

DRAFT PRELIMINARY HYDROGEOLOGICAL INVESTIGATION

157 and 165 Cross Avenue, Oakville, Ontario

Client

Cross Realty Incorporated 1-90 Wingold Avenue Toronto, Ontario, M6B 1P5

Project Number

BIGC-ENV-623A

Prepared By:

B.I.G. Consulting Inc. 5500 Tomken Road, Unit 12 Mississauga, ON, L4W 2Z4 T: 416.214.4880 www.bigconsutlinginc.com

Date Submitted

October 26, 2023

Table of Contents

1	Intro	oduction	1
	1.1	Project Description	1
	1.2	Project Objectives	1
	1.3	Scope of Work	
2	Regio	onal Setting	3
	2.1	Regional Physiography	3
	2.2	Regional Geology	3
	2.3	Regional Hydrogeology	3
3	Site	Setting	4
	3.1	Site Topography and Drainage	[∠]
	3.2	Local Surface Water Features	
	3.3	Ministry of Environment, Conservation and Parks Water Well Review	4
	3.4	Permit to Take Water and Environmental Activity and Sector Registry Search	4
4	Field	l Program	
	4.1	Borehole and Monitoring Well Details	5
	4.2	Site Specific Overburden Geology	5
	4.3	Water Level Monitoring	б
	4.4	Hydraulic Conductivity Testing	б
	4.5	Groundwater Sampling	7
5	Tem	porary Construction Dewatering	8
	5.1	Construction Dewatering Requirements	
	5.2	Construction Dewatering Flow Rate Assumptions	
	5.3	Dewatering Flow Rate Equation	
	5.4	Radius of Influence	9
	5.5	Results of Construction Dewatering Flow Rate Estimates	10
6	Long	g Term Discharge Estimate	
	6.1	Long-Term Dewatering Assumptions	11
	6.2	Radius of Influence	11
	6.3	Long-Term Perimeter Drain Flow Rate Estimate	11
7	Pote	ntial Groundwater Impacts	13
	7.1	Impacts to Nearby Groundwater Users	13
	7.2	Impacts Due to Construction Dewatering	13
8	Wate	er Taking and Discharge Permits	
	8.1	EASR and PTTW	14
9	Conc	clusions	15
10	Limit	tations	16
11	Refe	rences	17

List of Figures

Figure 1 Site Location Map Figure 2 Physiographic Regions of Southern Ontario Figure 3 Surficial Geology of Southern Ontario Figure 4 **MECP Water Well Record Locations** Figure 5 PTTW and EASR Record Locations Figure 6 Borehole/Monitoring Well Location Plan Figure 7 Geological Cross Section A-A' Figure 8 **Groundwater Contour Map**

List of Appendices

Appendix A Borehole Logs

Appendix B MECP WWR, PTTW and EASR Summary Tables

Appendix C SWRT Results

Appendix D Water Quality Laboratory Certificate of Analysis and Chain of Custody

Appendix E Construction Dewatering Estimate Rate Calculations
Appendix F Long Term Drainage Flow Rate Estimate Calculations

1 Introduction

1.1 Project Description

B.I.G. Consulting Inc. (BIG) was retained by Cross Realty Incorporated (Client), to conduct a Preliminary Hydrogeological Investigation for the site located at 157 and 165 Cross Avenue, Oakville, Ontario (Site).

The Site is located north of Cross Avenue and to the west of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 9,650 m² in size and is currently occupied by a single-storey commercial building at 157 Cross Avenue and a three (3)-storey commercial building at 165 Cross Avenue (Site buildings). The areas surrounding the Site building are covered with asphalt paved parking and landscaping.

Based on the architectural drawings prepared by Teeple Architects Inc. (TAI), dated March 20, 2023, BIG understands that the proposed development will consist of two (2) condominium buildings. As per latest communication with the client in September 2023, the proposed development will consist of seven (7) or eight (8) levels of underground parking structure. For conservative purpose, the dewatering estimates in this investigation focus on eight (8) levels of underground parking.

It should be noted that the dewatering estimated provided in this report are based on the conceptual building information available at this time. If design details are changed (including any changes to excavation depth), the dewatering estimates must be revised to include the final layout of the development.

This report addresses the hydrogeological aspects of the proposed project. Reports for the Environmental and Geotechnical Investigations will be issued under separate covers. The field investigations for the geotechnical, environmental and hydrogeological investigations were carried out concurrently.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation were to:

- a) Establish the subsurface geological and hydrogeological conditions at the expected foundation elevation;
- b) Provide preliminary assessment of anticipated construction dewatering flow rates for a generic construction scenario;
- c) Assess groundwater quality and compare the results to both Combined/Sanitary Sewer Use Bylaw for the Regional of Halton and Storm Sewer Use Bylaw for the Town of Oakville;
- d) Assessment of any potential construction dewatering flow rates;
- e) Assessment of foundation sub-drain discharge volumes; and
- f) Prepare a Preliminary Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives noted above, BIG proposed and initiated the following scope of work:

- a) Review available geological and hydrogeological information of for the subject Site;
- b) Review of the Ministry of Environment, Conservation and Parks (MECP) Water Well Records;
- c) Advancement of nine (9) boreholes (BH1, BH2D, BH2S, BH3 to BH5, BH6D, BH6S and BH7) to a maximum depth of 32.0 m below ground surface (bgs) and installation of nine (9) monitoring wells (MW1, MW2D, MW2S, MW3 to MW5, MW6D, MW6S and MW7);

- d) Perform single well response tests (SWRT) at all monitoring wells to assess the hydraulic characteristics of the saturated soils at the Site;
- e) Completion groundwater level measurements at all monitoring wells on-Site;
- f) Evaluate the information of groundwater level measurements and groundwater quality;
- g) Collection of one (1) groundwater sample for laboratory testing and compare it against both Combined/Sanitary Sewer Use Bylaw for the Regional of Halton and Storm Sewer Use Bylaw for the Town of Oakville parameters;
- h) Assessment of groundwater discharges during construction phases;
- i) Assessment of foundation sub-drain discharge volumes; and
- j) The preparation of a Preliminary Hydrogeological Investigation Report.

2 Regional Setting

2.1 Regional Physiography

The Ontario Geological Survey Map P. 2204, indicates the Site lies in the Iroquois Plain physiographic region of Southern Ontario known as the shale plains. Figure 2 shows the physiographic regions of Southern Ontario around the Site.

During the last retreat of the Laurentide Ice Sheet (12,000 years B.P.) lake levels in what was to become Lake Ontario where much higher due to ice blockage in the St. Lawrence waterway. This created the glacial Lake Iroquois which was up to 60 m higher in elevation in the Toronto area than the current Lake Ontario water levels. The Iroquois Shoreline that coincided with this elevated lake, terminated above St. Clair Avenue West.

2.2 Regional Geology

The surficial geology of the immediate area around the Site is described as Paleozoic bedrock. The surficial geology for the Site and surrounding areas is shown on Figure 3.

Bedrock of the region corresponds to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member consisting of shale, limestone, dolostone and siltstone. The contact between the bedrock and the overlying overburden is expected to be at approximately 2.3 m to 4.6 m bgs.

2.3 Regional Hydrogeology

Groundwater movement through the subsurface is controlled by hydraulic gradients, the physical characteristics of the sediments, and the interconnectedness of lithological formations. Fine grained sediments restrict lateral movement of groundwater and induce vertical infiltration, while coarse grained sediments allow vertical flow with increased transmissivity.

The regional shallow groundwater flow is expected to follow the local topography and discharge to local area creeks and streams. Local deviation from the regional groundwater flow directions may occur in response to changes in topography and/or soil stratigraphy, as well as the presence of surface water features and/or existing subsurface infrastructure.

No local aquifers were identified that could negatively impact the subject Site.

3 Site Setting

3.1 Site Topography and Drainage

The Site is rectangular in shape and has an area of approximately 9,650 m². The is currently occupied by a single-storey commercial building located at 157 Cross Avenue and a three (3)-storey commercial building located at 165 Cross Avenue (Site buildings). The areas surrounding the Site building are covered with asphalt paved parking and landscaping. The topography of the Site generally slopes to the south and based on the borehole logs, the ground elevation ranges between 104.24 m and 102.95 m above sea level (asl).

3.2 Local Surface Water Features

The Site does not feature any surface water bodies on the Site. The closest surface water body to the Site is Sixteen Mile Creek, located approximately 330 m southwest of the Site. Lake Ontario is located approximately 2.1 km southeast. The Site is situated within the Lower Morrison Creek watershed and is not port of a Conservation Halton regulated area.

3.3 Ministry of Environment, Conservation and Parks Water Well Review

Well Records from the Ministry of Environment, Conservation and Parks (MECP) Water Well Record Database (WWR) were reviewed to determine the number of water wells and locations present within a 500 m radius of the Site boundaries.

The MECP WWR database indicated sixty-seven (67) well records within 500 m radius of the Site. All identified wells are shown on Figure 4. A summary of the Water Well Records is included in Appendix B, Table B-1. A review of the records indicated that the majority of the wells were classified for observation well, monitoring well and test hole purposes within 500 m radius of the Site. One (1) supply water well was identified at the Queen Elizabeth Way, located approximate 215 m northwest of the Site. The well was installed in 1948 and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected.

3.4 Permit to Take Water and Environmental Activity and Sector Registry Search

The MECP also maintains a database of all active and expired Permit to Take Water (PTTW) and Environmental Activity and Sector Registry (EASR) items related to construction dewatering and pumping test. There are five (5) expired PTTW registrations, one (1) active EASR registration and two (2) expired EASR registrations within 1 km of the Site and are summarized in Table B-2, Appendix B. The location for each registration is shown on Figure 5.

4 Field Program

4.1 Borehole and Monitoring Well Details

BIG advanced nine (9) boreholes (BH1, BH2D, BH2S, BH3 to BH5, BH6D, BH6S and BH7) to a maximum depth of 32.0 m below ground surface (bgs) between August 28, 2023 and September 11, 2023, and instrumented nine (9) boreholes with monitoring wells (MW1, MW2D, MW2S, MW3 to MW5, MW6D, MW6S and MW7). The boreholes were advanced by using a truck mounted solid stem continuous flight auger equipment under the direction and supervision of BIG field personnel. Soil samples were retrieved at regular intervals with a 50 mm outside diameter split barrel sampler drive and accordance with the Standard Penetration Test Procedure (ASTM D1586). The samples were logged in the field and returned to the BIG laboratory for detailed visual examination. The borehole records and monitoring well construction detail are included in Appendix A.

Figure 6 is a detailed Borehole/Monitoring Well Location Map of the Site. The borehole logs are attached in Appendix A.

4.2 Site Specific Overburden Geology

The borehole locations are shown on Figure 6 and detailed subsurface and bedrock conditions are presented on the borehole logs in Appendix A. The following table is provided in addition to the borehole descriptions to provide a general summary of the soil conditions. The soil descriptions are based on BIG's investigation. The soil boundaries indicated on the borehole logs and discussed herein are inferred from the visual observations and auger resistance and should not be regarded as exact planes of geological change.

The soil conditions encountered at the borehole locations are summarized below. A stratigraphic cross-section across the property as aligned on Figure 6 is included as Figure 7.

Table 4-1: Soil description

Layer	Description
Asphalt	All boreholes were advanced through the existing asphalt pavement, consisting of
Pavement	approximately 70 to 100 mm (average 83 mm) thick asphaltic concrete over
	approximately 100 to 230 mm (average 147 mm) thick granular base.
Fill	Below the asphalt pavement, fill materials were encountered to depths varying
	between 0.8 and 3.1 m bgs in all boreholes. The existing fill is heterogeneous, but it
	predominantly consisted of silty clay to clayey silt or sandy silt to sand.
Sandy Silt Till	Below existing fill materials, native deposits of sandy silt till were encountered in
	boreholes BH/MW5 to BH/MW7. The glacial tills extended to depths varying 3.1 to 5.0
	m bgs. It should be noted that the presence of occasional cobbles and boulders was
	anticipated within the tills.
Glacial	A stratum of till/shale complex, consisting of sandy silt till to silty sand till/silty clay
Till/Shale	till/shale complex, was encountered below the fill or sandy silt till in boreholes
Complex	BH/MW1 to BH/MW4 and BH/MW7. The deposits extended to depths ranging from
	approximately 2.3 to 4.6 m bgs in BH/MW1 to BH/MW4. BH/MW7 was terminated in
	this stratum at the depth of about 6.1 m bgs. This stratum was difficult to penetrate
	with the drilling augers due to the fragmented shale/limestone content and its hard
	consistency. Cobbles and boulders were also anticipated in these deposits.
Shale Bedrock	Weathered shale bedrock was encountered below the glacial till or till/shale complex
	in all boreholes except BH/MW7. Boreholes BH/MW1 to BH/MW6 were terminated
	within the shale bedrock of Georgian Bay Formation at depths ranging from 6.1 to 32.0
	m bgs.

4.3 Water Level Monitoring

Water levels at all monitoring well locations were recorded after installation. A summary of all available water level observations is included in Table 4-2. Groundwater was observed in all monitoring wells on September 12, 2023, and depths to the groundwater ranged from 1.91 m to 21.56 m bgs. The shallow wells BH/MW1, BH/MW2S, BH/MW3, BH/MW5, BH/MW6S, and BH/MW7 were observed with groundwater elevations that ranged from 101.71 m to 98.31 m asl. The deep wells BH/MW2D, BH/MW4 and BH/MW6D, were observed with groundwater elevations that ranged from 91.63 m to 82.28m asl.

An interpreted groundwater contour map for the water level measurements recorded on September 12, 2023, is included as Figure 8. Based on the water level measurements obtained, the inferred direction of groundwater flow across the Site is interpreted to be to the southern direction.

Seasonal variability can produce significant changes to the static water level. It has been observed that groundwater can rise and lower in response to changing weather and climate.

Table 4-2: Monitoring Well Details and Water Levels Elevations

	Ground Elevation	Wall Donth	September 12, 2023				
Well ID	(m asl)	Well Depth (m bgs)	Water Level (m bgs)	Elevation (m asl)			
BH/MW1	104.24	6.1	2.53	101.71			
BH/MW2D	103.84	22.9	21.56	82.28			
BH/MW2S	103.79	4.6	2.13	101.66			
BH/MW3	103.45	6.1	3.54	99.91			
BH/MW4	103.45	16.8	13.14	90.31			
BH/MW5	103.52	6.1	2.40	101.12			
BH/MW6D	102.98	21.9	11.35	91.63			
BH/MW6S	102.95	7.0	4.64	98.31			
BH/MW7	103.20	6.1	2.26	100.94			

4.4 Hydraulic Conductivity Testing

The hydraulic conductivity test was completed to estimate the saturated hydraulic conductivity (K) of the soil or bedrock at the well screen depth at all monitoring well locations.

In advance of performing SWRT, the monitoring well was developed to remove the potential presence of fine sediments. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. The monitoring well water level was permitted to fully recover prior to performing SWRTs.

During the SWRT, a slug of water was instantaneously removed from the well and the response to the water level is recorded. The Hydraulic Conductivity values for each of the tested wells were calculated from the SWRT data using Aqtesolv Software and the Hyorslev solution for unconfined conditions. The semi-log plots for normalized drawdown versus time are included in Appendix C.

The summary of the hydraulic conductivity (K) values estimated from the SWRTs are provided below in Table 4-3:

Table 4-3: Summary of Hydraulic Conductivity (K) Testing Results

Monitoring Well	Well Depth (m bgs)	Material within Well Screen	Hydraulic Conductivity (m/s)		
BH/MW1	6.1	Bedrock	5.64 x 10 ⁻⁷		
BH/MW2D	22.9	Bedrock	3.99 x 10 ⁻⁹		

Monitoring Well	Well Depth (m bgs)	Material within Well Screen	Hydraulic Conductivity (m/s)
BH/MW2S	4.6	Sandy silt till/bedrock	3.22 x 10 ⁻⁶
BH/MW3	6.1	Bedrock	7.39 x 10 ⁻⁶
BH/MW4	16.8	Bedrock	5.17 x 10 ⁻⁸
BH/MW5	6.1	Bedrock	2.83 x 10 ⁻⁶
BH/MW6D	21.9	Bedrock	3.55 x 10 ⁻⁶
BH/MW6S	7.0	Sandy silt till/bedrock	2.49 x 10 ⁻⁶
BH/MW7	6.1	Sandy silt till/silty clay till/shale complex	2.69 x 10 ⁻⁸
		Geometric mean K value (m/s)	4.97 x 10 ⁻⁷

The SWRT provides an estimate of K for the geological formation in the immediate media zone surrounding the well screen and may not be representative of bulk formation hydraulic conductivities.

4.5 Groundwater Sampling

To assess the suitability for discharge of pumped groundwater to the Region of Halton Combined/Sanitary Sewer or Town of Oakville Storm Sewer during dewatering activities, a groundwater sample was collected from BH/MW4 on September 13, 2023.

Prior to collection of the samples, approximately three (3) standing well volumes of groundwater were purged from the well. The sample was collected and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required.

The sample was not field filtered. Dedicated nitrile gloves were used during sample handling. The groundwater sample was submitted to an independent laboratory, Bureau Veritas Laboratories, of Mississauga, Ontario, for analysis.

For the assessment purposes, the analytical results were compared to Table 1 - Limits for Sanitary and Combined Sewer Discharge (By-Law No. 2-03) of the Regional Municipality of Halton; and Table 2 - Limits for Storm Sewer Discharge (By-Law No 2009-031) of the Corporation of the Town of Oakville.

The laboratory Certificate of Analysis (CofAs) and chain of custody are enclosed in Appendix D.

The laboratory CofAs show that there were no exceedances against the Table 1 – Limits for Sanitary and Combined Sewer Discharge.

When compared against the more stringent Table 2 – Limits for Storm Sewer Discharge, the sample indicated exceedance for total manganese (Mn). A summary of the exceedance is provided in Table 4-4.

Table 4-4: Summary of Analytical Results

Parameter	Limits for Sanitary and Combined Sewer Discharge (mg/L) (Table 1)	Limits for Storm Sewer Discharge (mg/L) (Table 2)	Concentration for BH/MW4 (mg/L) (September 13, 2023)
Total Manganese (Mn)	5	0.05	0.360

Notes:

Bold indicates concentration exceeds the Storm Sewer Discharge Limit.

Although the water quality meets the limits of Region of Halton sanitary and combined sewer, the Region typically does not typically allow groundwater discharge to the Regional sewer system. Alternative discharge method or negotiation with the Town of Oakville will be required.

5 Temporary Construction Dewatering

5.1 Construction Dewatering Requirements

It is BIG's understanding that the proposed re-development at the Site will consist of two (2) condominium buildings. As per latest communication with the client in September 2023, the proposed development will consist of seven (7) or eight (8) levels of underground parking structure. For conservative purpose, the dewatering estimates in this investigation focus on eight (8) levels of underground parking. The finished floor elevation (FFE) of P8 is assumed at 78.2 m asl. The footing elevation is assumed approximately 2 m below FFE. It should be noted that the dewatering estimated provided in this report are based on the conceptual building information available at this time. If design details are changed (including any changes to excavation depth), the dewatering estimates must be revised to include the final layout of the development.

The stabilized groundwater level measurements, observed on September 12, 2023, were found to be varying between elevations of 101.71 m to 82.28 m asl. For conservative purposes, the construction dewatering calculation is based on an open cut excavation at the present time. To excavate under dry conditions, the water level is anticipated to be lowered at least to a minimum of approximately 1.0 m below the footing elevation.

Additional dewatering capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. It should be noted that the dewatering estimates provided in this report are based on the conceptual building information available at this time. If design details are changed (including any changes to excavation depth), the dewatering estimates must be revised to include the final layout of the development.

5.2 Construction Dewatering Flow Rate Assumptions

The assumptions used for the calculation of the dewatering rate for the proposed development are presented in Table 5-1.

Table 5-1 - Dewatering Estimate Assumptions

Input Parameter	Values	Notes			
Proposed Surface Elevation (m asl)	103.30	Based on drawing A501 Building Sections			
Proposed Surface Elevation (in asi)	105.50	prepared by TAI, dated March 20, 2023			
P8 FFE (m asl)	78.20	P8 FFE is assumed to be 25.1 m bgs			
Footing Elevation (m asl)	76.20	Assumed 2 m below FFE			
Dewatered Elevation Target (m asl)	75.20	Assumed 1 m below footing			
Groundwater Elevation (m asl)	101.71	Highest groundwater elevation (September			
Groundwater Elevation (in asi)	101.71	12, 2023)			
Estimated Excavation Area	97.7 m x 62.4 m	Based on drawing A201 Level P6 Plan,			
Estillated Excavation Area	97.7 III X 02.4 III	prepared by TAI, dated March 20, 2023			
Hydraulic Conductivity (m/s)	4.97 x 10 ⁻⁷	Geometric mean K of overburden and			
Hydraulic Collductivity (III/S)	4.5/ X 10	bedrock			

5.3 Dewatering Flow Rate Equation

The Dupuit equation for steady flow from a linear source on both sides of a rectangular slot of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate, and is expressed as follows:

$$Q_w = \frac{K(x+a)(H^2 - h^2)}{Lo}$$

Where:

Qw = Rate of pumping (m^3/s)

x = Length of excavation (m)

a = Width of excavation (m)

K = Hydraulic conductivity (m/s)

H = Head beyond the influence of pumping (static groundwater elevation) (m)

h = Head above base of aquifer at the excavation (m)

Lo = Distance to Line Source (m)

It is expected that the initial dewatering rate will be higher in order to remove groundwater from within the overburden and bedrock formations. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation. Additionally, the use of a continuous caisson shoring system will further reduce groundwater migration into the excavation reducing the ongoing seepage rate.

5.4 Radius of Influence

The Radius of Influence (ROI) for the construction dewatering is based on the empirical Sichardt Equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This equation is empirical and was developed to provide representative flow rates using the steady state flow dewatering equations, as discussed below.

It is noted that in steady state conditions, the radius of influence of pumping will extend until boundary flow conditions are reached and provide sufficient water inputs to the aquifer, such as recharge and surface water bodies.

The ROI of pumping (dewatering) for linear flow is calculated based on the Sichardt equation, which is described as follows:

$$Lo = 1750 (H - h)\sqrt{K}$$

Where:

K = Hydraulic conductivity (m/s)

H = Static Saturated Head (m)

h = Dynamic Saturated Head (m)

Based on the Sichardt equation and the geometric mean K value, the ROI is approximately 32.7 m from the edge of the excavation for linear flow. The ROI calculation is provided in Appendix E.

The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during the construction dewatering. It should be noted that most of the water will be pumped during the first stage of the construction period or when a rain event occurs. Although the ROI was conservatively predicted as 32.7 m from the edge of the excavation, over a period of time, the drawdown curve will be very close to the bottom of the excavation and thus resulting in negligible ROI.

The likelihood for impacts to the nearby structures are negligible. Additionally, the use of a shoring system will further reduce radius of influence.

5.5 Results of Construction Dewatering Flow Rate Estimates

Based on the assumptions provided in this report, the results of the dewatering rate estimate are as follows:

Table 5-2 Summary of Construction Dewatering Flow Rate Estimate

Underground Levels	Construction Dewatering Flow Rate Without Safety Factor (L/day)	Peak Construction Dewatering Flow Rate Including Safety Factor of 2 (L/day)
P8	159,000	318,000

Construction dewatering flow rate estimates are provided in Table E-1, in Appendix E.

The peak construction dewatering flow rate includes a factor of safety of two (2) to account for accumulation of rainfall, seasonal fluctuations in the groundwater table, flow from beddings of existing sewers, and variation in hydrogeological properties beyond those encountered during the course of this study. This total dewatering flow rate also provides additional capacity for the dewatering contractors. Given that the predicted dewatering volume exceeds the 50,000 L/day limit, an EASR for construction dewatering will be required.

It should be noted that if caisson wall shoring system is considered for the subject Site, reduction in groundwater quantities can be anticipated.

Please note that it is the responsibility of the contractor to ensure dry conditions are maintained within the excavation at all times. The dewatering contractor should ensure that silt removal or replacement from subsoil be eliminated and monitored during construction dewatering at all times.

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Additionally, the presence of near-surface fill material could hold significant groundwater.

The maximum flow calculation is intended to provide a conservative estimate to account for unforeseeable conditions that may arise during construction. It should be noted that the dewatering estimate provided in this report are based on the proposed development information available at this time. If changes to the design are implemented (e.g., increase to planned excavation depths, widening of excavations, etc.), the dewatering estimates must be revised to include and reflect future changes.

6 Long Term Discharge Estimate

6.1 Long-Term Dewatering Assumptions

Given that the groundwater level is above foundation depths for the development, a permanent foundation sub-drain is recommended. It is assumed that the below grade structure will feature a perimeter drain and sub-drain system installed at approximately 0.5 m below the FFE elevation. Table 6-1 presents the assumptions used to calculate the long-term drainage rate estimates.

Once the design is available, BIG needs to review and re-evaluate the dewatering estimates. If the foundation elevation is deeper than the assumptions in this report, additional investigation will be required.

Table 6-1 - Dewatering Estimate Assumptions

Input Parameter	Values	Notes			
Proposed Surface Elevation (m asl)	103.30	Based on drawing A501 Building Sections,			
Proposed Surface Elevation (III asi)	105.50	prepared by TAI, dated March 20, 2023			
P8 FFE (m asl)	78.20	P8 FFE is assumed to be 25.1 m bgs			
Groundwater Elevation (m asl)	91.63	Highest groundwater elevation in deep			
Groundwater Elevation (in asi)	91.03	aquifer (September 12, 2023)			
Sub-drain/ Foundation Elevation	77.70	Assumed 0.5 m below P8 FFE			
Target (m asl)	77.70	Assumed 0.5 m below P8 FFE			
Drainage Dimensions	97.7 m x 62.4 m	Based on drawing A201 Level P6 Plan,			
Drainage Dimensions	97.7 111 X 62.4 111	prepared by TAI, dated March 20, 2023			
Hydraulic Conductivity (m/s)	1.19 x 10 ⁻⁷	Geometric mean K of bedrock			

6.2 Radius of Influence

The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during long-term dewatering. It should be noted that there will be no active pumping during long-term dewatering. The foundation drains will be constructed below the floor slab and/or near the foundation and the groundwater would passively drain into these sub drains and discharged directly to sumps. Due to the nature of overburden material, the groundwater will flow through the natural gradient that exists on the Site and passively flow into the foundation sub-drains and will not be actively pumped. Although, the ROI which was conservatively predicted was at 15.9 m from the edge of the sub-drain, over a period of time, the drawdown curve will be very close to the foundation walls and thus resulting in negligible ROI.

6.3 Long-Term Perimeter Drain Flow Rate Estimate

Based on the assumptions provided in this report (outlined in Section 6.1), the results of the long-term discharge volume estimate are summarized below:

Table 6-2 Summary of Long-Term Discharge Flow Rate

Location	Long-Term Peak Flow Rate (L/day)	Notes			
Flow into sub-drain after initial dewatering stages	72,000	Long term sub-drain flow value rounded based on Dupuit's equation including flow from all sides.			
initial dewatering stages		Safety factor of 3 was used.			

Cross Realty Incorporated DRAFT – Preliminary Hydrogeological Investigation 157 and 165 Cross Avenue, Oakville, Ontario BIGC-ENV-623A October 2023

The results for the estimate are available in Appendix F, Table F-1. The maximum flow rate estimates represent short term events and are not indicative of long-term continuous contributions to the drainage system. Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. Given that the predicted dewatering volume exceeds the 50,000 L/day limit, a PTTW is required.

It should be noted that the dewatering estimates provided in this report are based on the proposed building information available at this time.

If the groundwater encountered during long-term dewatering is discharged to the Region of Halton sanitary and combined sewer, no treatment will be required. A treatment is required prior to discharge to the Town of Oakville storm sewer.

In the event that the long-term foundation drainage is not allowed to discharge into the City's sewer system, the proposed building may be designed and supported by "tanked" water-proofed continuous raft foundation without permanent dewatering (i.e., avoiding permanent perimeter and under-floor drainage system).

7 Potential Groundwater Impacts

7.1 Impacts to Nearby Groundwater Users

The Site lies within an urban area of Oakville, based on the MECP WWR database, one (1) supply water well was identified at the Queen Elizabeth Way, located approximate 215 m northwest of the Site. The well was installed in 1948 and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected. There are no potential impacts to nearby groundwater users due to construction dewatering or long-term dewatering is expected.

7.2 Impacts to Nearby Structures

As discussed in Section 5, given the groundwater table is above the excavation, construction dewatering is required. The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during the construction dewatering. It should be noted that most of the water will be pumped during the first stage of the construction period or when a rain event occurs. Although the ROI was conservatively predicted as 32.7 from the edge of the excavation, over a period of time, the drawdown curve will be very close to the bottom of the excavation and thus resulting in negligible ROI. The likelihood for impacts to the nearby structures are negligible. Additionally, the use of a shoring system will further reduce radius of influence.

As discussed in Section 6, given the groundwater level is above foundation depths for the development, a permanent foundation sub-drain is recommended. It is assumed that the below grade structure will feature a perimeter drain and sub-drain system installed at approximately 0.5 m below the basement elevation. If the foundation drains operate on a long-term basis, the radius of influence was conservatively estimated at 15.9 m from the edge of the sub-drain. However, unlike the construction dewatering activities where active dewatering takes places, the long-term dewatering operates passively where water would flow through fractured bedrock primarily via vertical drains. Therefore, the actual radius of influence will be less than the predicted distance and no impacts to the surrounding feature is expected.

8 Water Taking and Discharge Permits

8.1 EASR and PTTW

During the active construction dewatering phase, the volume of water expected to be pumped exceeds the daily limit on groundwater taking under the Ontario Water Resources Act (50,000 L/day) if the excavation is to be undertaken all at once. Therefore, it is necessary to register the construction dewatering under the EASR guidelines, as cumulative discharge rate for construction is 318,000 L/day. The limit for water taking under an EASR is 400,000 L/day. If combined storm and groundwater were to exceed this limit, the dewatering rate would need to be capped to 400,000 L/day of pumped water. If it is necessary to exceed 400,000 L/day of water taking, a PTTW as per O.Reg.387/04 would be required.

Given that the predicted long-term dewatering volume exceeds the 50,000 L/day limit, a PTTW for long-term discharge will be required.

9 Conclusions

Based on the findings of the Preliminary Hydrogeological Investigation, the following summary of conclusions are provided:

- a) It is BIG's understanding that the proposed re-development will consist of two (2) condominium buildings with seven (7) or eight (8) levels of underground parking structure. For conservative purpose, the dewatering estimates in this investigation focus on eight (8) levels of underground parking;
- b) The Site is located within a physiographic region within the Iroquois Plain known as the shale plains;
- c) The surficial geology of the immediate area around the Site is described as Paleozoic bedrock;
- d) The MECP WWR database indicated one-hundred one (67) well records within 500 m radius of the Site. One (1) supply water well was identified at the Queen Elizabeth Way, located approximate 215 m northwest of the Site. The well was installed in 1948 and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected;
- e) Groundwater was observed in all monitoring wells on September 12, 2023, and depths to the groundwater ranged from 1.91 m to 21.56 m bgs. The shallow wells BH/MW1, BH/MW2S, BH/MW3, BH/MW5, BH/MW6S, and BH/MW7 were observed with groundwater elevations that ranged from 101.71 m to 98.31 m asl. The deep wells BH/MW2D, BH/MW4 and BH/MW6D, were observed with groundwater elevations that ranged from 91.63 m to 82.28m asl;
- f) Based on the water level measurements obtained, the inferred direction of groundwater flow across the Site is interpreted to be to the southern direction;
- g) The estimated hydraulic conductivity of the soil and bedrock ranges from 7.39×10^{-6} m/s to 3.99×10^{-9} m/s with a geometric mean of 4.97×10^{-7} m/s;
- h) Based on the assumptions outlined in this report, the estimated peak construction dewatering flow rate for the proposed construction activity is 318,000 L/day;
- i) Based on the assumptions outlined in this report, the cumulative contribution to the foundation drains is 72,000 L/day;
- j) Given that the predicted dewatering volume exceeds the 50,000 L/day limit, an EASR for construction dewatering is required;
- k) Given that the predicted long-term dewatering volume exceeds the 50,000 L/day limit, a PTTW for long-term discharge is required;
- I) The laboratory CofA shows that no exceedance under Table 1 Limits for Sanitary and Combined Sewer Discharge of the Regional Municipality of Halton;
- m) When compared against the more stringent Table 2 Limits for Storm Sewer Discharge of the Corporation of the Town of Oakville, the sample indicated exceedances for total manganese (Mn); and,
- n) Although the water quality meets the limits of Region of Halton sanitary and combined sewer, the Region typically does not typically allow groundwater discharge to the Regional sewer system. Alternative discharge method or negotiation with the Town of Oakville will be required.

It should be noted that the comments and recommendations in this report are based on the assumption that the present design concept described throughout the report will proceed to construction. Any changes to the design concept may result in a modification to the recommendations provided in this report. It is noted that these conclusions and recommendations should be read in conjunction with the entirety of the report.

10 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusion and recommendations presented within this report reflect Site conditions existing at the time of the assessment. BIG must be contacted immediately if any unforeseen Site conditions are experienced during the dewatering activities. This will allow BIG to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at BIG, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience profession. No other warranty or presentation, either expressed or implied, is included or intended in this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact our office.

Yours truly,

B.I.G. Consulting Inc.

DRAFT DRAFT

Wei (Will) Guo, M.Sc., P.Geo. Senior Hydrogeologist

DRAFT

Prem Manicks, P.Geo. Partner Peilin (Eileen) Liu, M.Env.Sc., P.Geo. Manager, Hydrogeology Services

11 References

Cashman, P. M. (2013). Groundwater Lowering in Construction: A Practical Guide to Dewatering (Second Ed.).

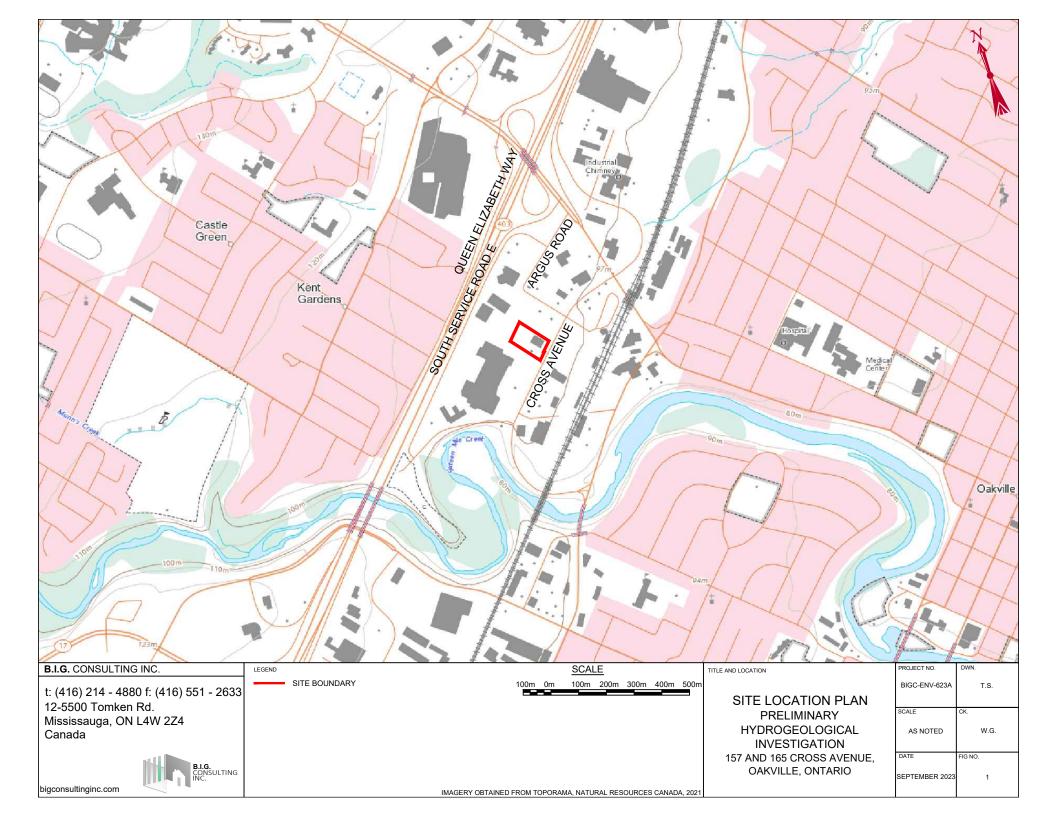
Chapman, L., & Putnam, D. (2007). Physiography of Southern Ontario. *Miscellaneous Release, Data 228 ISBN 978-1-4249-5158-1*. Ontario Geological Survey.

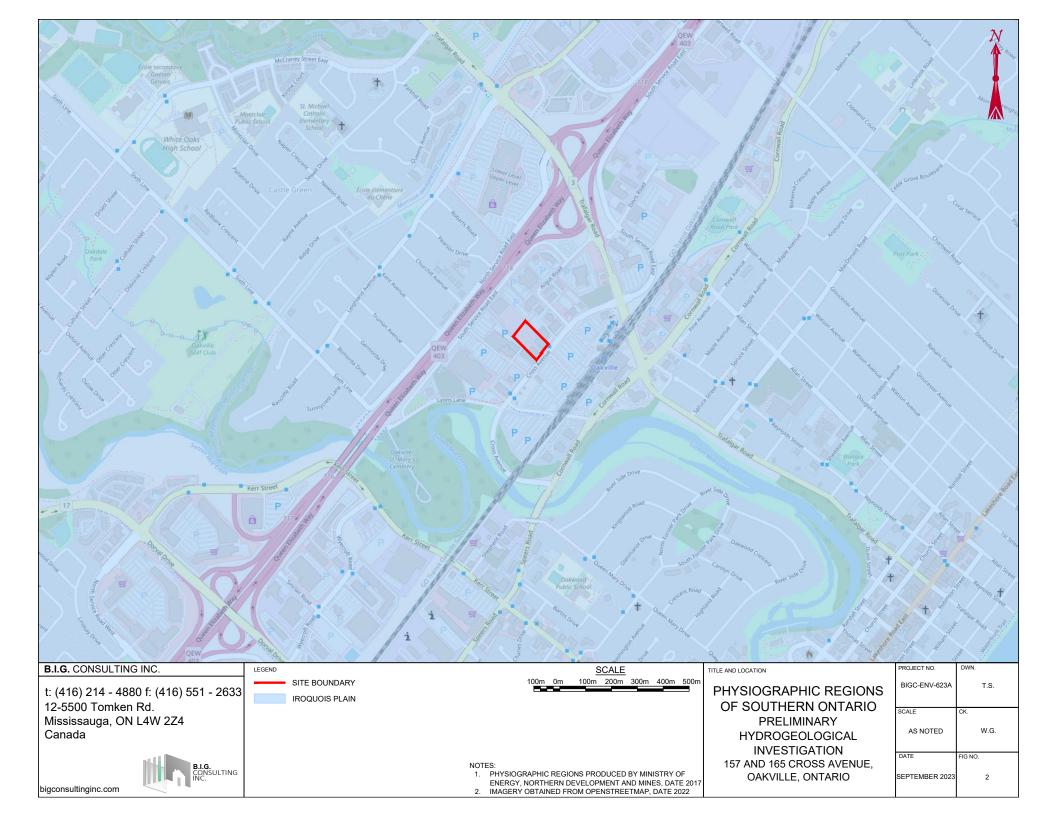
Ministry of Environment, Conservation and Parks. (2017). Ontario Water Resources Act.

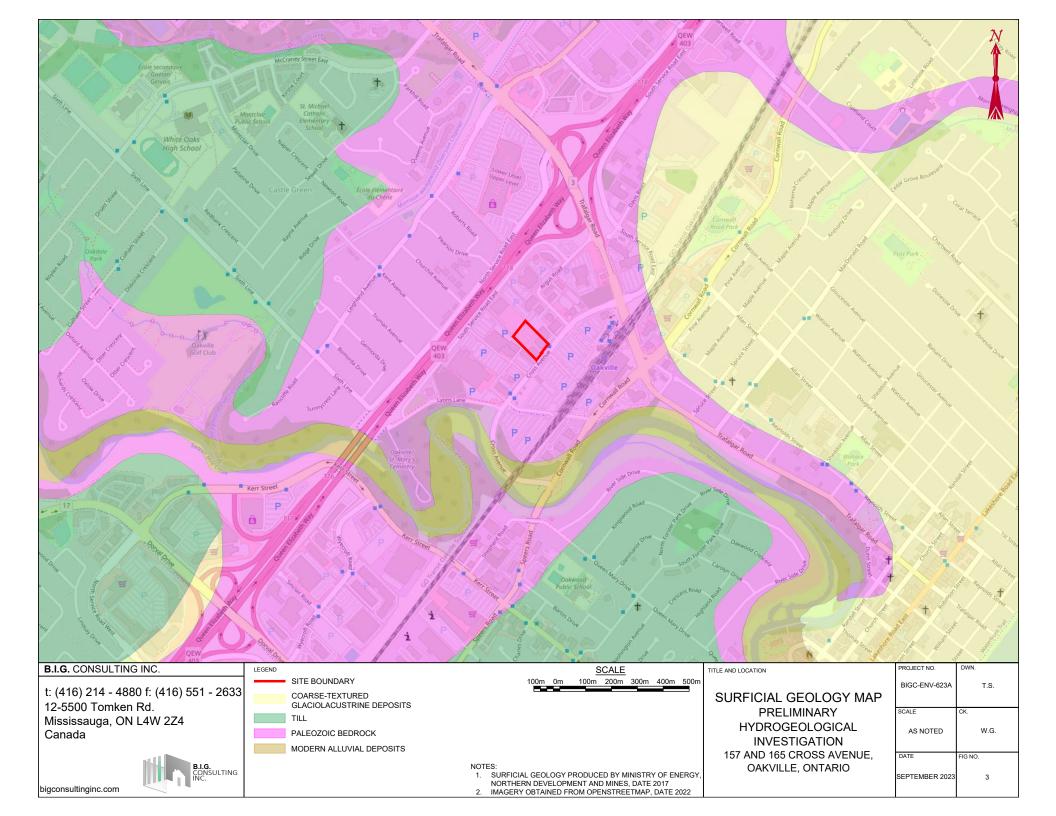
Ontario Water Resources Act, Ontario Regulation 387/04, as amended. (2016). Water Taking and Transfer.

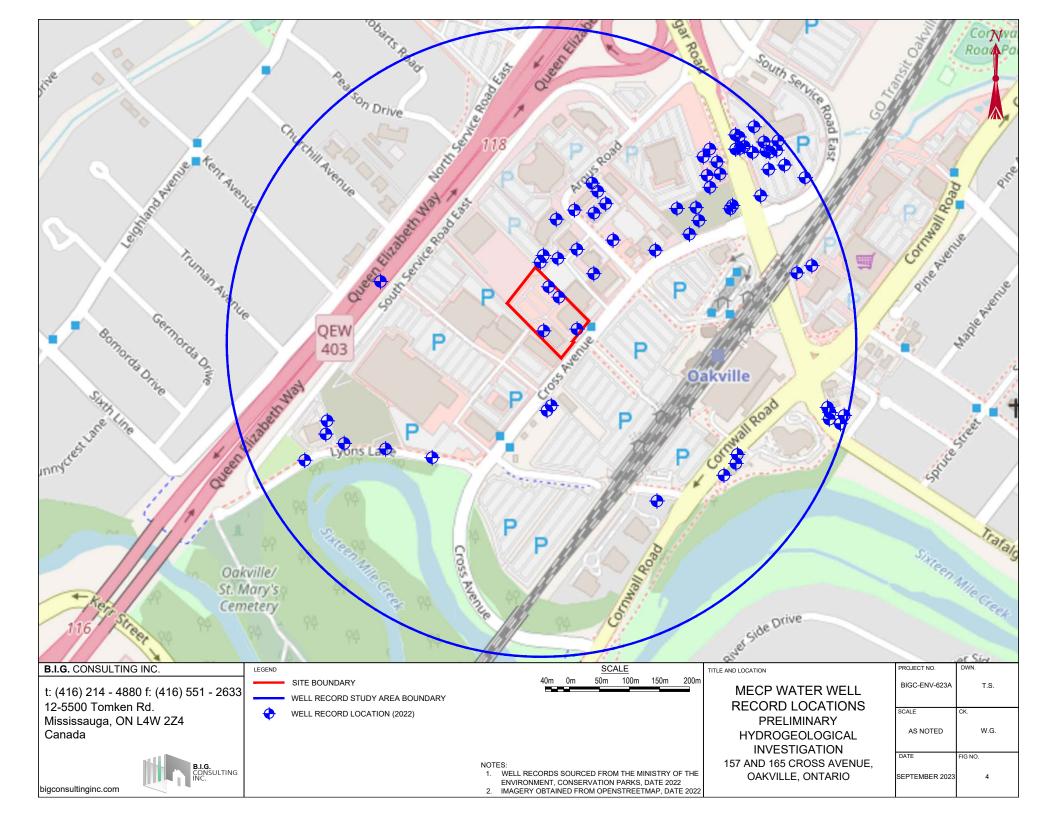
Ontario Ministry of Environment, Conservation and Parks, Map: Well Records, 2021. Accessed online at https://www.ontario.ca/environment-and-energy/map-well-records

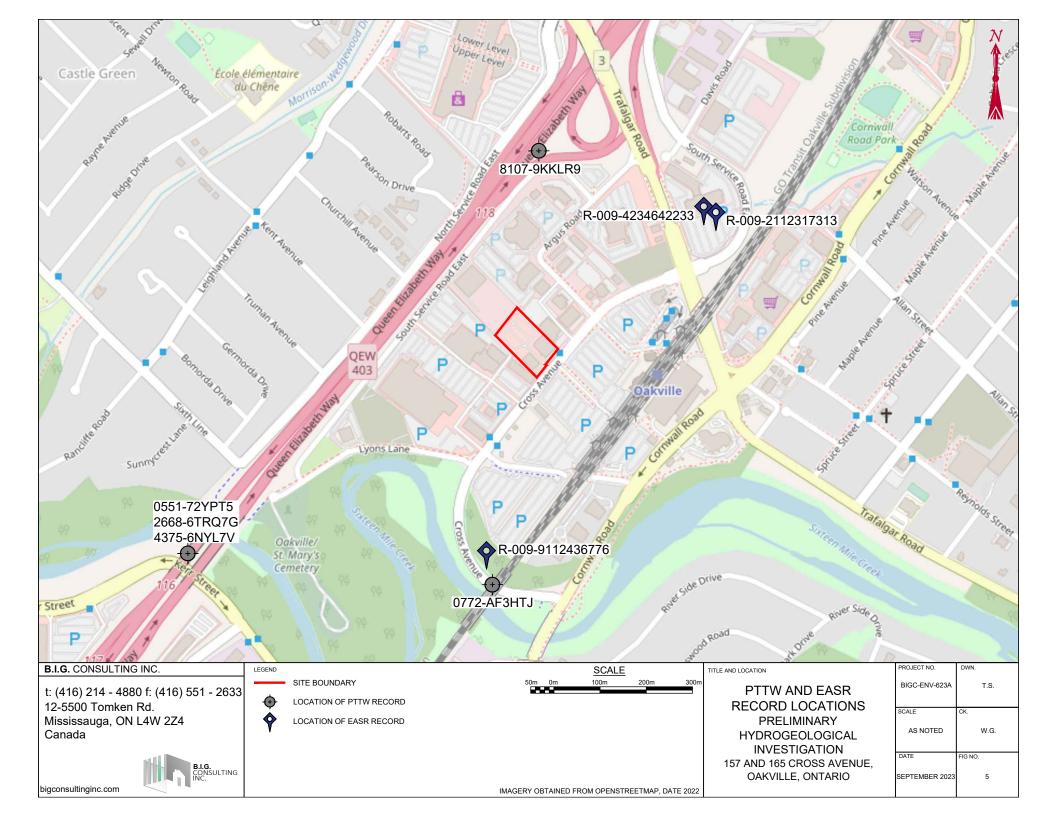
Singer, S.N., Cheng, C.K., and Scafe, M.G. (2003). The Hydrogeology of Southern Ontario, 2nd Edition. Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment.

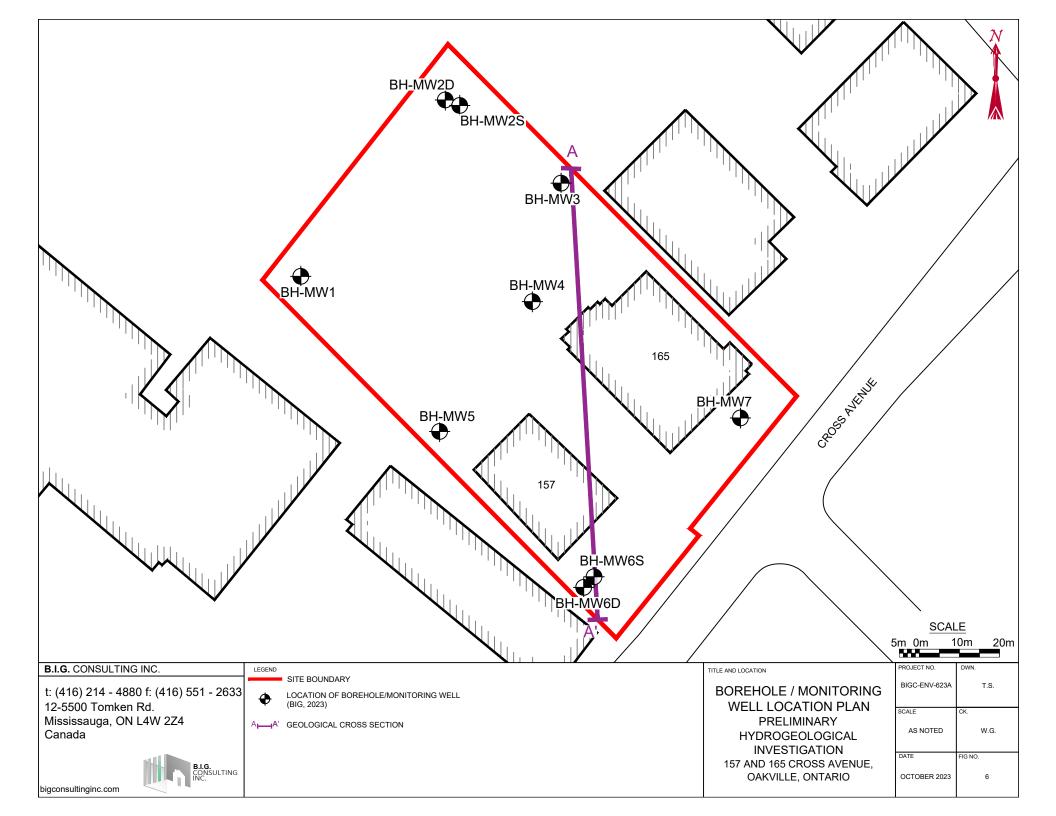

The Corporation of te Town of Oakville (2009). By-Law Number 2009-031 – A By-law to Regulate the Use of Municipal Storm Sewers and to repeal and replace By-law 2008-041.

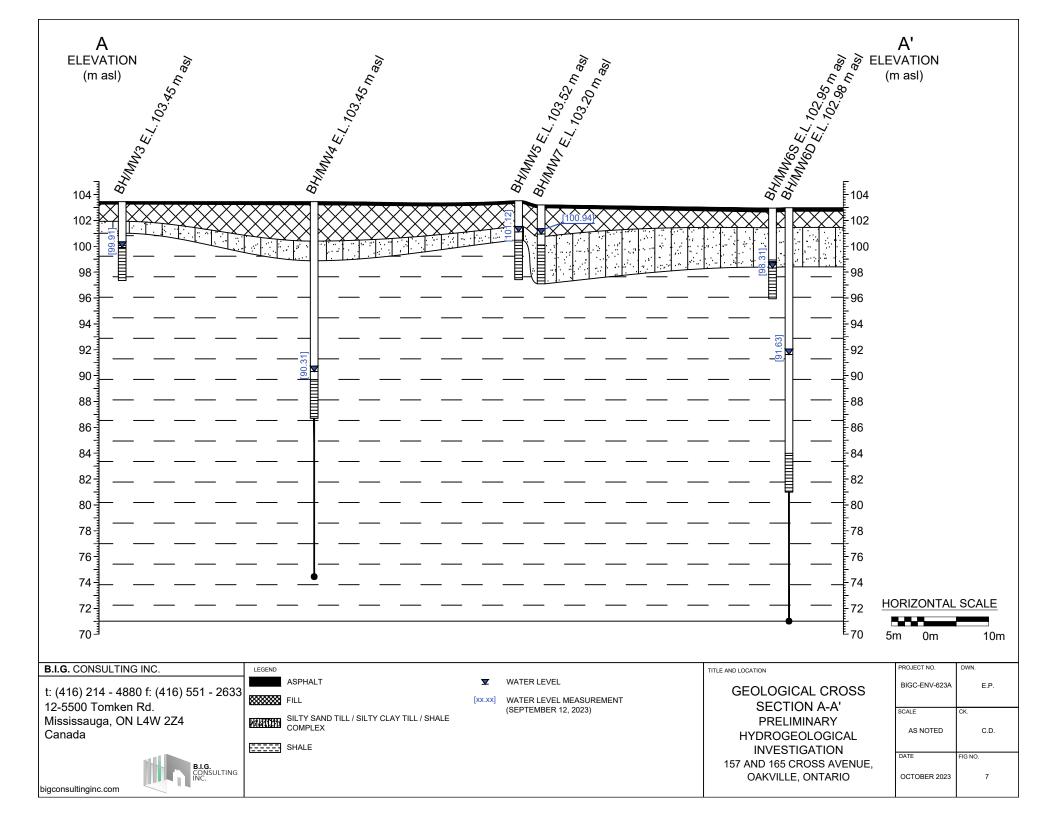

The Regional Municipality of Halton (2001). By-Law No.2-03

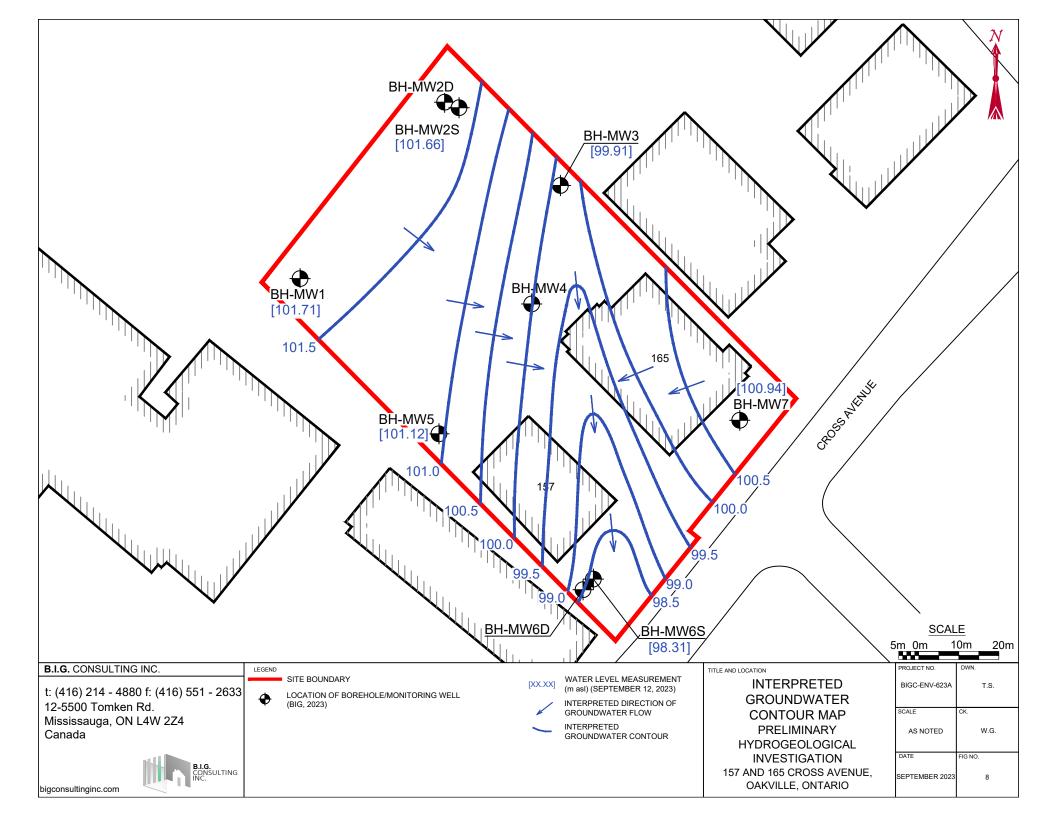



FIGURES









APPENDIX A: BOREHOLE LOGS

RECORD OF BOREHOLE No. BH/MW1 Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 100 mm Solid Stem Augering Compiled by: Project Client: **Cross Realty Incorporated** Drilling Method: KΗ Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: Truck Mounted Drill Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Aug 28, 23 Date Completed: Aug 28, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION ithology Plot Sample Type Recovery (%) MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould △ Intact ▲ Remould DEPTH * Undrained Shear Strength (kPa) Plastic Liquid 80 eodetic Ground Surface Elevation: 104.24 m ASPHALT PAVEMENT: 70 mm asphalt over 40 60 20 40 60 20 230 mm granular base 104 FILL: silty sand to sandy silt, trace clay, trace 0.3 gravel, containing pockets of silty clay, brown to redish brown, moist, loose to compact 110 27 0 SS 59 ..8 SS 2 100 12 Ö 103 SS 3 62 6 0 2 102 SANDY SILT TILL / SHALE COMPLEX: reddish2.4 011 92 22 Ö brown to grey, moist, compact to very dense 101.04 o⁸ 30/ 25 101 BEDROCK: Shale, Georgian Bay Formation SS 5 80 mm 100 50/80 7 5 6 98.14 End of Borehole Borehole was open upon completion of drilling. 2. Water level was measured at 4.9 m below ground surface (bgs) upon completion of drilling. 3. Groundwater level was measured at 2.53 m bgs on September 12, 2023. B.I.G. Consulting Inc. $\overline{\underline{\underline{}}}$ Groundwater depth on completion of drilling: 4.9 m. 12-5500 Tomken Rd.

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

RECORD OF BOREHOLE No. BH/MW2D Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 150 mm Solid Stem Augering / HQ Coring Project Client: **Cross Realty Incorporated** Drilling Method: Compiled by: Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: **Truck Mounted Drill** Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Aug 28, 23 Date Completed: Sep 6, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION Bot Sample Type Recovery (%) MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology. ▲ Remould Plastic Liquid 80 * Undrained Shear Strength (kPa) eodetic Ground Surface Elevation: 103.84 m ASPHALT PAVEMENT: 80 mm asphalt over 103.66 40 60 20 40 60 20 100 mm granular base FILL: clayey silt, some sand, trace gravel, grey to redish brown, moist, very stiff o¹³ 59 17 0 SANDY SILT TILL / SHALE COMPLEX: reddish0.8 103 brown to grey, moist, very dense 011 SS 2 100 51 Ö SS 3 75 59 Ó 102 2 101.55 BEDROCK: Shale, Georgian Bay Formation, highly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (0-50%), grey SS 4 100 101 100 SS 100 010 SS 6 100 99 5 98 6 - very Poor Quality RC 100 0 - Poor Quality 97 RC 2 100 48 0 96 - Fair Quality 8 Inferred UCS From Point Load Test C RC 3 100 61 (Axial): 25.2 MPa 95 - Poor Quality 94 B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: N/A m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 ▼ Groundwater depth observed on September 12, 2023 at a depth of: 21.56 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:53

Continued on Next Page

commissioned and the accompanying Notes to Record of Boreholes'.

RECORD OF BOREHOLE No. BH/MW2D

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: FJ LITHOLOGY PROFILE SOIL SAMPLING LAB TESTING **FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT **COMMENTS** Sample Number **DESCRIPTION** % ithology Plot Sample Type MTO Vane* Nilcon Vane ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
▲ Remould ♦ Intact♦ Remould **lecovery** DEPTH * Undrained Shear Strength (kPa) SPT 40 60 20 40 60 20 80 BEDROCK: Shale, Georgian Bay Formation, highly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (0-50%), grey 30 93 - Fair Quality 11 RC 5 96 54 0 92 12 - Good Quality 91 13 Inferred UCS From Point Load Test Ö RC6 100 83 (Axial): 19.0 MPa 90 14 - Good Quality RC 7 100 84 0 89 15 - Good Quality 88 16 RC 8 100 82 Ö Inferred UCS From Point Load Test (Axial): 46.8 MPa 87 17 - Good Quality 86 RC9 100 85 0 18 - Good Quality 85 19 RC 10 100 89 0 84 20 - Good Quality Inferred UCS From Point Load Test RC 100 82 Ö. 11 - 21

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Scale: 1 : 53

RECORD OF BOREHOLE No. BH/MW2D

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan LOgged by: FJ

LITHOLOGY PROFILE		SOIL SAMPLING					FIELD TESTING		LAB T	ESTING				
					%□			Pene	tration	Testing	★ Rinse pH Va 2 4 6 Soil Vapo △ parts per mi 100 200	alues 8 10 12	 NSTRUMENTATION NSTALLATION	
			ē		/RQ		E	O SPT	•	DCPT	Soil Vapo	ur Reading	∃≱	COMMENTS
Jot	DESCRIPTION	фе	l g	(%)	alue	Ê	<u>R</u>	MTO Van	e* Ni	lcon Vane*	100 200	300 400		COMMENTS
6		e I	Z	ery	>	I	۱Ě	Δ Intact ▲ Remoul	d ♦	Intact Remould	▲ Lower Explo	V W _L	€	
Lithology Plot		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION	* Undrained	Shear S	trength (kPa)	Plastic	Liquid	ISTE IST/	
	BEDROCK: Shale, Georgian Bay Formation.	Ö	ΐ	ď	Ø	Δ	ш.	20	40 6	0 80	20 40	60 80	<u> ≤ ≤</u>	
	BEDROCK: Shale, Georgian Bay Formation, highly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (0-50%), grey					E	-		:					
	(0-50%), grey					E			:				1:13:	
	- Good Quality					_ 22	82 -	1	<u>:</u>	:				
						- 22	-	:	:					
						F	-		:					
		RC	12	100	87	F	-		:	0		: :		
						F	-		:					1
						_ 23	81 —							
						- 23	-		:					1
	- Excellent Quality					F	-		:					
	,					_	-		:					
						E	-		:					
						_ 24	80 -	1						
		RC	13	100	94	- 24	-		:	0				
						F	-		:					
						F	-	:	:			: :		
						F	-		:					
	- Fair Quality					F	79 -		:	: :		: :		
						— 25 -	-		:					
						F	-		:			: :		
		RC	14	100	73	F	_		:	0				
		INC	14	100	73	F	-		:			: :		Inferred UCS From Point Load Test (Axial): 46.1 MPa
						-	78 —		:					(AXIAI). 40.1 INFA
						— 26 -	-		:					
						F	-		:					
	- Good Quality					-	-		:			: :		
						-	-		:					
						-	77 —		:					UCS: 27.4 MPa
		RC	15	100	87	— 27 -	-		:	0				UC3. 27.4 IVIFA
						-	-		:	· · · · · · · · · · · · · · · · · · ·				
						-	-	:	:			: :		Inferred UCS From Point Load Test (Axial): 38.8 MPa
						-	-		:					(, sua.). 66.6 m. d
	- Excellent Quality					F	76 —							
	,					— 28 -	-	:	:	:				
						_	-		:			: :		
						-	-		:	: :		: :		
		RC	16	100	99	-	-		:					Inferred UCS From Point Load Test
						F	75 -	1	:					(Axial): 34.6 MPa
						 29	-	:	:		: :	: ::		
	74.43					F	-	:	:			: :		
	End of Borehole 29.4 1. Borehole was open upon completion of drilling.							:	:]
	Groundwater level was measured at 21.56 m								:			: :		
	below ground surface on September 12, 2023.								:					
								:	:			: :		
									:					
									:					
									:					
								:	:	· · · · · · · · · · · · · · · · · · ·	: :	: :		
								:						
									:	· · · · · · · · · · · · · · · · · · ·	: :	: :		
								:	:	· · ·				
								:	:	: :		: :		
									:					
								:	:			: :		
									:					
								:						

RECORD OF BOREHOLE No. BH/MW2S								111	B.I.G. CONSILTING				
Project Number:	BIGC-ENV-623A						Drilling	Location:	See BH Loca	ation Plan		Logged by:	FJ
Project Client: Cross Realty Incorporated							Drilling Metho		100 mm Solid Stem Augers			Compiled by: KH	KH
Project Name:	Project Name: Geotechnical and Hydrogeolog		gical Investigations				Drilling	Machine:	Truck Moun	ted Drill	Reviewed by:	<u>AC</u>	
Project Location:	157 and 165 Cross Avenue, Oa	kville,	Ontari	io			Date S	Started:	Aug 30, 23	_ Date Completed: Aug	30, 23	Revision No.:	0, 10/3/23
LITH	OLOGY PROFILE	SC	IL SA	MPLI				FIELD	TESTING	LAB TESTING			
Geodetic Groun	DESCRIPTION ad Surface Elevation: 103.79 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION (m)	O SPT MTO Vane* Δ Intact ▲ Remould	titionTesting ■ DCPT Nilcon Vane* ◇ Intact ● Remould lear Strength (kPa) 60 80	★ Rinse pH Values	INSTRUMENTATION INSTALLATION	COMMEN	TS
ASPHALT P. 100 mm gran FILL: dayey to redish brow SANDY SILT brown to grey BEDROCK: S BEDROCK: S End of Boreh 1. Borehole w 2. Water leve ground surface 3. Groundwat 3. Groundwat	AVEMENT: 80 mm asphalt ove 0.3 61 ular base 0.2 siit, some sand, trace gravel, grey vn, moist, very stiff 103.03 TILL / SHALE COMPLEX: reddish0.8 r, moist, very dense 101.50 Shale, Georgian Bay Formation 2.3	88	8	<u>x</u>	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	103 - 102 - 101 - 100 - 1	20 40	60 80	20 40 60 80			
3.I.G. Consulting Ir 12-5500 Tomken Ro		ater dep	oth on c	ompletio	n of drill	ling: 2	2.4 m.						

RECORD OF BOREHOLE No. BH/MW3 Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 100 mm Solid Stem Augering Compiled by: Project Client: **Cross Realty Incorporated** Drilling Method: Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: Truck Mounted Drill Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Aug 28, 23 Date Completed: Aug 28, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION ithology Plot Sample Type Recovery (%) MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould △ Intact ▲ Remould * Undrained Shear Strength (kPa) Plastic Liquid 80 eodetic Ground Surface Elevation: 103.45 m ASPHALT PAVEMENT: 90 mm asphalt over 103.26 40 60 20 40 60 20 100 mm granular base FILL: sand, trace to some silt, trace clay, trace gravel, containing pockets of silty clay, brown, o¹⁰ 0 84 11 103 moist, compact · 11 SS 2 100 13 Ö 102 SILTY SAND TILL / SHALE COMPLEX: reddish1.5 brown to grey, moist, compact to very dense 011 SS 3 79 24 0 - 2 o¹⁵ 50/ 10 101.01 n 2.4 SS 4 92 101 BEDROCK: Shale, Georgian Bay Formation mm 50/ 13 SS 5 100 **▼** 100 99 100 SS 6 5 98 6 97.35 End of Borehole Borehole was open upon completion of drilling. 2. Water level was measured at 4.3 m below ground surface (bgs) upon completion of drilling. 3. Groundwater level was measured at 3.54 m bgs on September 12, 2023. B.I.G. Consulting Inc. $\overline{\underline{\underline{}}}$ Groundwater depth on completion of drilling: 4.3 m. 12-5500 Tomken Rd.

Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

▼ Groundwater depth observed on September 12, 2023 at a depth of: 3.54 m

RECORD OF BOREHOLE No. BH/MW4 Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 150 mm Solid Stem Augering / HQ Coring Compiled by: Project Client: **Cross Realty Incorporated** Drilling Method: Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: **Truck Mounted Drill** Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Date Completed: Sep 7, 23 Sep 6, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION Bot Recovery (%) Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology. Plastic Liquid 80 * Undrained Shear Strength (kPa) eodetic Ground Surface Elevation: 103.45 m ASPHALT PAVEMENT: 90 mm asphalt over 40 60 20 40 60 20 150 mm granular base 103.21 o¹⁰ FILL: silty sand, trace to some gravel, trace clay, containing layers of sand and gravel, brown 23 Ö 62 103 to redish brown, moist to wet, compact o.17 SS 2 92 18 Ö 102 o¹² SS 3 67 27 0 2 101 o¹³ SS 62 21 o¹⁵ SILTY CLAY TILL / SHALE COMPLEX: reddish3.1 50/ 80 SS 5 100 mm brown to grey, moist, hard 100 99 98.88 50/ 80 BEDROCK: Shale, Georgian Bay Formation, Ahighly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers 100 46 (0-43%), grey 98 6 - Very Poor Quality RC 1 100 0 - Fair Quality 97 RC 2 100 56 Ö 96 - Fair Quality Inferred UCS From Point Load Test 8 (Axial): 34.7 MPa 95 66 0 RC 100 3 - Poor Quality 94 B.I.G. Consulting Inc. ☑ Groundwater depth on completion of drilling: N/A m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 ▼ Groundwater depth observed on September 12, 2023 at a depth of: 13.14 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:53 commissioned and the accompanying Notes to Record of Boreholes'.

Page: 1 of 3

RECORD OF BOREHOLE No. BH/MW4

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: FJ LITHOLOGY PROFILE SOIL SAMPLING LAB TESTING **FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT **COMMENTS** Sample Number 둳 **DESCRIPTION** Recovery (%) Sample Type MTO Vane* Nilcon Vane ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
▲ Remould ♦ Intact♦ Remould ithology | DEPTH * Undrained Shear Strength (kPa) SPT 40 60 20 40 60 20 80 BEDROCK: Shale, Georgian Bay Formation, RC 100 27 highly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (0-43%), grey 93 - Poor Quality Inferred UCS From Point Load Test (Axial): 23.7 MPa 92 RC 5 100 41 Ó 12 - Poor Quality 91 13 32 RC 100 6 0 90 - Fair Quality 14 89 RC Ö 7 100 63 15 - Poor Quality 88 16 RC 8 100 41 87 - Excellent Quality 17 86 Inferred UCS From Point Load Test (Axial): 36.4 MPa RC 99 9 100 18 - Good Quality 85 19 RC 10 100 90 0 84 - Good Quality 20 83 RC 11 100 82 Ö 21

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Scale: 1 : 53

RECORD OF BOREHOLE No. BH/MW4

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: FJ

-	LITHOLOGY PROFILE	90	DIL SA	MPII	NG		<u> </u>	FIELD TESTING	LAB TESTING		Logged by. I.U
	LITIOLOGI FROFILE	30	IL SA	uvil Ell				PenetrationTesting	★ Rinse pH Values 2 4 6 8 10 12	N N	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT	Soil Vapour Reading A parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _p W W _L Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
Ė	BEDROCK: Shale, Georgian Bay Formation, highly weathered to fresh, very poor to excellent					E	82 -				
	quality, occasional limestone/siltstone layers (0-43%), grey - Good Quality	RC	12	100	86		81 —	О			Inferred UCS From Point Load Test (Axial): 23.8 MPa
	- Excellent Quality	RC	13	100	93	— 23 - - - - - - - - - - - - - - - - - - -	80 —	ο			
	- Fair Quality	RC	14	100	70	- - - - 25 - - - - -	78 –	0			Inferred UCS From Point Load Test (Axial): 24.4 MPa
	- Good Quality	RC	15	100	88	— 26 — — — — 27	77 —	Ο			Inferred UCS From Point Load Test (Axial): 30.2 MPa
	- Excellent Quality	RC	16	100	98	- - - - - - - - - - - - - - - - - - -	75 —	C			Inferred UCS From Point Load Test (Axial): 39.1 MPa
	End of Borehole 29.0 1. Borehole was open upon completion of drilling. 2. Groundwater level was measured at 13.14 m below ground surface on September 12, 2023.					29					

	ECORD	OF BOREHOLE NO BIGC-ENV-623A	0.	<u>BH/</u>	MW	<u> 5</u>		Drilling	a Location:	See BH Loc	ation Plan		Logged by:	B.I.G. CONSULTING INC
Pro	ject Client:	Cross Realty Incorporated						Drilling	Method:	100 mm Sc	olid Stem Augering		Compiled by:	KH
	ject Name:	Geotechnical and Hydrogeolog	gical li	nvestig	ations	i			, g Machine:	Truck Moun			Reviewed by:	
		157 and 165 Cross Avenue, Oa							Started:	Aug 28, 23		28. 23	Revision No.:	
						NC		-						
lot	LIIH	OLOGY PROFILE DESCRIPTION		DIL SA			_	(m) N		TESTING ationTesting DCPT Nilcon Vane*	LAB TESTING ★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading Δ parts per million (ppm) 100 200 300 400	INTATION FION	COMMEN	TS
Lithology Plot	Geodetic Groun	d Confess Floresticae 400 FO as	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION	△ Intact ▲ Remould	 ♦ Intact ♦ Remould near Strength (kPa) 	Lower Explosive Limit (LEL) W _P W U Plastic 20 40 60 80	INSTRUMENTATION INSTALLATION		
	FILL: sand to	d Surface Elevation: 103.52 m AVEMENT: 60 mm asphalt over 103.31 lar base sandy silt, trace clay, trace gravel, 0.2 ckets of silty clay, brown, moist,	SS	1	95	18	- - - - -	103 –	0		o ⁷			
			SS	2	84	12	- - - 1 - - -	-	0		o ¹⁸			
	SANDY SILT	101.54 TILL: trace clay, trace gravel, 2.0	SS	3	79	11	- - - - - 2	102 -	0		014			
	greenish brow dense	n to grey, moist, compact to very	SS	4	70	58	- - - - -	101 -		0	08	¥ =		
	BEDROCK: S	thale, Georgian Bay Formation 3.1	SS	5	100	56/ 150 mm	- - 3 - 3 	100 —			o ³			
			SS	6	100	50/ 80 mm	- - - - - - - - - - - - - - - - - - -	99 —			o ¹²			
							5	98 -						
	 Water level ground surfact Groundwater 	ole 6.14.2 as open upon completion of drilling. was measured at 4.3 m below e (bgs) upon completion of drilling. er level was measured at 2.40 m mber 12, 2023.												
12-5	6. Consulting In 500 Tomken Ro issauga, ON L4	f.						4.3 m.	at a dopth of:	2.40 m		1		

Mississauga, ON Canada T: 416-214-4880 F: 416-551-2633

RECORD OF BOREHOLE No. BH/MW6D Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 150 mm Solid Stem Augering / HQ Coring Cross Realty Incorporated Compiled by: Project Client: Drilling Method: Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: Truck Mounted Drill Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Date Completed: Sep 11, 23 Sep 8, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION Bot Recovery (%) Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology. ▲ Remould Liquid 80 Plastic * Undrained Shear Strength (kPa) eodetic Ground Surface Elevation: 102.98 m ASPHALT PAVEMENT: 100 mm asphalt over 40 60 20 40 60 20 170 mm granular base 102.71 FILL: sand and gravel, trace clay, trace silt, 33 10 0 brown, moist, loose FILL: silty clay, trace sand, trace gravel, grey to0.8 brown, moist, firm 102 018 SS 2 54 6 Ö SANDY SILT TILL: trace clay, trace gravel, containing occasional cobbles and boulders, reddish brown to grey, moist, compact to very 011 SS 3 95 25 0 2 101 o⁹ 87 SS 4 0 78 100 50/ 130 ٥7 SS mm 99 50/ 80 98. BEDROCK: Shale, Georgian Bay Formation, Alighly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (3-31%), grey 100 46 98 97 6 - Poor Quality RC \circ 100 29 96 - Fair Quality 95 8 RC 2 100 51 0 - Poor Quality RC 3 100 45 0 B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: N/A m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 ▼ Groundwater depth observed on September 12, 2023 at a depth of: 11.35 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:53

Page: 1 of 3

commissioned and the accompanying Notes to Record of Boreholes'.

RECORD OF BOREHOLE No. BH/MW6D

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: FJ LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING Rinse pH Values
2 4 6 8 10 12

Soil Vapour Reading
parts per million (ppm)
100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT **COMMENTS** Sample Number **DESCRIPTION** ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
▲ Remould ♦ Intact♦ Remould DEPTH * Undrained Shear Strength (kPa) SPT 40 60 20 40 60 20 80 BEDROCK: Shale, Georgian Bay Formation, highly weathered to fresh, very poor to excellent quality, occasional limestone/siltstone layers (3-31%), grey - Very Poor Quality 11 92 RC 90 13 0 91 12 - Poor Quality 0 RC5 89 45 13 90 - Fair Quality 89 14 RC 6 100 56 0 88 15 - Fair Quality Inferred UCS From Point Load Test (Axial): 25.6 MPa RC 100 54 0 87 16 - Good Quality 86 17 RC 8 100 82 Ö 18 85 - Excellent Quality RC 9 100 95 84 19 - Excellent Quality Inferred UCS From Point Load Test 83 20 (Axial): 42.5 MPa RC 10 100 93 0 82 21

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

RECORD OF BOREHOLE No. BH/MW6D

Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: FJ

Percentage Per		
Second Country Seco		
Second Cuality	OMMENTS	
Second Country Seco		
Secretary Causily		
- Fire Quality - RC 12 100 72 - 24 79 - 0 - Good Quality - Cood Quality - Excellent Quality - Excellent Quality - RC 13 100 90 - 25 78 - 0 - RC 14 100 90 - 27 70 - 0 - Excellent Quality - Excellent Quality - Excellent Quality - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 17 100 85 - 0 - RC		
- Fire Quality - RC 12 100 72 - 24 79 - 0 - Good Quality - Cood Quality - Excellent Quality - Excellent Quality - RC 13 100 90 - 25 78 - 0 - RC 14 100 90 - 27 70 - 0 - Excellent Quality - Excellent Quality - Excellent Quality - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 15 101 90 - 28 75 - 0 - RC 17 100 85 - 0 - RC		
-Fair Quality RC 12 100 72 -24 79 -31		
RC 12 100 72 - 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 2		
RC 12 100 72 - 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 2		
RC 12 100 72		
RC 12 100 72 - 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 24 79 - 2		
- Good Quality - Cood Quality		
- Good Quality - Good Quality - Cood Quality		
- Good Quality - Good Quality - Cood Quality		
- Good Quality - Excellent Quality - RC 14 100 95		
- Good Quality RC 13 100 90 - 25 78 - O Interred UCSI (Axial): 37.0 M Axial): 43.5 M RC 14 100 95 - 27 76 - O UCS: 26.6 MP - Excellent Quality - Excellent Quality - RC 15 101 99 - 28 75 - O UCS: 26.8 MP - RC 15 101 99 - 28 75 - O UCS: 26.8 MP - RC 15 101 99 - 28 75 - O UCS: 26.8 MP - RC 16 100 95 - 30 73 - O UCS: 26.8 MP - RC 17 100 83 - 31 72 - O UCS: 26.8 MP - RC 17 100 83 - O UCS: 26.8 MP - RC 17 100 83 - O UCS: 26.8 MP - RC 17 100 83 - O UCS: 26.8 MP - RC 17 100 83 - O UCS: 26.8 MP - RC 17 100 83 - O UCS: 26.8 MP		
RC 13 100 90 - 25 78 - O Maferred UCS: 26.6 MP - Excellent Quality - RC 15 101 99 - 28 75 - O UCS: 26.6 MP - RC 15 101 99 - 28 75 - O UCS: 26.6 MP - Coolert Quality - Fixed ent Quality - Fixed		
- Excellent Quality - RC 15 101 99 - 28 75 - Q - 27 76 - Q - 27 76 - Q - 27 76 - Q - 28 75 - Q - 28 75 - Q - 28 75 - Q - 29 74 - Q - 30 73 - Q - Good Quality - Good Quality - Good Quality - RC 17 100 83 - 31 72 - Q - Inferred UCS I (Avisi): 24.3 M		
- Excellent Quality - RC 15 101 99 - 28 75 - Q - 27 76 - Q - 27 76 - Q - 27 76 - Q - 28 75 - Q - 28 75 - Q - 28 75 - Q - 29 74 - Q - 30 73 - Q - Good Quality - Good Quality - Good Quality - RC 17 100 83 - 31 72 - Q - Inferred UCS I (Avisi): 24.3 M		
- Excellent Quality - RC 15 101 99 - 28 75 - Q - 27 76 - Q - 27 76 - Q - 27 76 - Q - 28 75 - Q - 28 75 - Q - 28 75 - Q - 29 74 - Q - 30 73 - Q - Good Quality - Good Quality - Good Quality - RC 17 100 83 - 31 72 - Q - Inferred UCS I (Avisi): 24.3 M		
- Excellent Quality - RC 15 101 99 - 28 75 - 0 UCS: 26.6 MP - RC 15 101 99 - 28 75 - 0 UCS: 26.6 MP - RC 15 101 99 - 28 75 - 0 UCS: 26.6 MP - RC 16 100 95 - 28 75 - 0 UCS: 26.6 MP - RC 16 100 95 - 30 73 - 0 UCS: 26.6 MP - A		
- Excellent Quality - Excelle	From Point Load Test MPa	
- Excellent Quality - Excelle		
- Excellent Quality - Excelle		
RC 14 100 95 - 27 76 - UCS: 26.6 MP -Excellent Quality -29 74 - O	From Point Load Test	
-Excellent Quality -Excel	иРа	
- Excellent Quality - Excelle		
-Excellent Quality -Excel		
- Excellent Quality - Excelle	Pa	
- Excellent Quality - Excellent Quality - Excellent Quality - Cood Quality	a	
- Excellent Quality - Excellent Quality - Excellent Quality - Cood Quality		
- Excellent Quality - Excellent Quality - RC 16 100 95 - 30 73 - 31 72 - 31	From Point Load Test	
- Excellent Quality - Excellent Quality RC 16 100 95	иРа	
- Excellent Quality - Excellent Quality RC 16 100 95 - 0		
RC 16 100 95 - O Inferred UCS (Axial): 24.3 M		
RC 16 100 95 - O Inferred UCS (Axial): 24.3 M		
RC 16 100 95 - O Inferred UCS (Axial): 24.3 M		
- Good Quality - Good Quality - RC 16 100 95	. F	
- 30 73 30 73	From Point Load Test MPa	
- 30 73 30 73 30 73		
- Good Quality - Good Quality - 31 72		
- Good Quality RC 17 100 83 - 0 O Inferred UCS F (Axial): 40.4 M		
RC 17 100 83 - O Inferred UCS F (Axial): 40.4 M		
RC 17 100 83 - O Inferred UCS F (Axial): 40.4 M		
RC 17 100 83 O (Axial): 40.4 M		
RC 17 100 83 O	From Doint Land Track	
	From Point Load Test MPa	
71.01		
1. Borehole was open upon completion of drilling. 2. Groundwater level was measured at 11.35 m below ground surface on September 12, 2023.		

R	ECORD	OF BOREHOLE N	ο.	BH/	MW	6S							10	B.I.G. CONSULTING
	ject Number:	BIGC-ENV-623A					[Drilling	Location:	See BH Loc	ation Plan		_ Logged by:	FJ
Pro	ject Client:	Cross Realty Incorporated					[Drilling	Method:	100 mm Sc	olid Stem Augers		_ Compiled by:	KH
Pro	ject Name:	Geotechnical and Hydrogeolog	jical Ir	rvestig	ations		[Drilling	Machine:	Truck Moun	nted Drill		_ Reviewed by:	AC
Pro	ject Location:	157 and 165 Cross Avenue, Oa	kville,	Ontari	0		[Date S	tarted:	Sep 11, 23	Date Completed: Sep	11, 23	Revision No.:	0, 10/3/23
	LITH	OLOGY PROFILE	SC	IL SA	MPLII				FIELD	TESTING	LAB TESTING			
Lithology Plot		DESCRIPTION 1 Surface Elevation: 102.95 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	O SPT MTO Vane* Δ Intact A Remould	tionTesting ■ DCPT Nilcon Vane* ◇ Intact ◆ Remould ear Strength (kPa) 60 80	★ Rinse pH Values 2 4 6 8 10 12	INSTRUMENTATION	COMMEN	TS
		VEMENT: 100 mm asphalt over				-		-				현 (현) 3점 (3점		
	FILL: sand ar brown, moist, i FILL: silty cla brown, moist, i SANDY SILT	d gravel, trace clay, trace silt, 0.3 cose 102.19 /, trace sand, trace gravel, grey to0.8 irm 101.43 TILL: trace clay, trace gravel, 1.5 asional cobbles and boulders,					- 1 - 1	102 —						
	dense	to grey, moist, compact to very					2	101						
	BEDROCK: S	98.38 nale, Georgian Bay Formation 4.6				- - - - - - - - - - - - - - - - - - -	- 4 - 4	99 —						
						- - - - - - - - - - - - - - - - - - -	- 5 5	98						
	End of Boreh	95.94 ole 7.0 as open upon completion of drilling.				-	- - - - - 7	96 —						
B.I.0	Water level ground surface	was measured at 4.9 m below e (bgs) upon completion of drilling. Ir level was measured at 4.64 m ober 12, 2023.						0.55						
12-5	5500 Tomken Rd sissauga, ON L4\	. I = Glodildwa						<u>.9 m</u> .	at a denth of	4.64 m.				

RECORD OF BOREHOLE No. BH/MW7 Project Number: BIGC-ENV-623A Drilling Location: See BH Location Plan Logged by: 100 mm Solid Stem Augering Compiled by: Project Client: **Cross Realty Incorporated** Drilling Method: KΗ Project Name: Geotechnical and Hydrogeological Investigations Drilling Machine: Truck Mounted Drill Reviewed by: AC Project Location: 157 and 165 Cross Avenue, Oakville, Ontario Date Started: Aug 30, 23 Date Completed: Aug 30, 23 Revision No.: 0, 10/3/23 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting SPT 'N' Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION Bot Sample Type Recovery (%) MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology I DEPTH ▲ Remould * Undrained Shear Strength (kPa) Plastic Liquid 80 eodetic Ground Surface Elevation: 103.20 m ASPHALT PAVEMENT: 90 mm asphalt over 102.98 40 60 20 40 60 20 130 mm granular base 103 011 FILL: silty sand, trace to some gravel, trace 6 62 0 clay, brown, moist, loose 0.17 SS 2 87 7 Ö 102 SS 3 54 3 2 101 SANDY SILT TILL: trace clay, trace gravel, containg layers of silty clay till, containing shale pieces, brown to grey, moist, denseto very denset o⁹ 62 62 Ö o¹¹ 55/ 150 SS 100 5 100 mm 99 015 SS 6 58 45 0 98.17 SILTY CLAY TILL / SHALE COMPLEX: reddish5.0 brown to grey, moist, hard 6 97.10 End of Borehole Borehole was open upon completion of drilling. 2. Water level was measured at 3.1 m below ground surface (bgs) upon completion of drilling. 3. Groundwater level was measured at 2.26 m bgs on September 12, 2023. B.I.G. Consulting Inc. ☑ Groundwater depth on completion of drilling: 3.1 m. 12-5500 Tomken Rd.

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

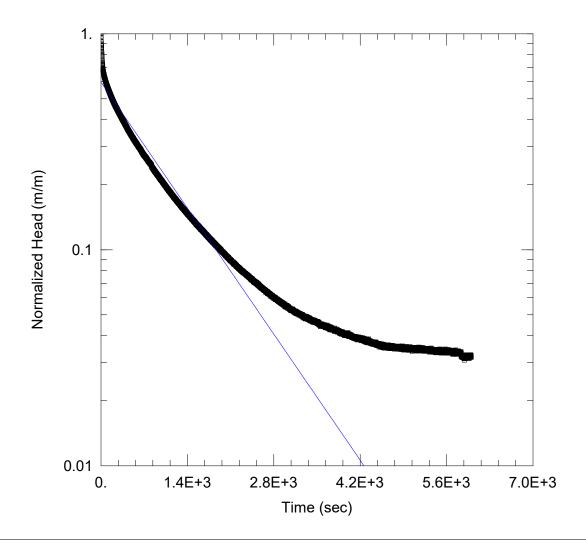
 APPENDIX B: MECP WWR, PTTW AND EASR SUMMARY TABLES

Table B-1: MECP WWR Summary Table

Count	Well ID	Date Completed	Depth (m)	Reported Water Level (m)	Status of Well
1.	2802422	07/21/1948	12.2	4.9	Water supply
2.	2810039	04/06/2004	5.1	N/A	Observation well
3.	2810078	09/03/2004	6.3	3.3	Observation well
4.	2810285	02/01/2005	6	N/A	Observation well
5.	2810392	09/20/2005	4.5	3.9	Observation well
6.	2810649	08/28/2006	7.6	N/A	Observation well
7.	7041205	01/12/2007	2.4	N/A	Observation well
8.	7100453	09/26/2007	4.7	N/A	Observation well
9.	7100453	09/26/2007	N/A	N/A	Observation well
10.	7101141	09/27/2007	N/A	N/A	Test Hole
11.	7101141	09/27/2007	N/A	N/A	Test Hole
12.	7134031	09/16/2009	6.1	N/A	Observation well
13.	7152039	09/03/2010	4	N/A	Test Hole
14.	7152039	09/03/2010	N/A	N/A	Test Hole
15. 16.	7152039 7152039	09/03/2010	N/A	N/A N/A	Test Hole Test Hole
17.	7152039	09/03/2010 09/03/2010	N/A N/A	N/A N/A	Test Hole
18.	7152039	09/03/2010	N/A N/A	N/A N/A	Test Hole
19.	7152039	09/07/2010	N/A	N/A	Test Hole
20.	7152039	09/07/2010	N/A	N/A	Test Hole
21.	7152039	09/07/2010	N/A	N/A	Test Hole
22.	7152039	09/08/2010	N/A	N/A	Test Hole
23.	7152039	09/08/2010	N/A	N/A	Test Hole
24.	7152039	09/08/2010	N/A	N/A	Test Hole
25.	7152039	09/09/2010	N/A	N/A	Test Hole
26.	7152039	09/09/2010	N/A	N/A	Test Hole
27.	7161332	03/29/2011	3.4	N/A	N/A
28.	7161333	03/29/2011	3.4	N/A	N/A
29.	7161334	03/29/2011	3.4	N/A	N/A
30.	7187787	08/28/2012	3.4	N/A	Observation well
31.	7188619	04/13/2012	N/A	N/A	N/A
32.	7192191	05/18/2012	N/A	N/A	N/A
33.	7195037	06/19/2012	9.1	N/A	N/A
34.	7253999	11/20/2015	6.1	N/A	Observation well
35.	7254000	11/20/2015	6.1	N/A	Observation well
36.	7263647	04/23/2016	6.1	N/A	Observation well
37.	7263648	04/23/2016	6.1	N/A	Observation well
38.	7263649	04/23/2016	6.1	N/A	Observation well
39.	7263650	04/23/2016	6.1	N/A	Observation well
40.	7286766	N/A	N/A	N/A	N/A Tost Holo (Manitoring
41.	7322522	05/17/2018	6.1	N/A	Test Hole/Monitoring
42.	7322523	05/17/2018	5.0	N/A	Test Hole/Monitoring
43. 44.	7322524 7325283	05/17/2018 09/11/2018	6.4 N/A	N/A N/A	Test Hole/Monitoring 09/11/2018

Count	Well ID	Date Completed	Depth (m)	Reported Water Level (m)	Status of Well
45.	7327366	08/29/2018	N/A	N/A	N/A
46.	7329556	01/04/2019	16.8	N/A	Monitoring
47.	7343775	09/05/2019	N/A	N/A	N/A
48.	7344253	10/29/2020	N/A	N/A	N/A
49.	7376602	08/13/2020	N/A	N/A	N/A
50.	7384388	01/26/2021	6.1	N/A	Observation/Monitoring
51.	7384399	01/26/2021	7.6	N/A	Observation/Monitoring
52.	7384400	01/26/2021	6.1	N/A	Observation/Monitoring
53.	7384402	01/26/2021	6.1	N/A	Observation/Monitoring
54.	7393298	07/09/2021	3.1	N/A	Abandoned
55.	7393299	06/25/2021	4.0	N/A	Abandoned
56.	7393335	06/25/2021	4.0	2.1	Abandoned
57.	7393339	06/25/2021	4.0	2.9	Abandoned
58.	7393340	06/25/2021	4.0	1.8	Abandoned
59.	7393341	06/25/2021	3.0	1.7	Abandoned
60.	7405067	10/08/2021	22.9	N/A	N/A
61.	7405068	10/08/2021	15.2	N/A	N/A
62.	7405069	10/08/2021	4.9	N/A	N/A
63.	7405070	10/08/2021	7.0	N/A	N/A
64.	7405071	10/08/2021	7.3	N/A	N/A
65.	7412585	02/17/2022	6.1	4.6	Observation/Monitoring
66.	7412588	02/17/2022	8.2	6.1	Observation/Monitoring
67.	7412591	02/17/2022	6.7	4.6	Observation/Monitoring

Table B-2: MECP EASR Summary Table


Permit Number	Purpose	Address	Municipality	Water Source	Max L/Day	Active
0772-AF3HTJ	Dewatering	Canadian National Railway and Cross Avenue	Oakville	Groundwater	20,000 to 428,000	No
2668-6TRQ7G	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
0551-72YPT5	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
4375-6NYL7V	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
8107-9KKLR9	Dewatering construction	Queen Elizabeth Way (Hwy 403), north of South Service Road East,	Oakville	Surface water	449,280,000 to 1,168,128,000	No

Permit Number	Purpose	Address	Municipality	Water Source	Max L/Day	Active
		southwest of				
		Chartwell Road				
R-009-4234642223	Construction	547 Trafalgar	Oakville	Groundwater	380,000 to	Yes
N-009-4234042223	dewatering	Road	Oakville	Groundwater	400,000	163
R-009-2112317313	Construction	547 Trafalgar	Oakville	Groundwater	50,000 to	No
K-009-211231/313	dewatering	Road	Oakville	Groundwater	400,000	INO
R-009-9112436776	Construction	Trans-Northern	Oakville	Groundwater	50,000 to	No
N-003-3112430770	dewatering	Pipelines Inc.	Cakville	Groundwater	400,000	INO

APPENDIX C: SWRT RESULTS

Data Set: C:\...\BHMW1.aqt

Date: 10/23/23 Time: 16:26:10

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW1

Test Date: September 12, 2023

AQUIFER DATA

Saturated Thickness: 3.35 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW1)

Initial Displacement: 1.118 m

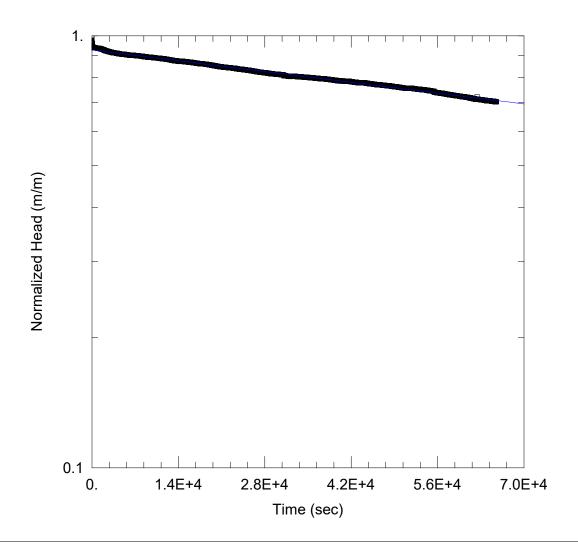
1:110 III

Total Well Penetration Depth: 3.35 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.35 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 5.639E-7 m/sec

y0 = 0.668 m

Data Set: C:\...\BHMW2D.aqt

Date: 10/23/23 Time: 16:29:44

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW2D

Test Date: September 12, 2023

AQUIFER DATA

Saturated Thickness: 1.76 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW2D)

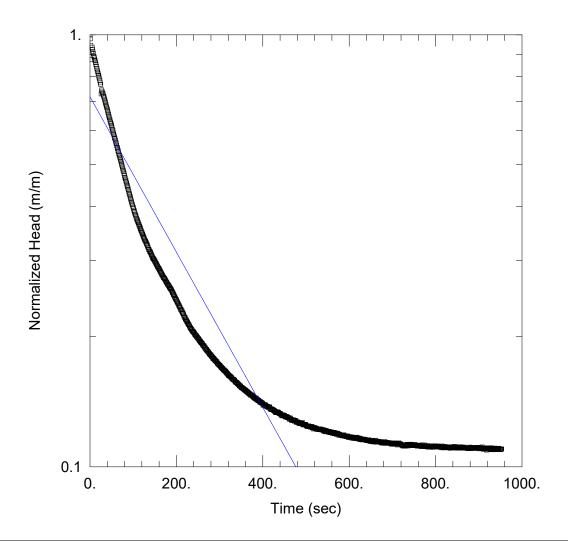
Initial Displacement: 1.049 m

Static Water Column Height: 1.76 m

Total Well Penetration Depth: 1.76 m

Screen Length: 1.76 m Well Radius: 0.0254 m

Casing Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 3.991E-9 m/sec

y0 = 0.9726 m

Data Set: C:\...\BHMW2S.aqt

Date: 10/23/23 Time: 16:35:10

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW2S

Test Date: September 12, 2023

AQUIFER DATA

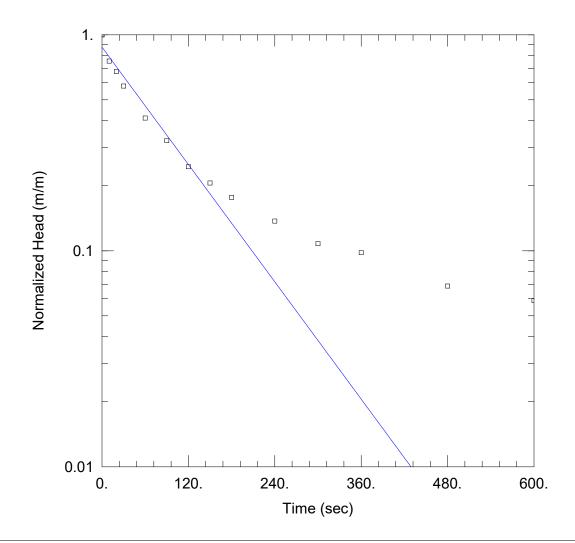
Saturated Thickness: 2.2 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW2S)

Initial Displacement: 1.152 m

Total Well Penetration Depth: 2.2 m

Casing Radius: 0.0254 m


Static Water Column Height: 2.2 m

Screen Length: 2.2 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 3.215E-6 m/sec y0 = 0.8276 m

Data Set: C:\...\BHMW3.aqt

Date: 10/23/23 Time: 16:38:04

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW3

Test Date: September 13, 2023

AQUIFER DATA

Saturated Thickness: 2.41 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW3)

Initial Displacement: 1.02 m

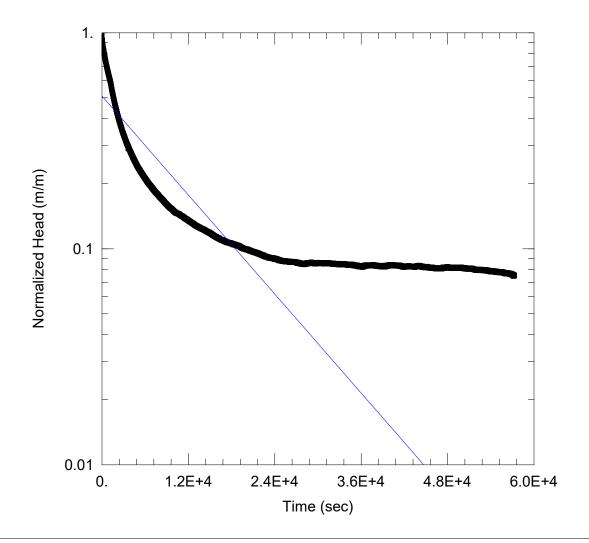
Screen Length: 2.41 m

Total Well Penetration Depth: 2.41 m

Static Water Column Height: 2.41 m

Casing Radius: 0.0254 m

Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 7.393E-6 m/sec

y0 = 0.894 m

Data Set: C:\...\BHMW4.aqt

Date: 10/23/23 Time: 16:40:51

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW4

Test Date: September 12, 2023

AQUIFER DATA

Saturated Thickness: 3.89 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW4)

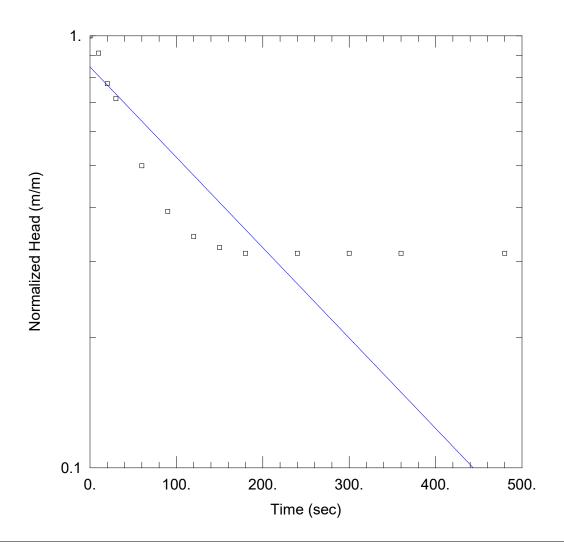
Initial Displacement: 1.43 m

Total Well Penetration Depth: 3.89 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.89 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 5.17E-8 m/sec

y0 = 0.729 m

Data Set: C:\...\BHMW5.aqt

Date: 10/23/23 Time: 16:52:36

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW5

Test Date: September 13, 2023

AQUIFER DATA

Saturated Thickness: 3.33 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW5)

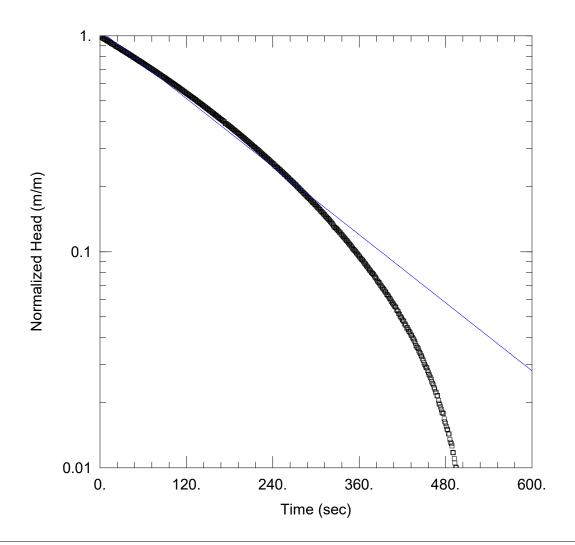
Initial Displacement: 1.02 m

Total Well Penetration Depth: 3.33 m

Static Water Column Height: 3.33 m

Casing Radius: 0.0254 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 2.83E-6 m/sec

y0 = 0.8638 m

Data Set: C:\...\BHMW6D.aqt

Date: 10/23/23 Time: 16:54:29

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW6D

Test Date: September 12, 2023

AQUIFER DATA

Saturated Thickness: 10.62 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW6D)

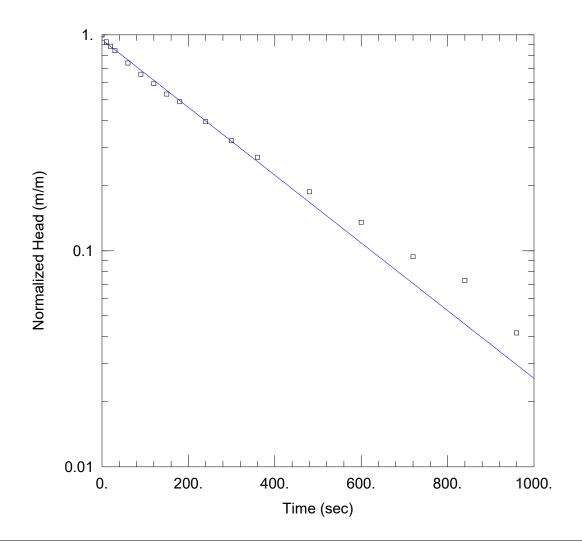
Initial Displacement: 1.569 m

Total Well Penetration Depth: 10.62 m

Static Water Column Height: 10.62 m

Screen Length: 3. m Well Radius: 0.0254 m

Casing Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 3.554E-6 m/sec

y0 = 1.66 m

Data Set: C:\...\BHMW6S.aqt

Date: 10/23/23 Time: 16:56:14

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW6S

Test Date: September 13, 2023

AQUIFER DATA

Saturated Thickness: 2.48 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW6S)

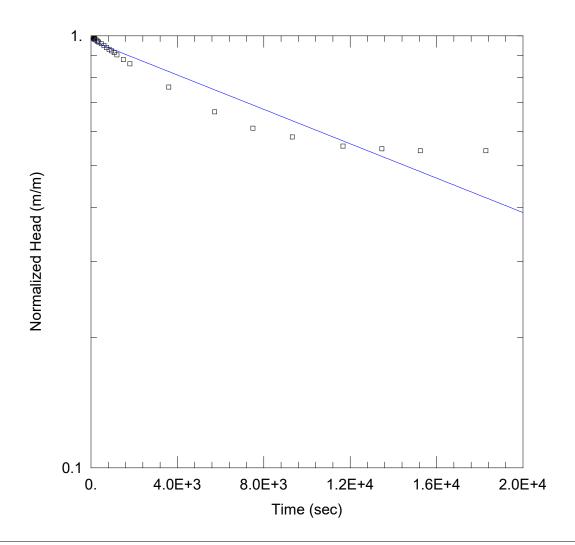
Initial Displacement: 0.96 m

Total Well Penetration Depth: 2.48 m

Casing Radius: 0.0254 m

Static Water Column Height: 2.48 m

Screen Length: 2.48 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 2.488E-6 m/sec

y0 = 0.911 m

Data Set: C:\...\BHMW7.aqt

Date: 10/23/23 Time: 16:58:33

PROJECT INFORMATION

Company: B.I.G. Consulting Inc. Client: Cross Realty Incorporated

Project: BIGC-ENV-623A

Location: 157 and 165 Cross Ave Oakville

Test Well: BH/MW7

Test Date: September 13, 2023

AQUIFER DATA

Saturated Thickness: 3.6 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW7)

Initial Displacement: 3.6 m

Total Well Penetration Depth: 3.6 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.6 m

Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 2.692E-8 m/sec

y0 = 3.508 m

APPENDIX D: WATER QUALITY LABORATORY CERTIFICATE OF ANALYSIS AND CHAIN OF CUSTODY

Your Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Your C.O.C. #: 953597-01-01

Attention: Eileen Liu

B.I.G Consulting Inc.

12-5500 Tomken Road
Mississauga, ON

L4W 2Z4

CANADA

Report Date: 2023/09/27

Report #: R7832940 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3S1578 Received: 2023/09/13, 19:57

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2023/09/14	2023/09/15	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2023/09/14	2023/09/19	CAM SOP-00427	SM 23 5210B m
Carbonaceous BOD	1	2023/09/14	2023/09/19	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2023/09/14	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2023/09/15	2023/09/15	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2023/09/14	2023/09/14	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2023/09/15	2023/09/19	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2023/09/14	2023/09/15	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2023/09/13	CAM SOP-00552	MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2023/09/19	2023/09/19	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2023/09/19	2023/09/19	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2023/09/20	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/09/20	2023/09/20	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2023/09/15	2023/09/17	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2023/09/14	CAM SOP-00307	EPA 8081B/ 8082A
pH	1	2023/09/14	2023/09/14	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/09/14	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Turbidimetry	1	N/A	2023/09/15	CAM SOP-00464	SM 23 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2023/09/14	2023/09/18	CAM SOP-00938	OMOE E3516 m
Total PAHs (2)	1	N/A	2023/09/15	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2023/09/20	2023/09/20	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2023/09/19	2023/09/20	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2023/09/15	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement

Your Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Your C.O.C. #: 953597-01-01

Attention: Eileen Liu

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

Report Date: 2023/09/27

Report #: R7832940 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3S1578 Received: 2023/09/13. 19:57

Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane
- (2) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Deepthi Shaji, Project Manager

Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID					WZC876		
Sampling Date					2023/09/13		
Sampling Date					13:05		
COC Number					953597-01-01		
		UNITS	Criteria	Criteria-2	BH/MW4	RDL	QC Batch
Calculated Parame	eters						
Total Animal/Vege	table Oil and Grease	mg/L	-	150	ND	0.50	8913262
Inorganics							
Total BOD		mg/L	15	-	ND	2	8916146
Total Carbonaceou	is BOD	mg/L	-	300	ND	2	8916151
Fluoride (F-)		mg/L	-	10	0.41	0.10	8916929
Total Kjeldahl Nitro	ogen (TKN)	mg/L	-	100	8.9	0.50	8917530
рН		рН	6.5:8.5	6.0:10.0	7.66		8916935
Phenols-4AAP		mg/L	0.008	1	ND	0.0010	8917229
Total Suspended S	olids	mg/L	15	350	11	10	8925518
Dissolved Sulphate	e (SO4)	mg/L	-	1500	1000	5.0	8915499
Total Cyanide (CN)		mg/L	0.02	2	ND	0.0050	8918822
Petroleum Hydroc	•				•		
Total Oil & Grease		mg/L	-	-	ND	0.50	8928102
Total Oil & Grease Mineral/Synthetic		mg/L	-	-	ND	0.50	8928104
No Fill	No Exceedance	•				-	

No Fill Grey

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

NONYL PHENOL AND NONYL PHENOL ETHOXYLATE (WATER)

Bureau Veritas ID				WZC876		
Samulina Data				2023/09/13		
Sampling Dat	е			13:05		
COC Number				953597-01-01		
		UNITS	Criteria	BH/MW4	RDL	QC Batch
Miscellaneou	s Parameters					
Nonylphenol	Ethoxylate (Total)	mg/L	0.01	ND	0.005	8925253
Nonylphenol (Total)		mg/L	0.001	ND	0.001	8925248
No Fill No Exceedance						
Grey	a policy/	level (

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031 ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Exceeds both criteria/levels

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID				WZC876		
Sampling Date				2023/09/13		
				13:05		
COC Number				953597-01-01		
	UNITS	Criteria	Criteria-2	BH/MW4	RDL	QC Batch
Metals						
Chromium (VI)	ug/L	40	-	ND (1)	2.5	8916288
Mercury (Hg)	mg/L	0.0004	0.05	ND	0.00010	8926072
Total Aluminum (Al)	ug/L	-	50000	190	4.9	8917140
Total Antimony (Sb)	ug/L	-	5000	1.4	0.50	8917140
Total Arsenic (As)	ug/L	20	1000	1.2	1.0	8917140
Total Cadmium (Cd)	ug/L	8	1000	ND	0.090	8917140
Total Chromium (Cr)	ug/L	80	3000	ND	5.0	8917140
Total Cobalt (Co)	ug/L	-	5000	2.3	0.50	8917140
Total Copper (Cu)	ug/L	40	3000	1.5	0.90	8917140
Total Iron (Fe)	ug/L	-	50000	270	100	8917140
Total Lead (Pb)	ug/L	120	3000	ND	0.50	8917140
Total Manganese (Mn)	ug/L	50	5000	360	2.0	8917140
Total Molybdenum (Mo)	ug/L	-	5000	16	0.50	8917140
Total Nickel (Ni)	ug/L	80	3000	13	1.0	8917140
Total Phosphorus (P)	ug/L	400	10000	ND	100	8917140
Total Selenium (Se)	ug/L	20	5000	ND	2.0	8917140
Total Silver (Ag)	ug/L	120	5000	ND	0.090	8917140
Total Tin (Sn)	ug/L	-	5000	2.9	1.0	8917140
Total Titanium (Ti)	ug/L	-	5000	ND	5.0	8917140
Total Zinc (Zn)	ug/L	40	3000	ND	5.0	8917140

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Hexavalent Chromium: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID				WZC876		
Comuling Data				2023/09/13		
Sampling Date				13:05		
COC Number				953597-01-01		
	UNITS	Criteria	Criteria-2	BH/MW4	RDL	QC Batch
Semivolatile Organics						
Naphthalene	ug/L	-	140	ND	0.3	8915862
Di-N-butyl phthalate	ug/L	15	-	ND	2	8915862
Bis(2-ethylhexyl)phthalate	ug/L	8.8	-	ND	2	8915862
3,3'-Dichlorobenzidine	ug/L	0.8	-	ND	0.8	8915862
Pentachlorophenol	ug/L	2	-	ND	1	8915862
Phenanthrene	ug/L	-	-	ND	0.2	8915862
Anthracene	ug/L	-	-	ND	0.2	8915862
Fluoranthene	ug/L	-	-	ND	0.2	8915862
Pyrene	ug/L	-	-	ND	0.2	8915862
Benzo(a)anthracene	ug/L	-	-	ND	0.2	8915862
Chrysene	ug/L	-	-	ND	0.2	8915862
Benzo(b/j)fluoranthene	ug/L	-	-	ND	0.2	8915862
Benzo(k)fluoranthene	ug/L	-	-	ND	0.2	8915862
Benzo(a)pyrene	ug/L	-	-	ND	0.2	8915862
Indeno(1,2,3-cd)pyrene	ug/L	-	-	ND	0.2	8915862
Dibenzo(a,h)anthracene	ug/L	-	-	ND	0.2	8915862
Benzo(g,h,i)perylene	ug/L	-	-	ND	0.2	8915862
Dibenzo(a,i)pyrene	ug/L	-	-	ND	0.2	8915862
Benzo(e)pyrene	ug/L	-	-	ND	0.2	8915862
Perylene	ug/L	-	-	ND	0.2	8915862
Dibenzo(a,j) acridine	ug/L	-	-	ND	0.4	8915862
7H-Dibenzo(c,g) Carbazole	e ug/L	-	-	ND	0.4	8915862
1,6-Dinitropyrene	ug/L	-	-	ND	0.4	8915862
1,3-Dinitropyrene	ug/L	-	-	ND	0.4	8915862
1,8-Dinitropyrene	ug/L	-	-	ND	0.4	8915862
Calculated Parameters	•				•	
Total PAHs (18 PAHs)	ug/L	2	-	ND	1	8913264
No Fill No Excee	dance				•	
Grey Exceeds 1	L criteria po	olicy/leve	I			
•		-				

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

							•
Bureau Veritas	i ID				WZC876		
Sampling Date					2023/09/13		
Sampling Date					13:05		
COC Number					953597-01-01		
		UNITS	Criteria	Criteria-2	BH/MW4	RDL	QC Batch
Surrogate Reco	overy (%)						
2,4,6-Tribromo	phenol	%	-	-	72		8915862
2-Fluorobipher	nyl	%	-	-	78		8915862
D14-Terphenyl	(FS)	%	-	-	97		8915862
D5-Nitrobenze	ne	%	-	-	92		8915862
D8-Acenaphthylene		%	-	-	77		8915862
No Fill	No Exceedar	nce					
Grey	Exceeds 1 cr	iteria po	licy/level				

RDL = Reportable Detection Limit

Black

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

Exceeds both criteria/levels

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID				WZC876		
Sampling Date				2023/09/13		
Sampling Date				13:05		
COC Number				953597-01-01		
	UNITS	Criteria	Criteria-2	BH/MW4	RDL	QC Batch
Volatile Organics						
Benzene	ug/L	2	10	0.38	0.20	8916554
Chloroform	ug/L	2	40	0.27	0.20	8916554
1,2-Dichlorobenzene	ug/L	5.6	-	ND	0.40	8916554
1,4-Dichlorobenzene	ug/L	6.8	80	ND	0.40	8916554
cis-1,2-Dichloroethylene	ug/L	5.6	-	ND	0.50	8916554
trans-1,3-Dichloropropene	ug/L	5.6	-	ND	0.40	8916554
Ethylbenzene	ug/L	2	160	ND	0.20	8916554
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	ND	2.0	8916554
1,1,2,2-Tetrachloroethane	ug/L	17	-	ND	0.40	8916554
Tetrachloroethylene	ug/L	4.4	1000	ND	0.20	8916554
Toluene	ug/L	2	16	ND	0.20	8916554
Trichloroethylene	ug/L	7.6	400	ND	0.20	8916554
Total Xylenes	ug/L	4.4	-	ND	0.20	8916554
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	-	101		8916554
D4-1,2-Dichloroethane	%	-	-	106		8916554
D8-Toluene	%	-	-	90		8916554

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

Criteria-2: Halton Sanitary & Combined Sewer Bylaw (2-03)

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

ORGANOCHLORINATED PESTICIDES BY GC-ECD (WATER)

Bureau Verita	s ID			WZC876				
Sampling Date				2023/09/13				
Jamping Date				13:05				
COC Number				953597-01-01				
		UNITS	Criteria	BH/MW4	RDL	QC Batch		
Calculated Pa	rameters							
Aldrin + Dieldr	in	ug/L	0.08	ND	0.005	8915446		
Chlordane (To	tal)	ug/L	40	ND	0.005	8915446		
DDT+ Metabo	lites	ug/L	-	ND	0.005	8915446		
Heptachlor + I	Heptachlor epoxide	ug/L	-	ND	0.005	8915446		
o,p-DDD + p,p	-DDD	ug/L	-	ND	0.005	8915446		
o,p-DDE + p,p-	-DDE	ug/L	-	ND	0.005	8915446		
o,p-DDT + p,p-	-DDT	ug/L	-	ND	0.005	8915446		
Total Endosulf	an	ug/L	-	ND	0.005	8915446		
otal PCB		ug/L	0.4	ND	0.05	8915446		
Pesticides & H	lerbicides							
Aldrin		ug/L	-	ND	0.005	8918788		
Dieldrin		ug/L	-	ND	0.005	8918788		
a-Chlordane		ug/L	-	ND	0.005	8918788		
g-Chlordane		ug/L	-	ND	0.005	8918788		
o,p-DDT		ug/L	0.04	ND	0.005	8918788		
p,p-DDT		ug/L	0.04	ND	0.005	8918788		
Lindane		ug/L	40	ND	0.003	8918788		
Hexachlorobe	nzene	ug/L	0.04	ND	0.005	8918788		
Mirex		ug/L	40	ND	0.005	8918788		
Surrogate Rec	overy (%)							
2,4,5,6-Tetrac	hloro-m-xylene	%	-	76		8918788		
Decachlorobip	henyl	%	-	122		8918788		
No Fill	No Exceedance							
Grey	Exceeds 1 criteria	Exceeds 1 criteria policy/level						
Black	Exceeds both crite	ria/level	s					
		•						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

MICROBIOLOGY (WATER)

Bureau Verita	as ID			WZC876			
Compline Det				2023/09/13			
Sampling Dat	е			13:05			
COC Number				953597-01-01			
		UNITS	Criteria	BH/MW4	RDL	QC Batch	
Microbiological							
Escherichia co	oli	CFU/100mL	200	<10	10	8915628	
No Fill	No Exceedand	ce					
Grey	Exceeds 1 crit	eria policy/le	vel				
Black	Exceeds both	criteria/level	s				
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: The Town of Oakville Storm Sewer Discharge By Law 2009-031							

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.0°C

Revised report[2023/09/21] - Criteria revised as per client request. Revised report[2023/09/27] - Criteria revised as per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8915862	2,4,6-Tribromophenol	2023/09/15	105	10 - 130	90	10 - 130	63	%				
8915862	2-Fluorobiphenyl	2023/09/15	79	30 - 130	75	30 - 130	84	%				
8915862	D14-Terphenyl (FS)	2023/09/15	100	30 - 130	99	30 - 130	94	%				
8915862	D5-Nitrobenzene	2023/09/15	86	30 - 130	84	30 - 130	78	%				
8915862	D8-Acenaphthylene	2023/09/15	81	30 - 130	78	30 - 130	76	%				
8916554	4-Bromofluorobenzene	2023/09/15	101	70 - 130	101	70 - 130	101	%				
8916554	D4-1,2-Dichloroethane	2023/09/15	102	70 - 130	100	70 - 130	105	%				
8916554	D8-Toluene	2023/09/15	104	70 - 130	105	70 - 130	91	%				
8918788	2,4,5,6-Tetrachloro-m-xylene	2023/09/17	72	50 - 130	71	50 - 130	74	%				
8918788	Decachlorobiphenyl	2023/09/17	122	50 - 130	105	50 - 130	112	%				
8915499	Dissolved Sulphate (SO4)	2023/09/15	NC	75 - 125	99	80 - 120	ND, RDL=1.0	mg/L	0.54	20		
8915862	1,3-Dinitropyrene	2023/09/15	12 (1)	30 - 130	98	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8915862	1,6-Dinitropyrene	2023/09/15	19 (1)	30 - 130	92	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8915862	1,8-Dinitropyrene	2023/09/15	14 (1)	30 - 130	88	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8915862	3,3'-Dichlorobenzidine	2023/09/15	0.28 (1)	30 - 130	92	30 - 130	ND, RDL=0.8	ug/L	NC	40		
8915862	7H-Dibenzo(c,g) Carbazole	2023/09/15	79	30 - 130	76	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8915862	Anthracene	2023/09/15	81	30 - 130	84	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(a)anthracene	2023/09/15	93	30 - 130	94	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(a)pyrene	2023/09/15	104	30 - 130	106	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(b/j)fluoranthene	2023/09/15	101	30 - 130	99	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(e)pyrene	2023/09/15	98	30 - 130	98	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(g,h,i)perylene	2023/09/15	103	30 - 130	105	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Benzo(k)fluoranthene	2023/09/15	96	30 - 130	101	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Bis(2-ethylhexyl)phthalate	2023/09/15	NC	30 - 130	101	30 - 130	ND,RDL=2	ug/L	NC	40		
8915862	Chrysene	2023/09/15	92	30 - 130	92	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Dibenzo(a,h)anthracene	2023/09/15	93	30 - 130	93	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Dibenzo(a,i)pyrene	2023/09/15	53	30 - 130	68	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Dibenzo(a,j) acridine	2023/09/15	88	30 - 130	87	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8915862	Di-N-butyl phthalate	2023/09/15	88	30 - 130	88	30 - 130	ND,RDL=2	ug/L	NC	40		
8915862	Fluoranthene	2023/09/15	93	30 - 130	94	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Indeno(1,2,3-cd)pyrene	2023/09/15	108	30 - 130	111	30 - 130	ND, RDL=0.2	ug/L	NC	40		

QUALITY ASSURANCE REPORT(CONT'D)

B.I.G Consulting Inc.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8915862	Naphthalene	2023/09/15	74	30 - 130	65	30 - 130	ND, RDL=0.3	ug/L				
8915862	Pentachlorophenol	2023/09/15	82	30 - 130	50	30 - 130	ND,RDL=1	ug/L	NC	40		
8915862	Perylene	2023/09/15	91	30 - 130	94	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Phenanthrene	2023/09/15	83	30 - 130	85	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8915862	Pyrene	2023/09/15	94	30 - 130	94	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8916146	Total BOD	2023/09/19					ND,RDL=2	mg/L	6.1	30	98	80 - 120
8916151	Total Carbonaceous BOD	2023/09/19					ND,RDL=2	mg/L	NC	30	93	85 - 115
8916288	Chromium (VI)	2023/09/14	103	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8916554	1,1,2,2-Tetrachloroethane	2023/09/15	107	70 - 130	98	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8916554	1,2-Dichlorobenzene	2023/09/15	101	70 - 130	94	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8916554	1,4-Dichlorobenzene	2023/09/15	110	70 - 130	103	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8916554	Benzene	2023/09/15	96	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916554	Chloroform	2023/09/15	106	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916554	cis-1,2-Dichloroethylene	2023/09/15	104	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30		
8916554	Ethylbenzene	2023/09/15	98	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916554	Methylene Chloride(Dichloromethane)	2023/09/15	103	70 - 130	93	70 - 130	ND, RDL=2.0	ug/L	NC	30		
8916554	Tetrachloroethylene	2023/09/15	100	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916554	Toluene	2023/09/15	99	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916554	Total Xylenes	2023/09/15					ND, RDL=0.20	ug/L	NC	30		
8916554	trans-1,3-Dichloropropene	2023/09/15	104	70 - 130	91	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8916554	Trichloroethylene	2023/09/15	102	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8916929	Fluoride (F-)	2023/09/14	103	80 - 120	106	80 - 120	ND, RDL=0.10	mg/L	NC	20		
8916935	рН	2023/09/14			101	98 - 103			1.4	N/A		
8917140	Total Aluminum (AI)	2023/09/15	106	80 - 120	100	80 - 120	ND, RDL=4.9	ug/L	0.35	20		
8917140	Total Antimony (Sb)	2023/09/15	108	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8917140	Total Arsenic (As)	2023/09/15	100	80 - 120	96	80 - 120	ND, RDL=1.0	ug/L	NC	20		
8917140	Total Cadmium (Cd)	2023/09/15	99	80 - 120	98	80 - 120	ND, RDL=0.090	ug/L	NC	20		
8917140	Total Chromium (Cr)	2023/09/15	101	80 - 120	98	80 - 120	ND, RDL=5.0	ug/L	NC	20		
8917140	Total Cobalt (Co)	2023/09/15	99	80 - 120	97	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8917140	Total Copper (Cu)	2023/09/15	100	80 - 120	98	80 - 120	ND, RDL=0.90	ug/L	0.23	20		

Bureau Veritas Job #: C3S1578 Report Date: 2023/09/27

QUALITY ASSURANCE REPORT(CONT'D)

B.I.G Consulting Inc.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8917140	Total Iron (Fe)	2023/09/15	99	80 - 120	98	80 - 120	ND, RDL=100	ug/L	0.27	20		
8917140	Total Lead (Pb)	2023/09/15	98	80 - 120	97	80 - 120	ND, RDL=0.50	ug/L	1.5	20		
8917140	Total Manganese (Mn)	2023/09/15	98	80 - 120	96	80 - 120	ND, RDL=2.0	ug/L	5.0	20		
8917140	Total Molybdenum (Mo)	2023/09/15	107	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	9.5	20		
8917140	Total Nickel (Ni)	2023/09/15	98	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	6.9	20		
8917140	Total Phosphorus (P)	2023/09/15	NC	80 - 120	94	80 - 120	ND, RDL=100	ug/L				
8917140	Total Selenium (Se)	2023/09/15	111	80 - 120	108	80 - 120	ND, RDL=2.0	ug/L	NC	20		
8917140	Total Silver (Ag)	2023/09/15	98	80 - 120	96	80 - 120	ND, RDL=0.090	ug/L				
8917140	Total Tin (Sn)	2023/09/15	99	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L				
8917140	Total Titanium (Ti)	2023/09/15	100	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L				
8917140	Total Zinc (Zn)	2023/09/15	100	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	2.1	20		
8917229	Phenols-4AAP	2023/09/14	103	80 - 120	104	80 - 120	ND, RDL=0.0010	mg/L	NC	20		
8917530	Total Kjeldahl Nitrogen (TKN)	2023/09/18	NC	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	9.4	20	100	80 - 120
8918788	a-Chlordane	2023/09/17	80	50 - 130	87	50 - 130	ND, RDL=0.005	ug/L	1.9	30		
8918788	Aldrin	2023/09/17	71	50 - 130	76	50 - 130	ND, RDL=0.005	ug/L	2.5	30		
8918788	Dieldrin	2023/09/17	88	50 - 130	91	50 - 130	ND, RDL=0.005	ug/L	1.3	30		
8918788	g-Chlordane	2023/09/17	85	50 - 130	86	50 - 130	ND, RDL=0.005	ug/L	2.6	30		
8918788	Hexachlorobenzene	2023/09/17	70	50 - 130	78	50 - 130	ND, RDL=0.005	ug/L	2.8	30		
8918788	Lindane	2023/09/17	70	50 - 130	80	50 - 130	ND, RDL=0.003	ug/L	2.6	30		
8918788	Mirex	2023/09/17	77	30 - 130	92	30 - 130	ND, RDL=0.005	ug/L	3.3	40		
8918788	o,p-DDT	2023/09/17	92	50 - 130	90	50 - 130	ND, RDL=0.005	ug/L	5.6	30		
8918788	p,p-DDT	2023/09/17	105	50 - 130	87	50 - 130	ND, RDL=0.005	ug/L	13	30		

QUALITY ASSURANCE REPORT(CONT'D)

B.I.G Consulting Inc.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8918822	Total Cyanide (CN)	2023/09/15	107	80 - 120	103	80 - 120	ND, RDL=0.0050	mg/L	NC	20		
8925248	Nonylphenol (Total)	2023/09/19	117	50 - 130	112	50 - 130	ND, RDL=0.001	mg/L	NC	40		
8925253	Nonylphenol Ethoxylate (Total)	2023/09/19	92	50 - 130	95	50 - 130	ND, RDL=0.005	mg/L	NC	40		
8925518	Total Suspended Solids	2023/09/20			96	85 - 115	ND, RDL=10	mg/L	NC	20		
8926072	Mercury (Hg)	2023/09/19	103	75 - 125	104	80 - 120	ND, RDL=0.00010	mg/L	NC	20		
8928102	Total Oil & Grease	2023/09/20			99	85 - 115	ND, RDL=0.50	mg/L	0.51	25		
8928104	Total Oil & Grease Mineral/Synthetic	2023/09/20			97	85 - 115	ND, RDL=0.50	mg/L	0.52	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Clistia Carriere
Cristina Carriere, Senior Scientific Specialist
Forham Rahman
Farhana Rahman, Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Client Project #: BIGC-ENV-623A

Site Location: 157-165 Cross Avenue, Oakville

Sampler Initials: AL

Exceedance Summary Table – Oakville Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH/MW4	WZC876-09	Total Manganese (Mn)	50	360	2.0	ug/L
The exceedance summary	table is for information purp	oses only and should not be c	onsidered a compreh	ensive listing or	statement of	conformance to
applicable regulatory guide	lines.					

Exceedance Summary Table – Halton Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should	I not be considered a comp	rehensive listing or	statement of o	conformance to
applicable regulatory gr	uidelines.					

Attention: Address: Fel: Email: MOE REGU	#31796 B.I.G Co Accounts Payable 12-5500 Tomken Mississauga ON I (416) 214-4880							903) 617-3777	www.bvna.com						CHAIN	OF CUSTO	ODY RECORD	
Attention: Address: Fel: Email: MOE REGU	Accounts Payable 12-5500 Tomken Mississauga ON I (416) 214-4880					REPO	RT TO:					PROJECT	INFORMAT	ION:			Laboratory Use	Only:
idention: ddress: iel: mail: MOE REGU	12-5500 Tomken Mississauga ON I (416) 214-4880		sulting Inc. Company Name: Blb					Quotation # C25341					Bureau Veritas Job #:		Bottle Order #:			
el: mail: MOE REGU	Mississauga ON I (416) 214-4880	David		tention:	Eileen L	iu				PO#								100000000
el: mail: MOE REGU	(416) 214-4880	1.77.7.2.1	Ac	ddress:	12-	5500 To	nken Re	d, M155:5	Lauga, ON	/ Project:			NV-623A		-			953597
mail: MOE REGU	The state of the s	.4W 2Z4								Project Na	ime:		+ 165		is twe.		COC #:	Project Manager:
MOE REGU		Fax:	Te		-1.01	- Faldial as	Fax:	(A)	V. 11	Site #:		- 00	Kville,	ON				Deepthi Shaji
	AP_BIG@brownf			mail:		ownfieldigi.co	m, wgv	day brow		NALYSIS RE		DI EASE DE	AC COECIEIC				C#953597-01-01 Turnaround Time (TAT)	Danisland
Table 2	JLATED DRINKING SUBMITTED ON TH n 153 (2011) Res/Park. Medium Ind/Comm Coarse Agri/Other For RS	/Fine CCME Sanits	NDED FOR HUM NKING WATER C egulations ary Sewer Bylaw a Sewer Bylaw thity	HAIN OF C	UMPTION N	100000	(please circle): ig / Cr VI	Oakville Storm		NALTSIS RE	UOESTED (I	LEASE BE	SPECIFIC)			(will be applied Standard TAT Please note: S	Please provide advance notice tandard) TAT: di IR sush TAT is not specified): = 5-7 Working days for most tests. slandard TAT for certain tests such as your Project Manager for details.	for rush projects
Table	7	PWQO Reg	406 Table	zakville —			Field Filtered (please c	Sanitary and ge								Job Specific Date Required	Rush TAT (if applies to entire subliced in the	omission) Time Required:
1 2	TOTAL STATE OF A SOCI	on Certificate of Analysis (Sample (Location) Identificate		Ties	me Sampled	Matrix	- E	latton Sar								# of Bottles		(call lab for #)
Sample	Barcode Label			.,		bround	40.	1		-						10		10000
		BH/MW4	23/09	13 1	:05 pm	Water	No	X								18		
2																		
1																		
								1								0		
-										9					1			
									-	_	13.5	Sep-23	10.57		-	1		
										-								
+				-						_ De	epthi S	haji	112.010		1			
6											C3S1							
										-	C331	3/0						
7										TIDE	. 7	NIV I	167	1	-			
8																		
9												FI						
10										1								
	an it all the land and the land	1 -	Pate: (YY/MM/DD)	Tie	10	DCCEN/ED	BY: (Signature	(Print)	Date: ()	Y/MM/DD)	Tir	-	# jars us	ed and T		Laborat	tory Use Only	
	RELINQUISHED BY: (S		3/09/13	7:57	2	O A CO	C (Signature	er tuning	221 2	9/13		T7	not subi		Time Sensitive		Custody	Seal Yes N
Min	ares corre	N Z	3/07/15	1.20	-64 m	made	whe	1	m is	2.1.2	100	37		. 13		Tombera	Preser Intac	nt /
UNLESS OTHER	WISE AGREED TO IN W	RITING, WORK SUBMITTED ON TH OF OUR TERMS WHICH ARE AVAIL	IS CHAIN OF CUSTOR	DY IS SUBJECT	CT TO BUREAU	VERITAS'S STA	NDARD TERMS	AND CONDITION	ONS. SIGNING C	F THIS CHAI	N OF CUSTO	DY DOCUME	ENT IS				10	e: Bureau Veritas Yellow: 0

Bureau Veritas Canada (2019) Inc.

APPENDIX E: CONSTRUCTION DEWATERING ESTIMATE RATE CALCULATIONS

Construction Dewatering Rate Estimate

157 and 165 Cross Ave, Oakville, Ontario Unconfined aquifer, groundwater seepage to rectangular excavation (line source)

Table E-1: Construction Dewatering Rate Estimates

Description	Symbol	Values	Unit	Explanation				
Input								
Proposed Ground Elevation		103.30	m asl	Based on drawing A501 Building Sections, prepared by TAI, dated March 20, 2023				
Highest Groundwater Elevation		101.71	m asl	Highest Water level measurement (September 12, 2023)				
Footing Elevation		76.20	m asl	Assumed 2m below P8 FFE, P8 FFE is assumed to be 78.2 m asl				
Aquifer Bottom		74.20	m asl	Assumed 2 m below lowest excavation depth				
Hydraulic Conductivity	K	4.97E-07	m/s	Geometric mean K of overburden and bedrock				
Length of Excavation	х	97.7	m	Based on drawing A201 Level P6 Plan, prepared by TAI, dated March 20, 2023				
Width of Excavation	а	62.4	m	Based on drawing A201 Level P6 Plan, prepared by TAI, dated March 20, 2023				
Output								
Top of Aquifer		101.71	m asl	water table for unconfined aquifer				
Target Water Level		75.20	m asl	assumed 1 m below footing elevation				
Water Level above aquifer bottom before dewatering	Н	27.5	m					
target water level above aquifer bottom	h	1.0	m					
Radius of Influence	L (R ₀)	32.7	m	Sichardt Equation (C=1750 for line source)				
Construction Dewatering Flow Rate - Steady State	Q	158.93	m³/day	Construction Dewatering Flow - Dupuit Equation				
Maximum Construction Flow Rate (safety factor of 2)	2Q	317.86	m³/day	during the initial period and after rains				
Construction Dewatering Flow Rate - Steady State	Q	159,000	L/day					
Maximum Construction Flow Rate (safety factor of 2)	2Q	318,000	L/day					

APPENDIX F: LONG TERM DRAINAGE FLOW RATE ESTIMATE CALCULATIONS

Foundation Drain Flow Rate Estimate

157 and 165 Cross Ave, Oakville, Ontario Unconfined Aquifer, Groundwater seepage to rectangular excavation (line source)

Table F-1: Foundation Drain Flow Rate Estimate of Southern Portion

Description		Values	Unit	Explanation				
Input								
Proposed Ground Elevation		103.30	m asl	Based on drawing A501 Building Sections, prepared by TAI, dated March 20, 2023				
Highest Groundwater Elevation		91.63	m asl	Highest Water level measurement in deep aquifer (September 12, 2023)				
Basement elevation		78.20	m asl	P8 FFE is assumed to be 78.2 masl				
Aquifer Bottom		76.20	m asl	Assumed 2 m below lowest excavation depth				
Hydraulic Conductivity		1.19E-07	m/s	Geometric mean K of bedrock				
Length of Excavation	х	97.7	m	Based on drawing A201 Level P6 Plan, prepared by TAI, dated March 20, 2023				
Width of Excavation	а	62.4	m	Based on drawing A201 Level P6 Plan, prepared by TAI, dated March 20, 2023				
Output								
Top of Aquifer		91.63	m asl	Water table for unconfined aquifer				
Target Water Level		77.70	m asl	Assumed 0.5 m below basement floor level				
Water Level above aquifer bottom before dewatering		15.4	m					
Target water level above aquifer bottom		1.5	m					
Radius of Influence	L (R ₀)	15.94	m	Weber's Equation - R ₀ after 40 days				
Long-Term Flow Rate - Steady State		24.37	m³/day	Long-term flow rate - Dupuit Equation				
Maximum Foundation Drain Flow Rate (safety factor of 2)		73.11	m³/day	During the initial period and after rains				
Estimated Long-term Foundation Drain Flow Rate		24,000	L/day					
Estimated Maximum Foundation Drain Flow Rate		72,000	L/day					

