7	2.0		Not Used Monitoring Monitoring		Abandoned-Other Observation Wells Observation Wells
1001912450 1001912459	7101141 7101141	9/27/2007	606738 606738	4812531 4812509	99.7 98.5	on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD		575 596	Auger Auger Auger		3.9 3.9		Monitoring Monitoring		Test Hole Test Hole
1001580243 1002782848 1002782830	7104345 7115801 7115801	3/17/2008 7/14/2008 7/14/2008	606837	4813683	104.4 109.0 109.2	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS RD 504 IROQUOIS SHORE ROAD 504 IROQUOIS SHORE ROAD	OAKVILLE Oakville Oakville	209 596 596	Boring S.S.A. S.S.A.	5.2		5.0	Not Used Test Hole Test Hole		Observation Wells Test Hole Test Hole
1002782839 1001905244 1003340124	7115801 7115801	7/14/2008 7/14/2008	606837	4813683 4813683	109.5 109.0 101.4	on Water Well Record on Water Well Record on Water Well Record	504 IROQUOIS SHORE ROAD 504 IROQUOIS SHORE ROAD 547 TRAFALGAR RD	Oakville Oakville OAKVILLE	596 596	S.S.A. S.S.A. DIRECT PUSH	5.5			Test Hole Test Hole		Test Hole Test Hole
1003603938 1003604011	7152039 7152039 7152039	9/3/2010 9/8/2010	606669 606669	4812559 4812559	101.1 100.4	on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH	4.0			Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003604020 1003603965 1003604029	7152039 7152039 7152039	9/8/2010 9/7/2010 9/8/2010	606669	4812559 4812559 4812559	101.3 99.7 101.3	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003603929 1003604001	7152039 7152039	9/3/2010 9/7/2010	606669	4812559 4812559	101.4 101.1	on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE	569 569	DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003603947 1003603956 1003603920	7152039 7152039 7152039	9/3/2010 9/7/2010 9/3/2010	606669 606669	4812559 4812559 4812559	100.5 100.5 101.4	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003603983 1003603992 1003603974	7152039 7152039 7152039	9/7/2010 9/7/2010 9/7/2010	606669	4812559 4812559 4812559	101.1 101.1 99.7	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003604038 1003604047 1003352596	7152039 7152039 7153280	9/9/2010 9/9/2010 9/22/2010	606669 606669	4812559 4812559	101.3 101.4 99.0	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 461 CORNWALL RD.	OAKVILLE OAKVILLE OAKVILLE	569 569 302	DIRECT PUSH DIRECT PUSH	4.6		5.1	Monitoring and Test Hole Monitoring and Test Hole Test Hole		Test Hole Test Hole Test Hole
1003424505 1003617680	7155359 7173256	10/21/201	0 606664 1 606715	4813456 4812758	108.0 102.2	on Water Well Record on Water Well Record	400 IROQUOIS SHORE ROAD 3 DAVIS AVE.	Oakville Oakville	426 369	Rotary (Convent.) Boring Air Percussion	6.1 5.5		4.6 4.0	Monitoring Monitoring and Test Hole		Observation Wells Test Hole
1003617682 1003617684 1003617686	7173258	11/17/201 11/17/201 11/17/201	1 606837	4812731	101.3 101.3 101.9	on Water Well Record on Water Well Record on Water Well Record	DAVIS AVE. DAVIS AVE. DAVIS AVE.	Oakville Oakville Oakville	427 360 306	Air Percussion Air Percussion Air Percussion	4.6 4.3 4.3		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003617688 1003842234	7173260 7181975	11/17/201 5/4/2012	1 606787 607091	4812860 4813335	102.4 101.8	on Water Well Record on Water Well Record	DAVIS AVE. 574 CHARTWELL RD	Oakville Oakville	246 325	Air Percussion Boring	4.3 2.4	1.7	4.0 5.1	Monitoring and Test Hole Test Hole		Test Hole Test Hole
1003842272 1003842316 1004156747	7181976 7181977 7187270		607107 606788		101.8 101.8 102.7	on Water Well Record on Water Well Record on Water Well Record	574 CHARTWELL RD 574 CHARTWELL RD 354 DAVIS RD	Oakville Oakville Oakville	334 357 236	Boring Boring	1.7 2.3	1.5 1.7 1.5	5.1 5.1	Test Hole Test Hole		Test Hole Abandoned-Other
1004156833 1004156954 1004157023	7187271 7187272 7187273	5/7/2012	606788 606775 606787	4812874	102.7 102.7 102.4	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS RD 354 DAVIS RD 354 DAVIS RD	Oakville Oakville Oakville	236 238 236			1.5 1.4 1.5				Abandoned-Other Abandoned-Other Abandoned-Other
1004157026 1004157029	7187274 7187275	5/7/2012 5/7/2012	606780 606747	4812821 4812794	102.5 102.3	on Water Well Record on Water Well Record	354 DAVIS DR 354 DAVIS RD	Oakville Oakville	285 323			1.3 1.5				Abandoned-Other Abandoned-Other
1004157032 1004157035 1004157038	7187276 7187277 7187278	5/7/2012	606852 606826 606851	4812699	101.8 101.4 99.4	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS RD 354 DAVIS RD 354 DAVIS RD	Oakville Oakville Oakville	287 393 343			1.5 1.5 1.5				Abandoned-Other Abandoned-Other Abandoned-Other
1004448573 1004448576 1004448579	7205225 7205226 7205227	6/21/2013 6/21/2013 6/20/2013	606724	4812715	102.3 101.8 101.3	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS DRIVE 364 DAVIS DRIVE 354 DAVIS DRIVE	Oakville Oakville Oakville	315 404 404	Air Percussion Air Percussion Air Percussion	4.9 4.9 4.6		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1004448582 1004448585	7205228 7205229	6/20/2013	606801 606754	4812644 4812698	100.3 101.7	on Water Well Record on Water Well Record	354 DAVIS DRIVE 354 DAVIS DRIVE	Oakville Oakville	451 410	Air Percussion Air Percussion	4.6 4.6		4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1004448588 1004448591 1004563895	7205230 7205231 7207704	6/20/2013 6/20/2013 7/15/2013	606909	4812857	105.4 105.9 100.3	from gis from gis on Water Well Record	354 DAVIS DRIVE 354 DAVIS DRIVE 354 DAVIS RD	Oakville Oakville Oakville	238 233 441	Other Method Air Percussion Air Percussion	4.6 4.6 6.1		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Monitoring and Test Hole
1004717148 1004734717 1004765093	7219691	12/23/201 12/23/201 3/26/2014	3 606521	4813210	103.8 109.4 104.4	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD	Oakville	200 378 382	Direct Push	5.8		5.2	Monitoring and Test Hole		Test Hole
1004766135 1004766138	7220459 7220460	3/26/2014 3/26/2014	606925 607081	4813401 4813475	105.7 103.3	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville Oakville	316 436	Direct Push Direct Push	2.7 6.1		4.0 5.2	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1004766141 1004899779 1004899794	7222805	3/26/2014 4/24/2014 4/21/2014	606982 607034	4813448 4813379	105.0 105.1 103.8	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE ROAD 74 SOUTH SERVICE RD.	Oakville ONTARIO OAKVILLE	421 374 330	Direct Push Direct Push Air Percussion	5.8 6.2 2.6		5.2 5.1 4.0	Monitoring and Test Hole Monitoring and Test Hole Test Hole		Test Hole Test Hole Observation Wells
1004899803 1004899819 1004899825	7222807 7222808 7222809	4/21/2014 4/21/2014 4/22/2014	607033	4813401	103.9 104.5 105.3	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD.	OAKVILLE OAKVILLE OAKVILLE	356 349 408	Air Percussion Air Percussion	2.3 2.7 6.1		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Observation Wells Observation Wells
1004899831 1004899638	7222810 7222751	4/22/2014 5/13/2014	606953	4813431 4813400	105.3 104.2	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE Oakville	351 363	Air Percussion Direct Push	2.1 2.7		4.0 5.1	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Monitoring and Test Hole
1004899658 1004894127 1005168446	7222935	5/13/2014 9/11/2008 9/26/2014	607192	4813416	103.8 101.3 108.8	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 573 CHARTWELL RD. 1055 NORTH SERVICE ROAD	Oakville OAKVILLE Oakville	336 453 724	Direct Push Rotary (Convent.) Boring	9.1	3.6	5.1 5.1 5.0	Monitoring and Test Hole Test Hole Test Hole		Monitoring and Test Hole Test Hole Test Hole
1005164568 1005210235 1005210307		8/1/2014 10/30/2014 10/27/2014	4 606660		105.9 108.1 108.7	on Water Well Record on Water Well Record on Water Well Record	400 IROQUOIS SHORE RD	Oakville	584 315 351	Boring	6.1		5.0	Monitoring		
1005235400 1005347843	7232287 7241197	10/2/2014 4/23/2015	607409 606745	4812769 4813367	94.8 107.3	on Water Well Record on Water Well Record	MAPLE AVE 455 NORTH SERVICE RD	Oakville Oakville	619 309	Auger	5.0		1.9			Other Status Abandoned-Other
1005355845 1005383342 1005383359	7241911	4/23/2015 2/13/2015 2/17/2015	606859 606857	4812857 4812855	107.4 105.4 105.4	on Water Well Record on Water Well Record on Water Well Record	420 SOUTH SERVICE RD. E 420 SOUTH SERVICE RD. E	OAKVILLE OAKVILLE	369 232 234	DIRECT PUSH DIRECT PUSH	20.1 20.1			Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Observation Wells
1005384483 1005667259 1005872102	7241968 7247761 7256486	2/11/2015 2/9/2015 11/26/201	606622	4812783	102.4 103.2 103.9	on Water Well Record on Water Well Record on Water Well Record	420 SOUTH SERVICE RD. EAST 514 SOUTH SERVICE RD	OAKVILLE	282 399 348	DIRECT PUSH Direct Push	20.1 5.5		7.6	Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Monitoring and Test Hole
1005872123 1005872126 1005872129	7256493 7256494	11/26/201	5 606972 5 606965	4813465 4813454	105.6 105.5	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville Oakville OAKVILLE	388 376	Direct Push Direct Push	6.4		7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1005872132 1005872153	7256496 7256503	11/26/201 11/26/201 11/26/201	5 606952 5 607026	4813437 4813387	105.5 105.5 104.5	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	OAKVILLE Oakville	367 356 333	Direct Push Direct Push Direct Push	4.6 5.5		7.6 7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005872177 1005872180 1005872183	7256511 7256512	11/26/201 11/26/201 11/26/201	5 607048 5 607060	4813381 4813396	103.8 103.8 103.8	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville Oakville OAKVILLE	338 357 356	Direct Push Direct Push Direct Push	5.5 5.5 5.5		7.6 7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1005913488 1006016582	7259855 7263647	9/9/2015 4/23/2016	606637 606602	4812694 4812542	102.2 100.9	on Water Well Record on Water Well Record	562 TAFALGAR RD	Oakville	463 612	Air Percussion	6.1		5.1	Monitoring and Test Hole		Monitoring and Test Hole
1006016610 1006016613 1006016616	7263649 7263650		606630 606625	4812513 4812534	100.8 99.9 100.9	on Water Well Record on Water Well Record on Water Well Record	562 TAFALGAR RD 562 TAFAKGAR RD 562 TAFALGAR RD	Oakville Oakville Oakville	640 627 610	Air Percussion Air Percussion Air Percussion	6.1 6.1 6.1		5.1 5.1 5.1	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1006240551 1006675270 1006675428	7271243 7291165 7291166			4813255	107.8 111.6 111.3	on Water Well Record on Water Well Record on Water Well Record	400 IROQUOIS SHORE ROAD 350 IROQUOIS SHORE ROAD 350 IRQUOIS SHORE ROAD	Oakville Oakville Oakville	323 609 617	Boring Direct Push Direct Push			4.6 5.1 5.1	Monitoring Test Hole Test Hole	Monitoring Monitoring	Abandoned-Other Monitoring and Test Hole Abandoned-Other
1006675431 1006675434	7291167 7291168	6/22/2017	606269	4813284 4813255	111.6 111.6	on Water Well Record on Water Well Record	350 IROQUOIS SHORE ROAD 350 IROQUOIS SHORE ROAD	Oakville Oakville	640 609	Direct Push Direct Push	4-		5.1 7.6	Test Hole Test Hole	Monitoring Monitoring	Abandoned-Other Abandoned-Other
1006713567 1006711726 1006711729	7293231 7293274 7293275		606940 606891	4813780 4813761	108.0 107.6 108.3	on Water Well Record on Water Well Record on Water Well Record	1011 NORTH SERVICE ROAD 1011 NORTH SERVICE ROAD 1011 NORTH SRVICE ROAD	Oakville Oakville Oakville	655 694 673	Direct Push Direct Push Direct Push	4.0 4.0 4.0		5.1 5.1 5.1	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1006711732 1006711735 1006758946	7293276 7293277 7296612	7/7/2017	606999 606954	4813699	106.5 107.1 101.8	on Water Well Record on Water Well Record on Water Well Record	1011 NORTH SERVICE ROAD 1011 NORTH SERVICE ROAD 514 SOUTH SERVICE RD.	Oakville Oakville OAKVILLE	657 615 476	Direct Push Direct Push DIRECT PUSH	4.0 4.0		5.1 5.1 7.6	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Monitoring and Test Hole Monitoring and Test Hole Abandoned Monitoring and Test Hole
1006758949 1006758964	7296613 7296614	9/18/2017 9/18/2017	607013 607017	4813434 4813490	105.2 105.2	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE	371 425	DIRECT PUSH DIRECT PUSH			7.6 7.6	Test Hole Test Hole	Monitoring Monitoring	Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole
1006758967 1006758970 1006758973	7296616	9/18/2017 9/18/2017 9/18/2017	606949 606956	4813434 4813446	105.2 105.5 105.5	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE OAKVILLE	380 353 366	DIRECT PUSH DIRECT PUSH DIRECT PUSH			7.6 7.6 7.6	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole
1006851898 1006851910 1006858145	7300535	10/5/2017	606934 606918	4813731 4813728	107.8 108.2 108.0	on Water Well Record on Water Well Record on Water Well Record	1011 NORTH SERVICE RD EAST 1011 NORTH SERVICE RD EAST 1011 NORTH SERVICE RD E	OAKVILLE OAKVILLE OAKVILLE	645 641 658	Rotary (Convent.) Rotary (Convent.) Direct Push	4.0 4.0 7.6		5.1 5.1 3.5	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Observation Wells Test Hole Observation Wells
1006858148 1006969880	7300870 7303461	10/3/2017 4/19/2017	606934 606270	4813733 4813315	108.0 112.0	on Water Well Record from gis	1011 NORTH SERVICE RD E	OAKVILLE Oakville	647 650	Direct Push Boring	4.1 4.6	1.9	3.5 5.2	Test Hole Test Hole	Monitoring Monitoring	Observation Wells Monitoring and Test Hole
1007086153 1007290754 1007296951	7320279	6/14/2018 7/25/2018	606204	4812578 4813173	100.5 99.0 111.8	on Water Well Record on Water Well Record on Water Well Record	CORNWALL RD & CHARTWELL RD LEIGHLAND AVE & TRAFALGAR RD	OAKVILLE	673 512 680	Boring Boring	7.9	3.8	5.1	Monitoring Test Hole	Monitoring	Observation Wells Test Hole
1007296954 1007317894 1007554166	7320280 7323153 7338226	7/26/2018 9/5/2018	606248 607461	4813220 4813424	110.9 100.5 108.3	on Water Well Record on Water Well Record on Water Well Record	LEIGHLAND AVE & TRFALAGAR RD CORNWALL RD & CHARTWELL RD 1030 8TH LINE	OAKVILLE Oakville OAKVILLE	644 672 551	Boring	5.2	3.5	5.2	Test Hole Monitoring	Monitoring	Test Hole Abandoned-Other Observation Wells
1007554181 1007554190	7338231 7338234	7/17/2019 7/17/2019	606884 606860	4813621 4813603	107.8 108.4	on Water Well Record on Water Well Record	1030 8TH LINE 1030 8TH LINE	OAKVILLE OAKVILLE	533 515	Boring Boring	5.1 5.1	3.9 3.9	5.1 5.1	Monitoring Monitoring		Observation Wells Observation Wells
1007554256 1007555472	7338256 7338296	7/17/2019 7/12/2019			107.9 110.8	on Water Well Record on Water Well Record	1030 8TH LINE 360 Oakville Place Drive	OAKVILLE Oakville	566 509	Boring	5.1	3.9 4.5	5.1 5.0	Monitoring		Observation Wells Abandoned-Other

1007630310	7341266 4/23/2019 606943 4813753	108.0	on Water Well Record	1011 North Service Road	Oakville	668	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007630313	7341267 4/23/2019 606949 4813749	108.0	on Water Well Record	1011 North Service Road	Oakville	664	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007630316	7341268 4/23/2019 606940 4813744	108.0	on Water Well Record	1011 North Service Road	Oakville	658	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007733070	7348604 11/6/2019 606939 4813781	107.6	on Water Well Record	1011 North Servia Road E	Oakville	695							Abandoned-Other
1008180755	7354057 9/20/2019 606932 4813732	108.2	on Water Well Record	1011 NORTH SERVICE RD	Oakville	646					Monitoring		Abandoned-Other
1008180758	7354058 9/20/2019 606936 4813735	108.0	on Water Well Record	1011 NORTH SERVICE RD	Oakville	649					Monitoring		Abandoned-Other
1008180902	7354083 9/20/2019 606924 4813745	108.0	on Water Well Record	1011 north service rd	Oakville	658				5.1	Monitoring		Abandoned-Other
1008173838	7354231 9/20/2019 606941 4813738	108.0	on Water Well Record	1011 north service rd	Oakville	653				5.1	Test Hole	Monitoring	Abandoned-Other
1008173841	7354232 9/20/2019 606934 4813736	108.0	on Water Well Record	1011 north service rd	Oakville	650				5.1	Test Hole	Monitoring	Abandoned-Other
1008173844	7354233 9/20/2019 606916 4813729	108.2	on Water Well Record	1011 north service rd	Oakville	642				5.1	Test Hole	Monitoring	Abandoned-Other
1008173856	7354234 9/10/2019 606923 4813748	108.0	on Water Well Record	1011 north service rd	Oakville	661				5.1	Test Hole	Monitoring	Abandoned-Other
1008173868	7354235 9/20/2019 606936 4813734	108.0	on Water Well Record	1011 north service rd	Oakville	648				5.1	Test Hole	Monitoring	Abandoned-Other
1008436270	7365057 6/30/2020 607005 4813697	105.4	on Water Well Record	1011 North Service Rd E	Oakville	622				5.1	Monitoring		Abandoned-Other
1008436273	7365058 6/30/2020 606993 4813688	105.4	on Water Well Record	1011 North Service Rd E	Oakville	610				5.1	Monitoring		Abandoned-Other
1008436276	7365059 6/30/2020 606978 4813686	106.2	on Water Well Record	1011 North service rd e	Oakville	606				5.1	Monitoring		Abandoned-Other
1008519639	7374253 10/29/2020 606648 4812455	99.5	on Water Well Record			674							
1008530191	7375905 12/15/2020 606285 4813283	111.3	on Water Well Record	350 Iroquois SHore Rd	Oakville	625					Test Hole		Abandoned-Other
1008558437	7376602 8/13/2020 606612 4812555	101.5	on Water Well Record			596							
1008637216	7381731 2/2/2021 606622 4812795	103.0	on Water Well Record	320 Davis Dr	Oakville	390	Auger	4.6	4.0	5.1	Monitoring		Observation Wells
1008637219	7381732 2/2/2021 606692 4812688	102.2	on Water Well Record	1151 BRONTE ROAD	Oakville	442	Auger	6.1	4.3	5.1	Monitoring		Observation Wells
1008650066	7385983 3/26/2021 607161 4813529	102.4	on Water Well Record	1021 INDUSTRY STREET		523	Rotary (Convent.)	4.6		5.1	Monitoring and Test Hole		Observation Wells
1008650069	7385984 3/26/2021 607139 4813551	102.4	on Water Well Record	1021 INDUSTRY STREET		531	Rotary (Convent.)	4.6		5.1	Monitoring and Test Hole		Observation Wells
1008719261	7393298 7/9/2021 606614 4812490	100.2	on Water Well Record	233 Cross Avenue	Oakville	654				5.0			Abandoned-Other
1008719264	7393299 6/25/2021 606652 4812460	99.7	on Water Well Record	233 Cross Avenue	Oakville	668				5.0			Abandoned-Other
1008802047	7399052 2/7/2021 606674 4813529	107.7	on Water Well Record			486							
1009120086	7423376 6/21/2022 607190 4813512	101.4	on Water Well Record			526							
1009120089	7423377 6/21/2022 607199 4813505	101.8	on Water Well Record			526							
1009120092	7423378 6/21/2022 607171 4813482	101.6	on Water Well Record			490							
1009120095	7423379 6/22/2022 607155 4813456	101.9	on Water Well Record			460							
1009120098	7423380 6/22/2022 607176 4813469	102.0	on Water Well Record			483							
1009120101	7423381 6/22/2022 607167 4813465	102.0	on Water Well Record			474							
1009399984	7442643 4/29/2022 606873 4813599	107.4	on Water Well Record			511							

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix B – Borehole Logs

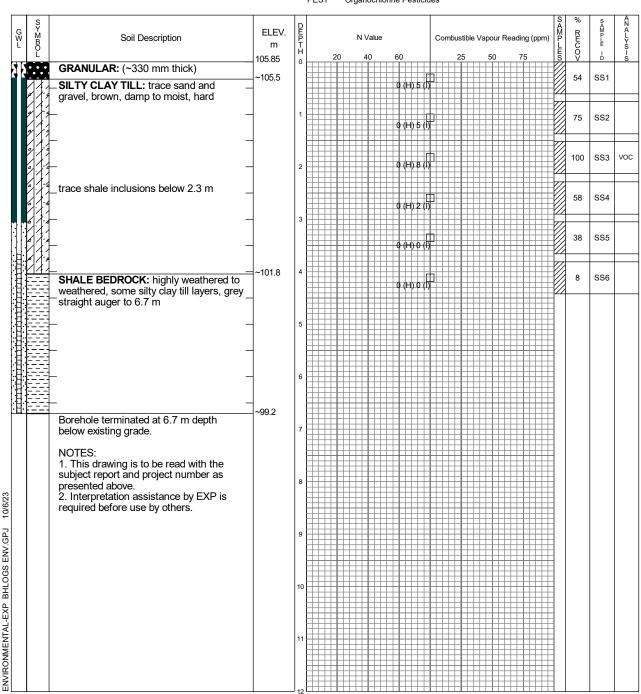
GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813148.99 m N, 606892.68 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Combustible Vapour Reading (ppm) Soil Description m 103.99 ASPHALT: (~75 mm thick) -103.7 63 SS1 GRANULAR: (~180 mm thick) FILL: silty clay, trace sand, brown, moist (possible reworked native) ~102.9 SS2 SILTY CLAY TILL: trace sand, brown to grey, moist, hard some shale inclusions below 1.5 m 25 SS3 0 (H) 3 (I) -101.7 SHALE BEDROCK: highly weathered, SS4 some silty clay till layers, grey ol (H) ol (i) -101.1 Borehole terminated at 2.9 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.


2. Interpretation assistance by EXP is required before use by others.

	EXP Services Inc.
exp.	Brampton, Ontario
٠, ١,٠	Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

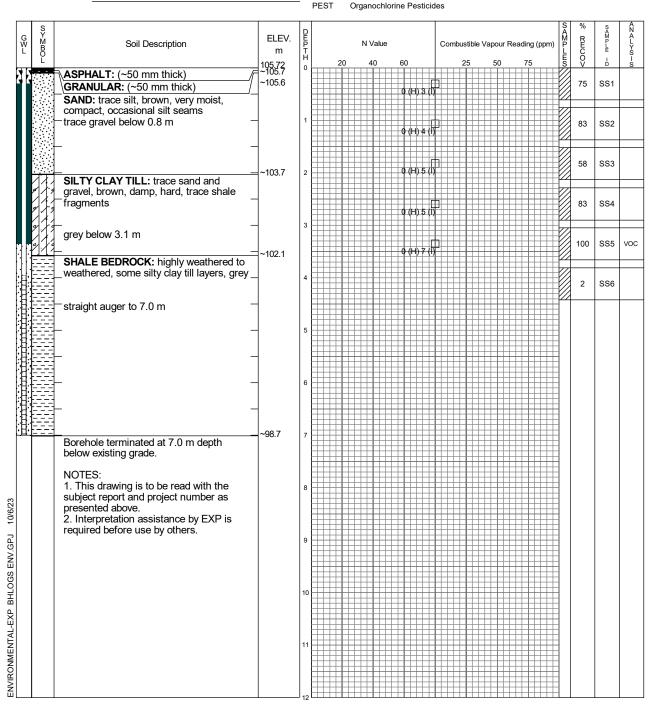
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen


Log of Borehole MW313 GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813192.62 m N, 606893.30 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: PHC MET Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Combustible Vapour Reading (ppm) Soil Description m 105.37 GRANULAR: (~180 mm thick) -105.2 83 SS1 FILL: silty clay, trace sand, brown, trace asphalt below 0.8 m 75 SS2 SS3 92 0 (H) 5 (I) -102.9 SILTY CLAY TILL: trace sand and SS4 voc 0 (H) 5 (i) gravel, brown to grey, moist, hard -102.3

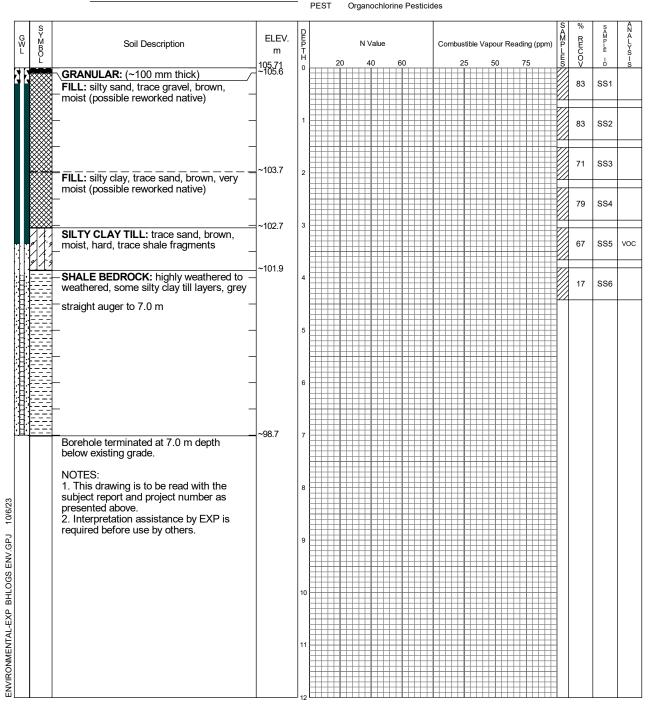
•	EXP Services Inc.
exp	Brampton, Ontario
٠,١٥٠	Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	open


GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813065.34 m N, 606718.90 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

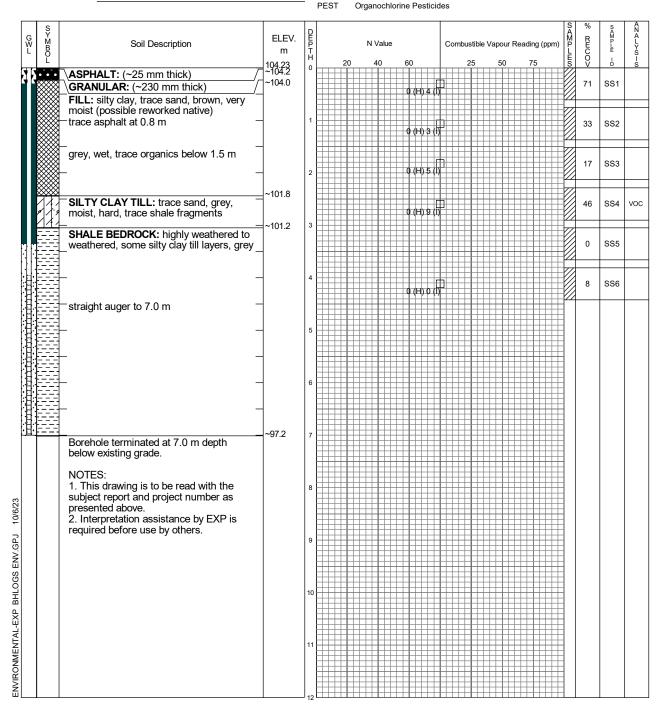
	EXP Services Inc.
exp.	Brampton, Ontario
٠, ١,٠	Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	3.5	open
September 13, 2023	2.36	7.06


GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813097.48 m N, 606790.96 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum:

e de la companya della companya della companya de la companya della companya dell	EXP Services Inc.
"exp	Brampton, Ontario
٠,١٥٠	Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	3.1	open
September 12, 2023	2.98	6.37
September 13, 2023	2.97	


GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813053.75 m N, 606794.12 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum:

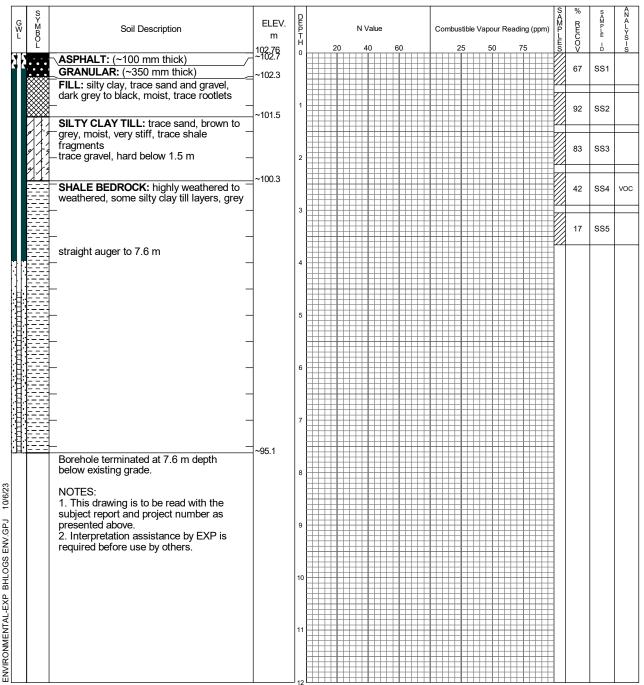
% 0\(10	EXP Services Inc.
$\Theta \times (X)$	Brampton, Ontario
0, (0	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	3.7	open
September 12, 2023	3.33	6.53
September 13, 2023	3.48	

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813022.85 m N, 606757.35 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum:

% 0\(10	EXP Services Inc.
$\Theta \times (X)$	Brampton, Ontario
0, (0	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion September 12, 2023	2.7 2.23	open 5.83
September 13, 2023	2.64	


GTR-23006348-C0 Drawing No. Project No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813083.78 m N, 606855.94 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Combustible Vapour Reading (ppm) Soil Description 104.19 -104.1 CONCRETE: (~75 mm thick) SS1 FILL: sand, trace silt, trace gravel, ~103.4 FILL: silty clay, trace sand and gravel, 75 SS2 brown, very moist, trace black staining (H) 5 (I) 102.4 SS3 voc SILTY CLAY TILL: trace sand and 0 (H) 5 (I) gravel, grey, moist, stiff, occasional sand seams hard below 2.3 m SS4 -101.5 0 (H) 5 (i) SHALE BEDROCK: highly weathered to weathered, some silty člay till layers, grey 0 SS5 straight auger to 5.5 m ~98.7 Borehole terminated at 5.5 m depth below existing grade. 1. This drawing is to be read with the subject report and project number as presented above.
2. Interpretation assistance by EXP is required before use by others.

 ехр.	EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	2.7	òpen

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4812964.14 m N, 606862.91 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

*eyn	EXP Services Inc.
	Brampton, Ontario Telephone: 905-793-9800
- 1	Telephone. 905-793-9000
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	3.7	òpen

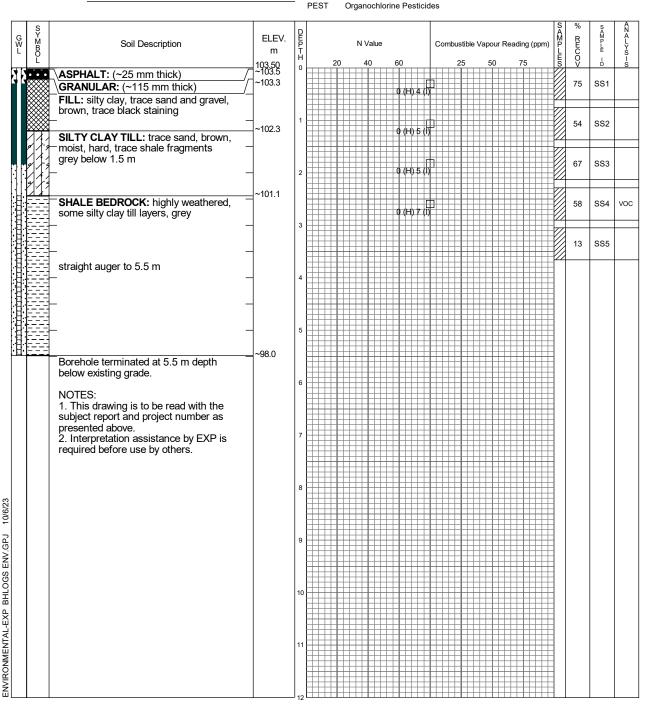
GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4812923.80 m N, 606944.57 m E **Chemical Analysis** September 13, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-55 Track Mount. Solid Drill Type: PHC Petroleum Hydrocarbons (F1-F4) MET Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides ELEV. G W L RECOV N Value Combustible Vapour Reading (ppm) Soil Description 101.02 FILL: silty clay, trace gravel, trace rootlets, brown, moist 38 SS1 FILL: silty clay, trace to some sand, trace gravel, brown, moist -100.2 SILTY CLAY TILL: trace sand, brown, SS2 moist, hard, trace shale fragments SHALE BEDROCK: weathered to highly 79 SS3 weathered, some silty clay till layers, grey ⊒~98.9 Borehole terminated at 2.1 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.
2. Interpretation assistance by EXP is required before use by others.

	EXP Services Inc.
"exp	Brampton, Ontario
٠,١٥٠	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

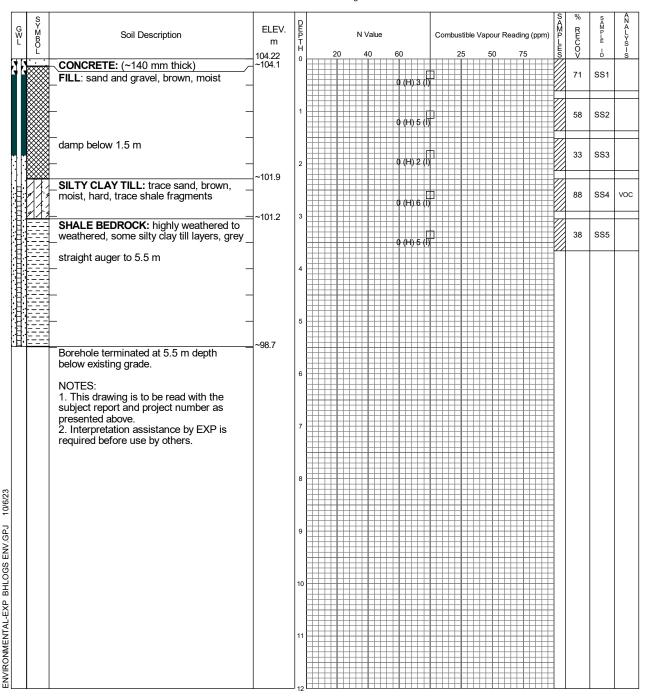
GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813058.23 m N, 607034.98 m E **Chemical Analysis** September 13, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-55 Track Mount. Solid Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides ELEV. G W L RECOV N Value Combustible Vapour Reading (ppm) Soil Description 102.54 ~102.5 TOPSOIL: ~30 mm thick 25 SS1 FILL: silty clay, trace to some gravel, trace rootlets, red-brown, moist -101.6 SILTY CLAY TILL: trace sand, red, 33 SS2 moist, trace shale fragments 29 SS3 0 (H) 3 (I) ~100.4 SANDY SILT: brown to grey, wet -100.2 **SILTY CLAY TILL:** trace gravel, greybrown, moist, trace shale fragments SS4 ol (H) 3 (1) wet beyond 3.05 m SS5 voc -99.0 SHALE BEDROCK: weathered to highly weathered, some silty clay till layers, grey/ Borehole terminated at 3.7 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.


2. Interpretation assistance by EXP is required before use by others.

••••	EXP Services Inc.
"exp	Brampton, Ontario
٠,١٥٠	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

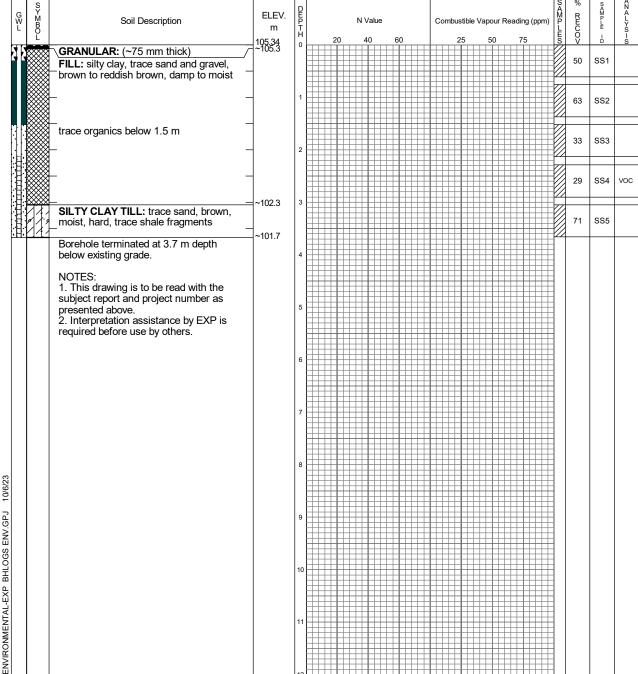
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen


GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4812995.37 m N, 606797.96 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Duplicate Sample Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum:

 ехр.	EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion September 12, 2023 September 13, 2023		open 4.50


GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813018.43 m N, 606859.66 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

• •	EXP Services Inc.
exp.	Brampton, Ontario
٠, ١٥٠	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	2.7	òpen

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813166.71 m N, 606968.87 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides ELEV. RECOV N Value Soil Description Combustible Vapour Reading (ppm) 105.34 ~105.3

	EXP Services Inc.
exp.	Brampton, Ontario
٠, ١,٠	Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813004.46 m N, 606972.84 m E **Chemical Analysis** September 13, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-55 Track Mount. Solid Drill Type: MET PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECO N Value Combustible Vapour Reading (ppm) Soil Description m 102.20 102.1 ASPHALT: (~75 mm thick) -102.0 38 SS1 FILL: gravelly sand FILL: silty clay, trace gravel, brown, 17 SS2 (H) (H) (I) ~100.7 SILTY CLAY TILL: trace sand, brown, 79 SS3 moist, hard, trace shale fragments 0 (H) 0 (I) SS4 voc o (H) o (i) -99.2 SHALE BEDROCK: weathered to highly SS5 weathered, some silty clay till layers, grey 42 straight auger to 5.2 m ~97.0 Borehole terminated at 5.2 m depth below existing grade. 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

	EXP Services Inc.
exp.	Brampton, Ontario
٠, ١٥٠	Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813083.00 m N, 607029.78 m E **Chemical Analysis** September 13, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-55 Track Mount. Solid Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides ELEV. G W L RECOV N Value Combustible Vapour Reading (ppm) Soil Description m 103.67 ~103.6 TOPSOIL: (~30 mm thick) 38 SS1 FILL: silty clay fill, red-brown to brown, trace organics, trace gravel, moist 102.9 SILTY CLAY TILL: trace sand, brown, ~102.9 42 SS2 moist, hard, trace shale fragments -102.8 (H) (H) (I) SANDY SILT: trace gravel SILTY CLAY TILL: trace sand, trace gravel, grey-brown, moist,trace shale 67 SS3 0 (H) 0 (I) fragments SS4 o (H) o (i) SHALE BEDROCK: weathered to highly SS5 voc 58 weathered, some silty clay till layers, grey Borehole terminated at 3.7 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

« ехр.	EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641
	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

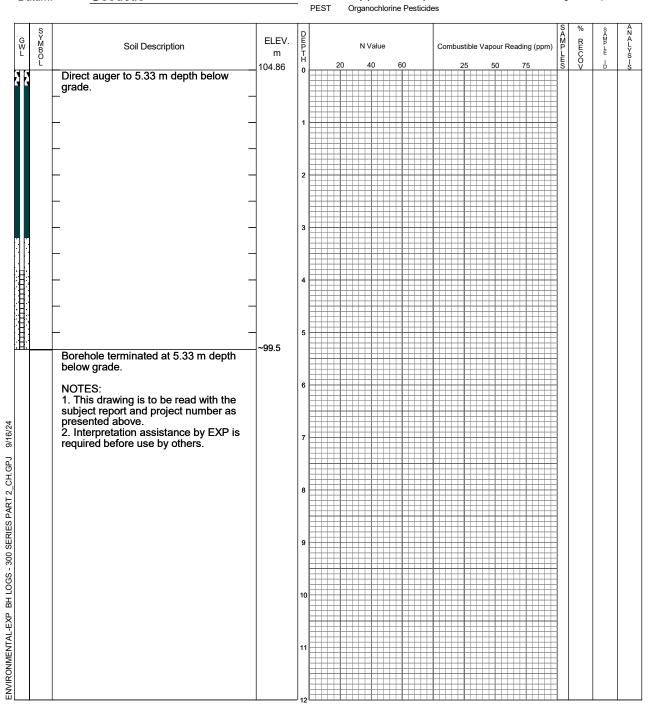
Project No.	GTR-23006349-E1									Drawing No		7			
Project:	Phase Two ESA				Sheet No	. <u>1</u>	_ of	_1_							
Location:	420 & 468 South Service R	Road, O	ak	ville,	ON										
Date Drilled: Drill Type: Datum:			Geoprobe 3230DT		-	Chemica BTEX ING MET PAH PEST	Metals a Metals Polycycli	e, Tolue nd Ino ic Aron	rganics	ocarbons	and Xylenes PCB PHC VOC	* Dup Polychlorin Petroleum Volatile Or	Hydroca	ohenyls arbons	(F1-F4)
S Y M B O L	Soil Description	ELEV. m 105.71	D E P T H	2	N Val		60	Combust	ible Vapour R	leading (ppm)	% RECOV	SAMPLE I	ANALYSIC		
FILL	: sand and gravel fill	105.71	0				0 (H) 0 (l)				33	SS1	5		
_	-		1				0 (H) 0 (I)				33	SS2			
	Y CLAY: some sand y, moist below 1.82 m bgs -	~104.0	2				1 (H) 0 (3			40	SS3			
	-		3				1 (H) 0 (I				40	SS4			
	-	~101.9					1 (H) 0 (I				33	SS5			
shale	ATHERED SHALE: Weathered e/rock fragments, black hing/free product, hydrocarbon ur, wet	=~101.1	4					36 (H) 100	o (i)		33	SS6 ^F	HC/BTE		
	ct auger to 7.01 m depth below		5												
	-	~98.7	7												
NOT 1. Th subji pres 2. In	chole terminated at 7.01 m depth w grade. TES: his drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is ired before use by others.		9 10												

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 12, 2024	2.465	
August 13, 2024	2.550	
_		

GTR-23006349-E1 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 12, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides ELEV. N Value Soil Description m 106.15 SILTY CLAY: reddish brown, trace organics/rootlets 100 SS1 -105.4 SILTY CLAY:reddish brown, trace 100 SS2 ~104.6 Direct auger to 7.01 m depth below ~99.1 Borehole terminated at 7.01 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.


•	exp Services Inc.
"exp.	Brampton, Ontario
٠, ١,٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

9/16/24

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Time	Water Level (m)	Depth to Cave (m)
on completion August 12, 2024 August 13, 2024	no free water 3.050 3.635	open

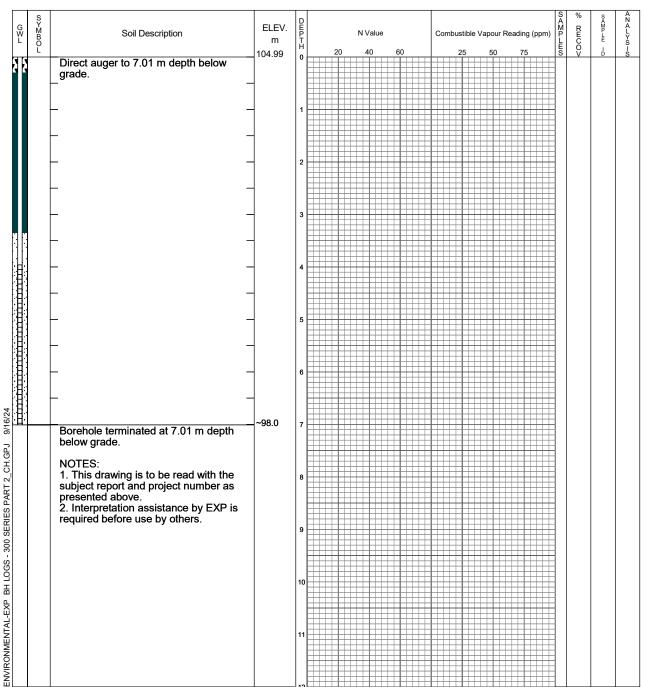
Project No.	GTR-23006349-E1				Drawing No.		13	
Project:	Phase Two ESA				Sheet No.	_1	of	_1_
Location:	420 & 468 South Service Road,	Oakville,	ON					
		Chemic	al Analysis					
Date Drilled:	August 9, 2024	BTEX	Benzene, Toluene, Ethylbenzene and	I Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	ed Biph	nenyls	
Біш туре.	Ocopiose S200B1	MET	Metals	PHC	Petroleum Hy	drocar	bons (F1-F4)
Datum:	Geodetic	PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Organ	nic Cor	npoun	ds

•	exp Services Inc.
"exp.	Brampton, Ontario Telephone: 905-793-9800
٠,١٥٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024	no free water 1.400	open
August 13, 2024	1.740	

GTR-23006349-E1 17 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 8, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides G W L ELEV. N Value Soil Description m 104.86 SILTY CLAY: brown, trace rootlets and gravel, moist 100 SS1 -104.1 Direct auger to 2.89 m depth below -102.0 Borehole terminated at 2.89 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

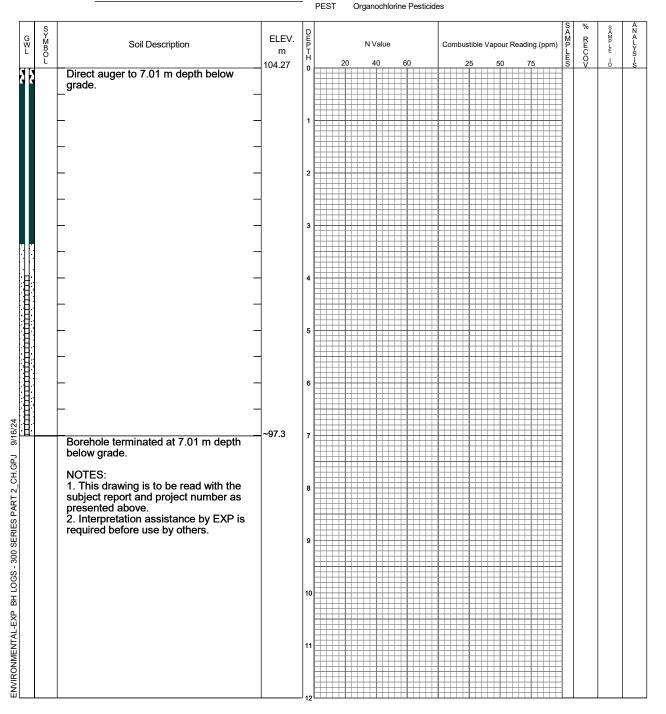
2. Interpretation assistance by EXP is required before use by others.


exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

9/16/24

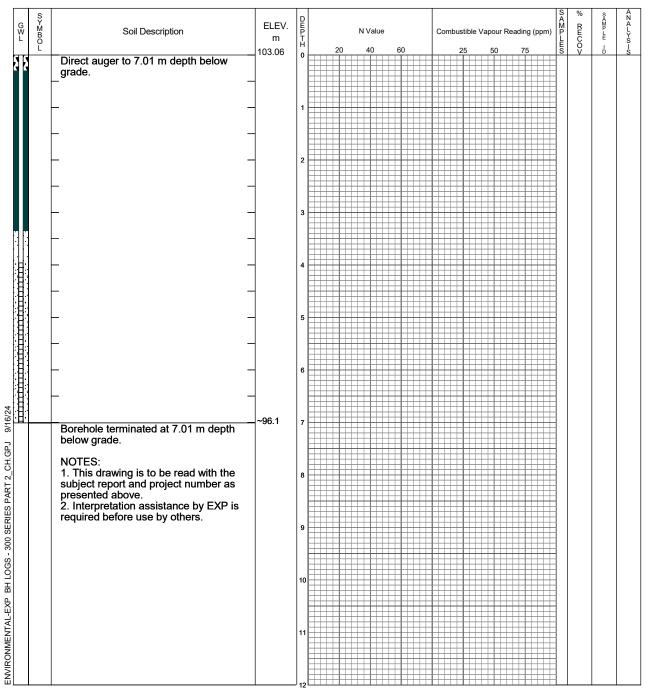
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 9, 2024	0.940	
August 12, 2024	1.210	
-		


GTR-23006349-E1 18 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Datum: Volatile Organic Compounds PEST Organochlorine Pesticides

•	exp Services Inc.
"exp.	Brampton, Ontario Telephone: 905-793-9800
٠, ١٥٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024	no free water 1.530	open
August 13, 2024	2.175	


GTR-23006349-E1 19 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Datum: Volatile Organic Compounds

•20	exp Services Inc.
exp.	Brampton, Ontario Telephone: 905-793-9800
٠, ١٥٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024	no free water 2.470	open
August 12, 2024	2.530	

		_							
Project No.	GTR-23006349-E1				1	Drawing No.		20	
Project:	Phase Two ESA					Sheet No.	_1	_ of	_1_
_ocation:	420 & 468 South Service	e Road, O	akville,	ON					
Date Drilled:	 August 9, 2024		- Chemic - BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	I Xvlenes	* Dupli	cate S	ample	
Orill Type:	Geoprobe 3230DT		ING	Metals and Inorganics	PCB	Polychlorina	ted Bip	henyls	
Datum:	Geodetic		PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Petroleum H Volatile Orga	•		` ′
s Y		EL EV	Б			S	%	S A M	A N A

•	exp Services Inc.
"exp.	Brampton, Ontario Telephone: 905-793-9800
٠,١٥٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 12, 2024	no free water 2.400 2.480	open

٦r	oject	No.	GTR-23006349-E1	0											Orawing N	lo.		21	
٦r	oject		Phase Two ESA												Sheet N	lo.	_1	of	_1_
_0	catio	n:	420 & 468 South Service F	Road, C)ak	vil	le,	ON											
٦.	to D	rillo di		,	_			al Ana		s									
		rilled:	August 9, 2024		_	BT					ene, Ethy organics	lbenzene	and Xylen	nes CB	* [Polychlo		cate Sa ted Biol		
Эr	ill Ty	pe:	Geoprobe 3230DT		_	ME		Me		and me	ngai 1100		PH	НС	Petroleu	ım H	ydrocai	bons	(F1-F4)
Da	atum:		Geodetic		_	PAH Polycyclic Aromatic Hydrocarbons PEST Organochlorine Pesticides									Volatile	Orga	anic Co	mpour	nds
G N L	SYMBOL		Soil Description	ELEV. m	DEPTH		,	20	N Va		60				ading (ppm)	SAMPLES	% RECOV	SAMPLE -D	ANALYS-S
Š		Direc	ct auger to 2.44 m depth below e.	101.57	0								25 50		75	3	V	D	S
		_																	
		_			1														
		_																	
		_		_	2	Ħ			Ħ										
Ŀ		Bore	hole terminated at 2.44 m depth	~99.1															
			w grade.		3				H										
		NOT	ES: nis drawing is to be read with the		ľ	H			\blacksquare										
	subject report and project number as presented above. 2. Interpretation assistance by EXP is																		
			4																
		requ	ired before use by others.																
					5														
									Ħ										
						Ħ													
					6	Ħ													
					7														
									Ħ										
						\mathbf{H}													
					8														
									H										
					9				H										
									H										
									\perp										
					10														
						\Box													
					11				\blacksquare										

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	0.875	
August 12, 2024	1.020	

GTR-23006349-E1 22 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides ELEV. RECOV Soil Description N Value m 101.57 Direct auger to 2.44 m depth below ~99.1 Borehole terminated at 2.44 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.

[«] ехр.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Faccimile: 905-793-9841
	Facsimile: 905-793-0641

9/16/24

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	0.530	
August 12, 2024	0.600	

Project No.		Drawing No.	23					
Project:	Phase Two ESA				Sheet No.	_1_	of	2
Location:	420 & 468 South Service Re	oad, Oakville,	ON					
Date Drilled:	July 30, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	Xvlenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 3230DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinate Petroleum Hy	ed Biph	enyls	F1-F4)
Datum:	Geodetic	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Organ		,	,

G N L	S Y M B Soil Description O L	ELEV. m	DEPTH		N Value			Combus	stible Var	oour Re	eading ((ppm)	SAMPLES	% RECOV	SAMP PLE	
		101.13	0	20	40	60)	2	25	50	75		ŝ	V	I D	╄
3	Direct auger to 12.8 m depth below grade.															
	grade.	_														
			1													
			•													
	Γ	_	2													
		_														
		-	3													
	-	\dashv				$+\Pi$										
						+						##				
	-	\dashv	4													
	_	_														
	–	_	5													
	_	_								##		##				
assississassissassissassissassissassissassissassissassissassissassissassissassissassissasissasissasis	<u> </u>	4	6							-		##				
200000000000	_	_														
		_	7													
Н			8													
l:l			ľ													
H																
:	L	_	9													
			ľ													
Н	L															
.																
	L		10							ш						
:			"			+										
<u> </u>	L															
]:]																
1:1	L		1.													
<u> </u>			11			\blacksquare			ШП							
1:1	Γ	٦														
1.1			12													

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024	no free water 5.855	open
August 12, 2024	7.225	

GTR-23006349-E1 23 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description m 89.13 -88.3 Borehole terminated at 12.8 m depth below grade. NOTES:
1. This drawing is to be read with the subject report and project number as presented above.
2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.
3. Interpretation assistance by EXP is required before use by others.

e	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	5.855	
August 12, 2024	7.225	

Log of Borehole BH/MW-308I GTR-23006349-E1 25 Project No. Drawing No. Sheet No. 1 of 1 Phase Two ESA Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 30, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Geoprobe 3230DT Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Datum: Volatile Organic Compounds PEST Organochlorine Pesticides ELEV. RECOV Soil Description N Value m 101.13 Direct auger to 6.4 m depth below

Borehole terminated at 6.4 m depth below grade.

NOTES:

1. This drawing is to be read with the

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

													Tim	_			Wa	ater	Dept	h to
										_									 	
·																				
	12	ıЩ									ш									
		\perp	+	+	\Box			+	\Box	+	\Box	\perp	+	+	+	+	$+$ \top	-		
		ш									ш							j		
		\Box										\blacksquare						1		
		+	+++	++-	-	+++		+		++-	ш	++	+++	++	+++	+++	++	1		
																		1		
	11	1⊣	+++	++-	++			++	++	++-	Н	++	+++	++	+++	+	++	1		
																		1		
		+	+++	++-	++			+	\vdash	+	Н	+	+++	+	+++	++	+	1		
			ш								ш							1		
		\mathbf{H}	+	$+$ \top	+			+	\Box	+	Н	+	+	+	+	+	+	1		
		Ш									ш							1		
	10	ľЩ																1		
	140	$^+$	+++	++-	-	Н		+		+	Н	++	+++	+		++	++	1		
											ш							1		
		\mathbf{H}	$+\Box$	$+$ \top	\Box			+	\Box	+	НП	+	$+\Box$	$+$ \mp	+	$+\Box$	+	1		
		ш							Ш		ш		\Box					1		
		\Box										\blacksquare]		
	١	H	+++	++-		-		++		++	ш	++	+++	++	-	+++	++	1		
	9	, III									ш		\Box					1		
		+	+++	-				++-		++-	ш	++	-	++-		+++	++	1		
																		1		
		\perp	+++	-	-		-	++-	++	++	ш	++	+++	++		+++	++	1		

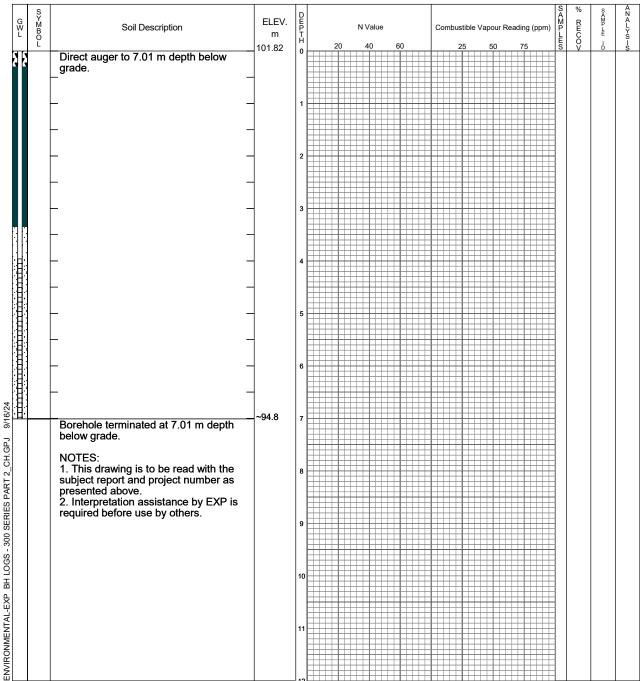
-94.7

	exp Services Inc.
exr) Brampton, Ontario
٠,١٠	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 1.610 2.050	open
August 12, 2024	2.000	

GTR-23006349-E1 24 Drawing No. Project No. Sheet No. 1 of 1 Phase Two ESA Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 30, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Volatile Organic Compounds PAH Polycyclic Aromatic Hydrocarbons VOC Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV Soil Description N Value m 101.13 Direct auger to 2.28 m depth below -98.9 Borehole terminated at 2.28 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.


[«] ехр.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
1	Facsimile: 905-793-0641

9/16/24

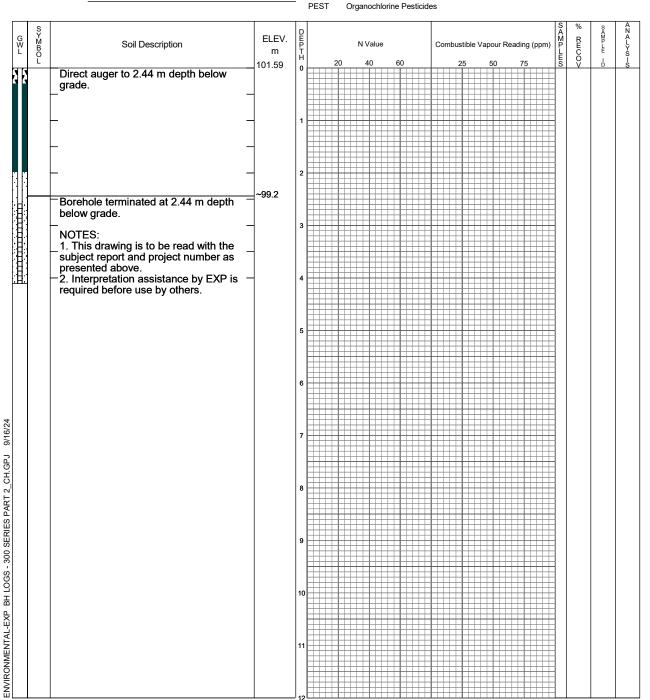
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Time	Level (m)	Cave (m)
on completion no August 8, 2024 August 12, 2024	free water 0.880 0.920	open

GTR-23006349-E1 26 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons Datum: VOC Volatile Organic Compounds PEST Organochlorine Pesticides ELEV. RECOV Soil Description N Value m 101.82 Direct auger to 7.01 m depth below

•	exp Services Inc.
"exp.	Brampton, Ontario Telephone: 905-793-9800
٠,١٥٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	1.650	
August 12, 2024	1.810	


oro.	ject	No.	GTR-23006349-E1 Phase Two ESA						Drawing				27						
oro.	ject:								She	eet N	lo.	_1	of	_1_					
_00	atio	1:	420 & 468 South Service I	Road, C)ak	kvi	ille, (ON											
Dat	e Dr	illed:	August 9, 2024				h <mark>emica</mark> TEX	I Analy		uono Ethy	dhanzana a	nd Vulona	*	-	Nu un lie	noto Sc	mnlo		
	Тур		Geoprobe 3230DT		_	IN				uerie, ⊑triy organics	lbenzene a	PC				cate Sa ed Biph			
	um:	,	Geodetic		_		ET AH	Metal		matic Hyd	rocarbons	PH VO				ydrocar inic Cor			
Jai	uiii.		Ocodelio		-		EST			ne Pesticid		••		olutile (orgu	1110 001	проин	S A N A A P I	
G W L	SYMBOL		Soil Description	ELEV.	D E P T H			N'	√alue		Combustil	ole Vapou	r Reading ((ppm)	SAMPLE	% RECOV	SAMP LE	ANALYS-S	
	L	Direc	ct auger to 2.44 m depth below	101.82	0		20) .	40	60	25	50	75		Š	V	Ь	Š	
		_grad	e.			H													
}:		_			1	Ē													
		_		-															
]:	-	_		_	2														
				~99.4															
	Borehole terminated at 2.44 m depth below grade.																		
		NOT	_		3	3													
		1. Th	nis drawing is to be read with the			Ħ													
		prese	ect report and project number as ented above.																
		2. Int	terpretation assistance by EXP is ired before use by others.		4	' ∄													
		•	·			Ħ													
					5	5													
					6	3													
					7														
						Ħ													
					8	H													
						H													
						Ħ													
					9	•													
					10														
						H													
					11	1													
						Ħ													

exp.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641
I	Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 8, 2024	no free water 1.160 1.240	open

GTR-23006349-E1 28 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons Datum: VOC Volatile Organic Compounds

	exp Services Inc.
exp.	Brampton, Ontario
٠, ١,٠	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 1.910 2.090	open
,		

Organochlorine Pesticides

Project No.	GTR-23006349-E1			[Orawing No.	2	29	_
Project:	Phase Two ESA				Sheet No.	<u>1</u> c	of _2	_
Location:	420 & 468 South Service Ro	oad, Oakville,	ON					_
Data Daille d		Chemic	al Analysis					
Date Drilled:	July 30, 2024	BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Samp	ole	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	ed Bipher	yls	
Dilli Type.	<u> </u>	MET	Metals	PHC	Petroleum Hy	drocarbo	ns (F1-F4	I)
Datum:	Geodetic	PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Organ	nic Comp	ounds	

3/	S M B O L	Soil Description	ELEV.	DEPTH				Value				Com	busti	ble V	ароц	ur Re	adin	g (ppm)	SAMPLIES	% RECOV	SAMP LEE	
1	Ĺ	Direct currents 40.0 ··· dentile hal	102.79	0		20		40		30 T			25		50)	75	5	S	V	Ь	\perp
		Direct auger to 12.8 m depth below grade.															\blacksquare]			
	-	grade. —	_														\blacksquare					
															\blacksquare]			
		<u> </u>	_	1			ш	+					#		#							
]			
		<u>_</u>						ш									\blacksquare					
																\blacksquare]			
	ļ	_		2															1			
																	\blacksquare		1			
		<u> </u>																	}			
								+	#				#		#	#	\Box		1			
		<u>_</u>		3											\blacksquare]			
				ľ				\pm	-				+		#		\blacksquare					
		<u></u>]			
								+	#				#		#	#	\Box		1			
		<u>_</u>		4]			
				•									#		#		H		1			
		<u>_</u>																	3			
\$10 \$10															#		\blacksquare		1			
		<u>_</u>		5]			
				ľ				ш							#							
		<u>_</u>																	1			
															#		\blacksquare		1			
		<u>_</u>		6]			
				ľ				#		H	#		#		#	#	\Box		1			
		<u>_</u>]			
2222222222222								+	#				#		#	#	\Box		1			
		<u>_</u>		7]			
				•				Ħ		H	#		+		#	+	Ħ					
		<u>_</u>]			
															-	#	\blacksquare					
Н		_		8									\blacksquare		\blacksquare		\blacksquare		3			
:								Ħ					+		+	+	\blacksquare		1			
:		<u>_</u>						ш											}			
H															-	#	\blacksquare		1			
1		_		9									\blacksquare		\blacksquare		\blacksquare]			
				ľ															1			
1		<u>_</u>																	}			
[.]							₩						\pm		\pm	\pm]			
		_	4	10		H	H	H	H	Ħ			\mp	П	\blacksquare	Ħ						
													\pm		\pm]			
		_	4			H	П	F	H	F	\blacksquare		\blacksquare	П	\blacksquare	Ħ						
							H	\pm					\pm		#	\blacksquare						
	ļ	<u> </u>		11				\blacksquare					\blacksquare	П	\blacksquare				}			
							H	+					\pm		#	\blacksquare						
		<u></u>								П					\blacksquare				}			
							H	+	#				+	\Box	#	+	\parallel					
l.l				12	\Box			\blacksquare		H			\blacksquare	\Box	\blacksquare	\blacksquare	H		-			

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024	no free water 6.530	open
August 13, 2024	6.675	

GTR-23006349-E1 29 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description m 90.79 -90.0 Borehole terminated at 12.8 m depth below grade. NOTES:
1. This drawing is to be read with the subject report and project number as presented above.
2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.
3. Interpretation assistance by EXP is required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

•2	exp Services Inc.
**exp	Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	6.530	
August 13, 2024	6.675	

GTR-23006349-E1 30 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 30, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides ELEV. RECOV Soil Description N Value m 101.08 Direct auger to 6.4 m depth below ~94.7 Borehole terminated at 6.4 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

9/16/24

Water Level (m)	Depth to Cave (m)
no free water 1.650 1.890	open
	Level (m) no free water 1.650

GTR-23006349-E1 34 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 18, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECO: N Value Soil Description m 105.70 ~105.6 CONCRETE: (~100 mm thick) 67 SS1 FILL: sand, brown 75 SS2 SS3A4 (H) 50 (104.0 **GRAVEL:** -104.0 SS3B (H) 210 (I 82 SILTY SAND: black/dark grey -103.9 SILTY CLAY: dark grey, some sand grey below 2.33 m bgs SS4 some gravel, moist to wet below 3.05 83 SS5 SILTY CLAY: silty clay with weathered shale, pockets of gravel, grey, wet to moist SS6 46 -101.3 Shale bedrock (refer to rock coring log)

2.	exp Services Inc.
exr) Brampton, Ontario
· (Telephone: 905-79

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

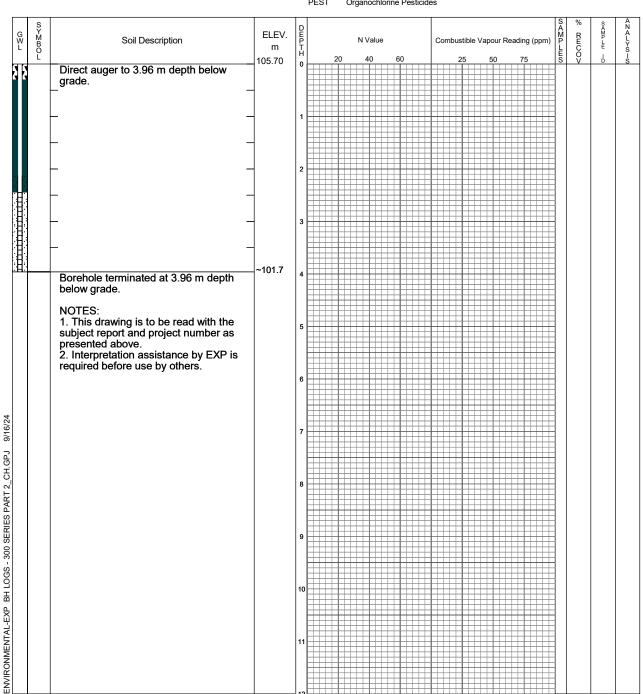
. ,	-
Talanhana	005 702 0000
relephone.	905-793-9800
Facsimile: 0	05-793-0641
i accininc. c	/UU-/ UU-UUT I

Continued Next Page

Time	vvater Level (m)	Depth to Cave (m)
on completion July 30, 2024	no free water 5.860	open
August 12, 2024	5.900	

GTR-23006349-E1 34 Project No. Drawing No. 2 Phase Two ESA 2 of Project: Sheet No. ELEV. RECOV N Value Soil Description 93.70 ~92.6 Borehole terminated at 13.1 m depth below grade. NOTES:

1. This drawing is to be read with the subject report and project number as presented above.


2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

•2	exp Services Inc.
**exp	Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.860 5.900	open

GTR-23006349-E1 33 Project No. Drawing No. Sheet No. 1 of 1 Phase Two ESA Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 9, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons Datum: VOC Volatile Organic Compounds PEST Organochlorine Pesticides

•	exp Services Inc.
"exp.	Brampton, Ontario
٠, ١,٠	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 12, 2024	2.880	
August 13, 2024	2.930	

GTR-23006349-E1 35 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 18, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Datum: Volatile Organic Compounds PEST Organochlorine Pesticides G W L ELEV. RECO N Value Soil Description m 105.76 CONCRETE: (~140 mm thick) SS1 FILL: sand, brown SS2 ~104.2 **SILTY CLAY:** intermittant SS3 rock/weathered shale, grey, moist to -102.9 WEATHERED SHALE: highly weathered shale with pockets of grey 100 SS5 clay, moist to wet SS6 42 SS7 ~100.6 Shale bedrock (refer to rock coring

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Continued Next Page

Time	vvater Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 3.920 4.285	open

GTR-23006349-E1 35 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description m 93.76 ~92.7 Borehole terminated at 13.1 m depth NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

•2	exp Services Inc.
**exp	Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 3.920 4.285	open

GTR-23006349-E1 36 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 16, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Soil Description m 104.21 **~104**.1 CONCRETE: (~130 mm thick) 63 SS1 FILL: sand, brown -103.4 SILTY CLAY: grey, trace gravel SS2 42 SS3 intermittant weathered shale below SS4 2.33 m bgs -101.3 WEATHERED SHALE: highly -101.1 100 weathered shale Shale bedrock (refer to rock coring

Continued Next Page

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.840 7.420	open

GTR-23006349-E1 36 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description 92.21 ~91.1 Borehole terminated at 13.1 m depth NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others. required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

e	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024	no free water 7.840	open
August 13, 2024	7.420	

GTR-23006349-E1 37 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 17, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides ELEV. G W L RECO Soil Description N Value m 104.21 CONCRETE: (~330 mm thick) Ď. -103.9 42 SS1 FILL: sand, brown, wet SS2 SS3 -101.7 SS4 WEATHERED SHALE: -101.7 Shale bedrock (refer to rock coring

exp Services Inc.

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Continued Next Page

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.600 5.400	open

GTR-23006349-E1 37 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description 92.21 H ~91.1 Borehole terminated at 13.1 m depth below grade. NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others. required before use by others.

• • •	exp Services Inc.
"exp	Brampton, Ontario
٠,١٥	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.600 5.400	open

Project No.	GTR-23006349-E1				Drawing No.		38	
Project:	Phase Two ESA				Sheet No.	_1	_ of	2
Location:	420 & 468 South Service R	oad, Oakville,	ON					
Date Drilled:	July 30, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	Yulanas	* Dunli	cate Sa	mnle	
Drill Type:	Geoprobe 3230DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	ed Bipl	nenyls	
Datum:	Geodetic	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	nic Co	mpoun	ds

S M B O L	Soil Description	ELEV.	DEPTH				N	Va	lue				Co	mbu	stib	le Va	apou	ur Re	eadi	ng (ppm)	SAMPLES	% RECOV	SAMP LE	
P L		102.24			2	20		40		60)				25		50	,	7	75		١į	ŏ	ļ.	
	Direct auger to 12.8 m depth below	102.24	0	\Box	—	Ĭ		10		ΤÏ	, 				1		T	<u></u>	Π,	Ĭ		3	V	D	t
	grade.			H	-		\Box	Ŧ		\Box	#					+	+	#				1			
	Fa	_		H		Ш	\blacksquare	Ŧ		\blacksquare	\blacksquare				Н	\blacksquare	Н	H		Н		1			
				\blacksquare			\blacksquare	\pm		\blacksquare	\blacksquare	\blacksquare			\blacksquare	\blacksquare	\blacksquare	\blacksquare	\blacksquare	Н		}			
	L.		1	Ш																					
			١.	Ш	#		#	+		#		#		ш		#	#								
				Ш	#			Ŧ		\Box	#			Ш		#	#			H		1			
				Ħ	#		-	Ŧ		\Box	#	#		Ш	+	#	#	#	#	H		1			
				H	-		\blacksquare	\mp		\blacksquare	\blacksquare	\blacksquare	H	H	\blacksquare	\blacksquare	H	+	+	Н		1			
	<u>-</u>	-	2	\mathbb{H}			\blacksquare	\pm		Н	+	Н	Н		Н		Н	+	Н	Н		}			١
				Ш													Ш								
				Ш	#		#	#		#	#			ш		#	#								
				ш				ŧ									#								
				Ш	#		#	Ŧ		\Box	#	#				#	#	#				1			
		7	3	Ħ	Ħ	Ħ	Ħ	Ŧ	H	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	##	1			
				\mathbb{H}			H	Ŧ												H		}			
	-	+		\blacksquare	\blacksquare		H	Ŧ		\blacksquare	\blacksquare				F	\blacksquare	\blacksquare	\blacksquare	\blacksquare	H		}			
					H	Ш	H	£	Н	+I	H	H	H	Ш	Ħ	H	H	H	H	H					
	_	4	4	Ш	Н	Ш	Ħ	ŧ	Ш	\pm	+		H	Ш	Ħ	+	H	Н	Н	H					
			1	Ħ	#	Ш	\pm	#		+	#	#	H	ш	#	#	#	#	#	Ħ	#				
				Ш				Ŧ		\Box						+	#			Ħ		1			
				Ħ	#	ш	-	Ŧ		\Box	#	#		Ш	+	#	#	#	#	H		1			
				H		Ш	\blacksquare	+		\blacksquare	+				\blacksquare	+	+	+	+	H		1			
	<u>-</u>	+	5	\blacksquare	\blacksquare		\blacksquare	\pm		\blacksquare					\blacksquare	\blacksquare	\blacksquare	\blacksquare	\blacksquare			}			
				Ш													Ш								
	_			Ш				+						ш											
				Ш	#			ŧ		\pm				ш		\pm	#								
				ш	#		-	Ŧ		\Box	#	#				#	#	#		H		1			
			6	Ħ		ш		Ŧ		\Box					+	+	Ħ			Ħ		1			
				Ħ	#	Ш	\blacksquare	Ŧ		\blacksquare	\mp	Ħ		Н	\top	Ħ	Ħ	Ħ	Ħ	Ħ		1			
	-	-		\blacksquare				\pm		\blacksquare							Н					}			
								\pm		Н	\blacksquare					Н	Н			Н					
	_		7	Ш	#			+		\perp	#			Ш			#								
			ľ	Ш	#			+						ш			#								
				Ш				Ŧ									#								
				Ħ	#	Ш	\Box	Ŧ		\Box	#	#		Н	+	+	Ħ	#	H	H		1			
								Ŧ		\blacksquare							Н			Н		1			
	-	+	8	\blacksquare				\pm																	
				\mathbb{H}	#	Ш	$^{+}$	t	Н	+	+	+	H	Ш	+	+	+	+	+	Ħ	##				
	_	4		H	#	Ш	Ħ	#	Н	+	#	#	H	Ш	Ħ	#	+	#	#	Ħ	#				
				Ħ	#	H	\forall	Ŧ		+	+	+	H	\Box	\Box	+	\forall	+		Ħ	##	1			
		╛	9	\blacksquare	\blacksquare		∄	F		\blacksquare			Ė			\blacksquare		\blacksquare		H]			
			"		H	Ш	H	£	Н	+I	H	H	H	Ш	Ħ	H	H	H	H	H					
				Ш	#	Ш	Ħ	ŧ	Ш	Ħ	+		H	Ш	Ħ	+	H	Н	Н	H					
	<u></u>	1		Ħ	#	Ш	+	ŧ		+	+	+	H	ш	#		††	#		Ħ	##	1			
				Ħ	#	H	\mp	Ŧ		#	+	#	H	\Box	Ħ	#	#	#	+	Ħ	#	1			
	-	-	10	H	#	H	\parallel	Ŧ		#	\blacksquare	\blacksquare		H	\blacksquare	\blacksquare	H	\blacksquare	H	Ħ	#				
						П		Ξ							H	П						}			
		_		\blacksquare	H	Ш	П	Ξ	H	\blacksquare	H	I	H	H	H	П	П	Ħ	H	Ħ					
				Ш	Ш	Ш	$^{+1}$	Ŧ	Ш	+	+	+	Ш	Ш	\Box	+	Ħ	+	H	Н					
				Ш	#	Ш	+	+	Н	+	+	+	H	Ш	+	+	+	+	+	Ħ	##				
	<u></u>	┪	11	Ħ	#	Ш	\pm	İ		+	#	#	H	ш	#	#	#	#	#	Ħ	##				
				Ħ	#	Ħ	\mp	Ť		#	#	#	Ħ	H	Ħ	#	#	#	#	Ħ	#				
	-	4		Ħ	+		\forall	Ŧ	H	Ħ		+		H	Ħ	+	Ħ	+	H	Ħ	##	1			1
				\blacksquare			\blacksquare	Ξ							\blacksquare					H		}			
			12	\Box			\blacksquare	Ŧ		\Box		\blacksquare	\perp		\Box		\Box	\Box		H					

: F•	exp Services Inc.
exp.	Brampton, Ontario
٠, ١٥٠	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	6.564	
August 12, 2024	6.620	
_		

GTR-23006349-E1 38 Project No. Drawing No. Phase Two ESA 2 2 Project: Sheet No. of ELEV. RECOV N Value Soil Description 90.24 -89.4 Borehole terminated at 12.8 m depth below grade. NOTES:
1. This drawing is to be read with the subject report and project number as presented above.
2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.
3. Interpretation assistance by EXP is required before use by others.

e	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 8, 2024	6.564	
August 12, 2024	6.620	

GTR-23006349-E1 39 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 23, 2024 Date Drilled: Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides G W L ELEV. RECO N Value Soil Description m 103.98 TOPSOIL: (~230 mm thick) -103.8 SS1 SILTY CLAY: reddish brown, moist -103.4 SILTY CLAY: reddish brown, some black staining, slight hydrocarbon SS2 PHC/BTEX 7 (H) 90 (i) SS3 PHC/BTE grey below 1.52 m bgs 100 -102.2 1 (H) 55 (i) **WEATHERED SHALE:** ~102.1 Shale bedrock (refer to rock coring

exp Services Inc.

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Continued Next Page

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.180 7.465	open

GTR-23006349-E1 39 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description 91.98 ~90.9 Borehole terminated at 13.1 m depth NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

•2	exp Services Inc.
**exp	Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.180 7.465	open

GTR-23006349-E1 40 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 22, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECO N Value Soil Description m 103.98 TOPSOIL: (~200 mm thick) -103.8 SS1 SILTY SAND: reddish brown, some mottling, moist SS2 ~102.3 SILTY CLAY: grey, trace SS3 gravel/cobble -101.7 WEATHERED SHALE: grey, pockets of clay, trace rock, very wet ~100.8 // 100 SS5 Shale bedrock (refer to rock coring

exp Services Inc.

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ

Brampton, Ontario

Continued Next Page

Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024	no free water 6.260	open
August 13, 2024	7.190	

GTR-23006349-E1 40 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description 91.98 ~90.9 Borehole terminated at 13.1 m depth NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others. required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

e	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.260 7.190	open

GTR-23006349-E1 41 Project No. Drawing No. Phase Two ESA Sheet No. 1 of 2 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** July 22, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECO N Value Soil Description m 105 72 CONCRETE: (~160 mm thick) 105.6 SS1 FILL: sand, brown, moist SS2 ~104.6 SILTY SAND: dark grey, moist to wet -104.1 SILTY CLAY: grey, intermittant SS3 weathered shale SS4 102.8 WEATHERED SHALE: highly weathered shale, trace silty clay, wet 95 SS5 ~102.2 Shale bedrock (refer to rock coring log)

	exp Services Inc.
exp.	Brampton, Ontario Telephone: 905-793-9800
٠, ١٥٠	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Continued Next Page

Time	Level (m)	Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.430 6.59	open

GTR-23006349-E1 41 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. ELEV. RECOV N Value Soil Description 93.72 ~92.6 Borehole terminated at 13.1 m depth NOTES:

1. This drawing is to be read with the subject report and project number as presented above.

2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout.

3. Interpretation assistance by EXP is required before use by others. required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

•2	exp Services Inc.
**exp	Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.430 6.59	open

Log of Borehole BH/MW-340 GTR-23006349-E1 42 Drawing No. Project No. Phase Two ESA Sheet No. 1 of 1 Project: 420 & 468 South Service Road, Oakville, ON Location: **Chemical Analysis** August 12, 2024 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: Geoprobe 3230DT Petroleum Hydrocarbons (F1-F4) MET PHC Geodetic Datum: PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds PEST Organochlorine Pesticides G W L ELEV. N Value Soil Description m 105,98 -105.9 ASPHALT: (~50 mm thick) SS1 FILL: sand and gravel fill 105.5 SILTY CLAY:reddish brown, trace OCPs 72 SS2 gravel 105.1 SHALE: red shale -105.1 Direct auger to 7.01 m depth below

9/16/24 ~99.0 Borehole terminated at 7.01 m depth below grade. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ NOTES: 1. This drawing is to be read with the subject report and project number as presented above.

2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open
August 12, 2024	3.240	
August 13, 2024	3.370	
_		

Log of Borehole BH-104A

Р	roject No.	GTR-23006349-E1															D	raw	ing	No.		1	
Р	roject:	Phase Two ESA														_		She	eet	No.	_1	_ of	_1_
L	ocation:	420 & 468 South Service R	oad, O	ał	۷il	le,	10	١															
D	Date Drilled: August 9, 2024 Drill Type: Geoprobe 3230DT Datum: Geodetic				emic EX G T H ST	M M Po	enze etals etals olycy	ene, 7 s and s /clic /	Inor Arom	ene, Eth ganics natic Hyd Pesticid	droc	carbo		nd X	ylene PCI PHO VO	B C	Pe	etrole	lorina eum l	licate S ated Bip Hydroca ganic C	ohenyl arbons	s (F1-F4	
G W L	S Y M B O L	Soil Description	ELEV.	DEPTH	1			N \	/alue				Combi		le Va		r Rea		(ppm)	SAMPLES	% RECOV	SAMP LE	A N A L Y S I
	CO CO	NCRETE: (~100 mm thick) L: sand, trace gravel, brown,		0			20		10	6	0			25		50		75		s Z	92 92	SS1A SS1E	S pH pH
		ist to wet		1																	100 100 100	SS2/ SS2E SS2E	pH
	Bor bel	rehole terminated at 1.37 m depth ow grade.	-	2																22	100	0020	
	1. 7 sub	TES: This drawing is to be read with the bject report and project number as sented above.																					
	2.1	nterpretation assistance by EXP is uired before use by others.		3																			
				4																			
				5																			
				6																			
9/16/24				7																			
CH.GPJ 9																							
7				8																			
0 SERIES				9																			
BH LOGS - 300 SERIES PART				10																			
ENVIRONMENTAL-EXP				11	1																		
ENVIRC				12																			

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	vvater Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-108A

٦r	oject	No.	GTR-23006349-E1										D	rawir	ıg N	0.		2	
٦	oject	:	Phase Two ESA											She	et N	0.	_1	_ of	_1_
_C	catio	n:	420 & 468 South Service R	Road, O	ak	(Vİ	lle, (NC											
) Da	ate Di	rilled:	August 2, 2024		_		nemical	l Analys		ono Ethy	dhanzana	and Vidor		*	D	unlia	noto Sa	mple	
	rill Ty		Geoprobe 7822		_	IN			and Inc		nbenzene	and Xyler	CB	Pol			ate Sa ed Bipl		
	atum:		Geodetic		-	ME PA		Metals		matic Hyd	Irooorbon		HC OC				/drocar nic Co		(F1-F4)
,	atum.		Geodelic		_		ST			e Pesticid		5 V	00	VOI	aule C	луа	TIIC COI	прои	ius
G N L	SYMBOL		Soil Description	ELEV.	DEPTH				/alue		Combus	stible Vapo	ur Rea	ding (p	pm)	SAMPLES	% RECOV	SAMPLE -	ANALYSI
			_		0	F	20	1 2	10	60	2	25 50	0	75		S	V	I D	Ś
		_ _SILT	Y CLAY: silty clay, trace gravel		1												67	SS1	MeHg
		SILT	Y CLAY: grey														0,	SS2	
	200	Bore	hole terminated at 1.98 m depth	_	2											4		JJ2	
		NOT																	
		subje prese	is drawing is to be read with the ect report and project number as ented above.		3														
		z. ini requi	erpretation assistance by EXP is red before use by others		4														
					5														
					6														
					7														
						F													
					8														
					9														
						Н													
					10														
					11														
															\blacksquare				

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-114E

Project No.		GTR-23006349-E1											[)ra	wing	No.	·	4			
Pro	ject:	Phase Two ESA														s	heet	No.	. <u>1</u>	_ of	_1_
Loc	cation:	420 & 468 South Service F	Road, C)ak	(vil	le,	ON														
				_																	
Da	te Drilled:	August 2, 2024		_	BTI		al Ana Ber	-		ene, Ethy	ylbenz	ene	and)	Xyleı	nes		*	Dup	licate S	ample	
Dri	II Type:	Geoprobe 7822		INC				nd Ino	rganics					СВ				ated Bip			
	tum:	Geodetic		_	ME PA		Met Pol		c Aron	natic Hyd	drocar	bons	3		HC OC				Hydroca ganic Co		(F1-F4) nds
				_	PE:					Pesticio											
G W L	S Y M B O L	Soil Description	ELEV.	DEPTH				N Valu			Cor	nbus	tible ∖				g (ppn	SAMPLES	% RECOV	SAMPLE -	AZALYS-G
1	-		\dashv	0		2	0	40		50		2	5	50	0	7:	5	S	V	Ď	Ś
	_		_		Ħ							H						Ħ			
	FILL	: sand and gravel fill	4															\mathbb{Z}	85	SS1	MeHg
	– SILT orga	Y CLAY: dark grey, trace nics and gravel	1	1	Ħ														67	SS2	
É	XXX	grey below 1.42 m bgs			Ħ														<u>.</u>		
	Bore	ehole terminated at 1.52 m depth																			
	belo	w grade.		2	Ħ													Ħ			
	NOT				Ħ													Ħ			
	1. II	nis drawing is to be read with the ect report and project number as																			
	pres	ented above. terpretation assistance by EXP is		3	Ħ													Ħ			
	requ	ired before use by others.													\blacksquare			Ħ			
				4	Ħ													Ħ			
					Ħ													Ħ			
				5																	
					Ħ													Ħ			
															\blacksquare			Ħ			
				6														\blacksquare			
																		Ħ			
					Ħ													Ħ			
				7	Ħ													Ħ			
					Ħ		\rightarrow	\rightarrow	\rightarrow									Ħ			
				8	Ħ										\blacksquare			Ħ			
																		Ħ			
				9	Ħ													Ħ			
				10																	
					H			1 1 1													
																		\blacksquare			
				11	\blacksquare													\blacksquare			
					\parallel				#									Ħ			
					Ħ							Ħ				\parallel		Ħ			
- 1	1		1	1								ш							I		ı

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-114N

SILTY CLAY: grey, trace oragnics, moist Borehole terminated at 1.52 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	3
Date Drilled: Drill Type: Geoprobe 7822 File Geoprobe 7822	1 of 1
Date Drilled: Drill Type: Geoprobe 7822 Geodetic Datum: Soil Description ELEV. M Soil Description ELEV. M Soil Description ELEV. M Soil Total Sample Senzere, Toluene, Ethylbenzene and Xylenes PAH Polycyclic Aromatic Hydrocarbons Voc Volatile Organic Components Volatile Or	
Soil Description FILL: sand and gravel fill SILTY CLAY: grey, trace oragnics, moist Borehole terminated at 1.52 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	Biphenyls rocarbons (F1-F4
FILL: sand and gravel fill SiLTY CLAY: grey, trace oragnics, moist Borehole terminated at 1.52 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	I A I N
below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	3 SS1 MeHg
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

(m)	Cave (m)
ee water	open
	(m) ree water

Log of Borehole BH-114S

Proj	ect No.	GTR-23006349-E1	_												D	rav	wing	No.		5	
Proj	ect:	Phase Two ESA												_		S	heet	No.	. <u>1</u>	_ of	_1_
Loca	ation:	420 & 468 South Service R	oad, O	ak	vil	le,	ON														
				_																	
Date	Drilled:	August 2, 2024		_	Che BTI		al Anal Ben:		Tolue	ene, Ethyl	benzer	ne a	nd Xy	/len	es		*	Dup	licate S	ample	
Drill	Туре:	Geoprobe 7822			ING		Meta	als an		ganics			·	PC	В			nlorin	ated Bip	henyl	
Datu	ım:	Geodetic			ME PAI		Meta Poly		Arom	natic Hydr	ocarbo	ns		PH VC					Hydroca ganic Co		(F1-F4) nds
				_	PE	ST	Orga	noch	lorine	Pesticide	es										
G W L	S Y M B O L	Soil Description	ELEV.	DEPTH			Ν	l Valu	е		Comb	ustil	ole Va	pou	ır Rea	adin	g (ppm	SAMPLES	% RECO	SAMP LE	AN ALYSI
	Ĺ	<u> </u>	-	0		2	0	40	6	0		25		50		75	5	S	V	P	S
×	FILL	: sand and gravel fill]															7	51	SS1	MeHg
	SILT	Y CLAY: grey, trace gravel –	1	1															100	SS2	
	dark	grey below 1.34 m bgs	_																100	332	
	Bore	shole terminated at 1.52 m depth w grade.																			
		_		2														Ħ			
	NOT 1. Th	nis drawing is to be read with the																			
	subje	ect report and project number as ented above		3												Ħ		Ħ			
	2. In	terpretation assistance by EXP is ired before use by others.		3																	
	requ	ired before use by others.														Ħ		Ħ			
				4														\exists			
				•														Ħ			
				5																	
				6														Ħ			
																		Ħ			
				7																	
				8																	
																		Ħ			
				9	Н																
					\perp													Ħ			
				10												\parallel					
												F		Ħ	H	Ħ					
				11								F		Ħ		Ħ		\exists			
																#		Ħ			

(m)	Cave (m)
ee water	open
	(m) ree water

Log of Borehole BH-117A

F	Project I	No.	GTR-23006349-E1												Drav	wing	No.		6	
F	Project:		Phase Two ESA											_	S	heet	No.	_1	_ of	_1_
L	_ocatior	1:	420 & 468 South Service F	Road, C)ak	cvill	е,	ON												
[Date Drilled		August 12, 2024 Geoprobe 3230DT		_	BTE ING MET	ΣX	Met Met	nzen tals a tals	e, Tolue and Inor				PCB PHC		Petrole	ilorina eum F	ted Bip		(F1-F4
[Datum:		Geodetic		_	PAF PES					natic Hyd Pesticid		bons	VOC		Volatil	e Org	anic C	ompoui	nds
Q V	S Y M B O L		Soil Description	ELEV.	DEPTH 0		20		N Va		0	Con	nbusti 25	pour R	eadin	g (ppm	SAMPLES	% RECOV	SAMPLE -D	ANALYS-S
			HALT: (~150 mm thick) : sand and gravel fill, trace brick	-														96 96	SS1A SS1B	pH
ENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24		Bore below NOT 1. The subject presents	: sand and gravel fill, trace brick shole terminated at 0.61 m depth w grade.		1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1													96	SS1B SS1C	<u>' — — — — — — — — — — — — — — — — — — —</u>
ENVIRONMENTAL-EXP					13															

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

(m)	Cave (m)
ee water	open
	(m) ree water

Log of Borehole BH-120A

٦r	oject No.	GTR-23006349-E1												ı	Drawii	ng N	lo.		8		
٥r	oject:	Phase Two ESA												_	She	et N	lo.	_1	of	_1	
_0	cation:	420 & 468 South Service R	load, O	ak	vil	lle,	ON														
Da	ite Drilled:	August 9, 2024		_			al Anal		Talus	ono Etho	, db a m		and V.d		*	_	li .	anto Co			
	ill Type:	Geoprobe 3230DT		_	INC	EX 3				ene, Eth rganics	yiberiz	zene	-	PCB	Pol			cate Sa ed Bip	ampie henyls		
				-	ME		Meta							PHC				-	rbons (•)
Эa	itum:	Geodetic		-	PA PE			-		natic Hyd Pesticio		rbons		VOC	Vol	atile (Orga	inic Co	mpoun	nds	
G N L	S Y M B O L	Soil Description	ELEV.	DEPTH			١	l Valu	ie		Cor	mbust	ible Vap	oour R	eading (p	opm)	SAMPLE	% RECO	SAMPLE -	A N A L Y S	
	I	NCRETE: (~130 mm thick)	Ⅎ	0	H	20	0	40	- 6	80 		2	5	50	75		Š	Ŭ	SS1A	s pH	-
		:: sand, brown, moist			Ħ														331A 331B	pH pH	
	Bore	ehole terminated at 0.46 m depth			H														SS1C		
	beid	ow grade.		1	F														SS1D		
	NO	TES:																			
	1. I subi	his drawing is to be read with the ect report and project number as																			
	pres	sented above.		,																	
	2. Ir	nterpretation assistance by EXP is uired before use by others.		-																	
	1.545				Ħ																
					Ħ																
				3	Ħ																
					Ħ																
					Ħ																
				4	Ħ																
					Ħ																
					F						\blacksquare	\blacksquare		H							
				5	\blacksquare																
					Ħ																
				6																	
					Ħ																
					Ħ																
				_																	
				'																	
				8	Ħ																
					Ħ																
				9	H																
					+																
				10																	
				11	Ħ			Ħ													
				'	Ħ			H						#							
								H						#							
					Ħ									#							

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	vvater Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-142A

Project No. <u>GTR-23006349-E</u> 1									ı	Drawing N	No.		10	0		
Projec	:t:	Phase Two ESA							_	Sheet N	No.	_1	_ of	_1_		
_ocati	on:	420 & 468 South Service R	load, O	ak	ville, (ON										
Date [Orilled:	August 2, 2024		_	Chemica BTEX	-	sis ene, Toluene, Eth	/lenes	* [Dupl	icate S	ample				
Orill T	уре:	Geoprobe 7822		_	ING MET	Metal Metal	s and Inorganics		PCB PHC	Polychlo Petrole						
Datum	1:	Geodetic		_	PAH PEST	Polyc	yclic Aromatic Hyd nochlorine Pesticic		VOC	Volatile						
S Y M B O L		Soil Description	ELEV.	DEPTH			/alue	Combustible Va			SAMPLIES	% RECOV	SAMP LE	ANALYS-		
₩ ₩	FILL	: sand and gravel fill	-	0	20) .	40 60	25	50	75	s	y 36	SS1	Ś MeHg		
	SILT	- 	=	1										MeHg		
	<u> </u>	gravel below 1.52 m bgs										88	SS2 SS3			
	Bore belov	hole terminated at 1.98 m depth w grade.		2							//					
	subje prese 2. Int	ES: nis drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is ired before use by others.		3												
		·		4 5												
				6												
				7												
				8												
				9												
				10												
				11												

e	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

(m)	Cave (m)
ee water	open
	(m) ree water

Log of Borehole BH-203A

Project No. <u>GTR-23006349-E</u> 1										Drawin	ıg No	o	1	1					
٦r	oject:												She	et No	o	<u>1</u> o	f <u>1</u>	_	
_0	cation:	420 & 468 South Service R	oad, O	ak	vil	le,	ON												
Da	ate Drilled	d: August 9, 2024		_	Ch e		ı l Anal y Benz		olue	ene, Ethyl	benzene	e and Xyle	enes	*	Du	plicate	Samp	e	
Dr	ill Type:	Geoprobe 3230DT		_	INC ME		Meta Meta		Inor	ganics			PCB PHC			nated E		rls s (F1-F4	١
Da	atum:	Geodetic		_	PAI PE	Н	Poly	cyclic A		natic Hydi Pesticide			/OC			rganic			,
S N L	S Y M B O L	Soil Description	ELEV. m	DEPTH		2		Value 40	6	0		stible Vap	our Re	ading (p	pm) [R E C O V	SAMP LE ID	ANALYS-6	
	C	ONCRETE: (~190 mm thick)		0															
	₩_FI	LL: brown sand, moist															SS1	A PH	
		ILTY SAND: some clay and gravel, _oist		1													SS1	+	
	NO 1. su pr	orehole terminated at 1.52 m depth elow grade. OTES: This drawing is to be read with the ubject report and project number as esented above. Interpretation assistance by EXP is		2															
	re	quired before use by others.		4															
				6															
				7															
				8					\blacksquare										
				9															
				10															
				11															

exp.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641
I	Facsimile: 905-793-0641

Time	vvater Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-204A

Project No.	GTR-23006349-E1	9						Dra	awing N	۱o.		12	<u>)</u>
Project:	Phase Two ESA							;	Sheet N	۱o.	_1	of	_1_
Location:	420 & 468 South Service R	oad, O	al	kville,	ON								
Date Drilled:	August 9, 2024		-	BTEX	al Analysis Benzene, Toluene, E		-					Sample	
Drill Type:	Geoprobe 3230DT		_	ING MET	Metals and Inorganic Metals	s	PCE		Polychlo Petroleu				
Datum:	Geodetic		_	PAH PEST	Polycyclic Aromatic F Organochlorine Pesti		VOC		Volatile				
S Y M B C L	Soil Description	ELEV.	D E P T H		N Value	Combustible V				SAMPLES	% RECOV	SAMP LE -D	A N A L Y S -
CON	ICRETE: (~180 mm thick)		0		40 00	25	50		75	77	_		S pH*
Bore belo	.: brown sand, moist ehole terminated at 0.61 m depth w grade.		1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4								63 63	SSIA SOIB SSIC	pl l*
			10	0									

exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

Time	vvater Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-212A

Pro	oject No.	GTR-23006349-E1									Drav	ving N	lo.		14	Ļ
Pro	oject:	Phase Two ESA									Sh	neet N	lo.	1	of	1
Lo	cation:	420 & 468 South Service R	oad, O	ak	ville,	ON										
					Chemic		lveis									
Da	te Drilled:	August 9, 2024		_	BTEX		-	uene, Eth	ylbenzene and X	(ylenes	;	* D	uplic	cate Sa	ample	
Dri	II Type:	Geoprobe 3230DT		_	ING MET	Met Met	als and In	organics		PCB PHC		Polychlo Petroleu				
Da	tum:	Geodetic		_	PAH	Pol	cyclic Arc		drocarbons	VOC		/olatile (
					PEST	Org	anochlorin	e Pesticio	des							
G W L	S Y M B O	Soil Description	ELEV.	DEPTH		ı	N Value		Combustible V	apour F	Reading	(ppm)	SAMPLIES	% RECO	SAMPLE.	ANALYSI
	L	ICRETE: (~110 mm thick)		0	1 2	20	40	60	25	50	75		š	V	SSIA	s pH
	₩ FILL	.: brown sand, trace gravel, moist													SS1B	pH pH pH
	Bore	ehole terminated at 0.46 m depth w grade.													SS1C SS1D	
		•		1												
	NO1 1. Ti	FES: his drawing is to be read with the														
	subj	ect report and project number as sented above.														
	2. In	terpretation assistance by EXP is		2												
	requ	ired before use by others.														
				3												
				4												
				5												
				6												
				7												
				'												
				8												
				9												
				10												
				11												
- 1			i .											- 1		i

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-214A

	Pro	oject	No.	GTR-23006349-E1												Dr	awir	ng N	No.		15	5
	Pro	ject:		Phase Two ESA													She	et N	No.	_1	_ of	_1
	Loc	cation	n:	420 & 468 South Service F	Road, C)ał	۷il	le,	ON	l												
	Date Drilled: Drill Type: Datum:			Type: Geoprobe 3230DT				EX F	Me Me	nze tals tals	ne, Tolu and Ino				PC PH	B IC	Pet	ychlo roleu	orina um H	ted Bip lydroca		s (F1-F4
	Da	tum:		Geodetic		_	PA PE					natic Hyd Pesticid		oons	VC	C	Vol	atile	Orga	anic C	ompou	nds
	G W L	S Y M B O L		Soil Description	ELEV.	DEPTH		2	0	N V	alue	60	Com	nbusti 25	apou	r Read	ding (p	ppm)	SAMPLES	% RECOV	SAMP LE -D	A N A L Y S - S
		· · ·		CRETE: (~150 mm thick)	7	0				\pm										99	SS1A	pH pH
TAL-EXP BH LOGS - 300 SERIES PART 2 CH.GPJ 9/16/24			Bore below NOT 1. The subject present	: brown sand, moist shole terminated at 0.61 m depth w grade.		1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1														99 99 99	\$51B \$\$1C \$\$1D	
ENVIRONMENTAL-EXP						_ 1																

[«] ехр.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
	Facsimile: 905-793-06/1

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

Log of Borehole BH-222A

Pr	oject N	No. C	GTR-23006349-E1)rav	ving N				
Pr	oject:	<u>F</u>	Phase Two ESA									Sheet No			1	_ of	_1					
Lo	cation	ı: <u>4</u>	120 & 468 South Service F	Road, O	ak	vil	le,	ON														
Da	ite Dri	lled: A	August 9, 2024		-	Che		al Ana	-		ana Ethi	سم مال			Vida				D	iaata C		
	ill Typ			_	ING					ene, Eth rganics	yiberi	zene	anu	-	PCB	F	ı Polychlo		icate S ited Bip			
		_	Geoprobe 3230DT Geodetic		-	ME		Met		lia August	antin I bu		-l			PHC OC						(F1-F4)
Da	itum:	_	<u>Jeodelic</u>		_	PA			-		natic Hyd Pesticio		rbons	6	V	/OC	\	/olatile	Org	anic Co	ompour	nas
G W L	SYMBOL		Soil Description	ELEV.	DEPTH				N Va			Со	mbus	tible	Vapo	our Re	ading	(ppm)	SAMPLES	% RECOV	SAMP LE	ANALYS-9
		CONC	RETE: (~300 mm thick)	-	0			20	40		30 		1	5	- 5	50	75		S	V	Ď	Ś
	<i>P</i>	FILL: b	rown sand, trace gravel moist																	100	SS1A	pH pH pH
	××××	coarse 0.56 m	sand w/ trace gravel below bgs																	100 100	SS1C	рп
			le terminated at 0.61 m depth		1																	
									Ħ										1			
		NOTES 1. This	drawing is to be read with the		2																	
		subject	report and project number as ted above.																1			
		2. Inter	pretation assistance by EXP is						Ħ						Ħ				1			
		require	d before use by others.		3				H										3			
																			1			
]			
					4				Ħ										1			
									Ħ										1			
					5																	
									Ħ										1			
					6				Ħ										1			
									Ħ													
					7				Ħ										1			
					ľ				Ħ													
					8				H										1			
									H]			
									Ħ										1			
					9]			
									H						Ħ				1			
									H													
					10				Ħ						Ħ							
																			. I			
						\perp									Ħ				3			
					11				Ħ										3			
									Ħ			Ш]			

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641
Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

Project No.	GTR-23006349-E1						Drawing	No.		31	
Project:	Phase Two ESA	Sheet	No.	_1	of	_1					
Location:	420 & 468 South Service R										
Date Drilled	: August 2, 2024			Chemic BTEX	al Analysis Benzene, Toluene, Eth	whenzene and Xvlene	· *	Dun	licate S	amnle	
Drill Type:	Geoprobe 7822	_	ING	Metals and Inorganics	PCI	B Polych	lorina	ated Bip	henyls	3	
Datum:	Geodetic		_	MET PAH	Metals Polycyclic Aromatic Hyd	PH0 drocarbons VO			Hydroca janic Co		•
			_	PEST	Organochlorine Pesticio						
G M B O L	Soil Description	ELEV.	DEPTH		N Value	Combustible Vapour	Reading (ppm	SAMPLES	% RECOV	S A M P L E	ANALYSI
Ĺ		-	0	1 2	20 40 60	25 50	75	S	V	I D	S
								,,			
FII	LL: sand and gravel fill LTY CLAY: brown, trace gravel	1							93	SS1	MeHg
	d below 1.12 m bgs		1						71	SS2	MeHg
Bo	rehole terminated at 1.22 m depth										
	low grade.		2								
NO 1	OTES: This drawing is to be read with the		2								
su	This drawing is to be read with the bject report and project number as esented above.										
2.	Interpretation assistance by EXP is		3								
red	quired before use by others.										
			4								
			5								
			6								
			7								
			8								
			9								
			10								
			11								

[«] ехр.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

(m)	Cave (m)
ee water	open
	(m) ree water

Project No		•								D	rawing	No.		32)
Project:	Phase Two ESA										Sheet	No.	. 1	of	1
ocation:	420 & 468 South Service R	Road, C	ak	ville,	ON									_	
		,	_		al Anal	veie									
Date Drille	ed: August 2, 2024		_	BTEX			ene, Ethy	/lbenzene	and Xyle	nes	*	Dup	licate S	ample	
Orill Type:	Geoprobe 7822		_	ING MET		ls and Ino	rganics			CB			ated Bip		
Datum:	Geodetic		_	PAH PEST				lrocarbons les		OC OC			Hydroca Janic Co		
S Y		ELEV.	P									S A M P	% R	S A M P	A N A
S Y M B O L	Soil Description	m	DEPTH			Value		Combust			ading (ppm)	PLES	RECOV	Ē	Y S
	FILL: sand and gravel fill	-	0		20	40 6	30 	2	5 5	0	75	S	V	P	Ś
	SILTY SAND: some clay, trace												74	SS1	MeHg
9	gravel, brown											4	<u> </u>		
			1										72	SS2	MeHg
	Borehole terminated at 1.22 m depth pelow grade.														
	NOTES:														
1	This drawing is to be read with the		2												
s	subject report and project number as presented above.														
2	2. Interpretation assistance by EXP is equired before use by others.		3									3			
	oquilou belefe dee by ealere.														
			4									=			
			5												
			6												
			7												
			8												
			9									3			
												3			
			10												
												\exists			
			11												
												7			

Time	Level (m)	Cave (m)
on completion no	free water	òpen

Log of Borehole BH-403

Siltry CLAY: trace gravel, grey, moist to wet	Project No.	GTR-23006349-E1														Dr	rawir	ıg l	No.		43	
Date Drilled: August 1, 2024 Geoprobe 7822 Baturn: Geodetic Soil Description FILL: silty clays fill, some sand, trace gravel and rootiets, brown, moist SILTY CLAY: trace gravel, grey, moist to wet Shale bedrock (refer to rock corting logy) The contract of t	Project:	Phase Two ESA													_	Sheet No.		_1	_ of	_2		
Datum: Geoprobe 7822 Datum: Geodetic Soil Description Soil Description Soil Description Soil Description Soil Type: Soil Description Soil Des	Location:	420 & 468 South Service	Road, O	ak	vil	le,	ON															
Datum: Geoprobe 7822 Datum: Geodetic Soil Description Sill Type: Geoprobe 7822 Datum: Geodetic Soil Description Sill Symptosis Personal Representation of the Part of the Personal Representation of the Part of the Personal Representation of the Part of the Personal Representation of the Personal Representati				_	Ch.	!		lucaia														
Datum: Geodetic Soil Description Soil Description FILL: silty clay fill, some sand, trace gravel and roditets, brown, moist SILTY CLAY: trace gravel, grey, moist to wet WEATHERED SHALE: highly weathered shale, wet Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) The state of the state of	Date Drilled:	August 1, 2024		_				-	, Tolu	ene, Et	hylb	enzene	e an	d Xy	lene	8	*		Dup	licate Sa	ample	
Datum: Geodetic Soil Description Soil Description FILL: silty clay fill; some sand, trace gravel and rootlets, brown, moist WEATHERED SHALE: highly weathered shale, wet WEATHERED SHALE: highly weathered shale, wet Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) The shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log)	Drill Type:	Geoprobe 7822		_					nd Ino	rganics	\$											
Soil Description Fill.: silty clay fill, some sand, trace gravel and rootlets, brown, moist SilTY CLAY: trace gravel, grey, moist to wet WEATHERED SHALE: highly weathered shale, wet Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) 7	Datum:	Geodetic		_	PAI	4	Pol	ycycli					าร									
FILL: sity clay fill, some sand, trace gravel and rootlets, brown, moist FILL: sity clay fill, some sand, trace gravel and rootlets, brown, moist SILTY CLAY: trace gravel, grey, moist to wet WEATHERED SHALE: highly weathered shale, wet Shale bedrock (refer to rock coring log) A Bale bedrock (refer to rock coring log) A Bale bedrock (refer to rock coring log) A Bale bedrock (refer to rock coring log)					PES	ST	Org	anocl	nlorine	Pestic	ides	i							10			
FILL: silty clay; fill, some sand, trace gravel and rootlets, brown, moist SILTY CLAY: trace gravel, grey, moist to wet WEATHERED SHALE: highly weathered shale, wet Shale bedrock (refer to rock coring log) Shale bedrock (refer to rock coring log) 4 7 8 9 1 71 881 77 882 OPB 90 883 PARTHERED SHALE: highly weathered shale, wet 3 8 9 9 8 885 1 1 1 1 1 1 1 1 1 1 1 1 1	G S Y M B O L	Soil Description		DEPTH		2				30				e Va		Read		pm)	SAMP-LEG	% RECO		424LY0-0
SILTY CLAY: trace gravel, grey, moist to wet	FILL	: silty clay fill, some sand, trace		0				10					25		30		75	Ħ	Ż	1	SS1	5
Silty CLAY: trace gravel, grey, moist to wet		er and rooticts, brown, moist	-															\equiv				
SILTY CLAY: trace gravel, grey, moist to wet			4	1																75	SS2	OCPs
Meathered Shale: highly weathered shale, wet	XXX SII 1	TV CLAVI trace ground grou																#				
WEATHERED SHALE: highly weathered shale, wet	mois	st to wet																		54	SS3	
Shale bedrock (refer to rock coring log)			\dashv	2														∄		<u> </u>		
Shale bedrock (refer to rock coring log)	WE	ATHERED SHALE: highly	=															\equiv		96	554	
Shale bedrock (refer to rock coring log)	wea	thered shale, wet		,														\pm				
Cog)	Sho	la hadraak (rafar ta raak aaring																	\mathbb{Z}	95	SS5	
	log)	le bedrock (refer to rock coning	-															∄	3			
	-		_	4														∄				
																		\equiv				
																		\sharp				
			7	5														\sharp				
	-		-															∄	3			
				6														∄	3			
																		\equiv				
																		\equiv				
	-		\dashv	7																		
																			3			
																		∄				
				8														\equiv				
	-		-															\equiv				
				9														#				
																		▋	3			
			1																			
Continued Next Page	-		-	10														\exists				
Continued Next Page	-		_															\sharp				
Continued Next Page													H			Ħ		#				
Continued Next Page				"									H	H		H		#				
Continued Next Page	-		-										H					#				
		Continued Next Page		12	Ш								Н		Ш			\pm	1_			

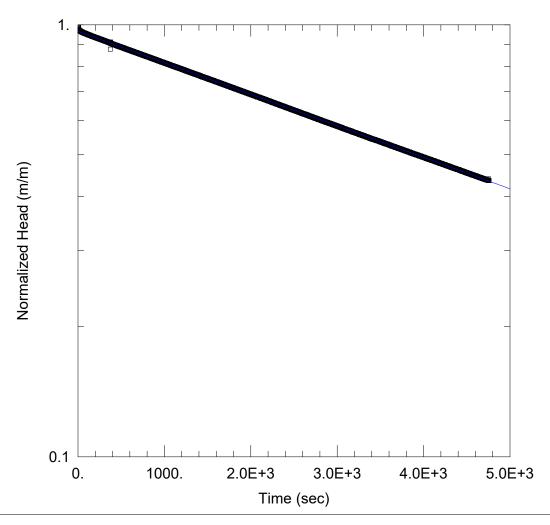
exp Services Inc.
Brampton, Ontario
Telephone: 905-793-9800
Facsimile: 905-793-0641

ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24

Time	Level (m)	Cave (m)
on completion	no free water	open

Log of Borehole BH-403

GTR-23006349-E1 43 Project No. Drawing No. 2 Phase Two ESA 2 of Project: Sheet No. ELEV. RECOV N Value Soil Description Borehole terminated at 15.34 m depth below grade. NOTES:
1. This drawing is to be read with the subject report and project number as presented above.
2. Interpretation assistance by EXP is required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24


₽	exp Services Inc.
"exp	Brampton, Ontario
	Telephone: 905-793-9800
•	Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix C – SWRT Procedures and Results

Data Set: E:\...\MW308.aqt

Date: 09/03/24 Time: 11:23:39

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW308

Test Date: August 29, 2024

AQUIFER DATA

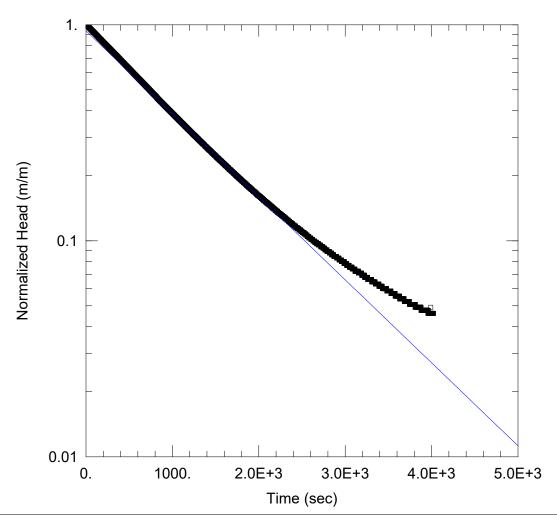
Saturated Thickness: 6.49 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW308)

Initial Displacement: 1.957 m

Total Well Penetration Depth: 6.49 m

Casing Radius: 0.0254 m


Static Water Column Height: 6.49 m

Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 7.886E-8 m/sec y0 = 1.89 m

Data Set: E:\...\MW320D.aqt

Date: 09/03/24 Time: 11:24:04

PROJECT INFORMATION

Company: EXP Services Inc. Client: 420 South Service Limited Project: HAM-23006348-F0 Location: 420 South Service Rd E,

Test Well: MW320D

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 6.2 m Anisotropy Ratio (Kz/Kr): 1.

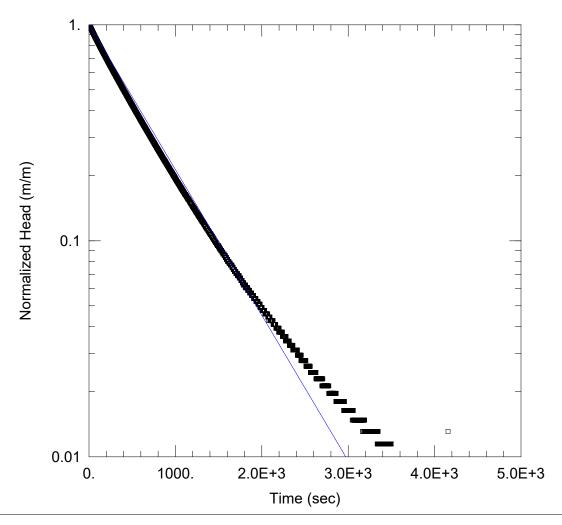
WELL DATA (MW320D)

Initial Displacement: 1.95 m

Total Well Penetration Depth: 6.2 m

Casing Radius: 0.0254 m

Static Water Column Height: 6.2 m


Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 4.154E-7 m/sec

y0 = 1.828 m

Data Set: E:\...\MW332D.aqt

Date: 09/03/24 Time: 11:24:36

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW332D

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 7.25 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW332D)

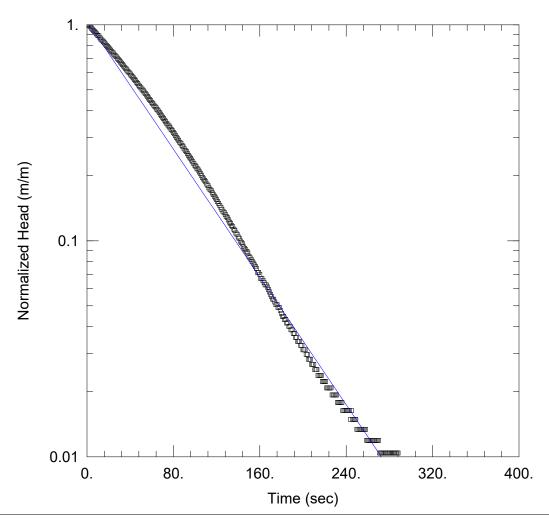
Initial Displacement: 1.83 m

Total Well Penetration Depth: 7.25 m

Casing Radius: 0.0254 m

Static Water Column Height: 7.25 m

Screen Length: 3. m Well Radius: 0.0762 m


SOLUTION

Aquifer Model: Confined

Solution Method: <u>Hvorslev</u>

K = 7.288E-7 m/sec

y0 = 1.844 m

Data Set: E:\...\MW333.aqt

Date: 09/03/24 Time: 11:25:31

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW333

Test Date: August 29, 2024

AQUIFER DATA

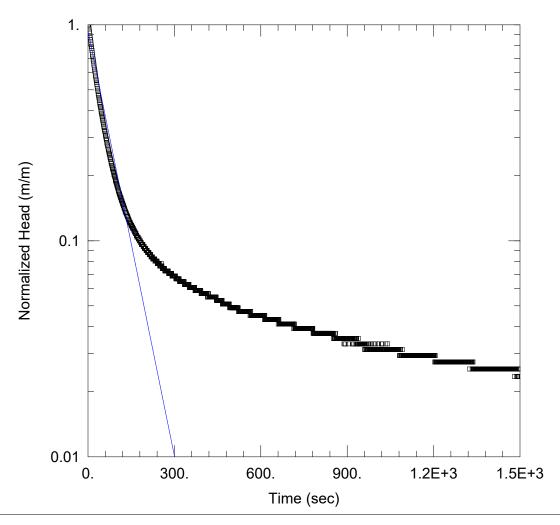
Saturated Thickness: 9.04 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW333)

Initial Displacement: 2.016 m

Total Well Penetration Depth: 9.04 m

Casing Radius: 0.0254 m


Static Water Column Height: 9.04 m

Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 7.995E-6 m/sec y0 = 2.09 m

Data Set: E:\...\MW334.aqt

Date: 09/03/24 Time: 11:25:43

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW334

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 5.7 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW334)

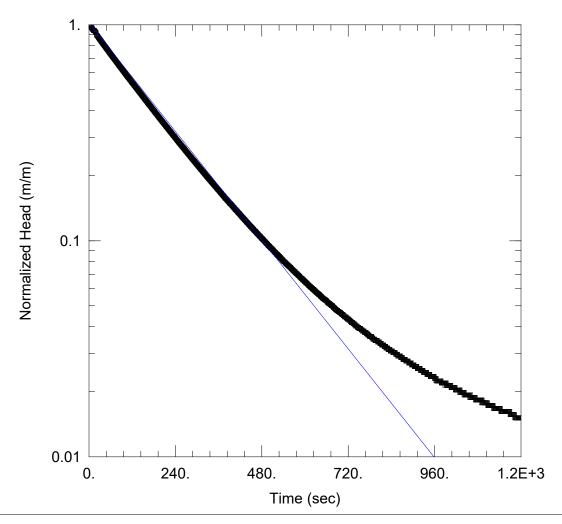
Initial Displacement: 1.53 m

Total Well Penetration Depth: 5.7 m

Casing Radius: 0.0254 m

Static Water Column Height: 5.7 m

Screen Length: 3. m Well Radius: 0.0762 m


SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 7.093E-6 m/sec

y0 = 1.435 m

Data Set: E:\...\MW335.aqt

Date: 09/03/24 Time: 11:21:30

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW335

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 6.62 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW335)

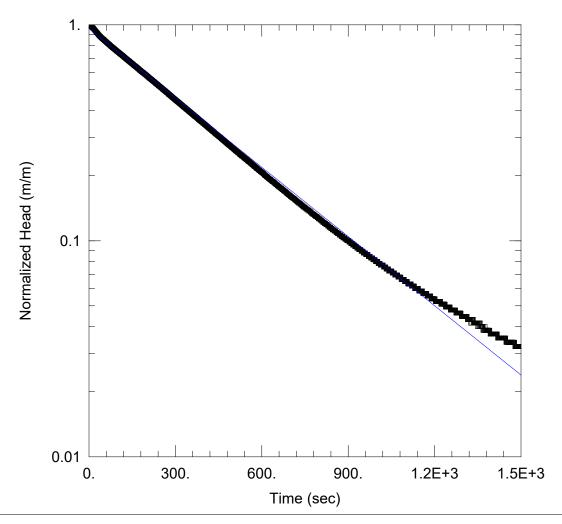
Initial Displacement: 1.913 m

Total Well Penetration Depth: 6.62 m

Casing Radius: 0.0254 m

Static Water Column Height: 6.62 m

Screen Length: 3. m Well Radius: 0.0762 m


SOLUTION

Aquifer Model: Confined

Solution Method: <u>Hvorslev</u>

K = 2.268E-6 m/sec

y0 = 1.958 m

Data Set: E:\...\MW336.aqt

Date: <u>09/03/24</u> Time: <u>11:23:51</u>

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW336

Test Date: August 29, 2024

AQUIFER DATA

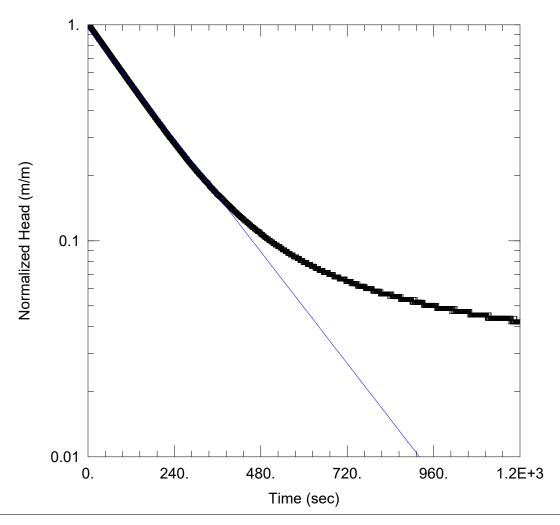
Saturated Thickness: 6.16 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW336)

Initial Displacement: 1.947 m

Casing Radius: 0.0254 m

Total Well Penetration Depth: 6.16 m


Static Water Column Height: 6.16 m

Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 1.156E-6 m/sec y0 = 1.867 m

Data Set: E:\...\MW337.aqt

Date: 09/03/24 Time: 11:24:19

PROJECT INFORMATION

Company: EXP Services Inc. Client: 420 South Service Limited Project: HAM-23006348-F0 Location: 420 South Service Rd E,

Test Well: MW337

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 5.76 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW337)

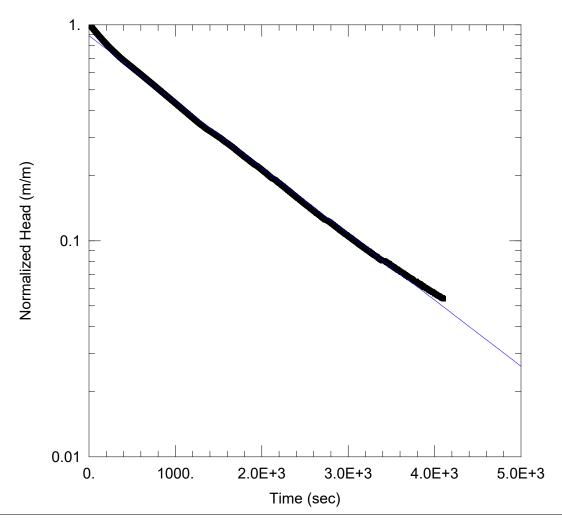
Initial Displacement: 1.851 m

Total Well Penetration Depth: 5.76 m

Casing Radius: 0.0254 m

Static Water Column Height: 5.76 m

Screen Length: 3. m Well Radius: 0.0762 m


Solution Method: Hvorslev

SOLUTION

Aquifer Model: Confined

K = 2.328E-6 m/sec

y0 = 1.779 m

Data Set: E:\...\MW338.aqt

Date: 09/03/24 Time: 11:24:53

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

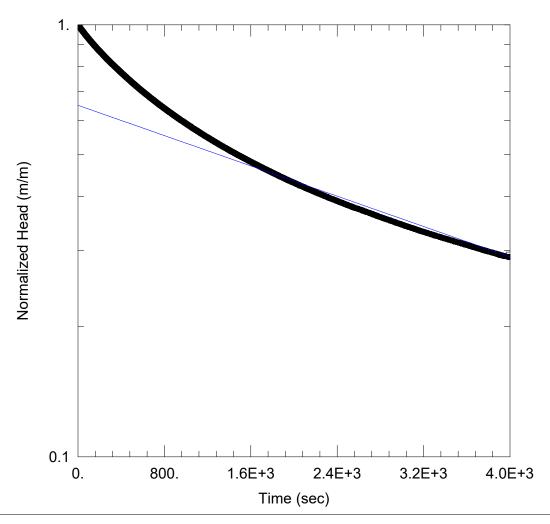
Test Well: MW338

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 5.59 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW338)


Initial Displacement: 1.977 m Static Water Column Height: 5.59 m

Total Well Penetration Depth: 5.59 m Screen Length: 3. m Casing Radius: 0.0254 m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 3.309E-7 m/sec y0 = 1.76 m

Data Set: E:\...\MW339.aqt

Date: 09/03/24 Time: 11:25:56

PROJECT INFORMATION

Company: EXP Services Inc. Client: 420 South Service Limited Project: HAM-23006348-F0 Location: 420 South Service Rd E,

Test Well: MW339

Test Date: August 29, 2024

AQUIFER DATA

Saturated Thickness: 6.81 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW339)

Initial Displacement: 1.99 m

Total Well Penetration Depth: 6.81 m

Casing Radius: 0.0254 m

Static Water Column Height: 6.81 m

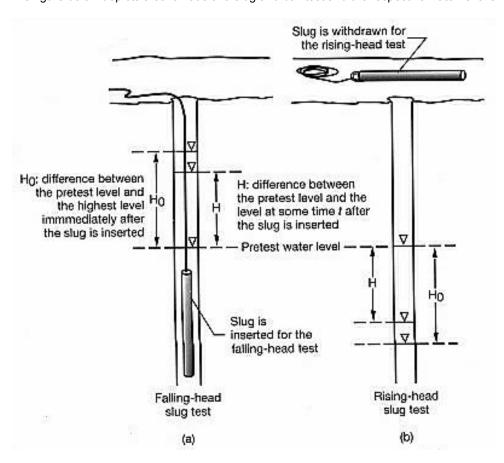
Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 9.478E-8 m/sec

y0 = 1.295 m



Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.

(Static Water Level – Dynamic Water Level).95 + Static Water Level = 95% Recovery Value

6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

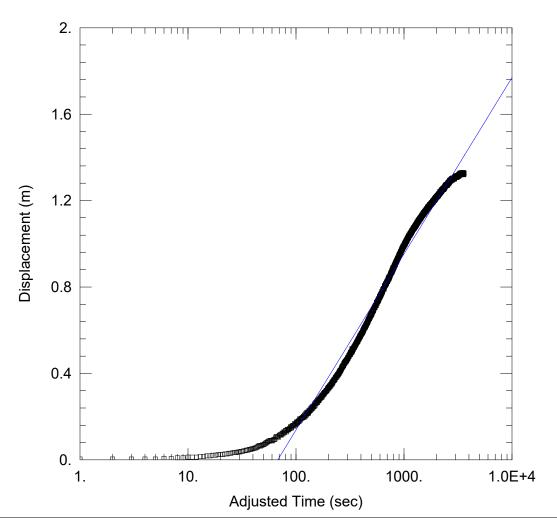
Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- · Water level meter
- Field sheets/log book
- Latex Gloves
- · Bailer and Rope


Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a bailer:
 - a. Affix the rope to the bailer.
 - b. Remove the waterra tubing and place in garbage bag
 - c. Record static water level measurement again.
 - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
 - e. Quickly lower the bailer into the well and remove.
 - f. Continue this process until the water level will reduce no further.
 - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
 - a. Pump the water into graduated bucket until the water level will reduce no further.
 - b. Record how much water has been removed.
 - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix D – Pumping Test Results

PUMP TEST - MW332D

Data Set: E:\...\PT_ConCJ_MW332D.aqt

Date: 09/20/24 Time: 21:33:03

PROJECT INFORMATION

Company: EXP Services Inc.
Client: 420 South Service Limited
Project: HAM-23006348-F0
Location: 420 South Service Rd E,

Test Well: MW332D

Test Date: August 30, 2024

AQUIFER DATA

Saturated Thickness: 7.3 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumpin	g Wells		Observation Wells						
Well Name	X (m)	Y (m)	Well Name	X (m)	Y (m)				
MW332D	0	0	□ MW332D	0	0				

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

 $T = 9.529E-7 \text{ m}^2/\text{sec}$ S = 0.02499

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix E – Laboratory's Certificates of Analysis

Your Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Your C.O.C. #: 1007185-98-01

Attention: Jennifer Hayman

exp Services Inc Stoney Creek Branch 1266 South Service Rd Suite C1-1 Stoney Creek, ON CANADA L8E 5R9

Report Date: 2024/09/30

Report #: R8341293 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Q4099 Received: 2024/08/23, 18:00

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	1	N/A	2024/08/29		EPA 8260C m
Polychlorinated Biphenyl in Water	3	2024/08/27	2024/08/28	CAM SOP-00309	EPA 8082A m
Polychlorinated Biphenyl in Water	1	2024/08/29	2024/08/29	CAM SOP-00309	EPA 8082A m
Volatile Organic Compounds in Water	1	N/A	2024/08/28	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Your C.O.C. #: 1007185-98-01

Attention: Jennifer Hayman

exp Services Inc Stoney Creek Branch 1266 South Service Rd Suite C1-1 Stoney Creek, ON CANADA L8E 5R9

Report Date: 2024/09/30

Report #: R8341293 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4Q4099

Received: 2024/08/23, 18:00

Encryption Key

Patricia Legette Project Manager 30 Sep 2024 11:05:54

Please direct all questions regarding this Certificate of Analysis to:

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Report Date: 2024/09/30

exp Services Inc

Client Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

O.REG 153 PCBS (WATER)

Bureau Veritas ID			AAXN60	AAXN61	AAXN62		AAXN63				
Campling Data			2024/08/23	2024/08/23	2024/08/23		2024/08/23				
Sampling Date			15:00	14:30	15:35		16:00				
COC Number			1007185-98-01	1007185-98-01	1007185-98-01		1007185-98-01				
	UNITS	Criteria	MW151	MW305	MW317	QC Batch	MW123	RDL	QC Batch		
PCBs											
Aroclor 1242	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687		
Aroclor 1248	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687		
Aroclor 1254	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687		
Aroclor 1260	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687		
Total PCB	ug/L	0.4	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687		
Surrogate Recovery (%)	•	•		•	•		•				
Decachlorobiphenyl	%	-	92	82	75	9601130	107		9606687		
No Fill No	. Evcoods	nco		•							

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID				AAXN59		
Sampling Date				2024/08/23		
Sampling Date				13:45		
COC Number				1007185-98-01		
	UNITS	Criteria	Criteria-2	MW133A	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	-	-	<0.50	0.50	9599463
Volatile Organics		•				
Acetone (2-Propanone)	ug/L	-	-	<10	10	9601462
Benzene	ug/L	10	2	<0.20	0.20	9601462
Bromodichloromethane	ug/L	-	-	<0.50	0.50	9601462
Bromoform	ug/L	-	-	<1.0	1.0	9601462
Bromomethane	ug/L	-	-	<0.50	0.50	9601462
Carbon Tetrachloride	ug/L	-	-	<0.19	0.19	9601462
Chlorobenzene	ug/L	-	-	<0.20	0.20	9601462
Chloroform	ug/L	40	2	<0.20	0.20	9601462
Dibromochloromethane	ug/L	-	-	<0.50	0.50	9601462
1,2-Dichlorobenzene	ug/L	-	5.6	<0.40	0.40	9601462
1,3-Dichlorobenzene	ug/L	-	-	<0.40	0.40	9601462
1,4-Dichlorobenzene	ug/L	80	6.8	<0.40	0.40	9601462
Dichlorodifluoromethane (FREON 12)	ug/L	-	-	<1.0	1.0	9601462
1,1-Dichloroethane	ug/L	-	-	<0.20	0.20	9601462
1,2-Dichloroethane	ug/L	-	-	<0.49	0.49	9601462
1,1-Dichloroethylene	ug/L	-	-	<0.20	0.20	9601462
cis-1,2-Dichloroethylene	ug/L	-	5.6	<0.50	0.50	9601462
trans-1,2-Dichloroethylene	ug/L	-	-	<0.50	0.50	9601462
1,2-Dichloropropane	ug/L	-	-	<0.20	0.20	9601462
cis-1,3-Dichloropropene	ug/L	-	-	<0.30	0.30	9601462
trans-1,3-Dichloropropene	ug/L	-	5.6	<0.40	0.40	9601462
Ethylbenzene	ug/L	160	2	<0.20	0.20	9601462
Ethylene Dibromide	ug/L	-	-	<0.19	0.19	9601462
Hexane	ug/L	-	-	<1.0	1.0	9601462
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<2.0	2.0	9601462
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	-	<10	10	9601462
Methyl Isobutyl Ketone	ug/L	-	-	<5.0	5.0	9601462

No Fill No Exceedance
Grey Exceeds 1 criter

Black

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Halton Sanitary & Combined Sewer Bylaw (2-03)

Criteria-2: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID				AAXN59		
Sampling Date				2024/08/23		
Sampling Date				13:45		
COC Number				1007185-98-01		
	UNITS	Criteria	Criteria-2	MW133A	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	-	-	<0.50	0.50	9601462
Styrene	ug/L	-	-	<0.40	0.40	9601462
1,1,1,2-Tetrachloroethane	ug/L	-	-	<0.50	0.50	9601462
1,1,2,2-Tetrachloroethane	ug/L	-	17	<0.40	0.40	9601462
Tetrachloroethylene	ug/L	1000	4.4	<0.20	0.20	9601462
Toluene	ug/L	16	2	<0.20	0.20	9601462
1,1,1-Trichloroethane	ug/L	-	-	<0.20	0.20	9601462
1,1,2-Trichloroethane	ug/L	-	-	<0.40	0.40	9601462
Trichloroethylene	ug/L	400	7.6	<0.20	0.20	9601462
Trichlorofluoromethane (FREON 11)	ug/L	-	-	<0.50	0.50	9601462
Vinyl Chloride	ug/L	-	-	<0.20	0.20	9601462
p+m-Xylene	ug/L	-	-	<0.20	0.20	9601462
o-Xylene	ug/L	-	-	<0.20	0.20	9601462
Total Xylenes	ug/L	-	4.4	<0.20	0.20	9601462
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	-	105		9601462
D4-1,2-Dichloroethane	%	-	-	106		9601462
D8-Toluene	%	-	-	95		9601462

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Halton Sanitary & Combined Sewer Bylaw (2-03)

Criteria-2: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Client Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

TEST SUMMARY

Bureau Veritas ID: AAXN59

Sample ID: MW133A

Matrix: Water

2024/08/23 Collected:

Shipped:

Received: 2024/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9599463	N/A	2024/08/29	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	9601462	N/A	2024/08/28	Noel Ramos

Bureau Veritas ID: AAXN60

Sample ID: MW151

Matrix: Water Collected: 2024/08/23

Shipped: Received: 2024/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Polychlorinated Biphenyl in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis Saha

Bureau Veritas ID: AAXN61 Sample ID: MW305 Collected: 2024/08/23 Shipped:

Matrix: Water Received: 2024/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Polychlorinated Biphenyl in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis Saha

Bureau Veritas ID: AAXN62 Sample ID:

MW317

Matrix: Water

2024/08/23 Collected:

Shipped:

Received: 2024/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Polychlorinated Biphenyl in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis Saha

Bureau Veritas ID: AAXN63

Sample ID: MW123

Matrix: Water

Collected: 2024/08/23

Shipped:

Received: 2024/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Polychlorinated Biphenyl in Water	GC/ECD	9606687	2024/08/29	2024/08/29	Debashis Saha

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Revised Report (2024/09/30): Halton Sanitary and Combined Bylaw and Oakville Storm sewer Bylaw criteria policies have been included in this CofA as per Hammond Lo's request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9601130	Decachlorobiphenyl	2024/08/28	88	60 - 130	80	60 - 130	90	%		
9601462	4-Bromofluorobenzene	2024/08/28	104	70 - 130	102	70 - 130	104	%		
9601462	D4-1,2-Dichloroethane	2024/08/28	104	70 - 130	101	70 - 130	101	%		
9601462	D8-Toluene	2024/08/28	96	70 - 130	98	70 - 130	97	%		
9606687	Decachlorobiphenyl	2024/08/29	92	60 - 130	76	60 - 130	89	%		
9601130	Aroclor 1242	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1248	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1254	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1260	2024/08/28	98	60 - 130	89	60 - 130	<0.05	ug/L		
9601130	Total PCB	2024/08/28	98	60 - 130	89	60 - 130	<0.05	ug/L	NC	40
9601462	1,1,1,2-Tetrachloroethane	2024/08/28	120	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
9601462	1,1,1-Trichloroethane	2024/08/28	112	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
9601462	1,1,2,2-Tetrachloroethane	2024/08/28	106	70 - 130	90	70 - 130	<0.40	ug/L	NC	30
9601462	1,1,2-Trichloroethane	2024/08/28	113	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9601462	1,1-Dichloroethane	2024/08/28	109	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
9601462	1,1-Dichloroethylene	2024/08/28	113	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	1,2-Dichlorobenzene	2024/08/28	115	70 - 130	103	70 - 130	<0.40	ug/L	NC	30
9601462	1,2-Dichloroethane	2024/08/28	123	70 - 130	106	70 - 130	<0.49	ug/L	NC	30
9601462	1,2-Dichloropropane	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	1,3-Dichlorobenzene	2024/08/28	118	70 - 130	107	70 - 130	<0.40	ug/L	NC	30
9601462	1,4-Dichlorobenzene	2024/08/28	123	70 - 130	112	70 - 130	<0.40	ug/L	NC	30
9601462	Acetone (2-Propanone)	2024/08/28	120	60 - 140	98	60 - 140	<10	ug/L	NC	30
9601462	Benzene	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	Bromodichloromethane	2024/08/28	112	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9601462	Bromoform	2024/08/28	108	70 - 130	98	70 - 130	<1.0	ug/L	NC	30
9601462	Bromomethane	2024/08/28	97	60 - 140	88	60 - 140	<0.50	ug/L	NC	30
9601462	Carbon Tetrachloride	2024/08/28	122	70 - 130	111	70 - 130	<0.19	ug/L	NC	30
9601462	Chlorobenzene	2024/08/28	106	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
9601462	Chloroform	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	cis-1,2-Dichloroethylene	2024/08/28	121	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
9601462	cis-1,3-Dichloropropene	2024/08/28	111	70 - 130	102	70 - 130	<0.30	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: GTR-23006348-E1 (TASK 201)

Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9601462	Dibromochloromethane	2024/08/28	116	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
9601462	Dichlorodifluoromethane (FREON 12)	2024/08/28	93	60 - 140	83	60 - 140	<1.0	ug/L	NC	30
9601462	Ethylbenzene	2024/08/28	108	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
9601462	Ethylene Dibromide	2024/08/28	117	70 - 130	101	70 - 130	<0.19	ug/L	NC	30
9601462	Hexane	2024/08/28	122	70 - 130	110	70 - 130	<1.0	ug/L	NC	30
9601462	Methyl Ethyl Ketone (2-Butanone)	2024/08/28	119	60 - 140	97	60 - 140	<10	ug/L	NC	30
9601462	Methyl Isobutyl Ketone	2024/08/28	126	70 - 130	106	70 - 130	<5.0	ug/L	NC	30
9601462	Methyl t-butyl ether (MTBE)	2024/08/28	113	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9601462	Methylene Chloride(Dichloromethane)	2024/08/28	116	70 - 130	100	70 - 130	<2.0	ug/L	NC	30
9601462	o-Xylene	2024/08/28	114	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
9601462	p+m-Xylene	2024/08/28	109	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9601462	Styrene	2024/08/28	110	70 - 130	100	70 - 130	<0.40	ug/L	NC	30
9601462	Tetrachloroethylene	2024/08/28	110	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
9601462	Toluene	2024/08/28	110	70 - 130	99	70 - 130	<0.20	ug/L	0.48	30
9601462	Total Xylenes	2024/08/28					<0.20	ug/L	NC	30
9601462	trans-1,2-Dichloroethylene	2024/08/28	124	70 - 130	111	70 - 130	<0.50	ug/L	NC	30
9601462	trans-1,3-Dichloropropene	2024/08/28	118	70 - 130	111	70 - 130	<0.40	ug/L	NC	30
9601462	Trichloroethylene	2024/08/28	119	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
9601462	Trichlorofluoromethane (FREON 11)	2024/08/28	111	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
9601462	Vinyl Chloride	2024/08/28	107	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
9606687	Aroclor 1242	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1248	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1254	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1260	2024/08/29	99	60 - 130	84	60 - 130	<0.05	ug/L	NC	30

Bureau Veritas Job #: C4Q4099 Report Date: 2024/09/30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: GTR-23006348-E1 (TASK 201)

Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9606687	Total PCB	2024/08/29	99	60 - 130	84	60 - 130	<0.05	ug/L	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Supervisor-Afternoon Shift

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

1099 /08/23 1		Bureau Veritas 6740 Campobello Road, Mississauga	Ontario Canada L	.5N 2L8 Tel:(905) 817-	5700 Toll-free:80	0-563-6266 Fax	(905) 817-5	5777 www.bvna	ı.com				_			P.	Page of
BUREAU VERITAS	INV	OICE TO:			REP	ORT TO:					PROJECT	INFORMATION:	_ 🛎		NONT-2024-08	-5431	
mpany Name:	#17492 exp Serv	ices Inc	Com	npany Name: E	XV Se		ine	_`	Quotatio	oo#		3 Stream	3			Bottle C	Order #:
ntion:	Accounts Payable			ention:	nnife	or He	4/10	civ-	P.O. #:	UII #.	-			4			21.05.12(100)
lress:	1266 South Service		Add	-		, serv	ice.	red	Project:		GTR	-230063		Task 201		1007	
	Stoney Creek ON (905) 573-4000			0	rey a				Project	Name:	Soul	n Service	Roal		COC #:	Project N	/lanager:
ail:	1	en.Burke@exp.com	Tel:	il: len	nifer. r	Tax:	19601	V V COW	Site #:	4 D		elle Bar	ohile	-	C#1007185-98-01	Patricia	Legette
NAME OF TAXABLE PARTY.	Taken by the port - orange	WATER OR WATER INTENDE	CORNER DE LA COMPANION DE LA C			11 100	T	e - co			D (PLEASE BE		10.00			ne (TAT) Required:	
		E BUREAU VERITAS DRINKII													Please provide advar	ce notice for rush projects	
Regulation	on 153 (2011)	Other Regula	tions	Special I	nstructions	circle):									Standard) TAT: ed if Rush TAT is not specific	ed).	-
CONTRACTOR OF THE PARTY OF THE	Res/Park Medium/					Se c									T = 5-7 Working days for mo		ľ
able 3	Ind/Comm Coarse Agri/Other For RSC	Reg 558. Storm Sev	er Bylaw			I Field Filtered (please c Metals / Hg / Cr VI	S	N						Please note: days - contac	Standard TAT for certain tes t your Project Manager for c	ts such as BOD and Dioxins/Fu etails.	urans are :
able		PWQO Reg 406	Table			ered	0							Job Specifi	c Rush TAT (if applies to	entire submission)	
		Other		_		Meta	15	Ó						Date Require		Time Required:	[
		on Certificate of Analysis (Y/N)				- Fie -	8	7							nation Number:	(call lab for #)	
Sample	e Barcode Label	Sample (Location) Identification	Date Sampl		Matrix		1	1	_	-				# of Bottles		Comments	
MW	133A		August 23,200	24 145pm	GW			X						3			
MWI	51			3:00			X							2			
MW	305			2:30		1	X							2			
MW:				3:35	1		X							2			
MW				4:00	4		X							2			
1,111			1														
						1											
					-		-										
* F	RELINQUISHED BY: (Sig	nature/Print) Date: (YY/MM/DD)	Time	RECEIVED	BY: (Signature	Print)	Date	: (YY/MM/DD)		Time	# jars used and		Labora	tory Use Only		
briel	leBaphst	Mus 20	4108123	540M S	2 Su	CAR.	CALY	XH 252	4 /08/23	18	: 60	not submitted	Time Sensitive	Temperati	ure (°C) on Rècei	Present Intact	N
		ING, WORK SUBMITTED ON THIS CH										CONTROL OF THE PARTY OF THE PAR			1 1 1 1	itali	-

Bureau Veritas Canada (2019) Inc.

Client Project #: GTR-23006348-E1 (TASK 201)
Site Location: SOUTH SERVICE ROAD, OAKVILLE

Sampler Initials: DB

Exceedance Summary Table – Halton Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	is for information purp	oses only and should not be consid	ered a compreh	ensive listing or	statement of c	onformance to
applicable regulatory guidelines						

Exceedance Summary Table – Oakville Storm Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ	ary table is for information purp	oses only and shoul	d not be considered a com	orehensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					

Your P.O. #: ENV-BRM

Your Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your C.O.C. #: C#1009944-01-01

Attention: Hammond Lo

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

Report Date: 2024/09/09

Report #: R8312319 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4R1466 Received: 2024/08/30, 13:45

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2024/09/03	2024/09/03	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2024/08/31	2024/09/05	CAM SOP-00427	SM 24 5210B m
Carbonaceous BOD	1	2024/08/31	2024/09/05	CAM SOP-00427	SM 24 5210B m
Chromium (VI) in Water	1	N/A	2024/09/03	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2024/09/04	2024/09/04	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2024/08/31	2024/09/03	CAM SOP-00449	SM 24 4500-F C m
Mercury in Water by CVAA	1	2024/09/04	2024/09/05	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2024/09/06	2024/09/06	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2024/08/30	CAM SOP-00552	SM9222B, MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2024/09/04	2024/09/04	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2024/09/04	2024/09/04	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2024/09/04	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2024/09/06	2024/09/07	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/08/31	CAM SOP-00307	EPA 8081B/ 8082A
PAH Compounds in Water by GC/MS (SIM)	1	2024/09/04	2024/09/05	CAM SOP-00318	EPA 8270E
Phenols (4AAP)	1	N/A	2024/09/06	CAM SOP-00444	OMOE E3179 m
pH	1	2024/08/31	2024/08/31	CAM SOP-00413	SM 24th-4500H+ B
Sulphate by Automated Turbidimetry	1	N/A	2024/09/04	CAM SOP-00464	SM 24 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2024/09/03	2024/09/04	CAM SOP-00938	OMOE E3516 m
Total PAHs (2)	1	N/A	2024/09/04	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2024/09/04	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2024/09/05	2024/09/06	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	1	N/A	2024/09/03	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in

Your P.O. #: ENV-BRM

Your Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your C.O.C. #: C#1009944-01-01

Attention: Hammond Lo

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

Report Date: 2024/09/09

Report #: R8312319 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C4R1466

Received: 2024/08/30. 13:45

writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane
- (2) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Patricia Legette Project Manager 09 Sep 2024 17:44:17

Please direct all questions regarding this Certificate of Analysis to:

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID				ABNA08			ABNA08		
Sampling Date				2024/08/30			2024/08/30		
Sampling Date				11:20			11:20		
COC Number				C#1009944-01-01			C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch	MW332D Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	9610491			
Inorganics		-	-	•	•			•	•
Total Carbonaceous BOD	mg/L	-	300	<2	2	9611924			
Fluoride (F-)	mg/L	-	10	0.36	0.10	9612418			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	6.2	0.50	9613859			
рН	рН	6.5:8.5	6.0:10.0	7.23		9611997			
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	9621766			
Total Suspended Solids	mg/L	15	350	15	10	9616728	13	10	9616728
Dissolved Sulphate (SO4)	mg/L	-	1500	1300	5.0	9612435			
Total Cyanide (CN)	mg/L	0.02	2	<0.0050	0.0050	9615722			
Petroleum Hydrocarbons					•				
Total Oil & Grease	mg/L	-	-	<0.50	0.50	9616246			
Total Oil & Grease Mineral/Synthetic	mg/L	-	-	<0.50	0.50	9616250			
Metals									
Mercury (Hg)	mg/L	0.0004	0.05	<0.00010	0.00010	9616704	<0.00010	0.00010	9616704
Polyaromatic Hydrocarbons									
Naphthalene	ug/L	-	140	<0.050	0.050	9616387			
Volatile Organics					•				
Benzene	ug/L	2	10	<0.20	0.20	9612060			
Chloroform	ug/L	2	40	<0.20	0.20	9612060			
1,2-Dichlorobenzene	ug/L	5.6	-	<0.40	0.40	9612060			
1,4-Dichlorobenzene	ug/L	6.8	80	<0.40	0.40	9612060			
cis-1,2-Dichloroethylene	ug/L	5.6	-	<0.50	0.50	9612060			
trans-1,3-Dichloropropene	ug/L	5.6	-	<0.40	0.40	9612060			
Ethylbenzene	ug/L	2	160	<0.20	0.20	9612060			
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<2.0	2.0	9612060			
1,1,2,2-Tetrachloroethane	ug/L	17	-	<0.40	0.40	9612060			

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

de Parent Quanty control Parent

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID				ABNA08			ABNA08		
Sampling Date				2024/08/30			2024/08/30		
				11:20			11:20		
COC Number				C#1009944-01-01			C#1009944-01-01		
	LINUTC	Cuitauia	Cuitania 2	NAVA/222D	DDI	OC Batala	MW332D	DDI	OC Batala
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch	Lab-Dup	RDL	QC Batch
Tetrachloroethylene	ug/L	4.4	1000	<0.20	0.20	9612060			
Toluene	ug/L	2	16	<0.20	0.20	9612060			
Trichloroethylene	ug/L	7.6	400	<0.20	0.20	9612060			
Total Xylenes	ug/L	4.4	-	<0.20	0.20	9612060			
Surrogate Recovery (%)									
D10-Anthracene	%	-	-	108		9616387			
D14-Terphenyl (FS)	%	-	-	108		9616387			
D8-Acenaphthylene	%	-	-	95		9616387			
4-Bromofluorobenzene	%	-	-	102		9612060			
D4-1,2-Dichloroethane	%	-	-	111		9612060			
D8-Toluene	%	-	-	94		9612060			

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

OAKVILLE STORM SEWER BYLAW (2009-031)

			ABNA08		
			2024/08/30		
			11:20		
			C#1009944-01-01		
UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch
mg/L	15	-	<2	2	9611926
mg/L	0.01	-	<0.005	0.005	9615363
mg/L	0.001	-	<0.001	0.001	9615356
	•				
ug/L	40	-	<0.50	0.50	9613310
ug/L	-	50000	190	4.9	9621193
ug/L	-	5000	<0.50	0.50	9621193
ug/L	20	1000	<1.0	1.0	9621193
ug/L	-	5000	<0.40	0.40	9621193
ug/L	8	1000	<0.090	0.090	9621193
ug/L	80	3000	<5.0	5.0	9621193
ug/L	-	5000	<0.50	0.50	9621193
ug/L	40	3000	<0.90	0.90	9621193
ug/L	-	50000	1700	100	9621193
ug/L	120	3000	<0.50	0.50	9621193
ug/L	50	5000	180	2.0	9621193
ug/L	-	5000	<0.50	0.50	9621193
ug/L	80	3000	<1.0	1.0	9621193
ug/L	400	10000	<100	100	9621193
ug/L	20	5000	<2.0	2.0	9621193
ug/L	120	5000	<0.090	0.090	9621193
ug/L	-	5000	<1.0	1.0	9621193
ug/L	_	5000	<5.0	5.0	9621193
ug/L	40	3000	<5.0	5.0	9621193
				•	
ug/L	15	-	<2	2	9613113
ug/L	8.8	-	<2	2	9613113
	mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	mg/L 0.01 mg/L 0.001 mg/L 0.001 ug/L - ug/L - ug/L 20 ug/L - ug/L 8 ug/L 80 ug/L - ug/L 40 ug/L - ug/L 40 ug/L - ug/L 40 ug/L - ug/L 40 ug/L - ug/L 120 ug/L - ug/L 120 ug/L - ug/L 50 ug/L - ug/L 400 ug/L - ug/L 400 ug/L - ug/L 400 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 30 ug/L 400 ug/L 400 ug/L 400 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 120 ug/L 15 ug/L 400	mg/L 15 - mg/L 0.01 - mg/L 0.001 - mg/L 50000 ug/L - 50000 ug/L - 5000 ug/L 8 1000 ug/L 8 1000 ug/L - 5000 UNITS Criteria Criteria-2 MW332D mg/L 15 - <2	11:20 UNITS Criteria Criteria-2 MW332D RDL mg/L 15 - <2 2 mg/L 0.001 - mg/L 0.001 - - 2 mg/L 0.001 - - - - 2 ug/L -	

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

OAKVILLE STORM SEWER BYLAW (2009-031)

Bureau Veritas ID				ABNA08		
Sampling Date				2024/08/30		
Jamping Date				11:20		
COC Number				C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch
3,3'-Dichlorobenzidine	ug/L	0.8	-	<0.8	0.8	9613113
Pentachlorophenol	ug/L	2	-	<1	1	9613113
Phenanthrene	ug/L	-	-	<0.2	0.2	9613113
Anthracene	ug/L	-	-	<0.2	0.2	9613113
Fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Pyrene	ug/L	-	-	<0.2	0.2	9613113
Benzo(a)anthracene	ug/L	-	-	<0.2	0.2	9613113
Chrysene	ug/L	-	-	<0.2	0.2	9613113
Benzo(b/j)fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Benzo(k)fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Benzo(a)pyrene	ug/L	-	-	<0.2	0.2	9613113
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,h)anthracene	ug/L	-	-	<0.2	0.2	9613113
Benzo(g,h,i)perylene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,i)pyrene	ug/L	-	-	<0.2	0.2	9613113
Benzo(e)pyrene	ug/L	-	-	<0.2	0.2	9613113
Perylene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,j) acridine	ug/L	-	-	<0.4	0.4	9613113
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	<0.4	0.4	9613113
1,6-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
1,3-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
Calculated Parameters	-	•	•			
Total PAHs (18 PAHs)	ug/L	2	-	<1	1	9610649
Aldrin + Dieldrin	ug/L	0.08	-	<0.005	0.005	9609468
Chlordane (Total)	ug/L	40	-	<0.005	0.005	9609468
DDT+ Metabolites	ug/L	-	-	<0.005	0.005	9609468
o,p-DDT + p,p-DDT	ug/L	-	-	<0.005	0.005	9609468
Total PCB	ug/L	0.4	-	<0.05	0.05	9609468

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

OAKVILLE STORM SEWER BYLAW (2009-031)

Bureau Veritas ID				ABNA08		
Sampling Date				2024/08/30 11:20		
COC Number				C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch
Pesticides & Herbicides						
Aldrin	ug/L	-	-	<0.005	0.005	9621002
Dieldrin	ug/L	-	-	<0.005	0.005	9621002
a-Chlordane	ug/L	-	-	<0.005	0.005	9621002
g-Chlordane	ug/L	-	-	<0.005	0.005	9621002
o,p-DDT	ug/L	0.04	1	<0.005	0.005	9621002
p,p-DDT	ug/L	0.04	1	<0.005	0.005	9621002
Lindane	ug/L	40	-	<0.003	0.003	9621002
Hexachlorobenzene	ug/L	0.04	1	<0.005	0.005	9621002
Mirex	ug/L	40	1	<0.005	0.005	9621002
Microbiological	•	-	•	•	3	•
Escherichia coli	CFU/100mL	200	-	<10	10	9611784
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	-	1	78		9613113
2-Fluorobiphenyl	%	-	-	76		9613113
D14-Terphenyl (FS)	%	-	-	103		9613113
D5-Nitrobenzene	%	-	1	90		9613113
D8-Acenaphthylene	%	-	-	83		9613113
2,4,5,6-Tetrachloro-m-xylene	%	-	-	77		9621002
Decachlorobiphenyl	%	-	-	104		9621002

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

TEST SUMMARY

Bureau Veritas ID: ABNA08

Collected: Shipped:

2024/08/30

Sample ID: MW332D Matrix: Water

Received: 2024/08/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	9613113	2024/09/03	2024/09/03	Adriana Zurita
Biochemical Oxygen Demand (BOD)	DO	9611926	2024/08/31	2024/09/05	Amrutha Anilkumar
Carbonaceous BOD	DO	9611924	2024/08/31	2024/09/05	Amrutha Anilkumar
Chromium (VI) in Water	IC	9613310	N/A	2024/09/03	Surleen Kaur Romana
Total Cyanide	SKAL/CN	9615722	2024/09/04	2024/09/04	Prgya Panchal
Fluoride	ISE	9612418	2024/08/31	2024/09/03	Surinder Rai
Mercury in Water by CVAA	CV/AA	9616704	2024/09/04	2024/09/05	Aswathy Neduveli Suresh
Total Metals Analysis by ICPMS	ICP/MS	9621193	2024/09/06	2024/09/06	Indira HarryPaul
E.coli, (CFU/100mL)	PL	9611784	N/A	2024/08/30	Paramjit Paramjit
Total Nonylphenol in Liquids by HPLC	LC/FLU	9615356	2024/09/04	2024/09/04	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9615363	2024/09/04	2024/09/04	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	9610491	N/A	2024/09/04	Automated Statchk
Total Oil and Grease	BAL	9616246	2024/09/04	2024/09/04	Kishan Patel
OC Pesticides (Selected) & PCB	GC/ECD	9621002	2024/09/06	2024/09/07	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	9609468	N/A	2024/08/31	Automated Statchk
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9616387	2024/09/04	2024/09/05	Jonghan Yoon
Phenols (4AAP)	TECH/PHEN	9621766	N/A	2024/09/06	Chandra Nandlal
рН	AT	9611997	2024/08/31	2024/08/31	Kien Tran
Sulphate by Automated Turbidimetry	SKAL	9612435	N/A	2024/09/04	Massarat Jan
Total Kjeldahl Nitrogen in Water	SKAL	9613859	2024/09/03	2024/09/04	Rajni Tyagi
Total PAHs	CALC	9610649	N/A	2024/09/04	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9616250	2024/09/04	2024/09/04	Kishan Patel
Total Suspended Solids	BAL	9616728	2024/09/05	2024/09/06	Razieh Tabesh
Volatile Organic Compounds in Water	GC/MS	9612060	N/A	2024/09/03	Manpreet Sarao

Bureau Veritas ID: ABNA08 Dup Sample ID: MW332D

Collected: Shipped:

2024/08/30

Matrix: Water

Received: 2024/08/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	CV/AA	9616704	2024/09/04	2024/09/05	Aswathy Neduveli Suresh
Total Suspended Solids	BAL	9616728	2024/09/05	2024/09/06	Razieh Tabesh

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 19.3°C

Revised Report (2024/09/09): Oakville Storm criteria policy has been included in this CofA.

Results relate only to the items tested.

Bureau Veritas Job #: C4R1466 Report Date: 2024/09/09

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9612060	4-Bromofluorobenzene	2024/09/03	102	70 - 130	103	70 - 130	104	%				
9612060	D4-1,2-Dichloroethane	2024/09/03	109	70 - 130	105	70 - 130	108	%				
9612060	D8-Toluene	2024/09/03	101	70 - 130	102	70 - 130	94	%				
9613113	2,4,6-Tribromophenol	2024/09/03	93	10 - 130	97	10 - 130	76	%				
9613113	2-Fluorobiphenyl	2024/09/03	69	30 - 130	68	30 - 130	79	%				
9613113	D14-Terphenyl (FS)	2024/09/03	101	30 - 130	100	30 - 130	102	%				
9613113	D5-Nitrobenzene	2024/09/03	92	30 - 130	97	30 - 130	90	%				
9613113	D8-Acenaphthylene	2024/09/03	80	30 - 130	84	30 - 130	82	%				
9616387	D10-Anthracene	2024/09/04	111	50 - 130	108	50 - 130	121	%				
9616387	D14-Terphenyl (FS)	2024/09/04	111	50 - 130	110	50 - 130	120	%				
9616387	D8-Acenaphthylene	2024/09/04	103	50 - 130	96	50 - 130	101	%				
9621002	2,4,5,6-Tetrachloro-m-xylene	2024/09/07	68	50 - 130	71	50 - 130	76	%				
9621002	Decachlorobiphenyl	2024/09/07	88	50 - 130	95	50 - 130	105	%				
9611924	Total Carbonaceous BOD	2024/09/05					<2	mg/L	7.2	30	102	80 - 120
9611926	Total BOD	2024/09/05					<2	mg/L	NC	30	98	80 - 120
9611997	рН	2024/08/31			102	98 - 103			0.054	N/A		
9612060	1,1,2,2-Tetrachloroethane	2024/09/03	106	70 - 130	102	70 - 130	<0.40	ug/L	NC	30		
9612060	1,2-Dichlorobenzene	2024/09/03	102	70 - 130	103	70 - 130	<0.40	ug/L	NC	30		
9612060	1,4-Dichlorobenzene	2024/09/03	103	70 - 130	104	70 - 130	<0.40	ug/L	NC	30		
9612060	Benzene	2024/09/03	107	70 - 130	108	70 - 130	<0.20	ug/L	NC	30		
9612060	Chloroform	2024/09/03	109	70 - 130	109	70 - 130	<0.20	ug/L	NC	30		
9612060	cis-1,2-Dichloroethylene	2024/09/03	114	70 - 130	113	70 - 130	<0.50	ug/L	NC	30		
9612060	Ethylbenzene	2024/09/03	96	70 - 130	100	70 - 130	<0.20	ug/L	NC	30		
9612060	Methylene Chloride(Dichloromethane)	2024/09/03	107	70 - 130	105	70 - 130	<2.0	ug/L	NC	30		
9612060	Tetrachloroethylene	2024/09/03	101	70 - 130	103	70 - 130	<0.20	ug/L	NC	30		
9612060	Toluene	2024/09/03	102	70 - 130	104	70 - 130	<0.20	ug/L	NC	30		
9612060	Total Xylenes	2024/09/03					<0.20	ug/L	NC	30		
9612060	trans-1,3-Dichloropropene	2024/09/03	113	70 - 130	108	70 - 130	<0.40	ug/L	NC	30		
9612060	Trichloroethylene	2024/09/03	108	70 - 130	110	70 - 130	<0.20	ug/L	NC	30		
9612418	Fluoride (F-)	2024/09/03	92	80 - 120	98	80 - 120	<0.10	mg/L	19	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9612435	Dissolved Sulphate (SO4)	2024/09/04	103	75 - 125	96	80 - 120	<1.0	mg/L	3.5	20		
9613113	1,3-Dinitropyrene	2024/09/03	95	30 - 130	98	30 - 130	<0.4	ug/L	NC	40		
9613113	1,6-Dinitropyrene	2024/09/03	89	30 - 130	91	30 - 130	<0.4	ug/L	NC	40		
9613113	1,8-Dinitropyrene	2024/09/03	88	30 - 130	88	30 - 130	<0.4	ug/L	NC	40		
9613113	3,3'-Dichlorobenzidine	2024/09/03	100	30 - 130	103	30 - 130	<0.8	ug/L				
9613113	7H-Dibenzo(c,g) Carbazole	2024/09/03	95	30 - 130	97	30 - 130	<0.4	ug/L	NC	40		
9613113	Anthracene	2024/09/03	91	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(a)anthracene	2024/09/03	97	30 - 130	98	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(a)pyrene	2024/09/03	105	30 - 130	105	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(b/j)fluoranthene	2024/09/03	95	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(e)pyrene	2024/09/03	98	30 - 130	97	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(g,h,i)perylene	2024/09/03	92	30 - 130	93	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(k)fluoranthene	2024/09/03	93	30 - 130	92	30 - 130	<0.2	ug/L	NC	40		
9613113	Bis(2-ethylhexyl)phthalate	2024/09/03	100	30 - 130	101	30 - 130	<2	ug/L	NC	40		
9613113	Chrysene	2024/09/03	103	30 - 130	101	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,h)anthracene	2024/09/03	91	30 - 130	92	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,i)pyrene	2024/09/03	39	30 - 130	40	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,j) acridine	2024/09/03	99	30 - 130	100	30 - 130	<0.4	ug/L	NC	40		
9613113	Di-N-butyl phthalate	2024/09/03	103	30 - 130	104	30 - 130	<2	ug/L	NC	40		
9613113	Fluoranthene	2024/09/03	99	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
9613113	Indeno(1,2,3-cd)pyrene	2024/09/03	92	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Pentachlorophenol	2024/09/03	62	30 - 130	58	30 - 130	<1	ug/L				
9613113	Perylene	2024/09/03	95	30 - 130	96	30 - 130	<0.2	ug/L	NC	40		
9613113	Phenanthrene	2024/09/03	86	30 - 130	90	30 - 130	<0.2	ug/L	NC	40		
9613113	Pyrene	2024/09/03	99	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
9613310	Chromium (VI)	2024/09/03	99	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
9613859	Total Kjeldahl Nitrogen (TKN)	2024/09/04	117	80 - 120	102	80 - 120	<0.10	mg/L	8.0	20	106	80 - 120
9615356	Nonylphenol (Total)	2024/09/04	87	50 - 130	102	50 - 130	<0.001	mg/L	NC	40		
9615363	Nonylphenol Ethoxylate (Total)	2024/09/04	79	50 - 130	96	50 - 130	<0.005	mg/L	NC	40		
9615722	Total Cyanide (CN)	2024/09/04	94	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9616246	Total Oil & Grease	2024/09/04			98	80 - 110	<0.50	mg/L	0.51	25		
9616250	Total Oil & Grease Mineral/Synthetic	2024/09/04			96	65 - 130	<0.50	mg/L	1.0	25		
9616387	Naphthalene	2024/09/04	100	50 - 130	98	50 - 130	<0.050	ug/L	NC	30		
9616704	Mercury (Hg)	2024/09/05	105	75 - 125	104	80 - 120	<0.00010	mg/L	NC	20		
9616728	Total Suspended Solids	2024/09/06			97	80 - 120	<10	mg/L	14	20		
9621002	a-Chlordane	2024/09/07	86	50 - 130	98	50 - 130	<0.005	ug/L	NC	30		
9621002	Aldrin	2024/09/07	81	50 - 130	93	50 - 130	<0.005	ug/L	NC	30		
9621002	Dieldrin	2024/09/07	92	50 - 130	105	50 - 130	<0.005	ug/L	NC	30		
9621002	g-Chlordane	2024/09/07	86	50 - 130	98	50 - 130	<0.005	ug/L	NC	30		
9621002	Hexachlorobenzene	2024/09/07	76	50 - 130	86	50 - 130	<0.005	ug/L	NC	30		
9621002	Lindane	2024/09/07	86	50 - 130	99	50 - 130	<0.003	ug/L	NC	30		
9621002	Mirex	2024/09/07	73	30 - 130	79	30 - 130	<0.005	ug/L	2.0	40		
9621002	o,p-DDT	2024/09/07	99	50 - 130	112	50 - 130	<0.005	ug/L	NC	30		
9621002	p,p-DDT	2024/09/07	93	50 - 130	107	50 - 130	<0.005	ug/L	NC	30		
9621193	Total Aluminum (Al)	2024/09/06	101	80 - 120	100	80 - 120	<4.9	ug/L	11	20		
9621193	Total Antimony (Sb)	2024/09/06	102	80 - 120	102	80 - 120	<0.50	ug/L	4.3	20		
9621193	Total Arsenic (As)	2024/09/06	98	80 - 120	99	80 - 120	<1.0	ug/L	2.3	20		
9621193	Total Beryllium (Be)	2024/09/06	101	80 - 120	98	80 - 120	<0.40	ug/L	NC	20		
9621193	Total Cadmium (Cd)	2024/09/06	98	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
9621193	Total Chromium (Cr)	2024/09/06	102	80 - 120	103	80 - 120	<5.0	ug/L	NC	20		
9621193	Total Cobalt (Co)	2024/09/06	101	80 - 120	100	80 - 120	<0.50	ug/L	1.7	20		
9621193	Total Copper (Cu)	2024/09/06	105	80 - 120	106	80 - 120	<0.90	ug/L	2.7	20		
9621193	Total Iron (Fe)	2024/09/06	101	80 - 120	101	80 - 120	<100	ug/L	6.6	20		
9621193	Total Lead (Pb)	2024/09/06	96	80 - 120	95	80 - 120	<0.50	ug/L	4.0	20		
9621193	Total Manganese (Mn)	2024/09/06	97	80 - 120	98	80 - 120	<2.0	ug/L	2.8	20		
9621193	Total Molybdenum (Mo)	2024/09/06	104	80 - 120	103	80 - 120	<0.50	ug/L	2.8	20		
9621193	Total Nickel (Ni)	2024/09/06	96	80 - 120	97	80 - 120	<1.0	ug/L	4.7	20		
9621193	Total Phosphorus (P)	2024/09/06	102	80 - 120	101	80 - 120	<100	ug/L	NC	20		
9621193	Total Selenium (Se)	2024/09/06	101	80 - 120	100	80 - 120	<2.0	ug/L	NC	20		
9621193	Total Silver (Ag)	2024/09/06	97	80 - 120	97	80 - 120	<0.090	ug/L	NC	20		

Bureau Veritas Job #: C4R1466 Report Date: 2024/09/09

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9621193	Total Tin (Sn)	2024/09/06	100	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
9621193	Total Titanium (Ti)	2024/09/06	99	80 - 120	100	80 - 120	<5.0	ug/L	8.0	20		
9621193	Total Zinc (Zn)	2024/09/06	98	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
9621766	Phenols-4AAP	2024/09/09	104	80 - 120	98	80 - 120	<0.0010	mg/L	1.6	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

1R1466 024/08/	30 13:45	Bureau Veritas 6740 Campobello Road	I, Mississauga, Ontari	o Canada L5N 2l	.8 Tel:(905) 8	17-5700 Toll-free:800		:(905) 817-5	5777 www.	.bvna.com				CHAII		NONT-202	age [of (
		INVOICE TO:					RT TO:					PROJEC	INFORMATION:				
Company Na		C. 11 (2) 1		Company		EXP Serv	ices 1	nc		Q	uotation#:	C4149		Strewmz	in the second of	A T. W)rder #:
Attention:	Accounts Pa			Attention:	Har	nmond Lo				P.	0. #:	ENV	-BRM				
Address:	1595 Clark B			Address:	80	Juin, Ches	sey (O ex	Picc	CVM Pr	oject:	HAM-	23006348-F0				1009944
	Brampton ON				Je	nnifer. Ha	ymorn	Taex	0,00		oject Name:	Oa	kville			COC #:	Project Manager:
Tel:	(905) 793-98	1 dx. 1	05) 793-0641	Tel:	7-		Fax:		,	Si	e #:	420 S	outh Service R	d, ON			6.000
Email:	AP@exp.con	n; Karen.Burke@exp.co	m	Email:	han	nmond.lo@exp.c	om			Sa	mpled By:	Ee	_			C#1009944-01-01	Patricia Legette
MOE		KING WATER OR WATE ON THE BUREAU VERITA						(2-		ANALY	SIS REQUE	STED (PLEASE B	E SPECIFIC)			Turnaround Time (TAT Please provide advance notice	
Pog	ulation 153 (2011)		Other Regulations				<u>(e)</u>	w (5)	g g						Regular (S	Standard) TAT:	1
Table 1	Res/Park Me				Speci	al Instructions	- g -	Byla	(2009-						(will be applie	ed if Rush TAT is not specified):	\triangleright
Table 1	Ind/Comm Co		Sanitary Sewer By Storm Sewer Byla				Field Filtered (please circle): Metals / Hg / Cr VI	peu	Bylaw						100-00-0 0000 1070 000000000	T = 5-7 Working days for most tests	
Table 3	Agri/Other Fo		Municipality Hal				ple / g	g g	- E						Please note:	Standard TAT for certain tests such a t your Project Manager for details.	is BOD and Dioxins/Furans are >
Table			Reg 406 Table	10.1			ed H	8	Sew						Western Statements	c Rush TAT (if applies to entire s	
-		Other					iter tals	itary	E						Date Require		Time Required:
	In alreda Co	iteria on Certificate of Ana	turis Adana V s				Ne G	San	e Stor						Contraction of all the con-	nation Number:	Line requires.
<u> </u>							<u>=</u>	lto (Oakville 031)						# of Bottles	1	(call lab for #)
58	ample Barcode Label	Sample (Location) lo		Date Sampled	Time Sampl	ed Matrix		Hal 03)	03						# 01 Dollies	Cor	mments
1		MW 33	SD S	14/8/30	11:20	GW	NO	X	X						21	Please Ir	relude
2						-										coc in fi	nal
3																Coport	
4																100	
5								/									-
6																	
7																	
8							×										
9																	
10																	
	* RELINQUISHED BY	'- (Signature/Print)	Date: (YY/MM/	DD) Tin	20	DECENTED I	BY: (Signature/	(Deima)		Date: (YY/MM/	DD)		#:=== ··		1.0		
		71	24/8/			NECEIVED E	Day 4 G	2		Date: (TT/MM/	00)	Time	# jars used and not submitted	Time Sensitive		tory Use Only Custode Custode	y Seal Yes No
	265	- Edwin Chussell	177		11	-			e	Der 19	(1/2)	1/45		Time Sensitive	Temperati	ure (°C) on Recei Custodi Prese Inta	ent (
ACKNOWLED	GMENT AND ACCEPTAN	N WRITING, WORK SUBMITTED NCE OF OUR TERMS WHICH AR RELINQUISHER TO ENSURE TH	E AVAILABLE FOR VI	EWING AT WWW	BVNA.COM/EI	NVIRONMENTAL-LABO	DRATORIES/RE	SOURCES	COC-TERM	MS-AND-CONDI	TIONS.			ES MUST BE KEPT CO	OOL (< 10° C) I		e: Bureau Veritas Yellow: Cl

Bureau Veritas Canada (2019) Inc.

Client Project #: HAM-23006348-F0

Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON

Your P.O. #: ENV-BRM Sampler Initials: EC

Exceedance Summary Table – Oakville Storm Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW332D	ABNA08-09	Total Manganese (Mn)	50	180	2.0	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Halton Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix F – Construction and Post-Construction Flow Rate Calculations

APPENDIX G: Long-Term Flow Rate

420 & 468 Service Road East, Oakville GTR-24006331-A0

Table G-1: Flow from Under-Slab Drain System

Parameters	Unit	Block 1	Block 2	Block 4
Geological Formation	-	Glacial Deposit	Glacial Deposit	Glacial Deposit
Ground Elevation	mASL	105.76	104.99	103.98
Lowest Top Slab Elevation	mASL	95.00	95.00	92.00
Highest Groundwater Elevation	mASL	103.74	103.77	102.50
Lowest Footing Elevation	mASL	93.50	93.50	90.50
Base of the Water-Bearing Zone	mASL	78.00	78.00	78.00
Height of Static Water Table Above the Base of the Water-Bearing Zone	Э	25.74	25.77	24.50
Dewatering Target Elevation	mASL	94.50	94.50	91.50
Height of Target Water Level Above the Base of Water-Bearing Zone	m	16.50	16.50	13.50
Hydraulic Conductivity (Geometric K)	m/s	9.0E-07	9.0E-07	9.0E-07
Length of Excavation	m	135.6	138.5	114.8
Width of Excavation	m	125.3	109.5	89.1
Equivalent Radius (equivalent perimeter)	m	83.03	78.94	64.90
Method to Calculate Radius of Influence	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)	S	730	730	730
Time (seconds)	S	63072000	63072000	63072000
Specific Yield		0.03	0.03	0.03
Cooper-Jacob's Radius of Influence from Sides of Excavation	m	331.09	331.28	323.01
Radius of Influence	m	414.12	410.22	387.91
Dewatering Flow Rate (unconfined radial flow component)	m ³ /day	59.35	58.10	57.13
Factor of Safety	-	1.50	1.50	1.50
Dewatering Flow Rate Without Safety Factor	m ³ /day	59	58	57
Dewatering Flow Rate With Safety Factor	m ³ /day	89	87	86

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_{w}=rac{\pi K(H^{2}-h^{2})}{Ln~[rac{R_{o}}{r_{e}}]}$$
 (Based on the Dupuit-Forcheimer Equation)
$$r_{e}=rac{a+b}{\pi} \qquad R_{o}=R_{cj}+r_{e}$$

Where

 Q_w = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 h_{w} = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

R_o=Radius of influence (m)

re=Equivalent perimeter (m)

APPENDIX F: Short-Term Flow Rate

420 & 468 Service Road East, Oakville GTR-24006331-A0

Table F-1: Flow from Under-Slab Drain System

Parameters	Symbols	Unit	Block 1	Block 2	Block 4
Geological Formation	-	-	Glacial Deposit	Glacial Deposit	Glacial Deposit
Nearest Borehole/Monitoring Wells			MW332S	MW302	MW337
Ground Elevation	-	mASL	105.76	104.99	103.98
Lowest Top Slab Elevation	-	mASL	95.00	95.00	92.00
Highest Groundwater Elevation	-	mASL	103.74	103.77	102.50
Lowest Footing Elevation	-	mASL	93.50	93.50	90.50
Base of the Water-Bearing Zone	-	mASL	78.00	78.00	78.00
Height of Static Water Table Above the Base of the Water-Bearing Zone	Н	m	25.74	25.77	24.50
Dewatering Target Elevation	-	mASL	92.50	92.50	89.50
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	14.50	14.50	11.50
Dupuit Check (> 45%)		-	56%	56%	47%
Hydraulic Conductivity (Geometric K)	К	m/s	9.0E-07	9.0E-07	9.0E-07
Length of Excavation	-	m	135.6	138.5	114.8
Width of Excavation	-	m	125.3	109.5	89.1
Equivalent Radius (equivalent perimeter)	r _e	m	83.03	78.94	64.90
Method to Calculate Radius of Influence	-	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)	t	S	365	365	365
Time (seconds)	t	S	31536000	31536000	31536000
Specific Yield	Sy		0.03	0.03	0.03
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	234.11	234.25	228.40
Radius of Influence	Ro	m	317.14	313.19	293.31
Dewatering Flow Rate (unconfined radial flow component)	Q	m ³ /day	82.47	80.47	75.82
Factor of Safety	fs	-	2.00	2.00	2.00
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m ³ /day	165	161	152
Precipitation Event	-	25	25	25	25
Volume from Precipitation	-	m ³ /day	425	379	256
Dewatering Flow Rate Without Safety Factor (including stormwater collection)	-	m³/day	507	460	331
Dewatering Flow Rate With Safety Factor (including stormwater collection)	-	m³/day	590	540	407

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_{w}=rac{\pi K(H^{2}-h^{2})}{Ln~[rac{R_{o}}{r_{e}}]}$$
 (Based on the Dupuit-Forcheimer Equation)
$$r_{e}=rac{a+b}{\pi} \qquad R_{o}=R_{cj}+r_{e}$$

Where:

 Q_w = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

 $H = Height \ of \ static \ water \ table \ above \ base \ of \ water-bearing \ zone \ (m)$

 h_w = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

R_o=Radius of influence (m)

re=Equivalent perimeter (m)

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix G – Architectural Drawings

PROJECT STATISTICS	BLOCK 1			
*GCA	UNITS	PARKING (0.7sp./u.)	FSI	
		PROVIDED: 1,829 sp.	GROSS: $ = 217,082 \text{ M2} $ $ \pm 42,673 \text{ m2} $ (GROSS SITE AREA) $ 5.0)$) X FSI
217,082 M2	2,832 units	REQUIRED: 1,982 sp.	NET: $ = 217,082 \text{ M2} $ $ \pm 32,915 \text{ m2} $ (GROSS SITE LESS ROAD) $ = 6.9 \text{ M} $	X FSI
			NET NET: $ = 217,082 \text{ M2} $ $ \pm 24,949 \text{ m2} $ (GROSS SITE LESS ROAD LESS PARK) $ = 8.7 \text{ X} $	X FSI
PROJECT STATISTICS	BLOCK 2			
*GCA	UNITS	PARKING (0.7sp./u.)	FSI	
		PROVIDED: 1,740 sp.	GROSS: $ = 205,706 \text{ M2} $ $ \pm 36,314 \text{ m2} $ $ (GROSS SITE AREA) $ $ 5.6)$	S X FSI
205,706 M2	2,658 units	REQUIRED: 1,861 sp.	(dhoss site eless hoad)	' X FSI
			NET NET:	X FSI
	BLOCK 4			
*GCA	UNITS	PARKING (0.7sp./u.)	FSI	
		PROVIDED: 964 sp.	100,000,000	X FSI
129,998 M2	1,587 units	REQUIRED: 1,111 sp.	±21,743 m2 (GROSS SITE LESS ROAD) 5.9)	X FSI
TOTAL GCA	TOTAL UNITS	TOTAL PARKING (0.7sp./u.)	±13,255 m2 (GROSS SITE LESS ROAD LESS PARK) 9.8 >	X FSI
552,786 M2	7,077 units	PROVIDED: 4,533 sp. (0.64 sp/unit)	NET: $= 552,786 \text{ M2}$ $\pm 81214 \text{ m2}$	X FSI
		REQUIRED: 4,954 sp.	NET NET:	X FSI

^{*}GCA DOES NOT INCLUDE ABOVE AND BELOW GRADE PARKING.

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

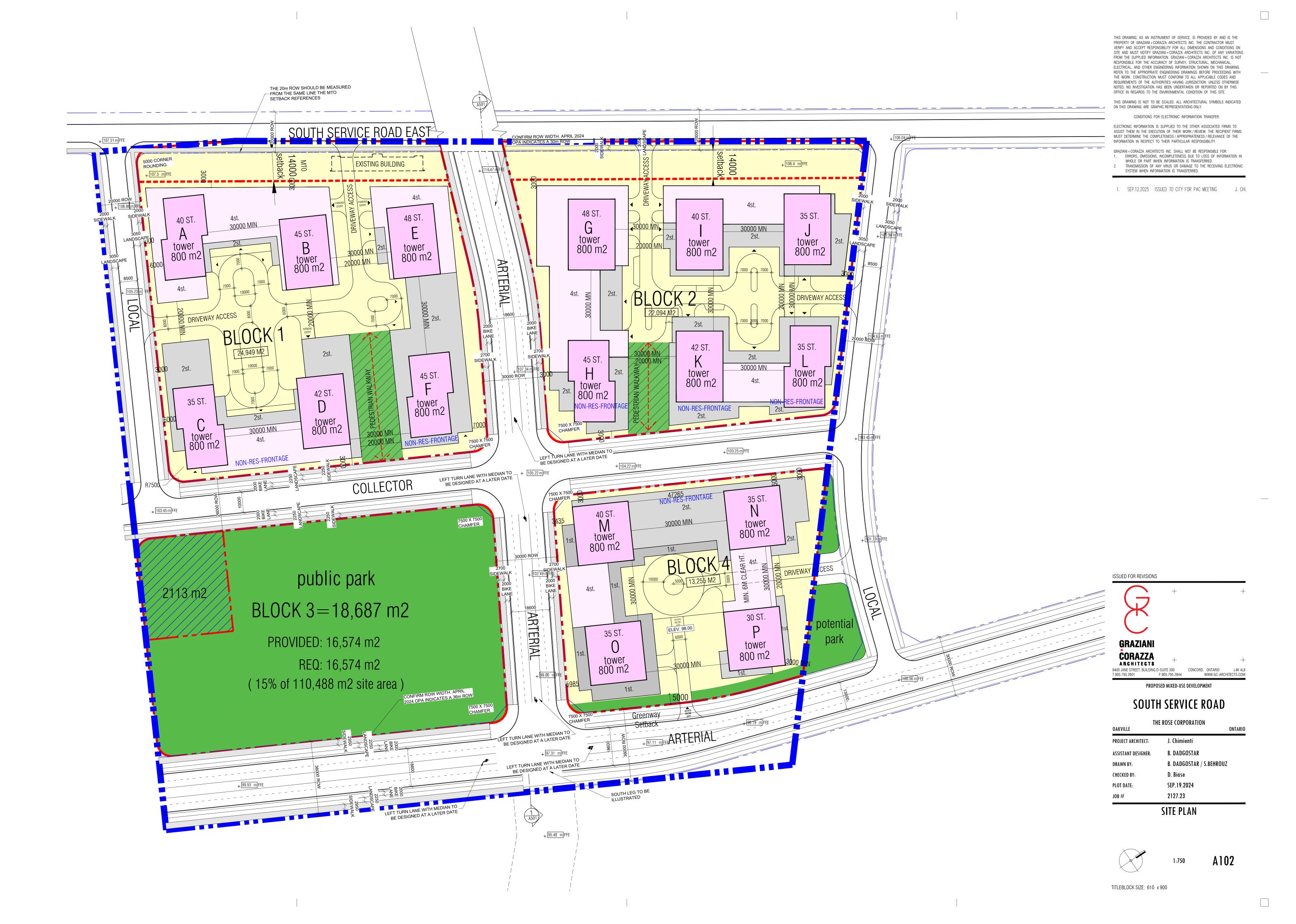
CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.


PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE ROSE CORPORATION

PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

A101

3000 P3: ±444 SPACES/LEVEL P3: ±533 SPACES/LEVEL 6000 ±320 SPACES/LEVEL public park BLOCK 3

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE

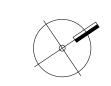
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

SYSTEM WHEN INFORMATION IS TRANSFERRED.


PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

_				_			_
	THF	ROSE	COR	POR	ΔΤΙ	ON	

OAKVILLE	E KUSE CUKPUKATIUN ONTARI
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

P4-P3 UNDERGROUND PLAN

PARKING LEGEND

1:750

A201

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE ROSE CORPORATION

J. Chimienti

B. DADGOSTAR

SEP.19.2024

D. Biase

2127.23

P2 UNDERGROUND PLAN

TITLEBLOCK SIZE: 610 x 900

B. DADGOSTAR / S.BEHROUZ

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

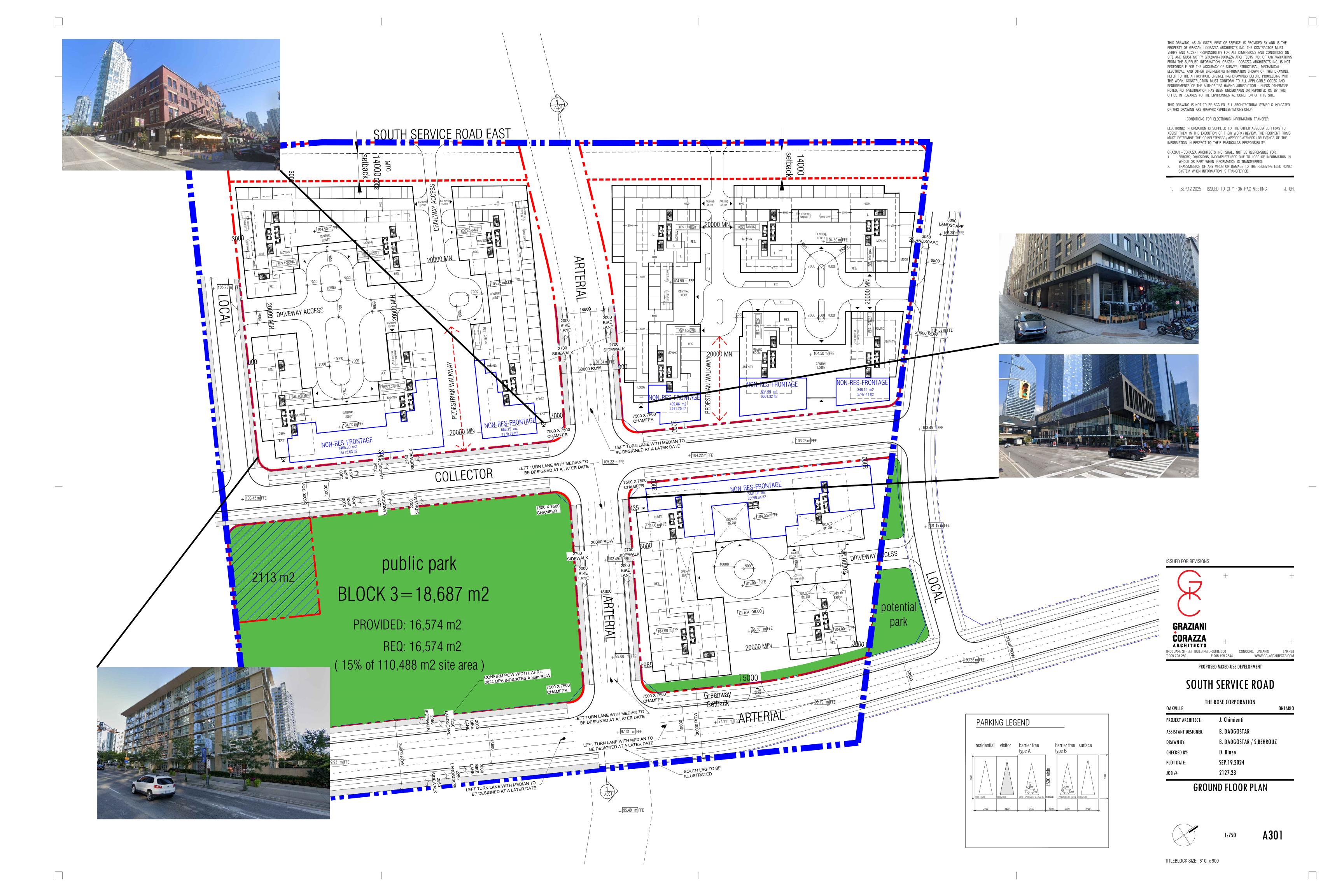
GRAZIANI

CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T.905.795.2601

CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

SOUTH SERVICE ROAD


PROPOSED MIXED-USE DEVELOPMENT

THE ROSE CORPORATION

PROJECT ARCHITECT: J. Chimienti B. DADGOSTAR ASSISTANT DESIGNER: B. DADGOSTAR / S.BEHROUZ D. Biase CHECKED BY: SEP.19.2024 PLOT DATE: 2127.23

P1 UNDERGROUND PLAN

PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

THE ROSE CORPORATION

J. Chimienti

B. DADGOSTAR

D. Biase

2127.23

2ND FLOOR PLAN

TITLEBLOCK SIZE: 610 x 900

SEP.19.2024

B. DADGOSTAR / S.BEHROUZ

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS

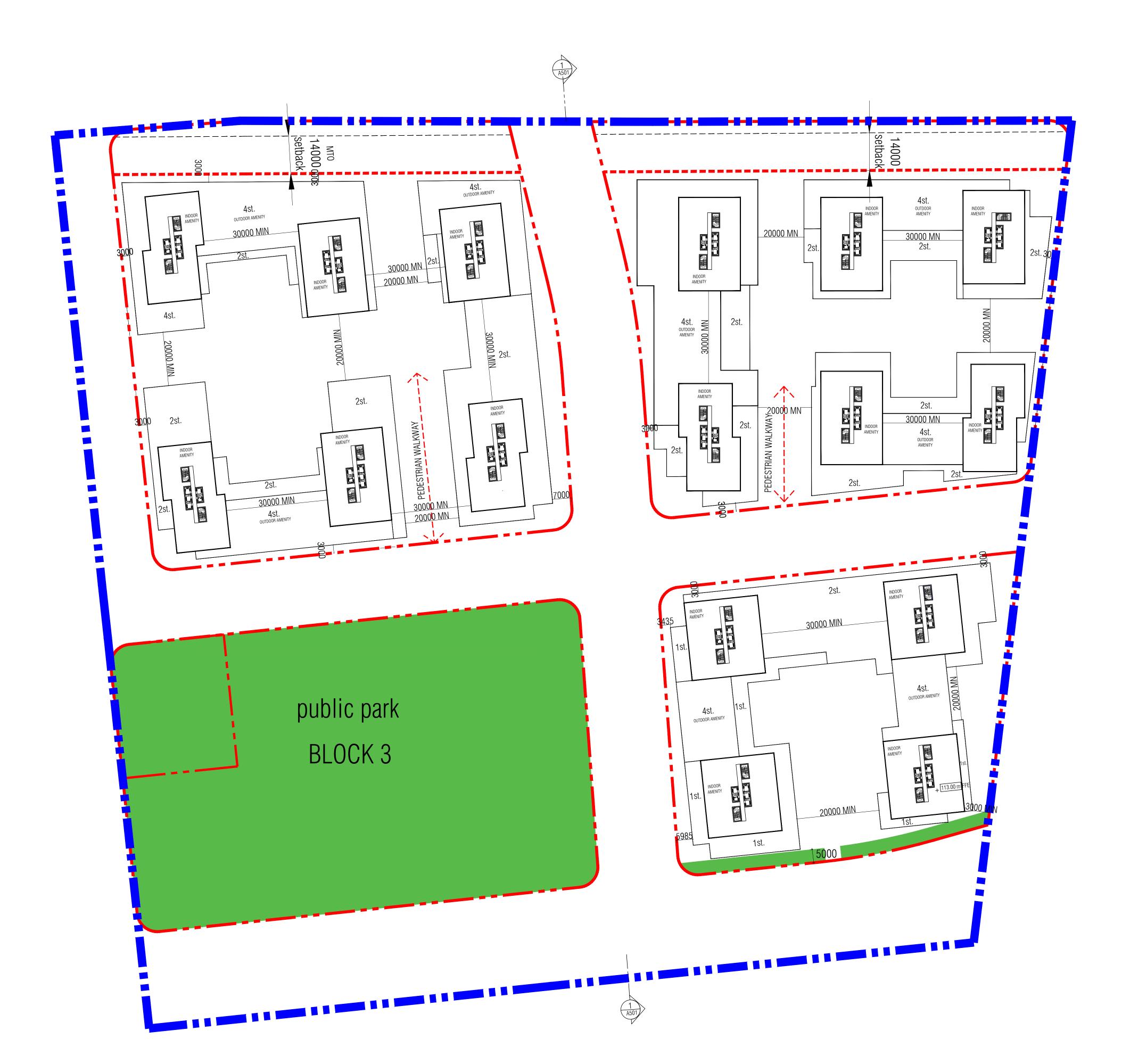
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

GRAZIANI CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T 905.795.2601
F.905.795.2844
CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT


SOUTH SERVICE ROAD

THE ROSE CORPORATION

PROJECT ARCHITECT: J. Chimienti B. DADGOSTAR ASSISTANT DESIGNER: B. DADGOSTAR / S.BEHROUZ D. Biase CHECKED BY: SEP.19.2024 PLOT DATE: 2127.23

3RD-4TH FLOOR PLAN

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO

ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

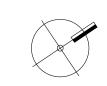
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN

WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.


PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

• • • •	_	•••	•	-	•	_
THE	ROSE	COR	PO	RATI	ON	

OAKVILLE	THE ROSE CORPORATION ON	TAR
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB#	2127.23	

5TH-6TH FLOOR PLAN

1:750

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO

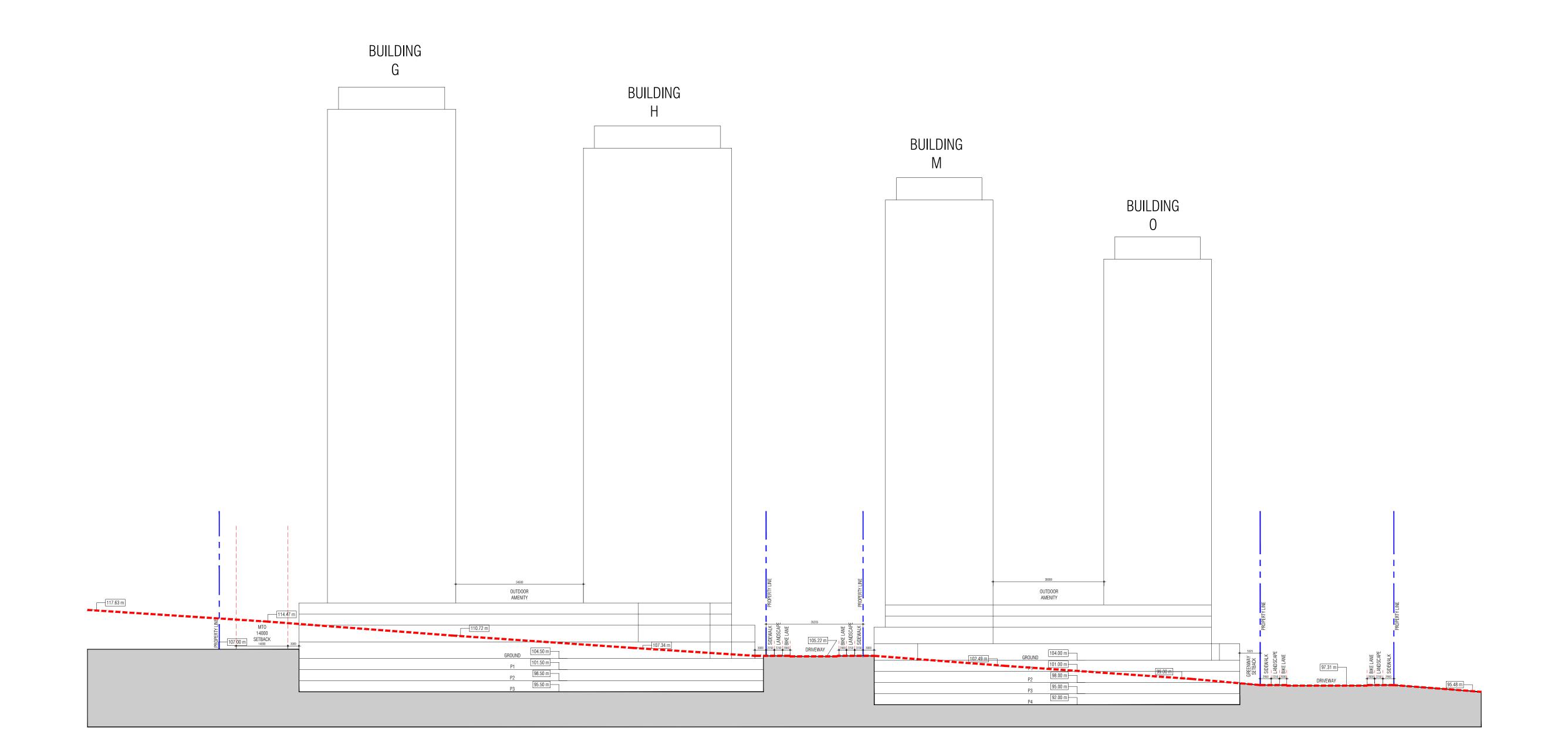
ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT


SOUTH SERVICE ROAD

TUE	DUCE	CODDODATION	

Ī	HE ROSE CORPORATION
OAKVILLE	ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

TYPICAL TOWER FLOOR PLAN

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

•	THE ROSE CORPORATION	
AKVILLE		ONTARIO
OJECT ARCHITECT:	J. Chimienti	
SISTANT DESIGNER:	B. DADGOSTAR	
AAWN BY:	B. DADGOSTAR / S.BEHROUZ	
IECKED BY:	D. Biase	
OT DATE:	SEP.19.2024	
B#	2127.23	

SECTION

600 A501

BLOCK 2 N-S ROAD BLOCK 3 PARK

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE RUSE CURPURATION

	THE ROSE CORPORATION	
OAKVILLE	ON	TAR
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW

AERIAL VIEW LOOKING NORTH

N.T.S **A601**

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING.
REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

ISSUED FOR REVISIONS

GRAZIANI
CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T.905.795.2601
F.905.795.2844
CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE ROSE CORPORATION

J. Chimienti PROJECT ARCHITECT: B. DADGOSTAR ASSISTANT DESIGNER: B. DADGOSTAR / S.BEHROUZ D. Biase CHECKED BY: SEP.19.2024 2127.23

MASSING VIEW

AERIAL VIEW LOOKING WEST

A602 N.T.S

BLOCK 3 PARK

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

ISSUED FOR REVISIONS

GRA7IANI

CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T.905.795.2601

F.905.795.2844

CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE ROSE CORPORATION

OAKVILLE	ONTAR	10
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB#	2127.23	

MASSING VIEW

AERIAL VIEW LOOKING SOUTH

N.T.S **A603**

BLOCK 4 BLOCK 2 BLOCK 3 PARK BLOCK 1

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

,	THE ROSE CORPORATION
OAKVILLE	ONTARI
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

MASSING VIEW

AERIAL VIEW LOOKING EAST

N.T.S **A604**

BLOCK 2 BLOCK 1 BLOCK 4 BLOCK 3 PARK

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE. OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

•	•	•	•	•	•	•	•	•	•	•	•	•	J

Ī	THE ROSE CORPORATION
OAKVILLE	ONTARI
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

MASSING VIEW VIEW LOOKING NORTH

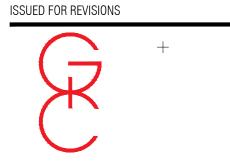
A605 N.T.S

BLOCK 1 BLOCK 2 BLOCK 4 BLOCK 3 PARK

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING.
REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH
THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND
REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE
NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:


ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

GRAZIANI
CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T.905.795.2601
F.905.795.2844
CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

MASSING VIEW

VIEW LOOKING WEST

A606 N.T.S

BLOCK 1 BLOCK 4 BLOCK 2

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

	THE ROSE CORPORATION	
OAKVILLE		ONTARI
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW VIEW LOOKING SOUTH

N.T.S **A607**

BLOCK 2 BLOCK 4 BLOCK 1 BLOCK 3 PARK

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING.
REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

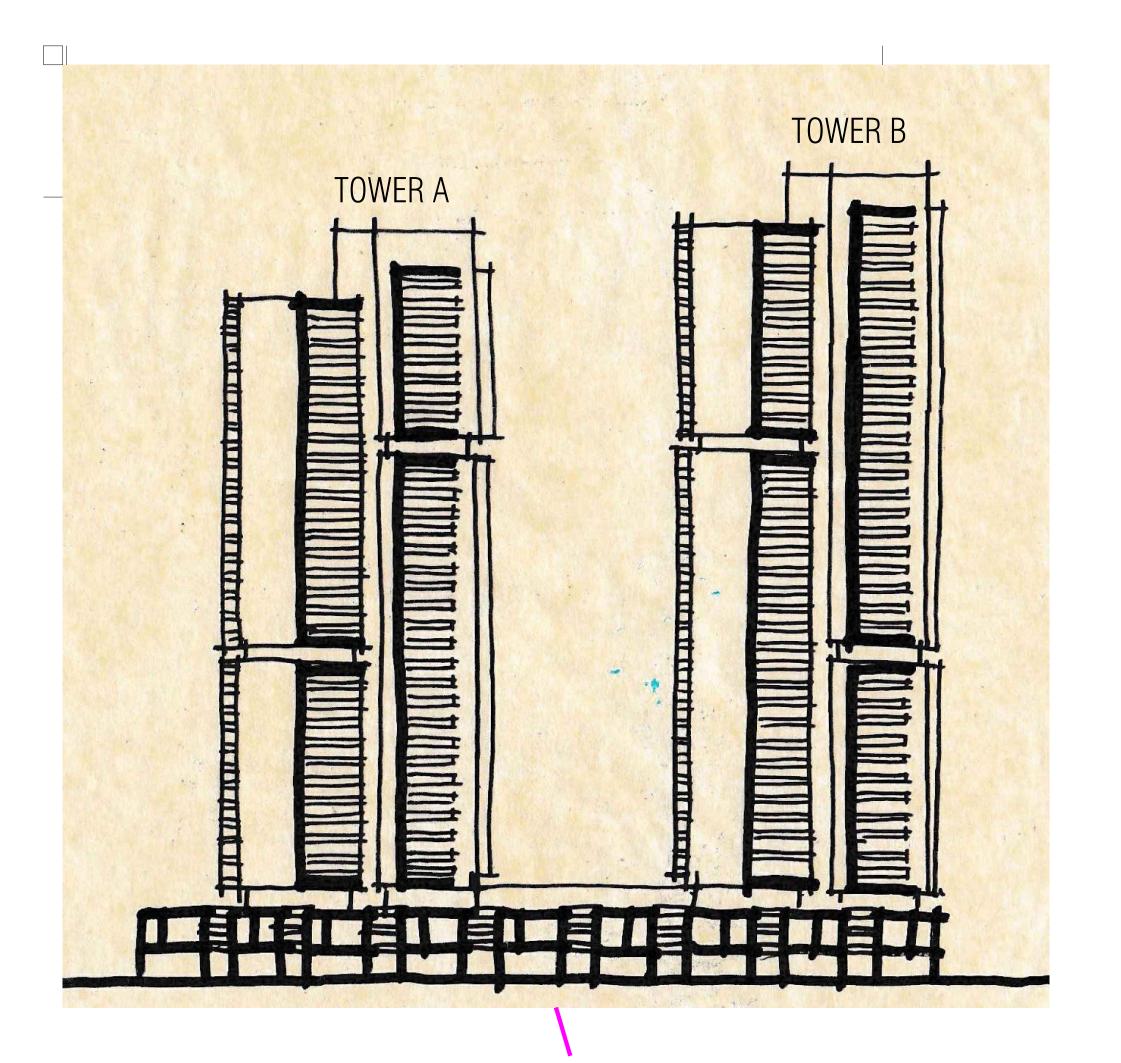
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

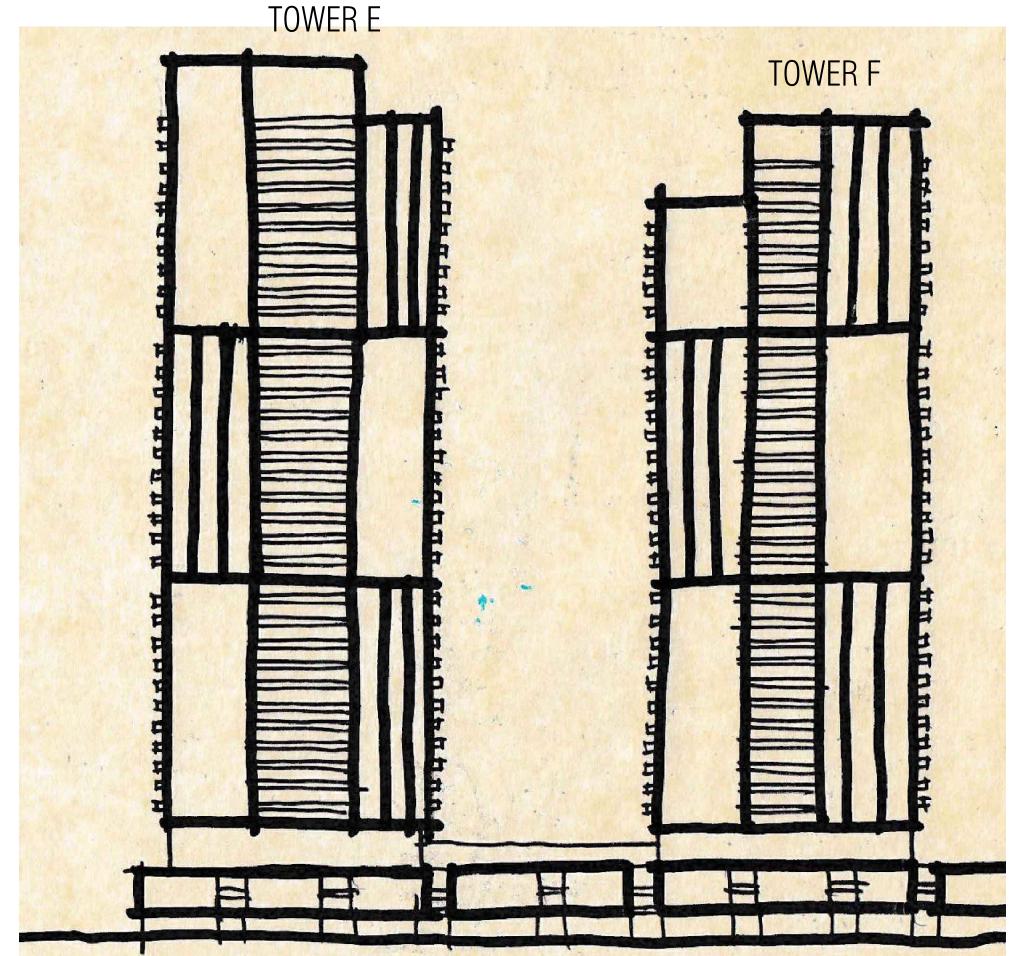
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

ISSUED FOR REVISIONS GRAZIANI
CORAZZA
ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300
T.905.795.2601
F.905.795.2844
CONCORD, ONTARIO
L4K 4L8
WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT


SOUTH SERVICE ROAD


THE ROSE CORPORATION J. Chimienti PROJECT ARCHITECT: B. DADGOSTAR ASSISTANT DESIGNER: B. DADGOSTAR / S.BEHROUZ DRAWN BY: D. Biase CHECKED BY: SEP.19.2024 PLOT DATE: 2127.23

MASSING VIEW

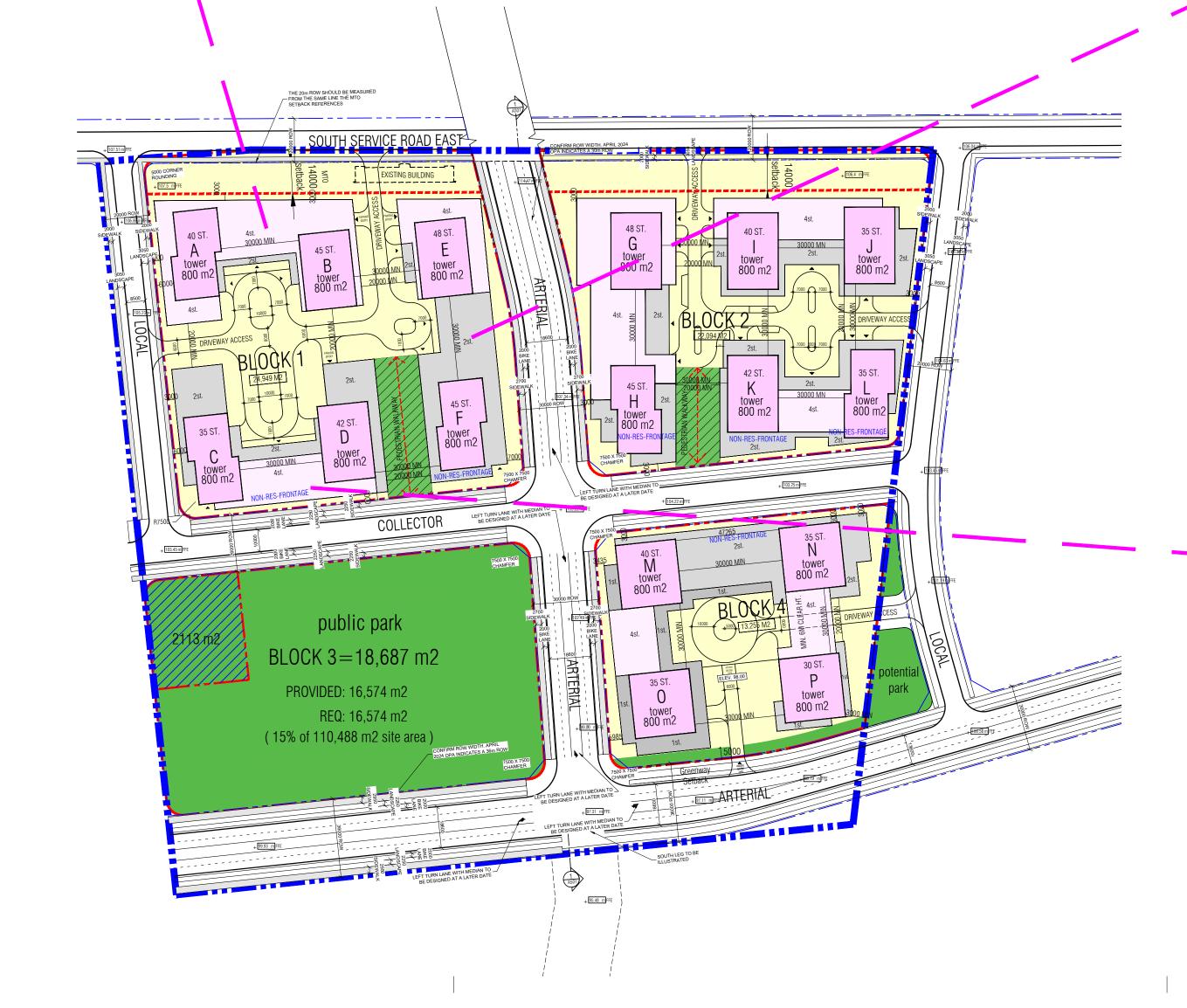
VIEW LOOKING EAST

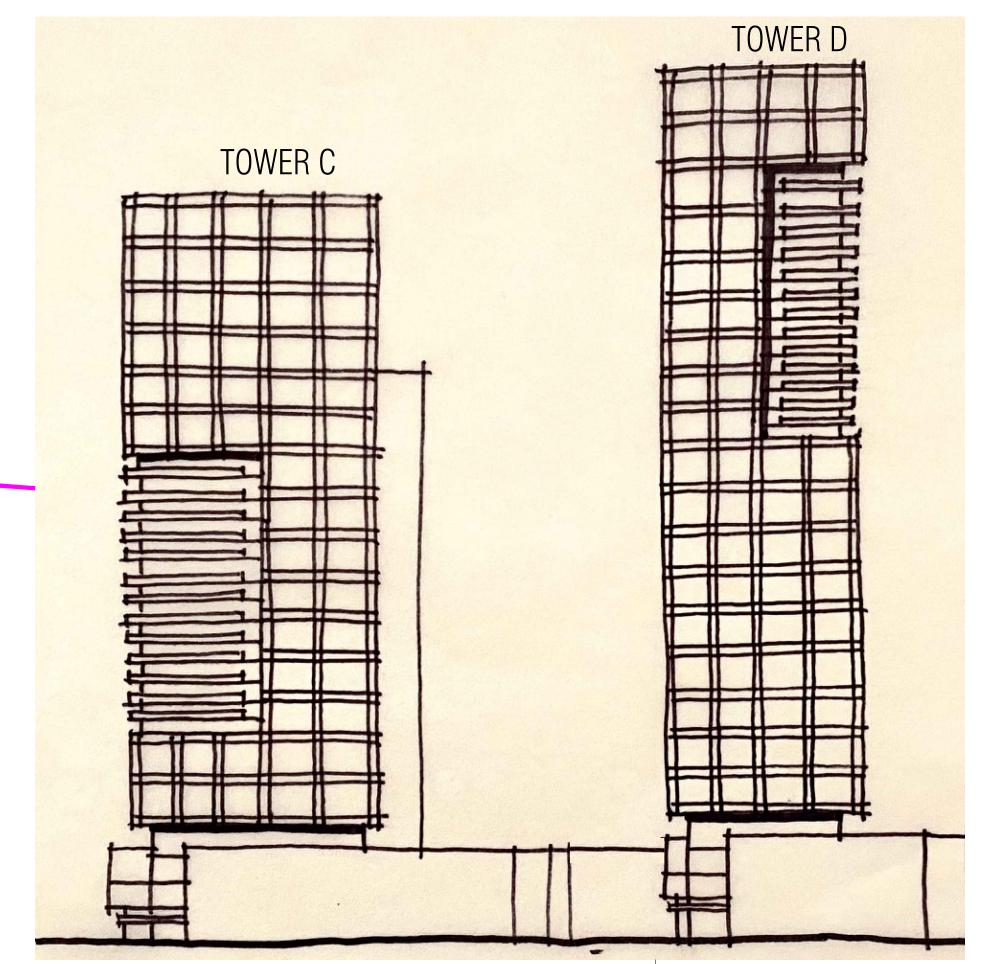
A608

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:


ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.


GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

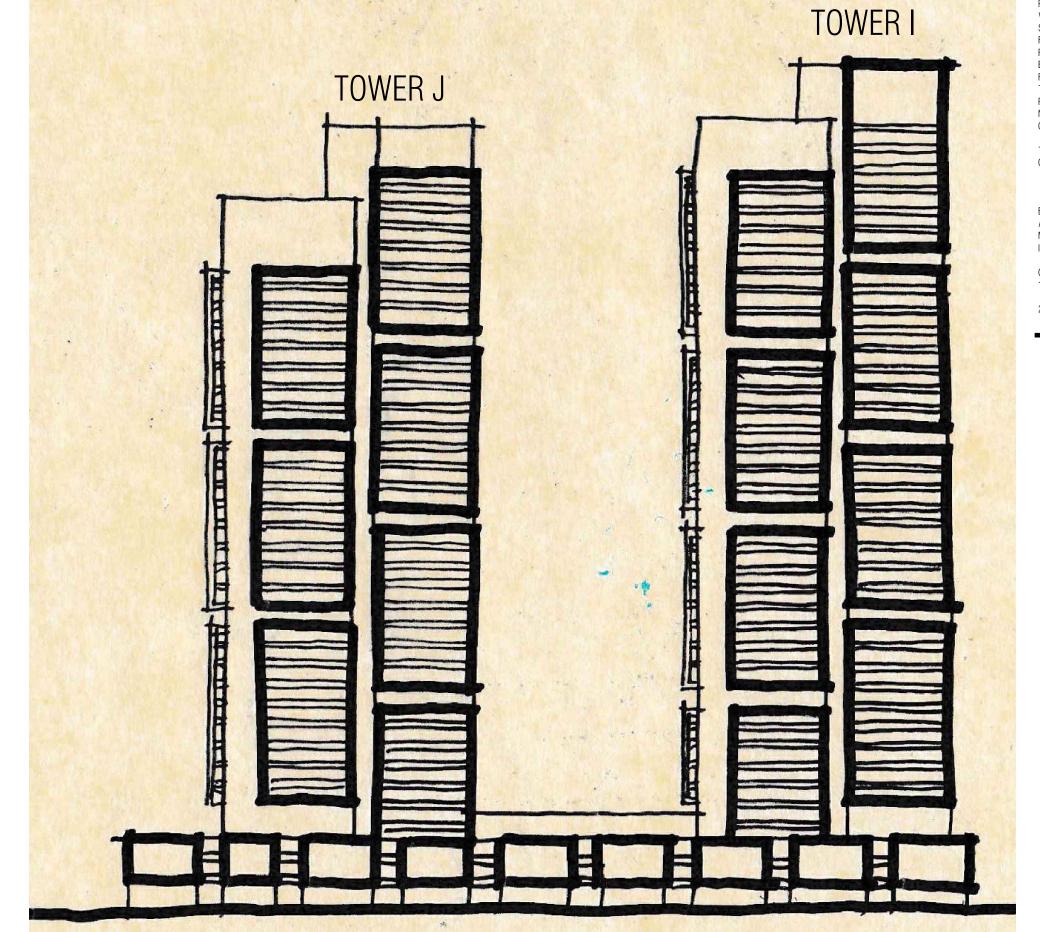
THE	ROSE	CORPORATION

OAKVILLE	THE ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23
	SKETCH IMAGES

SKETCH IMAGES BLOCK 1

N.T.S Δ60

TOWER G TOWER H


public park

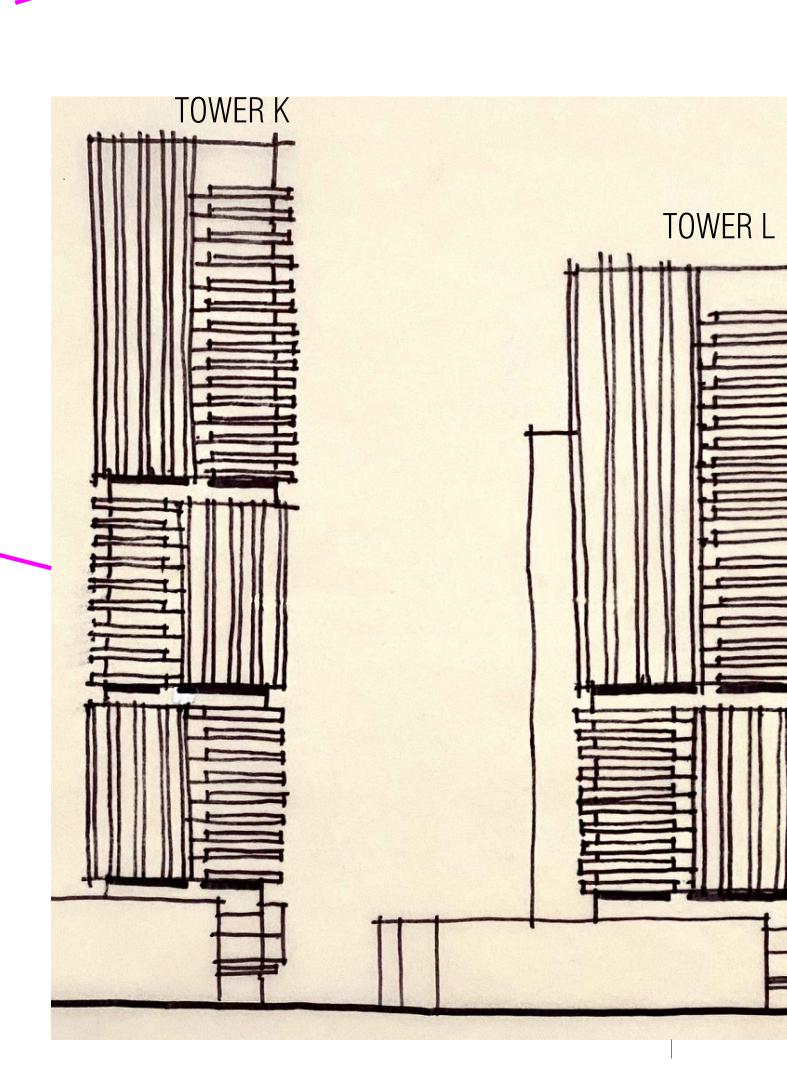
BLOCK 3=18,687 m2

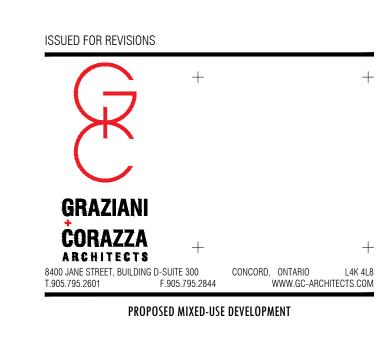
PROVIDED: 16,574 m2

(15% of 110,488 m2 site area)

REQ: 16,574 m2

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

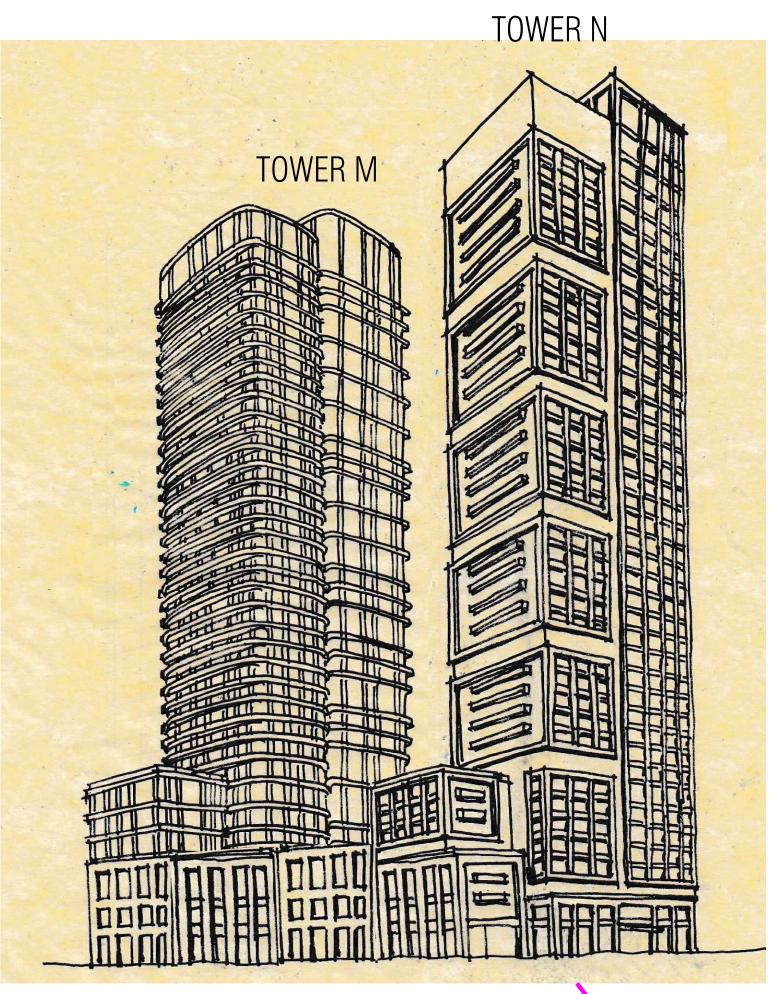

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

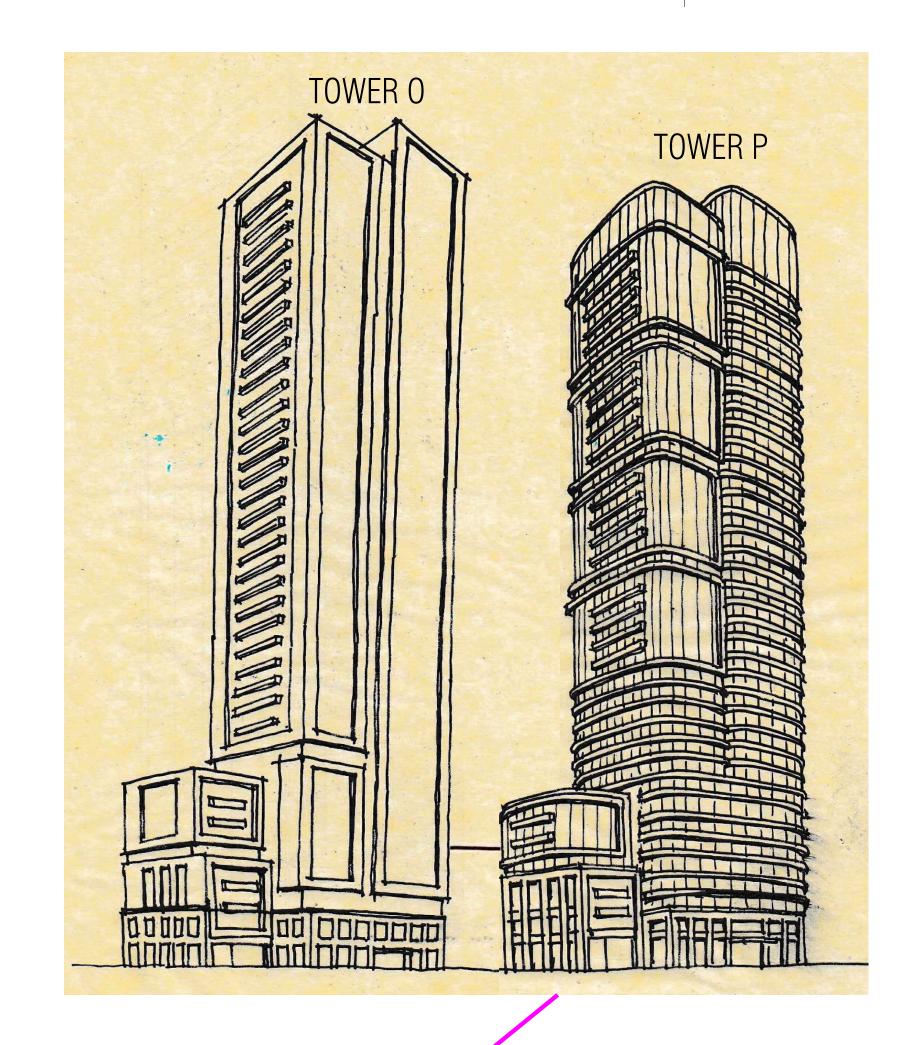

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.


SOUTH SERVICE ROAD


THE ROS	E CORF	PORAT	ION

OAKVILLE	ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23
Ç K	TETCH IMAGES

2KEICH IMAGE2 BLOCK 2

A610 N.T.S

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE

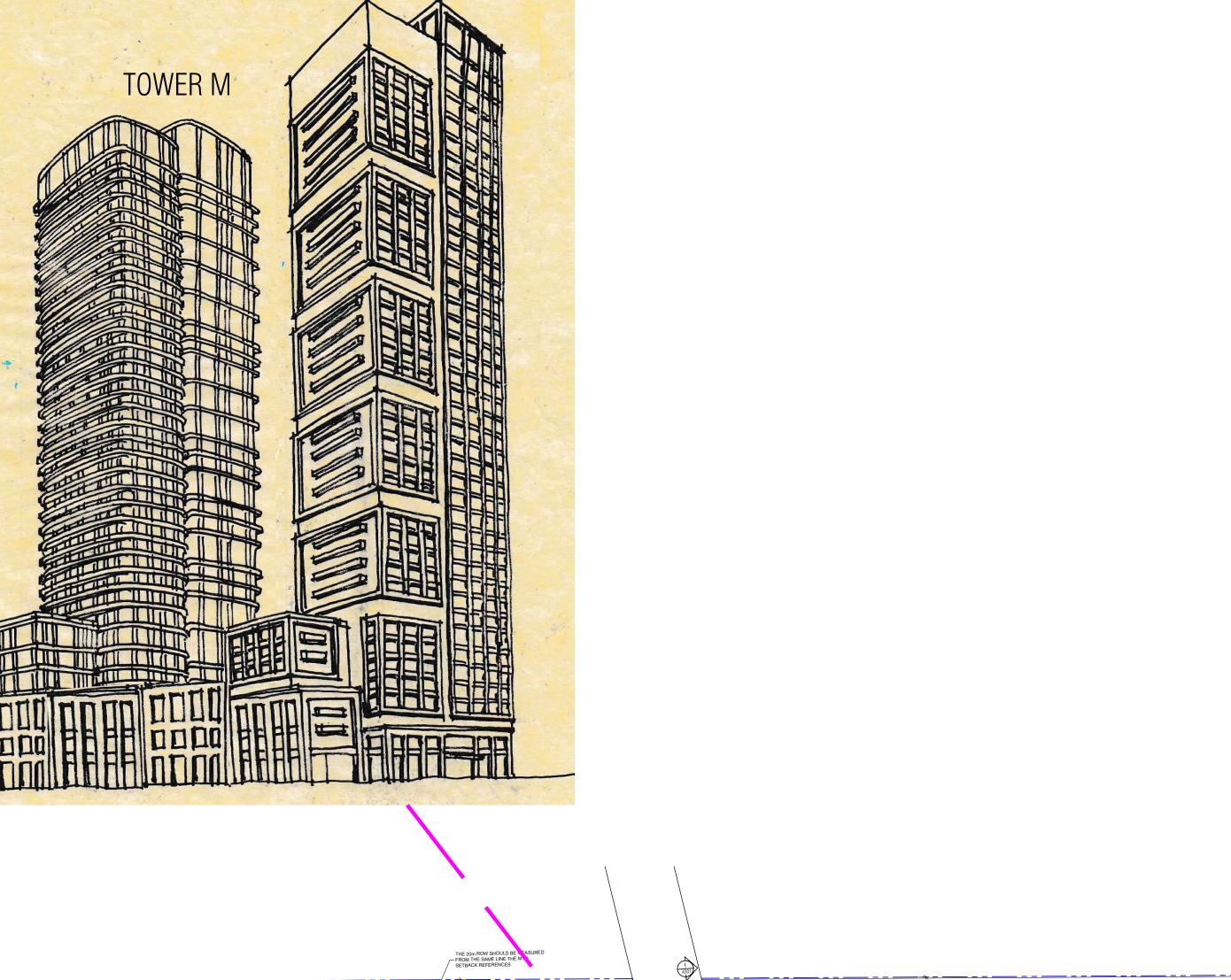
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

SOUTH SERVICE ROAD


ΗE	ROSE	CORPORATION	

THE ROSE CORPORATION OAKVILLE ONTARIO	
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB#	2127.23

SKETCH IMAGES BLOCK 4

A611 N.T.S

TITLEBLOCK SIZE: 610 x 900

public park

BLOCK 3=18,687 m2

REQ: 16,574 m2

PROVIDED: 16,574 m2

(15% of 110,488 m2 site area)