STORMWATER MANAGEMENT AND FUNCTIONAL SERVICING REPORT

FOR

560 WINSTON CHURCHILL BOULEVARD BLACKWOOD PARTNERS

TOWN OF OAKVILLE

February 26, 2021 Rev. November 25, 2021

a.m. candaras associates inc.8551 Weston Rd, Suite 203Woodbridge, OntarioL4L 9R4

Project No. 1870

a.m. candaras associates inc.

consulting engineers

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	DESIGN CRITERIA	2
3.0	SITE DEVELOPMENT STATISTICS	3
4.0	PRE-DEVELOPMENT STORMWATER FLOWS	5
5.0	STORMWATER MANAGEMENT	7
5.1	QUANTITY CONTROLS	7
5.2	QUALITY CONTROLS	10
5.3	SWM FACILITY OUTLET	11
6.0	UNCONTROLLED RUNOFF	11
6.1	UNCONTROLLED RUNOFF TO WINSTON CHURCHILL BOULEVARD	11
6.2	UNCONTROLLED RUNOFF TO CLEARVIEW CREEK	11
7.0	STORM SEWERS	13
8.0	FLOODPLAIN MODIFICATION	14
9.0	ROOF DRAIN	15
10.0	SANITARY DESIGN	17
10.3	1 SANITARY DESIGN FLOWS	17
10.2	PROPOSED SANITARY SERVICING	18
10.3	3 EXTERNAL SANITARY SERVICING	18
11.0	WATERMAIN DESIGN	19
11.3	1 DOMESTIC AND FIREFLOW DEMAND	19
11.2	2 EXTERNAL WATERMAIN SERVICING	21
12.0	EROSION AND SEDIMENT CONTROLS	22
12.3	1 EROSION CONTROL AND SEDIMENT CONTROL REQUIREMENTS	22
12.2	2 MONITORING PLAN	

LIST OF FIGURES

Figure 1 – Site Location Plan	Following Page 1
Figure 2 – Existing Land Use	Following Page 1
Figure 3 – SWMP Discharge Drainage Path	Following Page 11

LIST OF APPENDICES

APPENDIX A - REFERENCE DOCUMENTS

APPENDIX B - SWMHYMO SIMULATION OUTPUT

APPENDIX C - SWM FACILITY CALCULATIONS

LIST OF PLANS

G-1	Site Servicing and Stormwater Management Plan - North
	Site Servicing and Stormwater Management Plan - South
	Grading Plan -North
	Grading Plan - South
	Stormwater Management Plan Detials
	Sediment and Erosion Control Plan
	Sediment and Erosion Control Plan
	Storm Drainage Area Plan
OTIVI-T	Juliage Alea Flair

1.0 INTRODUCTION

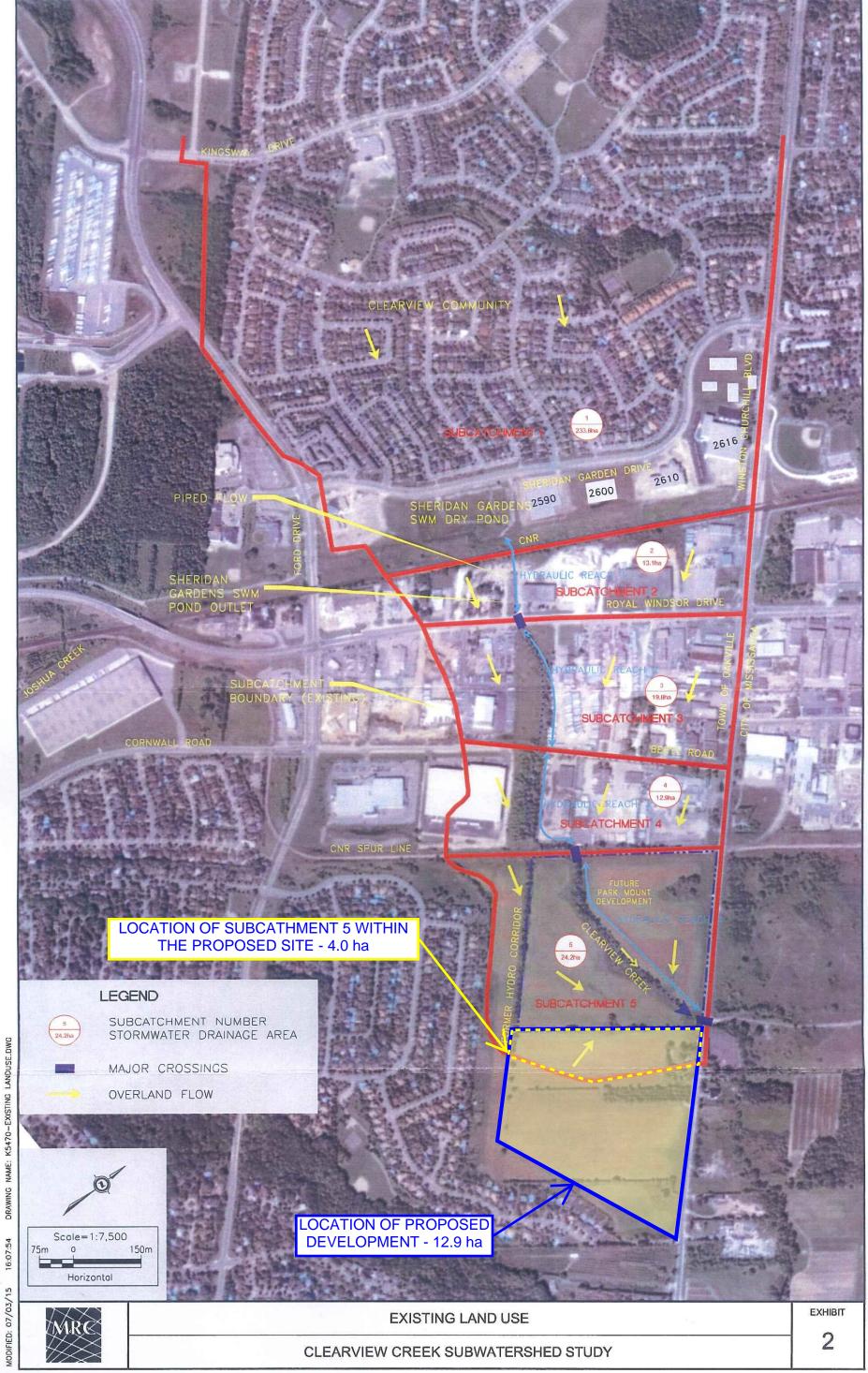
This report presents the site servicing and stormwater management analysis for the Blackwood site located at 560 Winston Churchill Boulevard, north of Deer Run Ave in the Town of Oakville as shown on Figure 1. The total site area is 12.93 ha which will be developed as three Industrial Warehouses and a stormwater management pond.

Stormwater management will be provided within a quality/quantity wet pond facility (0.87 ha), that will be constructed at the southeast portion of the site as shown on Plan G-1.

A Subwatershed Study was completed by McCormick Rankin Corporation (MRC) for the Clearview Creek in May 2007 which established pre-development flow rates. In the 2007 Clearview Creek Subwatershed Study a 4.0 ha site was identified as being part of Subcatchment 5, which had a total area of 24.2 ha. The drainage limits of Subcatchment 5, as delineated in the 2007 Clearview Creek Subwatershed Study, is referenced in Figure 2, with further details of Subcatchment 5 and the related pre-development flow rates provided in Appendix A.

The whole site area will be controlled to the balance of the allowable area of 8.93 ha (12.93 ha – 4.0 ha) and will drain to the southeast and discharge to the ditch along the west side of Winston Churchill Boulevard.

SITE LOCATION PLAN FIGURE 1



a.m.candaras associates inc. consulting engineers
8551 Weston rd., suite 203
Woodbridge ont. L4L 9R4
905-850-8020 Fax 905-850-8099
Email: civil@amcai.com

560 Winston Churchill Blvd. Town of Oakville

Blackwood Partners
Date: July 11, 2019

Job No.: 1870

2.0 DESIGN CRITERIA

- 1. Maximum allowable stormwater discharge to be limited to pre-development flows.
- 2. On-site detention must be provided to attenuate post development peak flows to the pre-development rates for storms up to and including the 100-year storm.
- 3. Stormwater quality controls to be based on Type 1 Enhanced Protection as per the MOE Stormwater Management Planning and Design Manual (2003).

3.0 SITE DEVELOPMENT STATISTICS

The development site will be separated into two areas for the stormwater analysis:

- > Roof area of 5.91 ha to have rooftop controls, and drain to the SWM Pond
- Building/Paved/Parking/Landscaped areas of 11.69 ha to the proposed SWM pond at southeast portion of site

The proposed site conditions consist of three industrial buildings, a stormwater management pond plus paved and landscaped areas. The site statistics are provided below:

Building A= $16,206.0m^2$ Building B= $12,791.0m^2$ Building C= $30,082.0m^2$ Paved= $39,454.0m^2$ Landscaped:= $22,079.0m^2$ SWM Pond:= $8,700.0m^2$ Site Area= $129,312.0m^2$

The stormwater analysis for the site has been completed using the SWMHYMO model. The subcatchment areas used in the model calculations are summarized in Table 1.

Table 1 - Proposed Development Land Use

Subcatchment ID	Post-Development Land Use Type	Area
1	Building, Paved and Landscaped Areas	116,912 m ²
2	Stormwater Management Pond	8,700 m ²
3	Uncontrolled Area Discharged to Winston Churchill Boulevard	1,400 m ²
4	2,300 m ²	
	129,312 m ²	

4.0 PRE-DEVELOPMENT STORMWATER FLOWS

The allowable discharge rates will be limited to the pre-development values which are indicated in Table 2, based on the Chicago Storm (Bloor St. Data). The pre-development rates listed in Table 2 below are based on the stormwater flow rates provided by the 2007 Clearview Creek Subwatershed Study (see Appendix A). The pre-development rates for the site area of 12.93 ha is the pro rata flow rate of total subcatchment area (24.2 ha) discharging to the Clearview Creek realignment.

Table 2 - Calculated Pre-Development Flow Rates Based On Total Area

Storm Event	Pre-Development Pro-Rated Target Rate [m³/s]					
	Area (24.2 ha) ⁽¹⁾	Area (4.0 ha) ⁽¹⁾	Area (8.93 ha)			
2 Year	0.155	0.026	0.057			
5 Year	0.300	0.050	0.111			
10 Year	0.413	0.068	0.152			
25 Year	0.540	0.089	0.199			
100 Year	0.869	0.144	0.321			

⁽¹⁾ Flow rates from Clearview Creek subwatershed study prepared by MRC

5.0 STORMWATER MANAGEMENT

The total drainage area to the SWM Facility is 12.56 ha, which does not include the uncontrolled areas (0.37 ha) outlined in Table 1. A 0.87 ha stormwater management wet pond will provide both quality and quantity controls, refer to Plan G-1 and G-3 for the design layout and details. Refer to Appendix C for the SWM Facility calculations.

5.1 **QUANTITY CONTROLS**

A proposed permanent pool elevation for this facility is 91.10m. The proposed stage storage relationship for this facility is shown in Table 3. A permanent pool volume of 3,045.1m³ will be provided between the pond bottom of 90.00m and 91.10m elevations. An erosion control volume of 3,146.2m³ will be provided between the 91.10m and 91.90m elevations.

For this facility, a 125mm orifice will be installed with an invert elevation of 91.10m. The erosion control volume will be released over a period of 61.1 hours at a peak release rate of 0.025m³/s. A 175mm weir at elevation 91.90m will provide the quantity controls as detailed on Plan G-1, G-3 and C-1. Refer to Table 4 for the SWM pond performance.

Table 3 - SWM Pond Stage Storage Discharge Relationship

	AREA	(m²)	V	OLUME (m	³)	DISCHARGE (m³) AND HEAD (m)								
Elevation	Pond	Forebay	Pond	Forebay	Total	Effective	Orifice (1)	Orifice Head	Weir 1 (2)	Weir 1 Head	Weir 2 (3)	Weir 2 Head	Discharge (m ³ /s)	Storage (ha*m)
90.00	1,231.00	826.0	0.0	0.0	0.0								0.0000	0.0000
90.20	1,342.00	948.00	257.3	177.4	434.7								0.0000	0.0000
90.40	1,453.00	1070.0	536.8	379.2	916.0								0.0000	0.0000
90.60	1,624.85	1,193.85	844.6	605.6	1,450.2								0.0000	0.0000
90.80	1,796.69	1,317.69	1,186.7	856.7	2,043.5								0.0000	0.0000
90.90	1,882.62	1,379.62	1,370.7	991.6	2,362.3								0.0000	0.0000
91.00	1,968.54	1,441.54	1,563.3	1132.7	2,695.9	0.0							0.0000	0.0000
91.10	2,054.46	1,520.00	1,764.4	1280.7	3,045.1	0.0	0.0000	0.00	0.0000	0.00			0.0000	0.0000
91.30	2,226.31	1,627.31	2,192.5	1595.5	3,788.0	742.8	0.0127	0.20	0.0000	0.00			0.0127	0.0743
91.50	2,398.15	1,751.15	2,654.9	1933.3	4,588.2	1,543.1	0.0199	0.40	0.0000	0.00			0.0199	0.1543
91.70	2,570.00	1,875.00	3,151.8	2295.9	5,447.7	2,402.5	0.0251	0.60	0.0000	0.00			0.0251	0.2403
91.90	4,867.00	0.0	3,895.5	2295.9	6,191.4	3,146.2	0.0294	0.80	0.0000	0.00			0.0294	0.3146
92.10	5,057.38	0.0	4,887.9	2295.9	7,183.8	4,138.7	0.0332	1.00	0.0267	0.20			0.0598	0.4139
92.30	5,247.75	0.0	5,918.4	2295.9	8,214.3	5,169.2	0.0365	1.20	0.0755	0.40			0.1120	0.5169
92.50	5,438.13	0.0	6,987.0	2295.9	9,282.9	6,237.8	0.0396	1.40	0.1387	0.60			0.1783	0.6238
92.70	5,628.50	0.0	8,093.7	2295.9	10,389.6	7,344.4	0.0425	1.60	0.2135	0.80			0.2560	0.7344
93.00	5,914.06	0.0	9,825.0	2295.9	12,121.0	9,075.8	0.0464	1.90	0.3442	1.10	0.000	0.00	0.3907	0.9076
93.20	6,104.44	0.0	11,026.9	2295.9	13,322.8	10,277.7	0.0489	2.10	0.4423	1.30	1.830	0.20	2.3211	1.0278
93.30	6,199.63	0.0	11,642.1	2295.9	13,938.0	10,892.9	0.0501	2.20	0.4943	1.40	3.362	0.30	3.9062	1.0893
93.40	6,294.81	0.0	12,266.8	2295.9	14,562.7	11,517.6	0.0512	2.30	0.5481	1.50	5.176	0.40	5.7754	1.1518
93.50	6,390.00	0.0	12,901.1	2295.9	15,197.0	12,151.8	0.0524	2.40	0.6039	1.60	7.234	0.50	7.8899	1.2152

- 1. Based on an 125mm orifice set at Permanent HWL = 91.10, Q=CA $\sqrt{2gh}$
- 2. Based on a 175mm weir at Inv. 91.90, Q=CLH^{3/2}
- 3. Based on an emergency overflow weir at Inv. 93.00, 12.00m wide, Q=CLH^{3/2}

Table 4 - Stormwater Management Pond Performance

Storm	Inflow (m³/s)	Outflow (m³/s)	Pre- Development Flow Rates (m³/s)	Storage (m³)	Pond HWL
2 Year	2.497	0.037	0.057	3,380	91.95
5 Year	3.472	0.074	0.111	4,413	92.15
10 Year	4.178	0.106	0.152	5,045	92.28
25 Year	4.949	0.143	0.199	5,671	92.39
100 Year	6.355	0.231	0.321	6,990	92.64
100 Year 24Hr SCS	3.680	0.269	0.321	7,510	92.73
Regional	1.834	1.814		9,962	93.15

5.2 **QUALITY CONTROLS**

For the proposed development, stormwater quality controls are to be provided within the SWM facility. The Clearview Creek subwatershed study prepared by MRC has stipulated design guidelines that are in agreement with the Stormwater Management Practices Planning and Design Manual (2003) (SWMP) as published by the Ontario Ministry of the Environment. The proposed facility will provide an Enhanced Protection Level.

Based on the site coverage values the imperviousness of the site directed to the pond is calculated as follows:

Table 5 - Impervious Calculations

Post-Development Land Use Type	Imperviousness	Total Area	Impervious Area
Building 1	100%	16, 206 m ²	16,206 m ²
Building 2	100%	12,791 m ²	12,791 m²
Building 3	100%	30,082 m ²	30,082 m ²
Paved	100%	39,454 m ²	39,454 m ²
Landscaped / Seeded Area	0%	18,379 m ^{2 (1)}	0 m ²
Stormwater Management Pond	50%	8,700 m ²	4,350 m ²
TOTAL	83% (weighted)	125,612 m ^{2 (2)}	102,883 m²

⁽¹⁾ The landscaped area does not include the uncontrolled areas outlined in Table 1. Landscaped Area = Total Landscaped Area – Uncontrolled Areas = $22,079m^2 - 3,700m^2 = 18,379m^2$.

Based on 85% imperviousness a permanent storage volume of 250m³/ha is required to provide Enhanced Protection.

Table 6 - SWM Facility - Stormwater Quality Requirements

Area	Imperviousness	Permanent Pool
12.56ha 85%		210m³/ha ⁽¹⁾
	Required:	2,637.6m ³
	Provided:	3,045.1m ³
	Elevation:	91.10m

⁽¹⁾ MOE SWM Planning and Design Manual for a wet pond based on 80% imperviousness. (250m³/ha -40m³/ha active storage)

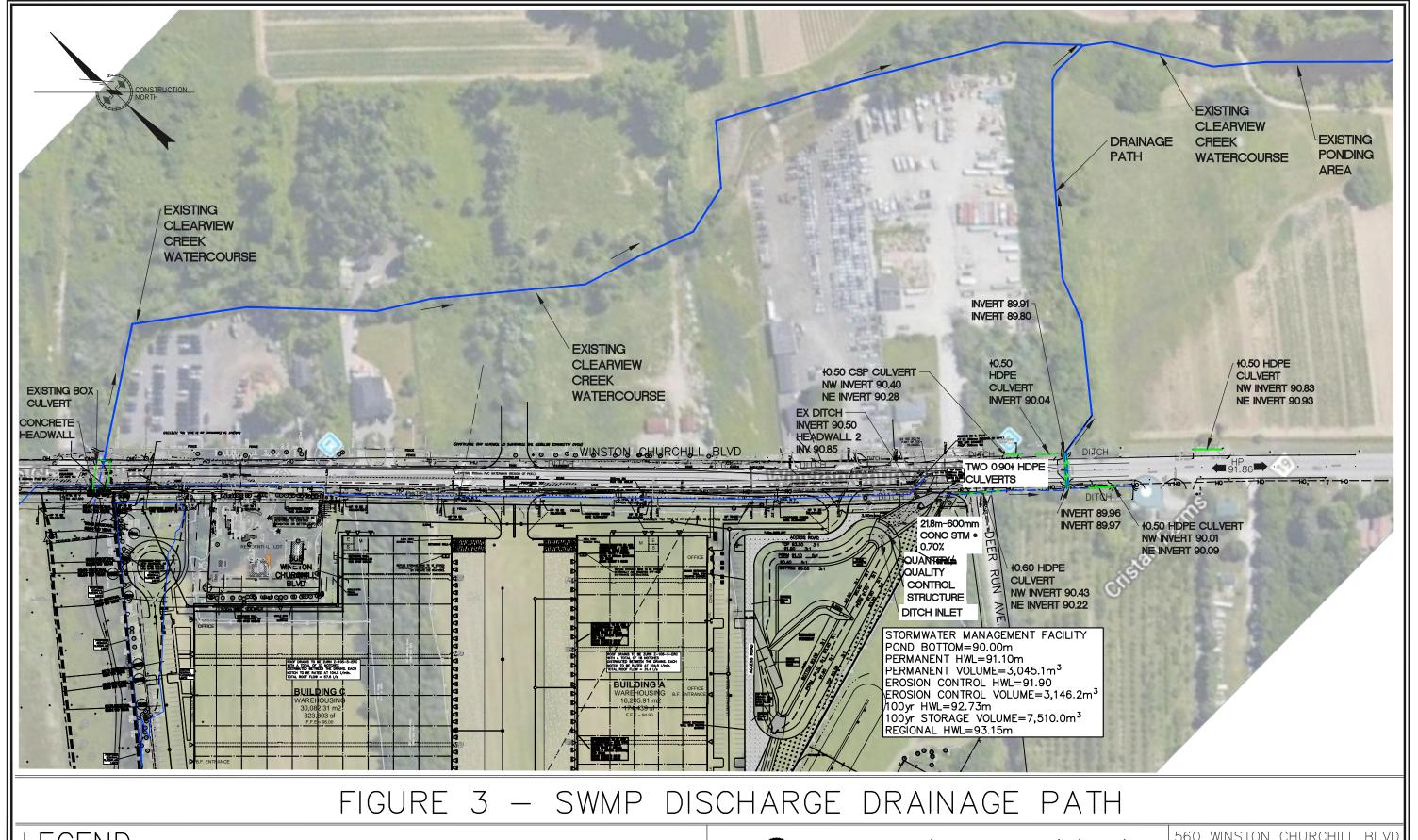
⁽²⁾ Total Pond Tributary Area does not include the uncontrolled areas (3,700m²). Total Area = 129,312m² (total site area) – 3,700m² (uncontrolled area) = 125,612m².

5.3 SWM FACILITY OUTLET

The proposed SWM facility located at the southeast corner of the site will discharge into the existing ditch along the west side of Winston Churchill Boulevard. As shown on Plan G-1 and Figure 3, the existing ditch flows south through an existing 600mm culvert.

The runoff will continue downstream to a low point where the runoff is conveyed east under Winston Churchill Boulevard through two existing 20.8m long 900mm culvert with a 0.25% slope. The runoff continues northeast through a drainage path that leads to the Clearview Creek. Therefore, the site will discharge to the ditch along Winston Churchill Boulevard and continue through an existing drainage path into the Clearview Creek.

UNCONTROLLED RUNOFF 6.0


There are multiple landscaped areas that will discharge uncontrolled on to two different locations which include Winston Churchill Boulevard and the Clearview Creek. The combined uncontrolled discharge volumes in addition to the SWMP discharge rates are below the predevelopment flow rates outlined in Table 2. Refer to Plan STM-1 for the post development storm drainage area plan.

6.1 UNCONTROLLED RUNOFF TO WINSTON CHURCHILL BOULEVARD

The uncontrolled runoff from a portion of the landscaped frontage facing Winston Churchill Boulevard and a portion of the two driveway entrances (0.14 ha) will discharge onto Winston Churchill Boulevard. The uncontrolled discharge is in addition to the controlled discharge from the SWMP on site. The runoff for a 2-year to 100-year rainfall event was modelled using SWMHYMO. The results are displayed in Table 7 below.

6.2 UNCONTROLLED RUNOFF TO CLEARVIEW CREEK

The uncontrolled runoff from the landscaped area along the north side of the site (0.23 ha) will discharge into the Clearview Creek. The uncontrolled runoff for a 2-year to 100-year rainfall event was modelled using SWMHYMO. The results are displayed in Table 7.

LEGEND

☐ CATCHBASIN

CATCHBASIN MANHOLE

STORM MANHOLE

HEADWALL
STORM
HP HIGH POINT

CLEARVIEW CREEK

WATERCOURSE FLOW ROUTE

a.m.candaras associates inc. consulting engineers 8551 Weston rd., suite 203 Woodbridge ont. L4L 9R4 905-850-8020 Fax 905-850-8099 Email: civil@amcai.com

560 WINSTON CHURCHILL BLVD TOWN OF OAKVILLE
BLACKWOOD PARTNERS
SCALE 1: 2000
DATE: JANUARY 2020
JOB No. 1870

Table 7 - Total Site Discharge Flows

Storm	SWMP Discharge Flows ⁽¹⁾ (m³/s)	Uncontrolled to Winston Churchill Boulevard (m ³ /s)	Total Site Discharge Flows (2) (m³/s)	Pre-Development Flow Rates (3) (m ³ /s)
2 Year	0.037	0.009	0.037	0.057
5 Year	0.074	0.015	0.074	0.111
10 Year	0.106	0.020	0.107	0.152
25 Year	0.143	0.026	0.144	0.199
100 Year	0.231	0.038	0.233	0.321
100 Year 24Hr SCS	0.269	0.028	0.272	0.321
Regional	1.814	0.020	1.834	-

⁽¹⁾ Refer to Table 4 for the SWMP outflow rates for the 2-Year to 100-Year rainfall event.

Table 8 - Clearview Creek Discharge Flows

Ctorm	Uncontrolled Discharge to Clearview	Pre-Development Flow Rates (2)
Storm	Creek (1) (m³/s)	(m³/s)
2 Year	0.005	0.026
5 Year	0.009	0.050
10 Year	0.013	0.068
25 Year	0.017	0.089
100 Year	0.027	0.144
100 Year SCS	0.030	0.144

⁽¹⁾ Refer to SWMHYMO output In Appendix B for discharge flows.

As demonstrated above the post-development flow rates are below the allowable predevelopment pro-rated target rates from Table 2 in Section 4.0 of this report.

⁽²⁾ Refer to SWMHYMO output In Appendix B for total site discharge flows.

⁽³⁾ Pre-Development Flow Rates are based on the 8.93ha pro-rated target rates from Table 2 in Section 4.0 of this report.

⁽²⁾ Pre-Development Flow Rates are based on the 4.0ha pro-rated target rates from Table 2 in Section 4.0 of this report.

7.0 STORM SEWERS

All entrances to the site and a portion of the landscape frontage along Winston Churchill Boulevard will include a storm sewer network that has be sized for the 100-Year event, refer to Plan G-1, G-3 and the storm sewer design sheet in Appendix A for details. Due to the existing grades in these areas the runoff from the 100-year storm cannot be conveyed overland to the SWM pond. Instead, the runoff will be conveyed using CB's and storm sewer pipes sized to capture and convey the 100-year storm event to the SWM pond.

The storm sewer network on site, other than the network outline above, has been sized to capture and convey the 5-year storm event with an intensity based on a time of concentration (Tc) of 10 minutes. Refer to Plan G-1, G-2 and the storm sewer design sheets for details.

8.0 FLOODPLAIN MODIFICATION

Currently a portion of the property approximately 0.29ha located within the northeast corner of the site is part of the Clearview Creek Floodplain limits. As part of this development, it is being proposed that this area be built up to an elevation of 94.00m along the property line to match the north limits off the Clearview Creek channel.

Using the Clearview Creek HEC-RAS model (dated May 2020) provided by the Credit Valley Conservation (CVC) a floodplain analysis was completed. Channel elevations and sloping changes were made from Section 11915 to Section 11802. The Sections were modified to show the proposed channel grading that would match the north bank of the channel consisting of a 1% slope from the channel bank followed by a 3:1 slope to the property line. The proposed elevation along the 560 Winston Churchill property line would be 94.00m. The output model table compares the existing and modified HEC-RAS model high water elevations (Appendix D). The results indicated no changes to the existing high water elevations with the proposed channel modifications.

9.0 **ROOF DRAIN**

The three proposed industrial buildings, Building A, Building B and Building C, will be equipped with roof drains as outlined below:

Building A will be equipped with of Zurn (Z-105-5-ERC) control flow drains with a total of 35 notches, as follows:

Table 9 - Building A Rooftop Controls

Area	No. of Notches	Notch Area	Flow per Notch (1)	Total Flows
16,206.0m ²	35	463.0 m ²	1.55 l/s	54.3 l/s

The resulting required total roof top 100-year volume is 656.1m³, as indicated in Appendix A. The available roof top storage is 810.3m³, based on a maximum ponding depth of 100mm, as indicated in the Rooftop Available Storage calculations located in Appendix A.

Building B will be equipped with Zurn (Z-105-5-ERC) control flow drains with a total of 28 notches, as follows:

Table 10 - Building B Roofton Controls

Area	No. of Notches	Notch Area	Flow per Notch (1)	Total Flows
12,791.0m ²	28	456.8 m ²	1.55 l/s	43.4 l/s

The resulting required total roof top 100-year volume is 515.8m³, as indicated in Appendix A. The available roof top storage is 639.6m³, based on a maximum ponding depth of 100mm, as indicated in the Rooftop Available Storage calculations located in Appendix A.

Based on manufacturer's design tables at a 102mm depth, 1 notch/drain, 465m²/notch, 93lpm.

Based on manufacturer's design tables at a 102mm depth, 1 notch/drain, 465m²/notch, 93lpm.

Building C will be equipped with Zurn (Z-105-5-ERC) control flow drains with a total of 65 notches, as follows:

Table 11 - Building C Rooftop Controls

Area	No. of Notches	Notch Area	Flow per Notch (1)	Total Flows
30,082.0m ²	65	462.8 m ²	1.55 l/s	100.8 l/s

 $Q_R = 100.8 \text{ l/s}$

The resulting required total roof top 100-year volume is 1,217.7m³, as indicated in **Appendix** A. The available roof top storage is 1520.8m³, based on a maximum ponding depth of 100mm, as indicated in the Rooftop Available Storage calculations located in Appendix A.

Based on manufacturer's design tables at a 102mm depth, 1 notch/drain, 465m²/notch, 93lpm.

10.0 SANITARY DESIGN

10.1 SANITARY DESIGN FLOWS

The peak sanitary flow will discharge from the southwest side of Building A, Building B and Building C and connect to a lift station at MH 105A. At MH 105A a forcemain will be installed to convey the sanitary flows to MH 100A where it will connect to a proposed 250mm sanitary sewer which will be located in an easement to the west of the site and extended downstream through Acacia Court to the 750mm trunk sewer on Deer Run Avenue. For the external sanitary works outside of this site a separate FSR for the Industrial Developments located at 772, 560, 568 and 824 Winston Churchill Boulevard dated August 31, 2020 has been completed and submitted to the Town of Oakville and Halton Region for approval.

The population for Building A, Building B and Building C is based on the anticipated maximum employee population. Sanitary sewage flows were calculated below:

Site Area 12.93 ha

Population Density 125 persons/ha

Total Population 1,616 people

Sanitary Flow Rate 34.375 m³/ha/day

 $0.8 \cdot \left(1 + \frac{14}{4 + P^{0.5}}\right)$ where P = Populations in thousands Peaking Factor M

$$= 0.8 \cdot \left(1 + \frac{14}{4 + (1.616)^{0.5}}\right) = 2.93$$

Peak Sewage Flow $A \times q \times m + IA$ Q

86400

Q 12.93 x 34.375 m³/ha/day x 2.93

86400

15.1 l/s + IA

Infiltration 12.93 ha x 0.00028 m³/sec/ha

0.0037 m³/sec

Total Peak Flow 15.1 l/s + 3.7 l/s

18.8 l/s

10.2 PROPOSED SANITARY SERVICING

A 200mm sanitary service connection will be provided on site and connect downstream to the proposed 250mm sanitary sewer as described in Section 7.1. The sanitary servicing for this site will be along the south portion of the site, connecting to the southwest face of Building A, Building B and Building C. The sanitary connection to the proposed 250mm sanitary sewer system will be a 100mm forcemain from MH 105A to MH 100A which will convey the combined sanitary flow of 18.8 l/s from Building A, B and C. The sanitary connection, from 568 Winston Churchill Boulevard, to the proposed 250mm sanitary sewer system will be a 150mm gravity sewer from MH 103A to MH 100A which will convey the sanitary flow from the residential property at 568 Winston Churchil Boulevard.

10.3 EXTERNAL SANITARY SERVICING

The existing single residential home at 568 Winston Churchill Boulevard will also be serviced through an 8.0m wide sanitary easement along the north and west portion of the site. A sanitary duplex grinder pump will be located on the northwest corner of the single residential lot, as shown on Plan G-1. This will convey the peak flow from this residential property through a forcemain that goes along the north and a sanitary gravity sewer along the west side of the proposed development where it connects to MH 100A. From MH 100A the sanitary sewer network connects to MH 6A on Acadia Court. This section of the sanitary network is to be completed by others. Refer to Plan G-2 for more details.

Another section of the proposed sanitary network that will be completed by others will service the property west of the proposed development with the municipal address of 772 Winston Churchill Boulevard. From MH 4A, located south of MH 100A of the proposed development, to MH 1A, located west of the property limit of 772 Winston Churchill Boulevard, will also be completed by others. There is also an existing 400mm steel sleeve, that has been plugged, that is 80m long within the 772 Winston Churchill Boulevard property limits.

Overall, the sanitary sewer system for the proposed development at 560 Winston Churchill Boulevard includes the servicing of Building 'A', Building 'B', Building 'C' and the existing residential home at 568 Winston Churchill Boulevard. The sanitary sewer system that connects the proposed network, mentioned above, to Acadia Court and services 772 Winston Churchill Boulevard will be completed by others and is further discussed in the FSR for Industrial Developments at 772, 560, 568 and 824 Winston Churchill Boulevard dated August 31, 2020 has been submitted to the Town of Oakville and Halton Region for approval.

11.0 WATERMAIN DESIGN

The proposed development will connect to a proposed 300mm watermain along Winston Churchill Boulevard. On site there will be a 150mm domestic and 200mm fire line pipe that connects to all three buildings, as shown on Plan G-1, G-1 and G-2. The watermain connection for Building A and Building C will be along the east side of the building and the connection for Building B will be along the west side of the building.

11.1 DOMESTIC AND FIREFLOW DEMAND

The domestic demands were based on the Water and Wastewater Linear Design Manual (October 2019) by Halton Region. The water demand for this site is outlined below:

Site Area 12.93 ha

Population Density 125 persons/ha (Light Industrial Area)

Total Population 1,616 people

Consumption 275 I/person/day

Max Day Factor 2.25 Peak Hour Factor 2.25

Water Demands

Average Daily Demand

275 l/capita/day x 1,616 people

444,000 I/day

5.14 l/s

Maximum Daily Demand

275 I/capita/day x 1,616 people x 2.25 (Max day factor)

999,900 I/day

11.57 l/s

Peak Hour Demand

= 275 I/capita/day x 1,616 people x 2.25 (Peak Hour factor)

= 999,900 I/day

= 11.57 l/s

Fire Flow Calculation

Fire Flow Calculation (Based on Fire Underwriters Survey 1999)

1. An estimate of the fire flow required for a given area is determined by the formula:

$$F = 220C\sqrt{A}$$

Where, F =the required fire flow in litres per minute I/m

C = Construction type coefficient= 0.8 (Fire resistive construction)

A = Total area (based on construction type and protected openings)

Building Area = 30,082 $m^{2(1)}$

(1) Based on the largest building area on site, Building C.

$$F = 220(0.80)\sqrt{30,082 \ m^2}$$

$$F = 30,525 \ l/m (509 \ l/s)$$

Therefore use: $F = 31,000 \ l/m \ (517 \ l/s)$

2. Occupancy Reduction

Office Area = 0% Increase based on Commercial buildings

∴ Total Reduction = 0%

$$F_2 = 31,000 l/m - (31,000 l/m \times 0\%)$$

$$F_2 = 31,000 I/m (517 I/s)$$

3. Sprinkler Reduction

30% Reduction for NFPA 13 System

4. Separation Charge

East Side (10.1 - 20m) =
$$15\%$$

West Side (30.1 - 45m) = 5%
North Side (> 45m) = 0%
South Side (> 45m) = 0%
Total Separation Charge = 20%

$$F_{final} = F_2 - (F_2 \times 30\%) + (F_2 \times 20\%)$$

$$F_{final} = 31,000 \text{ l/m} - (9,300 \text{ l/min}) + (6,200 \text{ l/min})$$

$$F_{final} = 27,900 \text{ l/min } (465 \text{ l/s})$$

Therefore use: $F_{final} = 28,000 \text{ l/min}$ (467 l/s)

 $F_{final} = 7,402 \text{ US gpm}$

The water supply system will be designed to convey the greater of the fire flow plus maximum day demand or the peak hour demand. The greater flow results from the fire flow plus max day, as calculated below.

```
Fire Flow + Max Day =
                        467 l/s + 11.57 l/s
                        478.57 l/s
                        28,714 l/min (7,596 US gpm)
```

A fire flow hydrant test will be undertaken once the proposed 300mm watermain is constructed on Winston Churchill Boulevard.

11.2 EXTERNAL WATERMAIN SERVICING

The existing single residential home at 568 Winston Churchill Boulevard, located north of the proposed development, will also be serviced by a 200mm watermain that will connect to the proposed 300mm watermain along Winston Churchill Boulevard.

The currently undeveloped property at 772 Winston Churchill Boulevard, adjacent to the proposed development, will also be serviced by a proposed 200mm watermain that is connected to the proposed 300mm watermain along Winston Churchill Boulevard. Since this site is currently undeveloped the proposed 200mm watermain will be split into a 200mm fire line and 100mm domestic line. Both of these lines will be plugged.

12.0 EROSION AND SEDIMENT CONTROLS

During construction, temporary erosion and sediment controls are to be provided in accordance with the "Erosion and Sediment Control Guidelines for Urban Construction" (2006), prepared by the Greater Golden Horseshoe Conservation Authorities. Erosion control measures will be provided through the use of silt fences, diversion swales, inlet protection devices, sediment traps, temporary sediment pond, and the proposed SWM pond.

12.1 EROSION CONTROL AND SEDIMENT CONTROL REQUIREMENTS

The erosion and sediment control requirements for the proposed development are as follows:

- 1. The Contractor will provide temporary excavated sediment traps for sediment control. The sediment traps should be located at points of discharge from the area.
- The Contractor will monitor the quality of stormwater discharging from the SWM pond and sediment traps during the construction period.
- The Contractor will construct temporary drainage systems, such as ditching, temporary culverts to facilitate drainage from exposed soils to the SWM pond and sediment traps.
- 4. Silt fences will be installed around the exposed area of the pond.
- 5. The exposed soils will be vegetated as soon as possible. Erosion control blankets should be placed where applicable.
- Straw bales and/or rock protection will be placed in temporary drainage conveyance channels on steep grades.
- 7. Rock protection will be placed at points of concentrated discharge, which includes the outlet of the SWM pond.
- 8. Stockpiled excavated material, and topsoil will be protected from wind and rain erosion.
- 9. The SWM pond will be cleaned of sediment upon completion of construction.

12.2 MONITORING PLAN

The monitoring plan for the development site will be implemented for three stages of development: pre-development, construction, and post-construction. The monitoring plan will be as recommended by the Clearview Creek subwatershed study. Excerpts of the recommended monitoring plan is provided in Appendix A.

As described in the subwatershed study:

The development / activity driven monitoring should follow three stages: the predevelopment phase, the construction phase, and the post-construction phase. During the predevelopment phase, monitoring should be undertaken to generate any additional baseline data that may be required to compile a more detailed understanding of existing conditions.

In the construction phase, the purpose of monitoring will be to ensure that the environmental measures implemented during construction are performing as expected (i.e. sediment control by provision of silt fences and temporary sediment traps/basins). Monitoring during the postconstruction phase will be conducted to confirm that the performance targets are being achieved and to ensure that no negative environmental changes are occurring because of development.

During Construction Monitoring Program:

During construction, the monitoring program of the SWM facilities, including the temporary sediment control facilities such as excavated sediment traps, should include the following:

- Weekly inspections of the facilities
- Inspections of the control facilities and the receiving water course (Clearview Creek), after rainfall events with at least 10mm of precipitation
- Measurement of suspended solids downstream of the control works

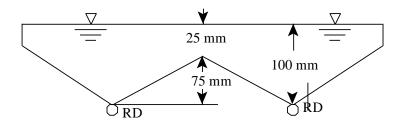
Weekly inspection reports should be submitted by the developer's engineer to the satisfaction of the Town of Oakville. The reports should summarize the state of the control works, their performance during rainfall events, any presence of downstream erosion or sediment accumulation, and any actions necessary to modify the works.

Post-Construction Monitoring Program:

A monitoring response and maintenance program (MRM Program) will be initiated upon completion of the 'During Construction Monitoring Program' and will extend for a 2-year period following substantial completion. Refer to Section 5.2 of the subwatershed study (also provided in Appendix A of this report) for details and requirements of the post-construction monitoring program.

Prepared by.

a.m. candaras associates inc.


Jennifer Nobile, EIT November 25, 2021

APPENDIX A SUPPORTING DOCUMENTATION

ROOFTOP STORAGE AVAILABLE CALCULATIONS

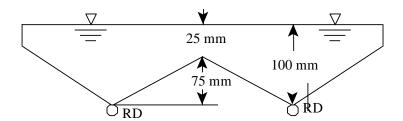
Table A - Building	A Roof Storage	Required for	100-Year	Storm Event

		1	
TIME PERIOD (min)	INTENSITY (mm/hr)	RUNOFF (I/s)	STORAGE (m³)
20-30	4.96	20.1	0.0
30-40	5.88	23.8	0.0
40-50	7.27	29.5	0.0
50-60	9.69	39.3	0.0
60-70	15	60.8	3.9
70-80	38.04	154.1	59.9
80-90	203.31	823.8	461.7
90-100	51.04	206.8	91.5
100-110	25.59	103.7	29.7
110-120	17.24	69.9	9.4
120-130	13.11	53.1	0.0
130-140	10.64	43.1	0.0
140-150	8.99	36.4	0.0
150-160	7.81	31.6	0.0
160-170	6.92	28.0	0.0
			656.1

Building A Rooftop Ponding:

Area per Drain = $16,206.0 \text{m}^2/35 \text{ drain} = 463.0 \text{ m}^2/\text{drain}$

Available Ponding Volume per Drain = $\frac{l \cdot w \cdot h}{3} + l \cdot w \cdot h$


Ponding Volume Per Drain = $\frac{(463.0 \text{m}^2) \cdot (0.075 \text{m})}{3} + (463.0 \text{m}^2) \cdot (0.025 \text{m}) = 23.2 \text{m}^3 / \text{drain}$

Rooftop Volume Provided = $23.2m^3 \cdot 35 \text{ drains} = 810.3m^3$

Required Rooftop Volume = 656.1m³

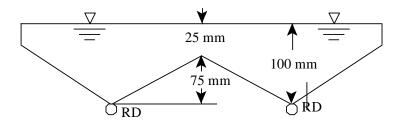
Table B - Building B Roof Storage Required for 100-Year Storm Event

TIME PERIOD (min)	INTENSITY (mm/hr)	RUNOFF (I/s)	STORAGE (m³)
30-40	5.88	18.8	0.0
40-50	7.27	23.2	0.0
50-60	9.69	31.0	0.0
60-70	15	48.0	2.7
70-80	38.04	121.7	47.0
80-90	203.31	650.2	364.1
90-100	51.04	163.2	71.9
100-110	25.59	81.8	23.1
110-120	17.24	55.1	7.0
120-130	13.11	41.9	0.0
130-140	10.64	34.0	0.0
140-150	8.99	28.8	0.0
150-160	7.81	25.0	0.0
160-170	6.92	22.1	0.0
			515.8

Building B Rooftop Ponding:

Area per Drain = 12,792.0m²/ 28 drain = 456.8 m²/drain

Available Ponding Volume per Drain $=\frac{l \cdot w \cdot h}{3} + l \cdot w \cdot h$


Ponding Volume Per Drain = $\frac{(456.8 \text{m}^2) \cdot (0.075 \text{m})}{3} + (456.8 \text{m}^2) \cdot (0.025 \text{m}) = 22.8 \text{m}^3 / \text{drain}$

Rooftop Volume Provided = $22.8m^3 \cdot 28 \text{ drains} = 639.6m^3$

Required Rooftop Volume = 515.8m³

Table C - Building C Roof Storage Required for 100-Year Storm Event

TIME PERIOD (min)	INTENSITY (mm/hr)	RUNOFF (I/s)	STORAGE (m³)
40-50	7.27	54.7	0.0
50-60	9.69	72.9	0.0
60-70	15	112.8	7.2
70-80	38.04	286.1	111.2
80-90	203.31	1529.1	857.0
90-100	51.04	383.9	169.9
100-110	25.59	192.5	55.0
110-120	17.24	129.7	17.3
120-130	13.11	98.6	0.0
130-140	10.64	80.0	0.0
140-150	8.99	67.6	0.0
150-160	7.81	58.7	0.0
160-170	6.92	52.0	0.0
			1,217.7

Building C Rooftop Ponding:

Area per Drain = 30,082.3m²/65 drain = 462.8 m²/drain

Available Ponding Volume per Drain $=\frac{l \cdot w \cdot h}{3} + l \cdot w \cdot h$

Ponding Volume Per Drain = $\frac{(462.8m^2)\cdot(0.075m)}{3} + (462.8m^2)\cdot(0.025m) = 23.1m^3/drain$

Rooftop Volume Provided = $23.1 \text{m}^3 \cdot 65 \text{ drains} = 1,504.1 \text{m}^3$

Required Rooftop Volume = 1,217.7m³

ROOF DRAIN MANUFACTURERS DESIGN TABLE

	SQUARE		TOTAL ROOF SLOPE											
	(SQUARE) FOOT		DEAD-LEVEL		51m	m (2") RIS	SE	102	mm (4") RI	SE	152n	nm (6") RI	ISE	
COCATION	NOTCH AREA RATING	ROOF LOAD FACTOR KGS (LBS.)	L.P.M. (G.P.M.) Discharge	Praindown Fime Hrs.	mm (In.) Water Depth		raindown ime Hrs.	mm (In.) Water Depth		Draindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Praindown Time Hrs.	mm (In.) Water Depth
	232 (2,500)	5.7 (12.5)	54.5 (12)	8	61 (2.4)	68 (15)	7	76 (3.0)	86.5 (19)	5	96.5 (3.8)	104.5 (23)	4	117 (4.6)
St. Thomas,	465 (5,000)	6.6 (14.6)	63.5 (14)	19	71 (2.8)	77.5 (17)	16	86.5 (3.4)	97.5 (21.5)	11	109 (4.3)	118 (26)	9	132
Ontario	697 (7,500)	7.1 (15.6)	68 (15)	29	76 (3.0)	82 (18)	26	91.5 (3.6)	102.5 (22.5)	18	114.5 (4.5)	125 (27.5)	15	139.5
	929 (10,000)	7.5 (16.6)	72.5 (16)	40	81.5 (3.2)	86.5 (19)	34	96.5 (3.8)	107 (23.5)	24	119.5 (4.7)	132 (29)	20	147.5 (5.8)
	232 (2,500)	4.3 (9.4)	41 (9)	7	45.5 (1.8)	57 (12.5)	6	63.5 (2.5)	72.5 (16)	4	81.5 (3.2)	86.5 (19)	3.3	96.5 (3.8)
Timmins,	465 (5,000)	5.7 (12.5)	54.5 (12)	16	61 (2.4)	63.5 (14)	14	71 (2.8)	82 (18)	9	91.5 (3.6)	97.5 (21.5)	7.5	109
Ontario	697 (7,500)	6.4 (14)	61.5 (13.5)	27	68.5 (2.7)	70.5 (15.5)	22	78.5 (3.1)	86.5 (19)	15	96.5 (3.8)	104.5 (23)	12	117 (4.6)
	929 (10,000)	6.6 (14.6)	63.5 (14)	36	71 (2.8)	72.5 (16)	30	81.5 (3.2)	91 (20)	21	101.5 (4.0)	109 (24)	17	122 (4.8)
	232 (2,500)	5.7 (12.5)	54.5 (12)	8	61 (2.4)	66 (14.5)	7	73.5 (2.9)	82 (18)	4.5	91.5 (3.6)	97.5 (21.5)	3.5	109 (4.3)
Toronto,	465 (5,000)	6.8 (15.1)	66 (14.5)	19	73.5 (2.9)	77.5 (17)	16	86.5 (3.4)	93 (20.5)	11	104	111.5 (24.5)	9	124.5 (4.9)
Ontario	697 (7,500)	8.0 (17.7)	77.5 (17)	30	86.5 (3.4)	84 (18.5)	26	94 (3.7)	100 (22)	18	112	120.5 (26.5)	14	134.5
	929 (10,000)	8.7 (19.2)	82 (18)	42	91.5 (3.6)	86.5 (19)	34	96.5 (3.8)	104.5 (23)	24	117 (4.6)	127.5 (28)	20	142 (5.6)
	232 (2,500)	6.1 (13.5)	59 (13)	8.5	66 (2.6)	70.5 (15.5)	7.5	78.5 (3.1)	84 (18.5)	4.5	94 (3.7)	107 (23.5)	4	119.5 (4.7)
Windsor,	465 (5,000)	7.1 (15.6)	68 (15)	20	76 (3.0)	79.5 (17.5)	16	89 (3.5)	97.5 (21.5)	11	109 (4.3)	118 (26)	9	132
Ontario	697 (7,500)	8.0 (17.7)	77.5 (17)	30	86.5 (3.4)	86.5 (19)	26	96.5 (3.8)	107 (23.5)	18	119.5 (4.7)	125 (27.5)	15	139.5
	929 (10,000)	8.7 (19.2)	82 (18)	42	91.5 (3.6)	91 (20)	36	101.5 (4.0)	113.5 (25)	26	127 (5.0)	129.5 (28.5)	20	145 (5.7)
	232 (2,500)	4.9 (10.9)	47.5 (10.5)	7.5	53.5 (2.1)	57 (12.5)	6	63.5 (2.5)	68 (15)	3.8	76 (3.0)	79.5 (17.5)	3	(3.5)
Charlottetown,	465 (5,000)	6.6 (14.6)	63.5 (14)	19	71 (2.8)	75 (16.5)	15.5	(3.3)	88.5 (19.5)	10	99 (3.9)	100 (22)	7.5	112 (4.4)
P.E.I.	697 (7,500)	7.8 (17.2)	75 (16.5)	31	84 (3.3)	86.5 (19)	26	96.5 (3.8)	102.5 (22.5)	18	114.5 (4.5)	113.5 (25)	13	127 (5.0)
	929 (10,000)	8.7 (19.2)	84 (18.5)	42	94 (3.7)	97.5 (21.5)	37	106.5 (4.2)	111.5 (24.5)	26	124.5 (4.9)	125 (27.5)	20	139.5 (5.5)
	232 (2,500)	5.2 (11.4)	50 (11)	7.5	56 (2.2)	61.5 (13.5)	7	68.5 (2.7)	79.5 (17.5)	4.5	89 (3.5)	97.5 (21.5)	3.5	109
Montreal,	465 (5,000)	5.9 (13)	57 (12.5)	17	63.5 (2.5)	70.5 (15.5)	15	78.5 (3.1)	88.5 (19.5)	10	99 (3.9)	109 (24)	8	122 (4.8)
Quebec	697 (7,500)	6.1 (13.5)	59 (13)	27	66 (2.6)	72.5 (16)	23	81.5 (3.2)	93 (20.5)	16	104 (4.1)	113.5 (25)	13	127 (5.0)
	929 (10,000)	6.4 (14)	61.5 (13.5)	36	68.5 (2.7)	77.5 (17)	31	86.5 (3.4)	95.5 (21)	22	106.5 (4.2)	120.5 (26.5)	19	134.5 (5.3)
	232 (2,500)	5.4 (12)	52.5 (11.5)	8	58.5 (2.3)	63.5 (14)	7	71 (2.8)	79.5 (17.5)	4.5	89 (3.5)	97.5 (21.5)	3.5	109 (4.3)
Quebec City,	465 (5,000)	6.4 (14)	61.5 (13.5)	18	68.5 (2.7)	70.5 (15.5)	15	78.5 (3.1)	84 (18.5)	10	94 (3.7)	104.5	8	117 (4.6)
Quebec	697 (7,500)	6.6 (14.6)	63.5 (14)	28	71 (2.8)	72.5 (16)	23	81.5 (3.2)	86.5 (19)	15	96.5 (3.8)	107 (23.5)	12	119.5 (4.7)
	929 (10,000)	7.1 (15.6)	68 (15)	37	76 (3.0)	77.5 (17)	31	86.5 (3.4)	88.5 (19.5)	20	99 (3.9)	109 (24)	17	122 (4.8)
	232 (2,500)	4.5 (9.9)	43 (9.5)	7	48.5 (1.9)	54.5 (12)	6	61 (2.4)	72.5 (16)	4	81.5 (3.2)	79.5 (17.5)	3	89 (3.5)
Regina,	465 (5,000)	6.4 (14)	61.5 (13.5)	18	68.5 (2.7)	68 (15)	14	76 (3.0)	86.5 (19)	10	96.5 (3.8)	97.5 (21.5)	7.5	109 (4.3)
Saskatchewan	697 (7,500)	7.3 (16.1)	70.5 (15.5)	29	78.5 (3.1)	77.5 (17)	24	86.5 (3.4)	100 (22)	17	112 (4.4)	109 (24)	12	122 (4.8)
	929 (10,000)	8.3 (18.2)	79.5 (17.5)	40	89 (3.5)	82 (18)	32	91.5 (3.6)	104.5 (23)	24	117 (4.6)	118 (26)	18	132 (5.2)
	232 (2,500)	4.0 (8.8)	38.5 (8.5)	6	43 (1.7)	57 (12.5)	6	63.5 (2.5)	66 (14.5)	3.8	73.5 (2.9)	77.5 (17)	2.8	86.5 (3.4)
Saskatoon,	465 (5,000)	5.7 (12.5)	54.5 (12)	16	61 (2.4)	68 (15)	14.5	76 (3.0)	82 (18)	9	91.5 (3.6)	95.5 (21)	7	106.5 (4.2)
Saskatchewan	697 (7,500)	6.6 (14.6)	63.5 (14)	28	71 (2.8)	75 (16.5)	24		91 (20)	16	101.5 (4.0)	104.5 (23)	12	117 (4.6)
	929 (10,000)	7.1 (15.6)	68 (15)	38	76 (3.0)	82 (18)	32		97.5 (21.5)	22	109 (4.3)	113.5 (25)	18	127 (5.0)

4.3 Stormwater Management for the Park Mount Development

4.3.1. Existing and Future Flows

Existing conditions and post-development flows, with and without a stormwater management pond were calculated for the study subcatchment containing the Park Mount Development. All flows were calculated using the 4-hour Chicago Storm distribution. The NASH Hydrograph method was used to calculate the existing conditions flows and the StandHyd method was used to calculate the future conditions flows.

Table 13 presents the pre-development and post-development flows and runoff volumes for Subcatchment 5 (total area 24.2 ha) that includes the Park Mount Property (approximately 14.5 ha development area not including the creek realignment corridor). Numbers in brackets show the flow contribution from the Park Mount Development area of 14.5 ha.

Table 13 Post-development and Pre-development Flows for Park Mount
Development Subcatchment

Storm Recurrence	Pre-develop	oment Runoff	SOTIVISON CONTRACTOR	olled Post- nent Runoff	Post-development Runoff with Stormwater Management Pond in Park Mount Development		
(Years)	* .		developii	ione Runoii			
	Flow (m ³ /s)	Volume (m ³)	Flow (m ³ /s)	Volume (m)	Flow (m ³ /s)	Volume (m ³)	
2	0.15 (0.10)	1300 (780)	1.74 (1.73)	3840 (3470)	0.08 (0.04)	3840 (3470)	
5	0.30 (0.19)	2390 (1430)	2.57 (2.56)	5540 (4830)	0.24 (0.17)	5540 (4830)	
10	0.42 (0.27)	3250 (1950)	3.16 (3.15)	6740 (5780)	0.40 (0.31)	6740 (5780)	
25	0.58 (0.37)	4460 (2680)	3.99 (3.99)	8360 (7010)	0.55 (0.37)	8360 (7010)	
50	0.71 (0.45)	5350 (3200)	4.58 (4.57)	9480 (7850)	0.56 (0.45)	9480 (7850)	
100	0.84 (0.54)	6320 (3790)	5.17 (5.16)	10680 (8730)	0.74 (0.54)	10680 (8730)	

4.3.2. Stormwater Management Pond

The proposed extended detention SWM wet pond for the Park Mount Development will provide an Enhanced (Level 1) level of treatment, which exceeds the specified Normal (Level 2) target for water quality treatment in the study watershed. The Enhanced level of treatment will provide an added benefit to upstream and downstream users by releasing cleaner post-development flows to the creek thus enhancing the overall water quality in the creek.

The estimated preliminary parameters for the required stormwater pond are summarized in Table 14. The volumes of the permanent pool, the extended detention, and flood attenuation zones were calculated using the criteria discussed in Section 4.2.1, with the exception for water quality, where a higher standard was used. As summarized in Table 14, 202 m³/ha was used for water quality control, which is based on 80 % impervious area and the Enhanced level of protection, according to criteria in MOE guidelines. The extended detention volume of 210 m³/ha was calculated based on the volume of runoff generated by 25mm of precipitation and the weighted runoff coefficient of 0.84 for the development area. The combined extended detention and flood attenuation volume is the required detention storage to reduce the 2 year to 100-year post-

6.0 IMPLEMENTATION AND MONITORING PLAN

The implementation and monitoring plan encompasses two different components, specifically, the more detailed and intensive but shorter term monitoring associated with a development proposal or specific construction activity that will change the land use or landscape in one area of the watershed, and the more general long term monitoring undertaken across the watershed as a whole. The development or activity specific monitoring would be undertaken by the developer/proponent, with reporting and review requirements to the Town and CVC. The long term overall monitoring program would be undertaken by the Town and / or CVC.

6.1 Development / Activity Monitoring

The development / activity driven monitoring should follow three stages: the pre-development phase, the construction phase, and the post-construction phase. During the pre-development phase, monitoring should be undertaken to generate any additional baseline data that may be required to compile a more detailed understanding of existing conditions. In the construction phase the purpose of monitoring will be to ensure that the environmental measures implemented during construction are performing as expected (i.e. sediment control by provision of silt fences and temporary sediment traps/basins). Monitoring during the post-construction phase will be conducted to confirm that the performance targets are being achieved and to ensure that no negative environmental changes are occurring because of development.

For the study watershed, the areas of critical importance include impacts of development on water quality and peak flows, potential point soil contamination (on-going issue) and monitoring of the proposed channel re-location and associated stream and riparian corridor habitat elements. Soil contamination is an issue due to the industrial nature of the existing and proposed developments within the subwatershed.

6.2 Stormwater Management Implementation and Monitoring Plan

The preferred option for treatment of stormwater in the study subwatershed is based on the use of 'wet detention ponds'. Where ponds cannot be provided due to existing space/land purchase negotiations the use of flat bottom grassed swales is recommended. The approximate capital cost of construction of the three SWM extended detention wet ponds is approximately \$1,050,000. The cost of construction of grassed swales by modification of existing ditches and provision of sediment control BMPs would be in the order of \$400,000.

During Construction Monitoring Program

During construction, the monitoring program of the SWM facilities, including the temporary sediment control facilities such as excavated sediment traps, should include the following:

- · Weekly inspections of the facilities.
- Inspections of the control facilities and the receiving watercourse, i.e. Clearview Creek, after rainfall events with at least 10 m of precipitation.
- Measurement of suspended solids downstream of the control works.

Weekly inspection reports should be submitted by the developer's engineer to the satisfaction of the Town of Oakville. The reports should summarize the state of the control works, their performance during rainfall events, any presence of downstream erosion or sediment accumulation, and any actions necessary to modify the works.

Post-Construction Monitoring Program

The proponent will submit a Monitoring Response and Maintenance Program (MRM Program), which will be initiated upon completion of the 'During Construction Monitoring Program', and will extend for a 2 year period following substantial completion. A typical monitoring season should extend from mid-April to end of October, with specific monitoring during the off-construction season following major runoff events to ensure long term or over-wintering measures remain stable. The substantial completion requires that for a given development all roads and open spaces be completed and 90% of lots sodded. The program should focus on compliance with watershed targets as well as ecological health immediately downstream of the development. The program should identify the following:

- Performance Targets. The following specifies allowable targets for flood control, allowable sediment levels, temperature and other targets relating to water quality:
 - o Flood Control Target SWM pond outflows to be controlled to pre-development levels up to the 100 year event.
 - o Sediment Control Target: Background Annual Average.
 - o Temperature of SWM pond discharge to Clearview Creek: Background Maximum Conditional on Air Temperature.
 - Dissolved Oxygen: Background Annual Average.
 - Other water quality parameters: Background Annual Average Levels
 - Total Phosphorous, Nitrate, Chlorides, E.coli, Aluminum, Copper, Ttotal ammonia (unionized NH3)

The exceedance of any of the identified target levels will represent triggers, which will immediately initiate the Response Plan.

- Mitigation Measures. If targets are not met mitigation measures should be implemented. Possible mitigation measures will be identified in the MRM Program, along with approximate costs and expected benefits.
- Response Plan, which will be implemented where the monitoring identifies that Performance Targets are not being met. The Response Plan may include more comprehensive monitoring program to determine the consequence of exceedance.
- Maintenance Requirements. Routine and occasional maintenance requirements will be identified for the SWM facilities.
- Monitoring Program, which at the minimum should include the items listed below. Recommendations for remediation should be made where required.

- a. Collect water level from SWM facilities during the monitoring season.
- b. Collect water quality data (suspended solids, dissolved oxygen, phosphorous) as per Section 6.2 during the same five significant rainfall events specified in Section 6.2.1.
- c. During the spring and fall, inspect all SWM facilities shortly after a rainfall event to determine whether the outlet works operate as designed. Make recommendations
- d. Groundwater elevation and quality monitoring
- e. Twice annually inspect the health of the vegetation at existing SWM facilities
- f. Inspect annually the boundary between developed areas and natural areas/buffers.
- g. Cleanup litter and notify the Town of Oakville of illicit dumping.

The Monitoring Reports should be submitted twice per year to the Town of Oakville and CVC. The reports will present the results of monitoring of the SWM facilities, note trends, exceedance of performance targets, comment on the effectiveness of the SWM facilities and recommend mitigation measures where required.

Erosion Control. Two or more erosion monitoring stations should be established on Clearview Creek downstream of the proposed development to monitor the amount of erosion during construction and in the post-construction period. The selected sites should contain a section where erosion is evident as well as a section which does not show erosion but is prone to erosion (i.e. creek bend). Each station should be inspected annually and any changes in bed or banks should be noted. A photographic inventory should be maintained at selected sites, which should be updated after each inspection.

6.2.1. Water Quality Testing Frequency and Locations

A total of eight water quality sampling runs per year will be conducted at two locations over a three-year period. Five of these sampling runs will be conducted during significant rain events and three sampling runs will be conducted during dry weather conditions (negligible precipitation in the previous five days). The sampling frequency should be evenly distributed throughout the open water season from April to October. The recommended water chemistry sampling locations are:

- 1. Downstream of Royal Windsor Road
- 2. Upstream of Winston Churchill Blvd at the property boundary at the downstream end of stream re-alignment

The recommended water sampling program is as follows:

Year 1 - Baseline monitoring, prior to site development. Eight samples are to be taken at the two locations and the samples will be tested for the above-identified parameters.

Years 2 and 3 - Post-construction monitoring, to be conducted after completion of site development. Eight samples are to be taken during each year at the two locations and the samples will be tested for the above-identified parameters.

STORM SEWER DESIGN SHEET

560 WINSTON CHURCHILL BLVD., OAKVILLE Project / Subdivision

Consulting Engineer A.M. Candaras Associates Inc.

Project No.: #1870

a.m. candaras associates inc. consulting engineers

Prepared by: J.M.N.

Checked by: A.M.C.

Last Revised: 26-Feb-21

Design Parameters

Design Equations A = drainage area (ha) 100_{YR} T_{init} = 10 $5_{YR} T_{init} = 10$ C = runoff coefficient A= 1170 A= 2150 T_c = time of concentration B= 5.800 B= 5.700 Q= 2.78 x A x C x I C = 0.843C= 0.861

Notes/Comments:	5 year sewers																
	Location		Dr	ainage Area	Characterist	tics		Rainfall / Rui	noff				Sewer Data				Remarks
Street	From	То	Area	С	AC	Accum.	T _c	I	Flow	Diameter	Length	Slope	Сар.	Vel.	Sect.	Accum.	
	MH.	MH.	(ha)			AC	(min)	(mm/hr)	(m³/s)	(mm)	(m)	(%)	(m ³ /s)	(m/s)	Time	Time	
STM PIPE NETWORK TO HW 1																	
																10.00	minimum entry time
Building C - North Side	CBMH 21	MH 19	0.21	0.90	0.19	0.19	10.00	114.21	0.060	450	75.0	0.15	0.110	0.69	1.80	11.80	
Building C - North Side	CB 20	MH 19	0.15	0.90	0.14	0.14	10.00	114.21	0.043	300	1.1	1.00	0.097	1.37	0.01	10.01	
Building C - North Side	MH 19	CBMH 17	0.00	0.90	0.00	0.32	11.80	104.28	0.094	600	75.0	0.15	0.238	0.84	1.49	13.29	
Building C - North Side	CBMH 17	CBMH 16	0.17	0.90	0.15	0.48	13.29	97.39	0.129	600	65.3	0.15	0.238	0.84	1.29	14.58	
Building B - North Side	CBMH 16	CBMH 15	0.14	0.90	0.13	0.60	14.58	92.15	0.154	600	40.9	0.15	0.238	0.84	0.81	15.39	
Building B - North Side	CBMH 15	MH 13	0.16	0.85	0.14	0.74	15.39	89.17	0.183	600	61.2	0.15	0.238	0.84	1.21	15.79	
Building B - West Side	MH 13	CBMH 11	0.18	0.90	0.16	0.90	15.79	87.77	0.220	675	83.8	0.15	0.326	0.91	1.54	17.33	
Building B - West Side	ROOF 3	CBMH 11	0.04	0.90	0.04	0.04	10.00	114.21	0.012	300	10.5	1.00	0.097	1.37	0.13	10.13	*AREA EDITED TO ACHIEVE DISCHARGE (12.1 L/S)
Building B - West Side	CBMH 11	MH 9	0.36	0.90	0.32	1.26	17.33	82.83	0.291	750	102.2	0.15	0.431	0.98	1.75	19.07	
Building B - West Side	MH 9	MH 7	0.19	0.85	0.16	1.42	19.07	77.91	0.308	750	78.3	0.15	0.431	0.98	1.34	20.41	
Building B - West Side	Roof 4	MH 7	0.04	0.85	0.04	0.04	10.00	114.21	0.011	300	14.0	1.00	0.097	1.37	0.17	10.17	*AREA EDITED TO ACHIEVE DISCHARGE (12.1 L/S)
Building B - South Side	MH 7	MH 5	0.27	0.85	0.23	1.69	20.41	74.54	0.350	750	47.4	0.15	0.431	0.98	0.81	21.22	
																10.00	minimum entry time
Loading Dock	CBMH 35	CBMH 34	0.20	0.90	0.18	0.18	10.00	114.21	0.057	300	40.0	1.00	0.097	1.37	0.49	10.49	
Loading Dock	CB 33	CBMH 34	0.13	0.90	0.12	0.12	10.00	114.21	0.037	300	1.0	1.00	0.097	1.37	0.01	10.01	
Loading Dock	ROOF 1	CBMH 34	0.10	0.90	0.09	0.09	10.00	114.21	0.028	300	27.1	1.00	0.097	1.37	0.33	10.33	*AREA EDITED TO ACHIEVE DISCHARGE (28.75 L/S)
Loading Dock	CBMH 34	CBMH 32	0.20	0.90	0.18	0.57	10.49	111.33	0.175	600	84.2	0.20	0.275	0.97	1.44	11.44	
Loading Dock	ROOF 2	CBMH 32	0.10	0.90	0.09	0.09	10.00	114.21	0.028	300	27.1	1.00	0.097	1.37	0.33	10.33	*AREA EDITED TO ACHIEVE DISCHARGE (28.75 L/S)
Loading Dock	CBMH 32	CBMH 31	0.16	0.90	0.14	0.80	11.44	106.09	0.235	675	33.2	0.20	0.376	1.05	0.53	11.97	
Loading Dock	CBMH 31	MH 30	0.10	0.90	0.09	0.89	11.97	103.43	0.255	675	32.6	0.20	0.376	1.05	0.52	12.49	
BUILDING B - TRENCH DRAIN	TRENCH DRAIN	MH 30	0.93	0.90	0.84	0.84	10.00	114.21	0.266	600	32.8	0.30	0.336	1.19	0.46	10.46	
Loading Dock	MH 30	MH 5	0.00	0.90	0.00	1.72	12.49	100.96	0.484	825	63.7	0.20	0.642	1.20	0.88	13.37	

STORM SEWER DESIGN SHEET

560 WINSTON CHURCHILL BLVD., OAKVILLE Project / Subdivision

Consulting Engineer A.M. Candaras Associates Inc.

Project No.: #1870

a.m. candaras associates inc. consulting engineers

Prepared by: J.M.N.

Checked by: A.M.C.

Last Revised: 26-Feb-21

Design Parameters

Design Equations A = drainage area (ha) 5_{YR} T_{init} = 10 100_{YR} T_{init} = 10 C = runoff coefficient A= 1170 A= 2150 T_c = time of concentration B= 5.800 B= 5.700 Q= 2.78 x A x C x I C= 0.843 C= 0.861

Notes/Comments:	5 year sewers																
	Location		Dr	ainage Area	Characterist	ics		Rainfall / Rur	noff			1	Sewer Data				Remarks
Street	From	То	Area	С	AC	Accum.	T _c	I	Flow	Diameter	Length	Slope	Cap.	Vel.	Sect.	Accum.	
	MH.	MH.	(ha)			AC	(min)	(mm/hr)	(m³/s)	(mm)	(m)	(%)	(m ³ /s)	(m/s)	Time	Time	
																10.00	minimum entry time
BUILDING A - South Side	MH 5	CBMH 4	0.00	0.90	0.00	3.41	21.22	72.66	0.689	1050	43.5	0.20	1.221	1.41	0.51	21.73	
BUILDING A - South Side	CBMH 4	MH 3	0.12	0.90	0.11	3.52	21.73	71.51	0.700	1050	47.1	0.20	1.221	1.41	0.56	22.29	
BUILDING A - South Side	MH 3	CBMH 2	0.00	0.90	0.00	3.52	22.29	70.31	0.688	1050	33.7	0.20	1.221	1.41	0.40	22.69	
																10.00	minimum entry time
BUILDING A - TRENCH DRAIN	TRENCH DRAIN	CBMH 2	0.84	0.90	0.76	0.76	10.00	114.21	0.240	525	85.7	1.00	0.430	1.99	0.72	10.72	
																10.00	minimum entry time
Site	CB 53	MH 52	0.08	0.90	0.07	0.07	10.00	200.80	0.040	300	53.8	0.30	0.053	0.75	1.20	11.20	Sized for 100 YR Event
Site	MH 52	MH 51	0.00	0.25	0.00	0.07	11.20	188.50	0.038	300	83.0	0.30	0.053	0.75	1.85	13.04	Sized for 100 YR Event
Site	MH 51	CBMH 50	0.00	0.25	0.00	0.07	13.04	172.40	0.034	300	44.0	0.30	0.053	0.75	0.98	14.02	Sized for 100 YR Event
Site	CBMH 50	CB 48	0.26	0.25	0.07	0.14	14.02	165.00	0.063	375	94.9	0.30	0.096	0.87	1.82	15.84	Sized for 100 YR Event
Site	CB 48	CB 47	0.09	0.90	0.08	0.22	15.84	152.93	0.093	450	8.0	0.30	0.156	0.98	0.14	15.98	Sized for 100 YR Event
Site	CB 47	MH 46	0.00	0.25	0.00	0.22	15.98	152.11	0.092	525	84.7	0.15	0.167	0.77	1.83	17.81	Sized for 100 YR Event
Site	CB 45	MH 46	0.18	0.25	0.05	0.05	10.00	200.80	0.025	300	5.0	1.00	0.097	1.37	0.06	10.06	Sized for 100 YR Event
Site	MH 46	MH 43	0.00	0.25	0.00	0.26	17.81	141.83	0.104	525	32.2	0.15	0.167	0.77	0.70	18.51	Sized for 100 YR Event
Site	CB 44	MH 43	0.07	0.90	0.06	0.06	10.00	200.80	0.035	375	52.3	0.15	0.068	0.61	1.42	11.42	Sized for 100 YR Event
Site	CB 42	MH 43	0.12	0.90	0.11	0.11	10.00	200.80	0.060	300	0.8	1.00	0.097	1.37	0.01	10.01	Sized for 100 YR Event
Site	MH 43	MH 41	0.00	0.90	0.00	0.43	18.51	138.31	0.167	600	81.2	0.15	0.238	0.84	1.61	20.12	Sized for 100 YR Event
Site	CB 40	MH 41	0.11	0.90	0.10	0.10	10.00	200.80	0.055	300	1.3	1.00	0.097	1.37	0.02	10.02	Sized for 100 YR Event
Site	ROOF 5	MH 41	0.11	0.90	0.10	0.10	10.00	114.21	0.031	300	10.2	1.00	0.097	1.37	0.12	10.12	*AREA EDITED TO ACHIEVE DISCHARGE (31.4 L/S)
Site	MH 41	CBMH 2	0.00	0.90	0.00	0.63	20.12	130.85	0.230	675	63.1	0.15	0.326	0.91	1.16	21.27	Sized for 100 YR Event
Site	CBMH 2	MH 1	0.00	0.90	0.00	4.91	22.69	120.58	1.645	1200	11.2	0.30	2.135	1.89	0.10	22.79	Sized for 100 YR Event
Site	MH 1	HW 1	0.00	0.90	0.00	4.91	22.79	120.22	1.640	1200	32.8	0.37	2.372	2.10	0.26	23.05	Sized for 100 YR Event

APPENDIX B SWMHYMO OUTPUT

```
Metric units
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
              : DECEMBER 15, 2020
*# Date
             : SEPTEMBER 22, 2020
*# Revised
*# Modeller
             : JMN
              : a.m. candaras associates inc.
  Company
*# License #
             : 3813174
START
                 TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [001]
                 STORM FILENAME= ["storm.001"]
READ STORM
*******
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
CALIB STANDHYD
                 ID=[1], NHYD=["002"], DT=[1](min), AREA=[11.69](ha),
                 XIMP=[0.90], TIMP=[0.90], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[70.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[40.0](m), MNP=[0.25],
                                    SCP=[0.0](min),
                 Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[30](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ](mm/hr) , END=-1
* SWM POND AREA
CALIB STANDHYD
                 ID=[2], NHYD=["003"], DT=[1](min), AREA=[0.87](ha),
                 XIMP=[0.50], TIMP=[0.50], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[70.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[10.0](m), MNP=[0.25],
                                     SCP=[0.0](min),
                  Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[22](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ] (mm/hr) , END=-1
* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD
                 ID=[3], NHYD=["004"], DT=[1](min), AREA=[0.14](ha),
CALIB STANDHYD
                 XIMP=[0.25], TIMP=[0.25], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[70.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[10.0](m), MNP=[0.25],
                                     SCP=[0.0](min),
                 Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[30](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ] (mm/hr) , END=-1
```

Page: 1

"CH100YR.STM"

```
File: N:\otthymo\1870\1870PST.dat 9/23/2021, 11:10:09 AM
* INCONTROLLED AREA TO CHANNEL
CALIB NASHYD
                ID=[4], NHYD=["005"], DT=[1]min, AREA=[0.23](ha),
                DWF=[0.0](cms), CN/C=[70.0], IA=[5](mm),
                N=[3], TP=[0.16]hrs,
                RAINFALL=[ , , , , ](mm/hr), END=-1
***************
* Discharge rates from the SWMP, buildings and paved area
* Total Area = 12.56 ha
***************
ADD HYD
               TDsum=6 NHYD=300 TDs to add=1+2
***************
*STORMWATER MANAGEMENT FACILITY
*PERMANENT WL 91.10 ORIFICE 125mm
*EROS/EXT WI, 91.90 WEIR 175mm
ROUTE RESERVOIR
                IDout = 7 , NHYD= 200 , IDin= 6 ,
                RDT=[1](min).
                TABLE of ( OUTFLOW-STORAGE ) values
                (cms) - (ha-m)
                0.0000 0.0000
                0.0127 0.0743
                0.0199 0.1543
                0.0251 0.2403
                0.0294 0.3146
                0.0598 0.4139
                0.1120 0.5169
                0.1783 0.6238
                0.2560 0.7344
                0.3907 0.9076
                2.3211 1.0278
                3.9062 1.0893
                5.7754 1.1518
                7.8899 1.2152
                IDovf=[ ], NHYDovf=[ ]
***************
* Discharge rates from the SWMP, buildings, paved area and
* Uncontrolled discharge being released onto Winston Churchill
*****************
                IDsum=8 NHYD=300 IDs to add=7+3
****************
START
                TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [002]
                 "CHIC2YR.STM"
START
                TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [003]
                 "CHIC5YR.STM"
START
                TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [004]
                 "CHIC10YR.STM"
                 START
                                  TZERO=[0.0], METOUT=[2], NSTORM=[1],
                 NRUN= [005]
                 "CHIC25VR STM"
                 START
                                  TZERO=[0.0], METOUT=[2], NSTORM=[1],
                 NRUN= [006]
```

```
START TZERO=[0.0], METOUT=[2], NSTORM=[1],
NRUN= [007]
"2Y24HS.STM"
START TZERO=[0.0], METOUT=[2], NSTORM=[1],
NRUN= [008]
"5Y24HS.STM"
START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [009]
"10Y24HS.STM"
START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [010]
"2SY24HS.STM"
START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [011]
"100Y24HS.STM"
FINISH
```

```
_____
SSSSS W W M M H H Y Y M M OOO
                                  999
                                      999 ======
    W W W MM MM H H Y Y MM MM O O
                                 9 9 9 9
                                    a
                                     9
                                        9 Ver. 4.02
SSSSS W W W M M M HHHHH
                      M M M O O ## 9
                  Y
  S WW M M H H
                  Y M M O
                                  9999
                                      9999 July 1999
SSSSS WW M M H H
                  Y
                      M M 000
                                   9
                                        9 =======
                                  9 9 9 # 3813174
                                  999
                                      999 ======
   StormWater Management HYdrologic Model
********************
****** A single event and continuous hydrologic simulation model ******
       based on the principles of HYMO and its successors
               OTTHYMO-83 and OTTHYMO-89.
*******************
****** Distributed by: J.F. Sabourin and Associates Inc.
                Ottawa, Ontario: (613) 727-5199
                Gatineau, Quebec: (819) 243-6858
******
                                           *****
                E-Mail: swmhymo@jfsa.Com
******************
++++++ Licensed user: A.M. Candaras Associates Inc.
             Woodbridge SERIAL#:3813174
********************
           ++++++ PROGRAM ARRAY DIMENSIONS ++++++
*****
           Maximum value for ID numbers : 10
                                           *****
*****
                                           ++++++
           Max. number of rainfall points: 15000
           Max. number of flow points : 15000
******** DETAILED OUTPUT *************
*******************
    DATE: 2021-09-23 TIME: 11:14:02 RUN COUNTER: 000656
******************
* Input filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870PST.dat *
* Output filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870PST.out *
* Summary filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870PST.sum *
* Higer comments:
* 1:__
* 2:
*#**********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
         : DECEMBER 15 2020
*# Revised
         : SEPTEMBER 22, 2020
 Modeller
         : JMN
*# Company
         : a.m. candaras associates inc.
```

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
*# License # : 3813174
*#*********************
START | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
   TZERO = .00 hrs on 0
   METOUT= 2 (output = METRIC)
   NRUN = 001
   NSTORM= 1
         # 1=CHIC25MM.STM
_____
                    Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 READ STORM
 Ptotal= 25.00 mm
                    Comments: *BLOOR ST STAT DATA 10 MIN DISCRITIZATIO
                           TIME
           TIME
                  RAIN
                                  RAIN
                                          TIME
            hrs
                  mm/hr
                           hrs
                                 mm/hr
                                          hrs
                                                mm/hr
                                                         hrs
                                                               mm/hr
             .08
                  1.624
                           1.08 12.284
                                          2.08
                                                3.786
                                                         3.08
                                                               1.940
             .17
                  1.624
                           1.17 12.284
                                          2.17
                                                3 786
                                                         3 17
                                                               1 940
             .25
                  1.853
                           1.25 58.772
                                          2.25
                                                3.233
                                                         3.25
                                                               1.803
             .33
                  1.853
                           1.33 58.772
                                          2.33
                                                3.233
                                                         3.33
                                                               1.803
             .42
                  2.170
                           1.42 16.185
                                          2.42
                                                2.838
                                                         3.42
                                                               1.688
                           1.50 16.185
                                          2.50
                                                2.838
             .50
                  2.170
                                                         3.50
                                                               1.688
             5.8
                  2 651
                           1 58
                                          2 58
                                                2 529
                                                         3 58
                                                               1 588
                                 8 549
             67
                  2 651
                           1.67
                                 8 549
                                          2.67
                                                2 529
                                                         3.67
                                                               1 588
             . 75
                  3.470
                           1.75
                                 5.927
                                          2.75
                                                2.292
                                                         3.75
                                                               1.501
                  3.470
                                5.927
             .83
                           1.83
                                          2.83
                                               2.292
                                                         3.83
                                                              1.501
             .92
                  5.201
                           1.92
                                4.598
                                          2.92
                                                2.098
                                                         3.92
                                                              1.422
                                               2.098
           1.00
                  5.201
                          2.00
                                4.598
                                         3.00
                                                        4.00
                                                              1.422
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
 CALTE STANDHYD
                     Area (ha)= 11.69
Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
 01:002 DT= 1.00
                          IMPERVIOUS
                                      PERVIOUS (i)
    Surface Area
                   (ha)=
                            10.52
                                         1.17
   Dep. Storage
                   (mm)=
                             2.00
                                         5.00
   Average Slope
                   ( % ) =
                             1 00
                                         2 00
    Length
                            30.00
                                        40.00
    Mannings n
                              .013
                                         .250
   Max.eff.Inten.(mm/hr)=
                            58.77
                                         3.13
                                        30 00
             over (min)
                             2 00
    Storage Coeff. (min)=
                             1.53 (ii)
                                        29.74 (ii)
    Unit Hyd. Tpeak (min)=
                              2.00
                                        30.00
    Unit Hyd. peak (cms)=
                                                    *TOTALS*
```

PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) =	1.71 1.33 23.00	.01 1.92 3.10	1.715 1.333 21.010	(iii)
TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	25.00 25.00 .92	25.00 .12	25.000 .840	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

* SWM POND AREA

DWI	1 I OND AREA					
	LIB STANDHYD :003 DT= 1.00		(ha)= Imp(%)=		r. Conn.(%)= !	50.00
		-				
			IMPERVIOU:			
	Surface Area	(ha)=	.44	.44		
	Dep. Storage	(mm) =	2.00	5.00		
	Average Slope	(%)=	1.00	2.00		
	Length	(m) =	22.00	10.00		
	Mannings n	=	.013	.250		
	Max.eff.Inten.(n	nm/hr)=	58 77	4 71		
		(min)				
	Storage Coeff.				(ii)	
	Unit Hyd. Tpeak				(11)	
	Unit Hyd. peak	(cms)=	.92	.10		
					*TOTALS	
	PEAK FLOW	(cms)=	.07	.00	.072	(iii)
	TIME TO PEAK	(hrs)=	1.33	1.52	1.333	
	RUNOFF VOLUME	(mm) =	23.00	3.10	13.052	
	TOTAL RAINFALL	(mm) =	25.00	25.00	25.000	
	RUNOFF COEFFICIE	ENT =	.92	.12	.522	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

001:0005-----

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

" ONCONIKOLLED AKEA IC) MINDION	CHOKCHIPP	PLAD		
	-				
CALIB STANDHYD 03:004 DT= 1.00	Area Total	(ha)= Imp(%)=	.14 25.00 Dir	. Conn.(%)=	25.00
		IMPERVIOUS	PERVIOUS	(i)	
Surface Area	(ha)=	.04	.10		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m)=	30.00	10.00		
Mannings n	=	.013	.250		

Page: 3 Page: 4

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

<pre>Max.eff.Inten.(mm/hr)=</pre>	58.77 2.00 1.53 (ii)	4.71 12.00 11.96 (ii)	
Unit Hyd. Tpeak (min)=	2.00	12.00	
Unit Hyd. peak (cms)=	.66	.09	
			TOTALS
PEAK FLOW (cms)=	.01	.00	.006 (iii)
TIME TO PEAK (hrs)=	1.33	1.52	1.333
RUNOFF VOLUME (mm)=	23.00	3.10	8.078
TOTAL RAINFALL (mm)=	25.00	25.00	25.000
RUNOFF COEFFICIENT =	.92	.12	.323

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

001:0006-----

* UNCONTROLLED AREA TO CHANNEL

CALIB NASHYD	Area	(ha) =	.23	Curve Number (CN)=70.00
04:005 DT= 1.00	Ia	(mm) =	5.000	# of Linear Res.(N)= 3.00
	U.H.	Tp(hrs)=	.160	

Unit Hyd Qpeak (cms)= .055

```
PEAK FLOW (cms) = .002 (i)
TIME TO PEAK (hrs) = 1.517
RUNOFF VOLUME (mm) = 3.103
TOTAL RAINFALL (mm) = 25.000
RUNOFF COEFFICIENT = .124
```

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

001:0007-----

* Discharge rates from the SWMP, buildings and paved area

* Total Area = 12.56 ha

ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
		(ha)	(cms)	(hrs)	(mm)	(cms)
ID1	01:002	11.69	1.715	1.33	21.01	.000
+ID2	02:003	.87	.072	1.33	13.05	.000
====				======		
SUM	06:000300	12.56	1.787	1.33	20.46	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

001:0008----

*STORMWATER MANAGEMENT FACILITY

*PERMANENT WL 91.10 ORIFICE 125mm

*EROS/EXT WL 91.90 WEIR 175mm

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

I						
ROUTE RESERVOIR IN>06:(000300)	Requ	ested routi	ng time s	tep = 1	.0 min.	
OUT<07:(000300)	====	==== OUTL	FOW STORA	GE TABLE	=======	
	OUTF			OUTFLOW	STORAGE	
	(c	ms) (ha.	m.)	(cms)	(ha.m.)	
		000 .0000E	+00	.178	.6238E+00	
		013 .7430E			.7344E+00	
		020 .1543E			.9076E+00	
		025 .2403E		2.321	.1028E+01	
		029 .3146E 060 .4139E	!	3.906 5.775	.1089E+01 .1152E+01	
		060 .4139E 112 .5169E		7.890	.1215E+01	
	•	112 .51055	1,00	7.050	.12151.01	
ROUTING RESUL	TS	AREA	QPEAK	TPEAK	R.V.	
		(ha)	(cms)	(hrs)	(mm)	
INFLOW >06: (,	12.56	1.787	1.333	20.459	
OUTFLOW<07: (000200)	12.56	.025	4.033	20.459	
	PEAK FLO	ש פוחוופיד	ON [Qout/	Oin1(%)=	1.380	
		OF PEAK FL		(min)=		
		TORAGE US			.2330E+00	
Uncontrolled dis	*********	******				F
		(ha)	(cms)		(mm) (cms	
I	D1 07:00020	0 12.56	.025	4.03	20.46 .00	Λ
+ T	D2 03:004	.14	.006	1 22		U
	D2 03.00 1			1.33	8.08 .00	
=	========					0
=			.025			0
=	UM 08:00030	0 12.70	.025	4.00		0
= S	UM 08:00030	0 12.70	.025	4.00		0
= S NOTE: PEAK FLC 001:0010	SUM 08:00030	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0
= S NOTE: PEAK FLC	UM 08:00030	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0
= S NOTE: PEAK FLC 001:0010	UM 08:00030	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0
= S NOTE: PEAK FLC	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC 001:0010 *****************************	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC	UM 08:00030 WS DO NOT I ***********************************	0 12.70 NCLUDE BASE	.025	4.00 ANY.	20.32 .00	0 = 0
= S NOTE: PEAK FLC 	UM 08:00030 WS DO NOT I 1 *****************************	0 12.70 NCLUDE BASE ************** dir.: C:\ 1 dir.: C:\ 0	.025 FLOWS IF	4.00 ANY. ******** ********	20.32 .00	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
        # 1=CHIC2YR.STM
*#***********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
            : DECEMBER 15, 2020
*# Revised
            : SEPTEMBER 22, 2020
*# Modeller : JMN
*# Company : a.m. candaras associates inc.
*# License # : 3813174
-----
READ STORM
                  Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
                 Comments: *BLOOR ST STAT DATA 10 MIN DISCRITIZATIO
Ptotal= 34.80 mm
          TIME RAIN
                        TIME RAIN
                                     TIME
                                           RAIN
                                                   TIME
                                                        RATN
           hrs
                mm/hr
                        hrs mm/hr
                                      hrs
                                           mm/hr
                                                    hrs
                                                         mm/hr
           .08
                2.260
                        1.08 17.100
                                     2.08
                                           5.270
                                                   3.08
                                                         2.700
           .17
                2.260
                        1.17 17.100
                                     2.17
                                           5.270
                                                   3.17
                                                        2.700
           .25
                2.580
                        1.25 81.810
                                     2.25
                                           4.500
                                                         2.510
                                                   3.25
                                     2.33
                2 580
                        1.33 81.810
                                           4 500
           .33
                                                   3.33
                                                        2 510
                        1.42 22.530
                                          3.950
           .42
                3.020
                                     2.42
                                                   3.42
                                                        2.350
           .50
                3.020
                        1.50 22.530
                                     2.50
                                           3.950
                                                   3.50
                                                         2.350
           .58
                3.690
                        1.58 11.900
                                     2.58
                                          3.520
                                                   3.58
                                                        2.210
           .67
                3.690
                        1.67 11.900
                                     2.67
                                           3.520
                                                   3.67
                                                         2.210
           . 75
                        1.75
                            8.250
                                     2.75
                                           3.190
                                                   3.75
                                                        2.090
                4.830
                                          3.190
                                                   3.83 2.090
           .83 4.830
                        1.83 8.250
                                     2.83
            .92
                7.240
                        1.92
                            6.400
                                     2.92
                                          2.920
                                                   3.92
                                                        1.980
          1.00 7.240
                       2.00 6.400 3.00 2.920 4.00 1.980
002:0003-----
*******
*SITE 560 WINSTON CHURCHILL*
*******
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
 CALIB STANDHYD
                   Area (ha)= 11.69
01:002 DT= 1.00 Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
                                  PERVIOUS (i)
                       IMPERVIOUS
   Surface Area
                 (ha) =
                          10.52
                                   1.17
   Dep. Storage
                 ( mm ) =
                          2.00
                                     5.00
   Average Slope
                 (%)=
                          1.00
                                     2.00
                          30.00
                                    40.00
   Length
                  (m) =
   Mannings n
                          .013
                                     .250
   Max.eff.Inten.(mm/hr)=
                          81.81
                                    8.53
            over (min)
                          1.00
                                    20.00
   Storage Coeff. (min)=
                          1.34 (ii) 20.24 (ii)
```

File: N:\	otthvmo\	\1870\1870PST.	out 9/23	/2021	. 11:14:12 AM
-----------	----------	----------------	----------	-------	---------------

Unit Hyd. Tpeak Unit Hyd. peak		1.00	20.00	
				TOTALS
PEAK FLOW	(cms)=	2.39	.02	2.393 (iii)
TIME TO PEAK	(hrs)=	1.33	1.65	1.333
RUNOFF VOLUME	(mm) =	32.80	6.40	30.161
TOTAL RAINFALL	(mm) =	34.80	34.80	34.800
RUNOFF COEFFICIE	INT =	.94	.18	.867

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

002:0004-----

* SWM POND AREA

CALIB STANDHYD	 Area	(ha)=	9.7	
02:003 DT= 1.00				onn.(%)= 50.00
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha) =	.44	.44	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	22.00	10.00	
Mannings n	=	.013	.250	
Max.eff.Inten.	mm/hr)=	81.81	13.00	
		1.00		
Storage Coeff.	(min)=	1.12 (ii) 8.06 (ii)
Unit Hyd. Tpeak	(min)=	1.00	8.00	
Unit Hyd. peak	(cms)=	1.01	.14	
				TOTALS
PEAK FLOW	(cms)=	.10	.01	.105 (iii)
TIME TO PEAK	(hrs)=	1.33	1.43	1.333
RUNOFF VOLUME	(mm) =	32.80	6.40	19.602
TOTAL RAINFALL	(mm) =	34.80	34.80	34.800
RUNOFF COEFFICE	ENT =	.94	.18	.563

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

002:0005-----

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

ONCOMINODED AKEA IC) MINDION	CHOKCHILD	БПИР		
 	-				
CALIB STANDHYD 03:004 DT= 1.00	Area Total	(ha)= Imp(%)=	.14 25.00	Dir. Conn.(%)=	25.00
 	-				
		IMPERVIOUS	PERV:	IOUS (i)	
Surface Area	(ha)=	.04		.10	
Dep. Storage	(mm) =	2.00	5	.00	
Average Slope	(%)=	1.00	2	.00	

Page: 7 Page: 8

File: N:	\otthymo\1870\1870PST.out	9/23/2021	11:14:12 A	ΜĪ

Length Mannings n	(m) = =	30.00 .013	10.00 .250	
Max.eff.Inten.(over Storage Coeff.	(min)	81.81 1.00 1.34 (ii	13.00 8.00 1) 8.29 (1	ii)
Unit Hyd. Tpeak Unit Hyd. peak		1.00	8.00 .14	*TOTALS*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms) = (hrs) = (mm) = (mm) = ENT =	.01 1.33 32.80 34.80 .94	.00 1.43 6.40 34.80	.009 (iii) 1.333 13.003 34.800 .374

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

002:0006-----

* UNCONTROLLED AREA TO CHANNEL

CALIB NASHYD	Area	(ha)=	.23	Curve Number (CN)=70.00	0
04:005 DT= 1.00	Ia	(mm) =	5.000	# of Linear Res.(N)= 3.00)
	- U.H.	Tp(hrs)=	.160		

Unit Hyd Qpeak (cms)= .055

PEAK FLOW (cms) = .005 (i)
TIME TO PEAK (hrs) = 1.500
RUNOFF VOLUME (mm) = 6.403
TOTAL RAINFALL (mm) = 34.800
RUNOFF COEFFICIENT = .184

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

002:0007-----

* Discharge rates from the SWMP, buildings and paved area

* Total Area = 12.56 ha

ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
		(ha)	(cms)	(hrs)	(mm)	(cms)
ID1	01:002	11.69	2.393	1.33	30.16	.000
+ID2	02:003	.87	.105	1.33	19.60	.000
===:		=======	=======		======	
SUM	06:000300	12.56	2.497	1.33	29.43	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

002:0008-----

```
*STORMWATER MANAGEMENT FACILITY
*PERMANENT WL 91.10 ORIFICE 125mm
*EROS/EXT WL 91.90 WEIR 175mm
***********
 ROUTE RESERVOIR
                  Requested routing time step = 1.0 min.
 TN>06:(000300)
 OUT<07:(000200)
                  ====== OUTLFOW STORAGE TABLE ======
                          STORAGE
                                    OUTFLOW
                                            STORAGE
                  OUTFLOW
                   (cms)
                          (ha.m.)
                                     (cms)
                                            (ha.m.)
                                      .178 .6238E+00
                     .000 .0000E+00
                     .013 .7430E-01
                                       .256 .7344E+00
                     .020 .1543E+00
                                       .391 .9076E+00
                        .2403E+00
                                      2.321
                                          .1028E+01
                     .025
                     .029 .3146E+00
                                     3.906 .1089E+01
                     .060 .4139E+00
                                     5.775 .1152E+01
                     .112 .5169E+00
                                     7.890 .1215E+01
   ROUTING RESULTS
                       AREA
                              OPEAK
                                      TPEAK
                       (ha)
                              (cms)
                                      (hrs)
                                              ( mm )
   INFLOW >06: (000300)
                       12.56
                              2.497
                                     1.333
                                             29.429
   OUTFLOW<07: (000200)
                      12.56
                               .037
                                     4.017
                                             29.428
              PEAK FLOW REDUCTION [Qout/Qin](%)=
                                             1.464
              TIME SHIFT OF PEAK FLOW
                                     (min)= 161.00
              MAXIMUM STORAGE USED
                                    (ha.m.)=.3380E+00
______
*****************
* Discharge rates from the SWMP, buildings, payed area and
* Uncontrolled discharge being released onto Winston Churchill
| ADD HYD (000300) | ID: NHYD
                         AREA
                                OPEAK
                                     TPEAK
                                           R.V.
                                                  DWF
                         (ha)
                                (cms)
                                      (hrs)
                                            (mm)
                                                 (cms)
            TD1 07:000200
                                037
                                      4 02 29 43
                                                 000
                         12 56
           +TD2 03:004
                                 .009
                                      1.33 13.00
                                                  .000
                          . 14
            _____
                                _____
            SUM 08:000300 12.70
                                .037 4.00 29.25
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
0.03:0.010______
002:0002-----
 ** END OF RIN : 2
*******************
             Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
START
```

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
```

```
----- Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
   TZERO = .00 hrs on
  METOUT= 2 (output = METRIC)
  NRUN = 003
  NSTORM= 1
       # 1=CHIC5YR.STM
003:0002-----
*# Project Name: 560 Winston Churchill Blvd., Oakville
*#
  Project Number: 1870
  Date
            : DECEMBER 15, 2020
            : SEPTEMBER 22, 2020
  Revised
  Modeller
           : JMN
*# Company
           : a m candaras associates inc
*# License # : 3813174
READ STORM
                  Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
Ptotal= 46.25 mm
                  Comments: *BLOOR ST STAT DATA 10 MIN DISCRITIZATIO
          TIME
                RATN
                       TIME
                             RATN
                                    TIME
                                          RATN
                                                 TIME
                                                       RATN
           hrs
               mm/hr
                        hrs mm/hr
                                     hrs
                                          mm/hr
                                                  hrs
                                                       mm/hr
           .08
                2.820
                       1.08
                            22.680
                                    2.08
                                          6.740
                                                  3.08
                                                       3.400
                       1.17 22.680
                                    2.17
                                          6.740
                                                 3.17
                                                       3.400
           .17
               2.820
           .25
                3.240
                       1.25 113.160
                                    2.25
                                          5.730
                                                       3.150
                                                 3.25
           .33
                       1.33 113.160
                3.240
                                    2.33
                                          5.730
                                                 3.33
                                                       3.150
           42
               3.810
                       1.42 30.090
                                    2.42
                                          5.010
                                                 3.42
                                                       2 950
           .50
                3.810
                       1.50 30.090
                                    2.50
                                          5.010
                                                 3.50
                                                       2.950
           .58
                4.680
                       1.58 15.580
                                    2.58
                                          4.460
                                                 3.58
                                                       2.770
           .67
                4.680
                       1.67 15.580
                                    2.67
                                          4.460
                                                 3.67
                                                       2.770
               6 160
                       1 75 10 690
                                    2 75
                                                 3 75
                                                       2 610
           75
                                          4 030
               6.160
                       1.83 10.690
                                          4.030
           . 83
                                    2.83
                                                 3.83
                                                       2.610
           92
               9 350
                       1 92
                           8.230
                                    2.92
                                         3.680
                                                 3.92
                                                      2 480
          1.00 9.350
                      2.00 8.230 3.00 3.680
                                                4.00
                                                      2.480
003:0003-----
*******
*SITE 560 WINSTON CHURCHILL*
*********
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
 CALIB STANDHYD
                   Area (ha)= 11.69
 01:002 DT= 1.00
                  Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
-----
                       IMPERVIOUS
                                 PERVIOUS (i)
   Surface Area
                (ha)=
                         10.52
                                   1.17
   Dep. Storage
                ( mm ) =
                          2.00
                                    5.00
   Average Slope
                 (왕)=
                                   2.00
                                   40.00
   Length
                 (m) =
                         30.00
```

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

Mannings n	=	.013	.250	
Max.eff.Inten.(mm/hr)= (min)	113.16	18.45 15.00	
Storage Coeff.	(min)=	1.18 (ii) 15.06 (ii)	
Unit Hyd. Tpeak	(min)=	1.00	15.00	
Unit Hyd. peak	(cms)=	.97	.08	
				TOTALS
PEAK FLOW	(cms)=	3.31	.04	3.317 (iii)
TIME TO PEAK	(hrs)=	1.33	1.57	1.333
RUNOFF VOLUME	(mm) =	44.25	11.34	40.959
TOTAL RAINFALL	(mm) =	46.25	46.25	46.250
RUNOFF COEFFICI	ENT =	.96	.25	.886

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${\tt CN^*} = 70.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

003:0004-----

* SWM POND AREA

-		_						
ı	CALIB STANDHYD	Area	(ha)=	.87				
i	02:003 DT= 1.00				Dir.	Conn.	(%)= 5	50.00
Ϊ.		_						
			IMPERVIOUS	S PERV	TOUS	(i)		
	Surface Area					/		
	Dep. Storage							
	Average Slope							
			22.00					
	Mannings n							
	Max.eff.Inten.(m	m/hr)=	113.16	28	. 32			
		(min)		- 6				
	Storage Coeff.	(min)=	. 98	ii) 6	.07 (ii)		
	Unit Hyd. Tpeak					,		
	Unit Hyd. peak							
		(/					*TOTALS	*
	PEAK FLOW	(cms)=	.14		.02		.155	
	TIME TO PEAK				.40		1.333	(/
			44.25				27.793	
	TOTAL RAINFALL						46.250	
	RUNOFF COEFFICIE	. ,			.25		.601	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

______ 003:0005-----

^{*} UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD -----

	CALIB STA	NDHYD	Area	(ha) =	.14		
ĺ	03:004	DT= 1.00	Total	Imp(%)=	25.00	Dir. Conn.(%)=	25.00

Page: 11 Page: 12

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

File: N:/ottnymo/18/	0 / 18 / 0 PST	.out 9/23/	2021, 11:14	::IZ AM	
			DDD11101	TO (1)	
Surface Area	(lo =) -	IMPERVIOUS	.10		
Dep. Storage	(IIa)=	.04	.10)	
Dep. Storage	(mm) =	2.00	5.00)	
Average Slope	(%)=	1.00	2.00)	
Length Mannings n	(m) =	30.00	10.00)	
Mannings n	=	.013	. 250)	
Max.eff.Inten.(mm/hr)=	113 16	28 33	2	
		1.00			
Storage Coeff	(min)=	1 18 (ii) 6.00	, 7 (ii)	
Unit Hyd Theak	(min)=	1.10 (6.00) (11)	
Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(cma) =	97	18	ì	
onic nya. peak	(Cilib) =	,		,	*TOTALS*
PEAK FLOW	(cms)=	0.1	0.1		015 (iii)
TIME TO DEAK	(hre)=	1 33	1 40)	1 333
PINOFE VOLUME	(mm)=	44 25	11 34	1	1.333 19.564
TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(mm) =	46 25	46 29		46 250
RUNOFF COEFFICI					
RONOII COMITICI	-	. , , ,		,	. 123
(i) CN PROCED	URE SELEC	TED FOR PER	VIOUS LOSSE	ES:	
CN* = 70	.0 Ia	= Dep. Stor	age (Above	≥)	
(ii) TIME STEP	(DT) SHO	ULD BE SMAL	LER OR EQUA	ΛL	
THAN THE	STORAGE C	OEFFICIENT.			
(iii) PEAK FLOW	DOES NOT	INCLUDE BA	SEFLOW IF A	ANY.	
003:0006					
* UNCONTROLLED AREA					
CALIB NASHYD 04:005 DT= 1.00	Area	(ha)=	23 C1	irve Niii	mber (CN)=70 00
04:005 DT= 1.00	Ta	(mm) =	5.000 #	of Line	ear Res.(N)= 3.00
	U.H.	Tp(hrs)=	.160		
		-F ()			
Unit Hyd Opeak	(cms)=	.055			
PEAK FLOW	(cms)=	.009 (i)			
TIME TO PEAK					
RUNOFF VOLUME	(mm) =	11.334			
TOTAL RAINFALL					

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RUNOFF COEFFICIENT = .245

- * Discharge rates from the SWMP, buildings and paved area

* Total Area = 12.56 ha -----

ADD HYD (000300)	ID: NHYD	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.	DWF
ID1	01:002	11.69	3.317	1.33	40.96	.000
+ID2	02:003	.87	.155	1.33	27.79	.000
====					======	
SUM	06:000300	12.56	3.472	1.33	40.05	.000

Page: 13

```
Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
 ------Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
   TZERO = .00 hrs on
                         0
  METOUT= 2 (output = METRIC)
  NRUN = 004
  NSTORM= 1
       # 1=CHIC10YR.STM
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
            : DECEMBER 15, 2020
*# Date
*# Revised
            : SEPTEMBER 22. 2020
*# Modeller
            : JMN
*# Company
            : a.m. candaras associates inc.
*# License # : 3813174
0.04:0.002-----
 READ STORM
                   Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
                   Comments: *BLOOR ST STAT DATA 10 MIN DISCRITIZATIO
 Ptotal = 54.14 mm
. _ _ _ _ _ . _ _ . _ . _ . _ . _ . .
           TIME
                 RAIN
                         TIME
                               RAIN
                                       TIME
                                             RAIN
                                                     TIME
                                                           RAIN
           hrs
                mm/hr
                         hrs
                             mm/hr
                                       hrs
                                             mm/hr
                                                     hrs
                                                          mm/hr
            .08
                 3.410
                         1.08 25.220
                                       2.08
                                             7.880
                                                     3.08
                                                          4.080
                 3 410
                         1 17 25 220
                                       2 17
                                                     3 17
                                                          4 080
            17
                                             7 880
                                            6.750
                                                          3.800
            . 25
                 3.890
                         1.25 135.630
                                       2.25
                                                     3.25
            .33
                3.890
                         1.33 135.630
                                       2.33
                                             6.750
                                                    3.33
                                                          3 800
            .42
                4.560
                         1.42 33.220
                                       2.42
                                             5.930
                                                     3.42
                                                          3.560
            .50
                 4.560
                         1.50 33.220
                                       2.50
                                             5.930
                                                     3.50
                                                          3.560
            .58
                5.550
                         1.58 17.550
                                       2.58
                                             5.300
                                                     3.58
                                                          3.350
                         1 67 17 550
                                            5 300
            67
                5 550
                                       2 67
                                                     3.67
                                                          3 350
            .75
                7.230
                         1.75
                             12.240
                                       2.75
                                            4.810
                                                     3.75
                                                          3.160
            83
               7.230
                         1.83 12.240
                                       2.83
                                            4.810
                                                    3.83
                                                         3.160
            .92 10.770
                         1.92
                                       2.92
                                             4.410
                                                     3.92
                             9.540
                                                          3.000
           1.00 10.770
                        2.00 9.540
                                      3.00
                                            4.410
                                                    4.00
                                                         3.000
004:0003-----
........
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
| CALIB STANDHYD
                Area (ha)= 11.69
```

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

01:002 DT= 1.	00 Tota	l Imp(%)=	90.00 Dir	. Conn.(%)=	90.00
		IMPERVIOU	S PERVIOUS	(i)	
Surface Area	(ha)=	10.52	1.17		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	30.00	40.00		
Mannings n	=	.013	.250		
Max.eff.Inten	.(mm/hr)=	135.63	27.75		
ov	er (min)	1.00	13.00		
Storage Coeff				(ii)	
Unit Hyd. Tpe	ak (min)=	1.00	13.00		
Unit Hyd. pea	k (cms)=	1.02	.09		
				TOTALS	S
PEAK FLOW	(cms)=	3.96	.06	3.98	4 (iii)
TIME TO PEAK	(hrs)=	1.33	1.52	1.33	3
RUNOFF VOLUME	(mm) =	52.14	15.28	48.45	4
TOTAL RAINFAL	L (mm)=	54.14	54.14	54.140	0
RUNOFF COEFFI	CIENT =	.96	.28	.89	5

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

004:0004-----

* SWM POND AREA

CALIB STANDHYD 02:003 DT= 1.00		(ha)= Imp(%)=		. Conn.(%)=	50.00
		TMDFPVTOII	S PERVIOUS	: (i)	
Surface Area		.44		(1)	
Dep. Storage					
Average Slope					
Length	(m) =		10.00		
Mannings n	=	.013	.250		
Max.eff.Inten.(mm/hr)=	135.63	41.68		
over	(min)	1.00	5.00		
Storage Coeff.	(min)=	. 91	(ii) 5.27	(ii)	
Unit Hyd. Tpeak				(/	
Unit Hyd. peak					
onic nya. peak	(Cilla) =	1.13	.22	*TOTALS	*
DELL ELON		1.0	0.2		
PEAK FLOW					
TIME TO PEAK					
RUNOFF VOLUME	(mm) =	52.14	15.28	33.712	
TOTAL RAINFALL	(mm) =	54.14	54.14	54.140	
RUNOFF COEFFICI	ENT =	.96	.28	.623	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Page: 15

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

```
0.04:0.005-----
* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD
-----
 CALIB STANDHYD
                   Area (ha)=
                                 14
| 03:004 DT= 1.00 | Total Imp(%)= 25.00 Dir. Conn.(%)= 25.00
                       IMPERVIOUS
                                  PERVIOUS (i)
   Surface Area
                 (ha)=
                           .04
                                     .10
   Dep. Storage
                          2.00
                                     5.00
                 (mm) =
   Average Slope
                 (%)=
                          1.00
                                    2.00
   Length
                          30.00
                                    10.00
                  (m) =
                                    .250
   Mannings n
                          .013
                        135.63
                                    41.68
   Max.eff.Inten.(mm/hr)=
            over (min)
                          1.00
                                     5.00
   Storage Coeff. (min)=
                          1.10 (ii) 5.46 (ii)
   Unit Hyd. Tpeak (min)=
                          1.00
                                     5.00
   Unit Hyd. peak (cms)=
                          1.02
                                     .21
                                               *TOTALS*
                           .01
   PEAK FLOW
                                      0.1
                                                 .020 (iii)
                (cms)=
   TIME TO PEAK
                (hrs)=
                          1.33
                                    1.38
                                                1.333
   RUNOFF VOLUME
                ( mm ) =
                          52.14
                                    15.28
                                               24.497
   TOTAL RAINFALL (mm)=
                          54.14
                                    54.14
                                               54.140
   RUNOFF COEFFICIENT =
                           .96
                                                .452
                                     . 28
     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
        CN* = 70.0 Ia = Dep. Storage (Above)
    (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
        THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
004:0006-----
* UNCONTROLLED AREA TO CHANNEL
                         (ha)=
                                 .23 Curve Number (CN)=70.00
 CALIB NASHYD
                   Area
 04:005 DT= 1.00 Ia
                          (mm) = 5.000 \# of Linear Res.(N) = 3.00
----- U.H. Tp(hrs)= .160
   Unit Hyd Qpeak (cms)=
                         .013 (i)
   PEAK FLOW
                (cms)=
   TIME TO PEAK
                (hrs)= 1.467
   RUNOFF VOLUME
                (mm) = 15.282
   TOTAL RAINFALL (mm) = 54.140
   RUNOFF COEFFICIENT =
                         .282
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
***************
* Discharge rates from the SWMP, buildings and paved area
* Total Area = 12.56 ha
```

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

	ID: NHYD 01:002 02:003	AREA (ha) 11.69	QPEAK (cms) 3.984 .194	TPEAK (hrs) 1.33 1.33	(mm)	DWF (cms) .000
===:		=======		1.33		.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

*STORMWATER MANAGEMENT FACILITY

*PERMANENT WL 91.10 ORIFICE 125mm

*EROS/EXT WL 91.90 WEIR 175mm

ROUTE RESERVOIR IN>06:(000300) OUT<07:(000200)	Requested 1		e step = 1	.0 min.	
0011071(0002007	OUTFLOW	STORAGE	OUTFLOW		
	(cms)			(ha.m.)	
		000E+00	.178		
	.013 .	7430E-01	.256	.7344E+00	
	.020 .3	L543E+00	.391	.9076E+00	
	.025 .2	2403E+00	2.321	.1028E+01	
	.029 .3	3146E+00	3.906	.1089E+01	
		1139E+00		.1152E+01	
		169E+00	7.890		
	.112 .:	0103F+00	7.890	.1215E+U1	
ROUTING RESULTS	ARE?	A QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
INFLOW >06: (000300)	12.56	4.178	1.333	47.433	
OUTFLOW<07: (000200)	12.56	.106	3.700	47.432	
22222007 (000200)	12.5		2.700		
PEAK	FLOW REI	OUCTION [Oot	ut/Oin](%)=	2.530	
TIME S	HIFT OF PEA	AK FLOW	(min)=	142.00	

(ha.m.) = .5045E + 00

MAXIMUM STORAGE USED

- * Discharge rates from the SWMP, buildings, paved area and
- * Uncontrolled discharge being released onto Winston Churchill
- ****************

ADD HYD (000300)	ID: NHYD	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.	DWF
TD1	07:000200	12.56	.106	3.70	47.43	.000
	03:004	.14	.020		24.50	.000
===						
SUM	08:000300	12.70	.107	3.67	47.18	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page: 17

```
004:0002-----
 ** END OF RUN : 4
******************
START | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
TZERO = .00 hrs on
                       0
  METOUT= 2 (output = METRIC)
  NRUN = 005
  NSTORM= 1
      # 1=CHIC25YR.STM
*#*****************************
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
           : DECEMBER 15, 2020
*# Revised
           : SEPTEMBER 22, 2020
*# Modeller
           : JMN
*# Company
           : a.m. candaras associates inc.
*# License # : 3813174
*#************************
READ STORM
                 Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
                Comments: *BLOOR ST STAT DATA 10 MIN DISCRITIZATIO
 Ptotal= 62.16 mm
          TIME RAIN
                      TIME RAIN
                                   TIME
                                         RATN
                                                TIME
                                                      RATN
          hrs
               mm/hr
                       hrs
                            mm/hr
                                    hrs
                                         mm/hr
                                                 hrs
                                                     mm/hr
           .08
               4.040
                      1.08 27.240
                                   2.08
                                         9.030
                                                3.08
                                                     4.800
           .17
               4.040
                      1.17 27.240
                                   2.17
                                         9.030
                                                3.17
                                                     4.800
           .25
               4.590
                      1.25 159.940
                                   2.25
                                         7.790
                                                3.25
                                                     4.480
               4.590
                      1.33 159.940
           .33
                                   2.33
                                         7.790
                                                3.33
                                                     4.480
                      1.42 35.500
           .42
               5.340
                                   2.42
                                         6.880
                                                3.42
                                                     4.200
           .50
               5.340
                      1.50 35.500
                                   2.50
                                         6.880
                                                3.50
                                                     4.200
           .58
               6.460
                      1.58 19.320
                                   2.58
                                         6.190
                                                3.58
                                                     3.960
           .67
               6.460
                      1.67 19.320
                                   2.67
                                         6.190
                                                3.67
                                                     3.960
           .75
               8.320
                      1.75 13.740
                                   2.75
                                         5.630
                                                     3.750
                                                3.75
                      1.83 13.740
                                                     3 750
           83
              8 320
                                   2.83
                                        5.630
                                                3.83
           .92 12.160
                      1.92 10.840
                                   2.92
                                        5.180
                                                3.92
                                                    3.570
          1.00 12.160
                      2.00 10.840
                                   3.00
                                        5.180
                                                4.00
                                                     3.570
```

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

```
0.05:0.003-----
*******
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
 CALIB STANDHYD
                    Area
                         (ha)= 11.69
 01:002 DT= 1.00 | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
_____
                        IMPERVIOUS PERVIOUS (i)
    Surface Area
                  (ha)=
                          10.52
                                      1.17
    Dep. Storage
                            2.00
                                       5.00
                  ( mm ) =
    Average Slope
                  (%)=
                           1.00
                                       2.00
    Length
                           30 00
                                      40.00
                  (m) =
    Mannings n
                            .013
                                      .250
    Max.eff.Inten.(mm/hr)=
                          159.94
           over (min)
                           1.00
                                      11.00
    Storage Coeff. (min)=
                            1.03 (ii)
                                     11.08 (ii)
    Unit Hyd. Tpeak (min)=
                           1.00
                                      11.00
    Unit Hyd. peak (cms)=
                           1.06
                                       .10
                                                 *TOTALS*
    PEAK FLOW
                 (cms)=
                                                  4.713 (iii)
    TIME TO PEAK
                (hrs)=
                           1.33
                                      1.48
                                                  1.333
    RUNOFF VOLUME
                                                 56 110
                           60 16
                                      19 68
                 ( mm ) =
    TOTAL RAINFALL (mm)=
                           62.16
                                      62.16
                                                 62.158
    RUNOFF COEFFICIENT =
                            .97
                                                   .903
     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
        CN* = 70.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
        THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
005:0004-----
* SWM POND AREA
-----
 CALIB STANDHYD
                         (ha)=
                                   .87
                    Area
 02:003 DT= 1.00 | Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00
_____
                         IMPERVIOUS
                                    PERVIOUS (i)
    Surface Area
                  (ha) =
                            .44
                                       .44
    Dep. Storage
                  ( mm ) =
                            2.00
                                       5.00
    Average Slope
                  (%)=
                           1.00
                                       2.00
    Length
                           22.00
                                      10.00
                  (m) =
    Mannings n
                           .013
                                      .250
    Max.eff.Inten.(mm/hr)=
                          159.94
                                      56.01
           over (min)
                           1.00
                                      5.00
    Storage Coeff. (min)=
                             .85 (ii)
                                       4.73 (ii)
    Unit Hyd. Tpeak (min)=
                           1 00
                                       5.00
    Unit Hyd. peak (cms)=
                           1.17
                                       .23
                                                 *TOTALS*
    PEAK FLOW
                                                  .236 (iii)
    TIME TO PEAK
                (hrs)=
                            1.33
                                      1.37
                                                  1.333
```

Page: 19 Page: 20

(cms)=

(hrs)=

(mm) =

Unit Hyd Qpeak (cms)=

RUNOFF COEFFICIENT =

PEAK FLOW

TIME TO PEAK

RUNOFF VOLUME

TOTAL RAINFALL

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
```

RUNOFF VOLUME (mm)=	60.16	19.68	39.919
RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) =	62.16	62.16	62.158
RUNOFF COEFFICIENT =	.97	.32	.642
(i) CN PROCEDURE SELE CN* = 70.0 Ia			
(ii) TIME STEP (DT) SH			
THAN THE STORAGE			
(iii) PEAK FLOW DOES NO	T INCLUDE BASE	CFLOW IF ANY.	
005:0005			
* UNCONTROLLED AREA TO WINST	ON CHURCHILL E	BLVD	
	a (ha)=	. 1 4	
CALIB STANDHYD	al Imp(%)= 2	25.00 Dir. Co	nn.(%)= 25.00
	IMPERVIOUS	PERVIOUS (i)	
Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) =	.04	.10	
Dep. Storage (mm)=	2.00	5.00	
Average Slope (%)=	1.00	2.00	
Length (m)=	30.00	10.00	
Mannings n =	.013	.250	
Max.eff.Inten.(mm/hr)=	159.94	56.01	
over (min)	1.00	5.00	
Storage Coeff. (min)=	1.03 (ii	.) 4.90 (ii)	
Unit Hyd. Tpeak (min)=	1.00	5.00	
over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	1.06	. 23	
PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) =			*TOTALS*
PEAK FLOW (cms)=	.02	.01	.026 (iii)
TIME TO PEAK (hrs)=	1.33	1.37	1.333
RUNOFF VOLUME (mm)=	60.16	19.68	29.799
TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	62.16	62.16	62.158
RUNOFF COEFFICIENT -	.97	.32	.479
(i) CN PROCEDURE SELE	CTED FOR PERVI	OUS LOSSES:	
CN* = 70.0 Ia	= Dep. Storag	ge (Above)	
(ii) TIME STEP (DT) SH		R OR EQUAL	
THAN THE STORAGE			
(iii) PEAK FLOW DOES NO	T INCLUDE BASE	FLOW IF ANY.	
005:0006			
* UNCONTROLLED AREA TO CHANN			
L CALLE MACHUE	- (3)-	22 0	(GNI) - 70 00
CALIB NASHYD Are 04:005 DT= 1.00 Ia	a (na)=	.23 Curve N	umber (CN)=/0.00
U.H	(ulli) = 5	160 # OL LI	near Res.(N)= 3.00
0.н	· 15(III2)-	.100	

.017 (i)

1 467

(mm) = 19.678

(i) PEAK FLOW D	OES NOT INCLU	DE BASEF	LOW IF A	NY.			
005:0007 ******************************	************* om the SWMP,	*****	*****	*****	*		
* Total Area = 12.56		*****	*****	*****	**		
ADD HYD (000300)	ID: NHYD	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.	DWF	
+ID2	01:002 02:003	11.69 .87	4.713	1.33	56.11 39.92	.000	
	06:000300	12.56	4.949		54.99	.000	
NOTE: PEAK FLOWS	DO NOT INCLU	DE BASEF	LOWS IF	ANY.			
005:0008							
*STORMWATER MANAGEME *PERMANENT WL 91.10 *EROS/EXT WL 91.90 W *********	ORIFICE 125mm EIR 175mm ******		*****				
ROUTE RESERVOIR IN>06:(000300)		d routing	g time s	tep = 1	.0 min.		
OUT<07:(000200)	======= - OUTFLOW	= OUTLF		GE TABLE	STOR		
	(cms)	(ha.m	.)	(cms)	(ha.r	n.)	
	.000	.0000E+		.178	.6238E-		
	.020	.1543E+	00	.391	.9076E	+00	
	.025	.2403E+			.1028E-		
	.060	.4139E+		5.775			
	.112	.5169E+	00	7.890	.1215E-	+01	
ROUTING RESULTS	A	REA	QPEAK	TPEAK	R	.v.	
TMBI ON 2 06: (00	,		(cms)	(hrs) 1.333	(r 54.9	nm)	
INFLOW >06: (00 OUTFLOW<07: (00			4.949 .143	3.350	54.5		
	EAK FLOW IME SHIFT OF	REDUCTIO		Qin](%)= (min)=			
	AXIMUM STORA			(ha.m.)=			
005:0009							
* Discharge rates fr * Uncontrolled disch ********	om the SWMP, arge being re	building	s, paved nto Wins	area an ton Chur	d chill		
ADD HYD (000300)	ID: NHYD	AREA	OPEAK	TPEAK	R.V.	DWF	
		(ha)	(cms)	(hrs)		(cms)	
ID1	07:000200	12.56	.143	3.35	54.99	.000	

Page: 21 Page: 22

File: N:\otthy	no\1870\1870PST.	out 9/23/2021	. 11:14:12 AM
----------------	------------------	---------------	---------------

1110: 11: (00011)1110 (10):	7 (10/0101100	3,23,20	DI, II.I	1.10 1111		
	03:004	.14	.026	1.33		.000
	08:000300	12.70	.144		54.71	.000
NOTE: PEAK FLOWS	DO NOT INCL	UDE BASEFL	OWS IF A	NY.		
005:0010						
******	******	*****	*****	*****	*****	
005:0002						
005:0002						
005:0002						
005:0002						
** END OF RUN :	5					
******	******	******	*****	*****	******	******
START						\SWMHYMO\1870\ \SWMHYMO\1870\
TZERO = .00 hrs		0	CO112 1 (11		(22011101	(SWIIIIIII)
NRUN = 006	put - MEIRIC	• /				
NSTORM= 1 # 1=CH100	YR.STM					
006:0002						
*#*******	*******	******	*****	*****	******	******
*# Project Name: 560 *# Project Number: 3		urchill Bl	vd., Oak	ville		
*# Date : DEG	CEMBER 15, 2 PTEMBER 22,					
*# Modeller : JMI	1					
*# License # : 38						
*#**************	******	******	*****	*****	******	******
006:0002						
*						
READ STORM Ptotal= 78.03 mm		: C:\DOCUM : *BLOOR S				
TIME	!	IME RAI			AIN	TIME RAIN
hrs		hrs mm/h		rs mm 08 10.	/hr 640	hrs mm/hr 3.08 5.210
.17 .25		.17 38.04 .25 203.31		17 10. 25 8.	640 990	3.17 5.210 3.25 4.830
.23					1	

File: N:	\otthymo\	1870\	1870PST.out	9/23/2021	, 11:14:12 AM
----------	-----------	-------	-------------	-----------	---------------

.33 .44 .50 .51 .61 .71 .83	5.880 5.880 7.270 7.270 9.690	1.42 1.50 1.58 1.67 1.75		2.33 2.42 2.50 2.58 2.67 2.75 2.83 2.92	8.990 7.810 7.810 6.920 6.920 6.230 6.230 5.670	3.33 3.42 3.50 3.58 3.67 3.75 3.83 3.92	4.830 4.500 4.500 4.220 4.220 3.970 3.970 3.760
1.00	15.000	2.00	13.110	3.00	5.670	4.00	3.760

006:0003-----

SITE 560 WINSTON CHURCHILL

RUNOFF COEFFICIENT =

* BUILDING, PAVED AREAS AND LANDSCAPED AREAS

CALIB STANDHYD Area (ha)= 11.69	
01:002 DT= 1.00 Total Imp(%)= 90.00 Dir. Conn.((%)= 90.00
IMPERVIOUS PERVIOUS (i)	
Surface Area (ha)= 10.52 1.17	
Dep. Storage (mm)= 2.00 5.00	
Average Slope (%)= 1.00 2.00	
Length (m)= 30.00 40.00	
Mannings n = .013 .250	
Max.eff.Inten.(mm/hr) = 203.31 72.73	
over (min) 1.00 9.00	
Storage Coeff. (min) = .93 (ii) 8.95 (ii)	
Unit Hyd. Tpeak (min) = 1.00 9.00	
Unit Hyd. peak (cms) = 1.12 .13	
*	TOTALS*
PEAK FLOW (cms)= 5.94 .15	6.032 (iii)
TIME TO PEAK (hrs)= 1.33 1.45	1.333
RUNOFF VOLUME (mm) = 76.03 29.32	71.361
TOTAL RAINFALL (mm) = 78.03 78.03	78.032

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

006:0004-----

.915

* SWM POND AREA

CALIB STANDHYD DT= 1.00	Area Total	(ha)= Imp(%)=	.87 50.00	Dir. Conn.(%)=	50.00
		IMPERVIOUS	PERV	IOUS (i)	
Surface Area	(ha)=	.44		. 44	
Dep. Storage	(mm) =	2.00	5	.00	
Average Slope	(%)=	1.00	2	.00	

Page: 24 Page: 23

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

Length Mannings n	(m) = =	22.00 .013	10.00 .250	
Max.eff.Inten.(mm/hr)= (min)	203.31	88.72 4.00	
Storage Coeff.	. ,	.78 (i		
Unit Hyd. Tpeak	(min)=	1.00	4.00	
Unit Hyd. peak	(cms)=	1.23	.28	
				TOTALS
PEAK FLOW	(cms)=	.25	.08	.323 (iii)
TIME TO PEAK	(hrs)=	1.33	1.35	1.333
RUNOFF VOLUME	(mm) =	76.03	29.32	52.678
TOTAL RAINFALL	(mm) =	78.03	78.03	78.032
RUNOFF COEFFICI	ENT =	.97	.38	.675

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

______ 006:0005-----

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

CALIB STANDHYD 03:004 DT= 1.00		(ha)= . Imp(%)=		r. Conn.(%	:)= 2	25.00
 	_	IMPERVIOU	S PERVIOUS	S (i)		
Surface Area	(ha)=	.04	.10	. ,		
Dep. Storage	(mm) =	2.00	5.00			
Average Slope	(%)=	1.00	2.00			
Length	(m) =	30.00	10.00			
Mannings n	=	.013	.250			
Max.eff.Inten.(mm/hr)=	203.31	88.72			
over	(min)	1.00	4.00			
Storage Coeff.	(min)=	.93	(ii) 4.16	(ii)		
Unit Hyd. Tpeak	(min)=	1.00	4.00			
Unit Hyd. peak	(cms)=	1.12	.28			
					OTALS*	•
PEAK FLOW	(cms)=	.02	.02		.038	(iii)
TIME TO PEAK					1.333	
RUNOFF VOLUME	(mm) =	76.03	29.32		1.000	
TOTAL RAINFALL	. ,		78.03	7	8.032	
RUNOFF COEFFICI	ENT =	.97	.38		.525	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

______ 0.06:00.06-----

* UNCONTROLLED AREA TO CHANNEL

| CALIB NASHYD Area (ha)= .23 Curve Number (CN)=70.00

```
| 04:005 DT= 1.00 | Ia
                            (mm) =
                                  5 000
                                         # of Linear Res.(N)= 3.00
 ------
                   U.H. Tp(hrs)=
                                   .160
   Unit Hyd Qpeak (cms)=
    PEAK FLOW
                 (cms)=
                           .027 (i)
    TIME TO PEAK
                 (hrs)=
                          1.467
                 (mm) = 29.322
    RUNOFF VOLUME
    TOTAL RAINFALL
                  ( mm ) =
                         78.032
    RUNOFF COEFFICIENT =
                          .376
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
******************
* Discharge rates from the SWMP, buildings and paved area
* Total Area = 12 56 ha
****************
| ADD HYD (000300) | ID: NHYD
                            AREA
                                    OPEAK TPEAK R.V.
                                                         DWF
______
                             (ha)
                                    (cms)
                                           (hrs)
                                                 (mm)
                                                        (cms)
              TD1 01:002
                             11.69
                                    6.032
                                            1.33 71.36
                                                         .000
             +ID2 02:003
                             .87
                                    .323
                                           1.33 52.68
                                                         .000
              SUM 06:000300 12.56 6.355 1.33 70.07
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
*STORMWATER MANAGEMENT FACILITY
*PERMANENT WL 91.10 ORIFICE 125mm
*EROS/EXT WL 91.90 WEIR 175mm
************
 ROUTE RESERVOIR
                     Requested routing time step = 1.0 min.
  TN>06:(000300)
 OUT<07:(000200)
                     ======= OUTLFOW STORAGE TABLE =======
                     OUTFLOW
                              STORAGE
                                         OUTFLOW
                                                   STORAGE
                              (ha.m.)
                                           (cms)
                                                   (ha.m.)
                      (cms)
                        .000 .0000E+00
                                            .178 .6238E+00
                                            .256 .7344E+00
                        .013
                            .7430E-01
                        .020
                            .1543E+00
                                            .391 .9076E+00
                        .025
                            .2403E+00
                                           2.321 .1028E+01
                       .029
                            .3146E+00
                                           3.906 .1089E+01
                                           5.775 .1152E+01
                        .060
                            .4139E+00
                       .112 .5169E+00
                                           7.890 .1215E+01
    ROUTING RESULTS
                           AREA
                                  QPEAK
                                           TPEAK
                                                     R.V.
                           (ha)
                                  (cms)
                                           (hrs)
                                                     (mm)
    INFLOW > 06: (000300)
                          12.56
                                  6.355
                                           1.333
                                                    70.067
    OUTFLOW<07: (000200)
                                           2 667
                                                    70 064
                          12.56
                                   .231
                PEAK FLOW REDUCTION [Qout/Qin](%)=
                                                   3.637
                TIME SHIFT OF PEAK FLOW
                                           (min) = 80.00
                MAXIMUM STORAGE USED
                                          (ha.m.) = .6990E + 00
```

Page: 25

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

```
..............
* Discharge rates from the SWMP, buildings, paved area and
* Uncontrolled discharge being released onto Winston Churchill
*****************
| ADD HYD (000300) | ID: NHYD
                     AREA
                          OPEAK TPEAK R.V.
                     (ha)
                          (cms) (hrs)
                                    (mm)
                                        (cms)
          ID1 07:000200
                     12.56
                           . 231
                                   70.06
                                          .000
                                2.67
         +ID2 03:004
                     .14
                           .038
                               1.33 41.00
                                         000
          SUM 08:000300 12.70
                           .233 2.53 69.74
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY
______
*************************
0.06:00.02-----
006:0002-----
 ** END OF RUN : 6
*******************
          Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
           - Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
  TZERO = .00 hrs on
  METOUT= 2 (output = METRIC)
  NRUN = 007
  NSTORM= 1
     # 1=2Y24HS.STM
*#**********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
  Project Number: 1870
         : DECEMBER 15, 2020
  Date
*# Revised
         : SEPTEMBER 22, 2020
* #
  Modeller : JMN
*# Company
         : a.m. candaras associates inc.
  License # : 3813174
*#****************************
                                            Page: 26
```

```
Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 READ STORM |
 Ptotal= 51.39 mm
                    Comments: * 2YR SCS 24hr STORM, 15min TIME STEPS,M
            TIME
                  RAIN
                            TIME
                                  RAIN
                                           TIME
                                                 RAIN
            hrs
                  mm/hr
                            hrs mm/hr
                                           hrs
                                                 mm/hr
                                                          hrs
                                                                mm/hr
                   .570
                                                                 .920
             .25
                            6.25
                                  1.030
                                          12.25
                                                 7.400
                                                         18.25
             .50
                    .570
                            6.50
                                  1.030
                                          12.50
                                                 7.400
                                                         18.50
                                                                 .920
             .75
                   .570
                            6.75
                                 1.030
                                          12.75
                                                 3.800
                                                         18.75
            1.00
                    .570
                            7.00
                                  1.030
                                          13.00
                                                 3.800
                                                         19.00
                                                                 .920
            1.25
                   .570
                           7.25
                                  1.030
                                          13.25
                                                 .720
                                                         19.25
                                                                 .920
                                                  .720
                    570
                                  1.030
            1.50
                            7.50
                                          13 50
                                                         19.50
                                                                 920
                                                 4.210
            1.75
                    . 570
                            7.75
                                  1.030
                                          13.75
                                                         19.75
                                                                 .920
            2.00
                    .570
                           8.00
                                 1.030
                                          14.00
                                                 4.210
                                                         20.00
                                                                 .920
            2.25
                   .670
                            8.25
                                  1.390
                                          14.25
                                                 1.540
                                                         20.25
                                                                 .620
                                  1.390
            2.50
                   .670
                            8.50
                                          14.50
                                                 1.540
                                                         20.50
                                                                 .620
            2.75
                    .670
                           8.75
                                  1.390
                                          14.75
                                                 1.540
                                                         20.75
                                                                  .620
                                  1.390
                                                         21.00
            3.00
                   .670
                           9.00
                                          15.00
                                                 1.540
                                                                 .620
            3.25
                   .670
                           9.25
                                  1.640
                                          15.25
                                                 1.540
                                                         21.25
                                                                 .620
            3.50
                   .670
                           9.50
                                  1.640
                                          15.50
                                                 1.540
                                                         21.50
                                                                 .620
            3.75
                   .670
                           9.75
                                  1.850
                                          15.75
                                                 1.540
                                                         21.75
                                                                 .620
                    .670
                          10.00
                                  1.850
                                          16.00
                                                 1.540
            4.00
                                                         22.00
                                                                 . 620
                                                  .920
            4 25
                   820
                          10 25
                                  2 360
                                          16 25
                                                         22 25
                                                                 620
            4.50
                    .820
                          10.50
                                  2.360
                                          16.50
                                                  .920
                                                         22.50
                                                                  .620
            4.75
                   .820
                          10.75
                                  3.190
                                          16.75
                                                  .920
                                                         22.75
                                                                 .620
            5.00
                   .820
                          11.00
                                 3.190
                                          17.00
                                                  .920
                                                         23.00
                                                                 .620
            5.25
                    .820
                          11.25
                                  4.930
                                          17.25
                                                  .920
                                                         23.25
                                                                 .620
                                 4.930
                                          17.50
                                                  .920
            5.50
                   . 820
                          11.50
                                                         23.50
                                                                 . 620
                   .820
            5.75
                          11.75 21.380
                                          17.75
                                                  .920
                                                         23.75
                                                                  .620
            6.00
                   .820
                          12.00 56.730
                                         18.00
                                                  .920
                                                         24.00
                                                                  .620
007:0003-----
*SITE 560 WINSTON CHURCHILL*
*******
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
______
 CALIB STANDHYD
                     Area (ha)= 11.69
 01:002 DT= 1.00 | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
                          IMPERVIOUS
                                      PERVIOUS (i)
                   (ha) =
    Surface Area
                             10.52
                                         1.17
    Dep. Storage
                   ( mm ) =
                              2.00
                                          5.00
    Average Slope
                    (%)=
                              1.00
                                          2.00
    Length
                    (m)=
                             30.00
                                         40.00
                                         .250
                              .013
    Mannings n
    Max.eff.Inten.(mm/hr)=
                             56.73
                                         16.57
              over (min)
                              2.00
                                         16.00
    Storage Coeff. (min)=
                              1.56 (ii)
                                         16.04 (ii)
    Unit Hyd. Tpeak (min)=
                              2.00
                                         16.00
```

Page: 27 Page: 28

(%)=

(m) =

30.00

Average Slope

Length

File: N:\otthymo\1870\1870PST.out 9/23/2021. 11:14:12 AM

File: N:\otthymo\1870	\1870PST.	out 9/23/20	21, 11:14:12 AM	A .
Unit Hyd. peak	(cms)=	.65	.07	
DEAK ELON	(1 66	0.3	*TOTALS*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(Cilis) =	1.00	.03 12.17 13.86 51.39	1.680 (iii) 12.000
DINOPP VOLUMP	(III'S) =	12.00	12.17	45.835
TOTAL PAINFALL	(mm) =	51 39	51 39	51.388
RUNOFF COEFFICIE	NT =	96	.27	.892
RONOIT COMITTCE			. 2 /	.032
(i) CN PROCEDU	RE SELECT	ED FOR PERVI	OUS LOSSES:	
CN* = 70.	0 Ia =	Dep. Storag	ge (Above)	
(ii) TIME STEP	(DT) SHOU	LD BE SMALLE		
THAN THE S				
(iii) PEAK FLOW	DOES NOT	INCLUDE BASE	FLOW IF ANY.	
007:0004				
* SWM POND AREA				
	_			
		(ha)=	. 87	
CALIB STANDHYD 02:003 DT= 1.00	Total	Imp(%)= 5	0.00 Dir. Cor	nn.(%)= 50.00
<u></u>	<u>-</u>			
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	. 44	.44	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	22.00	10.00	
Surface Area Dep. Storage Average Slope Length Mannings n	=	.013	.250	
Max.ell.Inten.(m	(min)	1 00	7 00	
Storage Coeff	(min)-	1 20 / 11	7.00	
Unit Hyd Toeak	(min)=	1.20 (11	7 00	
Max.eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(cms)=	.92	.16	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				*TOTALS*
PEAK FLOW	(cms)=	.07	.02	.086 (iii) 12.000 31.624
TIME TO PEAK	(hrs)=	12.00	12.03	12.000
RUNOFF VOLUME	(mm) =	49.39	13.86	31.624
TOTAL RAINFALL	(mm) =	51.39	51.39	51.388
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	NT =	.96	.27	.615
(i) CN PROCEDU				
		Dep. Storag		
(ii) TIME STEP			R OR EQUAL	
THAN THE S			PETON TE ANV	
(III) PEAR FLOW	DOES NOI .	INCLUDE BASE	FLOW IF ANI.	
007:0005				
* UNCONTROLLED AREA T	O WINSTON	CHURCHILL E	BLVD	
CALIB STANDHYD 03:004 DT= 1.00	Area	(ha)=	.14	
03:004 DT= 1.00	Total	Imp(%)= 2	5.00 Dir. Cor	nn.(%)= 25.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area Dep. Storage	(ha)=	.04	.10	
Dep. Storage	(mm) =	2.00	5.00	

2.00

10.00

Mannings n	=	.013	.250		
Max.eff.Inten.(r	nm/hr)= (min)	56.73 2.00	19.62 7.00		
Storage Coeff.		1.56		(ii)	
Unit Hyd. Tpeak	(min) =	2.00	7.00		
Unit Hyd. peak	(cms)=	.65	.16		
				*TOTALS	*
PEAK FLOW	(cms)=	.01	.00	.010	(iii)
TIME TO PEAK	(hrs)=	12.00	12.03	12.000	
RUNOFF VOLUME	(mm) =	49.39	13.86	22.743	
TOTAL RAINFALL	(mm) =	51.39	51.39	51.388	
RUNOFF COEFFICIA	ENT =	.96	.27	.443	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

007:0006-----

* UNCONTROLLED AREA TO CHANNEL

CALIB NASHYD	Area	(ha) =	.23	Curve Number	(CN) = 70.00
04:005 DT= 1.00	Ia	(mm) =	5.000	# of Linear Re	s.(N) = 3.00
<u> </u>	U.H. T	p(hrs)=	.160		

Unit Hyd Qpeak (cms)= .055

PEAK FLOW	(cms)=	.009	(i)
TIME TO PEAK	(hrs)=	12.067	
RUNOFF VOLUME	(mm) =	13.859	
TOTAL RAINFALL	(mm) =	51.388	
RUNOFF COEFFICIA	ENT =	.270	

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

007:0007-----

- ******

 Discharge rates from the SWMP, buildings and paved area
- * Total Area = 12.56 ha

ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
		(ha)	(cms)	(hrs)	(mm)	(cms)
ID1	01:002	11.69	1.680	12.00	45.83	.000
+ID2	02:003	.87	.086	12.00	31.62	.000
====						
SUM	06:000300	12.56	1.767	12.00	44.85	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

007:0008-----

*STORMWATER MANAGEMENT FACILITY

Page: 29

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

*PERMANENT WL 91.10 ORIFICE 125mm *EROS/EXT WL 91.90 WEIR 175mm *********** -----ROUTE RESERVOIR Requested routing time step = 1.0 min. TN>06:(000300) ====== OUTLFOW STORAGE TABLE ====== OUT<07:(000200) OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) .000 .0000E+00 .178 .6238E+00 .013 .7430E-01 .7344E+00 .256 .020 .1543E+00 .391 .9076E+00 .025 .2403E+00 2.321 .1028E+01 .029 .3146E+00 3.906 .1089E+01 .060 .4139E+00 5.775 .1152E+01 .112 .5169E+00 7 890 1215E+01 OPEAK ROUTING RESULTS AREA TPEAK R V (ha) (cms) (hrs) (mm) INFLOW > 06: (000300) 12.56 1.767 12.000 44.851 OUTFLOW<07: (000200) 12.56 .054 14.133 44.850 PEAK FLOW REDUCTION [Qout/Qin](%)= 3.072 TIME SHIFT OF PEAK FLOW (min) = 128.00MAXIMUM STORAGE USED (ha.m.) = .3958E + 00007:0009-----****************** * Discharge rates from the SWMP, buildings, paved area and * Uncontrolled discharge being released onto Winston Churchill -----QPEAK TPEAK R.V. | ADD HYD (000300) | ID: NHYD AREA DWF (ha) (cms) (hrs) (mm) (cms) ID1 07:000200 12.56 .054 14.13 44.85 .000 +ID2 03:004 14 .010 12.00 22.74 000 _____ STIM 08:000300 12 70 .055 14.02 44.61 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ______ *********************** 007:0002-----007:0002-----007:0002-----

: 29

** END OF RUN : 7

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
***********************
START | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
----- Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
  TZERO = .00 hrs on 0
METOUT= 2 (output = METRIC)
  NRUN = 008
  NSTORM= 1
    # 1=5Y24HS.STM
______
0.08:00.02-----
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
           : DECEMBER 15, 2020
*# Revised
           : SEPTEMBER 22, 2020
*# Modeller
           : JMN
*# Company : a.m. candaras associates inc.
           : 3813174
*# License #
  Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 READ STORM |
                 Comments: * 5 YEAR SCS 24hr STORM, 15 min TIME STE
Ptotal= 63.89 mm
          TIME
                RAIN
                        TIME
                             RAIN
                                     TIME
                                          RAIN
                                                  TIME
                                          mm/hr
          hrs
                mm/hr
                        hrs
                             mm/hr
                                     hrs
                                                   hrs
                                                       mm/hr
                             1.280
                 .700
                        6.25
                                    12.25
                                          9.200
                                                 18.25
           .25
                                                       1.150
           .50
                 .700
                        6 50
                             1 280
                                    12 50
                                          9.200
                                                 18.50
                                                       1 150
           .75
                 .700
                        6.75
                             1.280
                                    12.75
                                          4.730
                                                 18.75
                                                       1.150
          1.00
                 .700
                        7.00
                             1.280
                                    13.00
                                          4.730
                                                 19.00
          1.25
                 .700
                        7.25
                             1.280
                                    13.25
                                                 19.25
                                                       1.150
                                          .890
                                           .890
          1 50
                 700
                        7 50
                             1 280
                                    13 50
                                                 19 50
                                                       1 150
          1.75
                 .700
                        7.75
                             1.280
                                    13.75
                                          5.240
                                                 19.75
                                                       1.150
                                                       1.150
          2.00
                 .700
                       8.00
                             1.280
                                    14.00
                                          5.240
                                                 20.00
          2.25
                        8.25
                             1.720
                                    14.25
                                                 20.25
                 .830
                                          1.920
          2.50
                .830
                        8.50
                             1.720
                                    14.50
                                          1.920
                                                 20.50
                                                        .770
          2.75
                 .830
                       8.75
                             1.720
                                    14.75
                                          1.920
                                                 20.75
                                                        .770
                             1.720
          3.00
                .830
                       9.00
                                    15.00
                                          1.920
                                                 21.00
                                                        .770
          3.25
                .830
                       9.25
                             2.040
                                    15.25
                                          1.920
                                                 21.25
                                                        .770
          3.50
                 .830
                       9.50
                             2.040
                                    15.50
                                          1.920
                                                 21.50
                                                         .770
          3.75
                .830
                       9.75
                             2.300
                                    15.75
                                          1.920
                                                 21.75
                                                        .770
                .830
                             2.300
                                    16.00
                                                        .770
          4.00
                       10.00
                                          1.920
                                                 22.00
               1.020
                                          1 150
                       10 25
                             2 940
                                    16 25
                                                 22 25
                                                        770
          4 25
          4.50
               1.020
                       10.50
                             2.940
                                    16.50
                                          1.150
                                                 22 50
                                                         770
          4.75
                1.020
                       10.75
                             3.960
                                    16.75
                                          1.150
                                                 22.75
                                                        .770
                                    17.00
                                         1.150
                                                 23.00
          5.00
               1.020
                       11.00
                             3.960
          5.25 1.020
                      11.25
                             6.130
                                    17.25
                                         1.150 İ
                                                 23.25
                                                        .770
```

Page: 31 Page: 32

```
1 020
                         11 50 6 130
                                       17 50
                                             1 150 L
                                                      23 50
                                                              770
           5.75
                1.020
                        11.75 26.580
                                       17.75
                                             1.150
                                                      23.75
                                                              .770
           6.00 1.020 12.00 70.530
                                      18.00 1.150
                                                     24.00
*******
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
_____
 CALIB STANDHYD
                    Area
                          (ha)= 11.69
 01:002 DT= 1.00 Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
_____
                         IMPERVIOUS
                                    PERVIOUS (i)
   Surface Area
                  (ha) =
                           10 52
                                       1 17
   Dep. Storage
                  ( mm ) =
                            2.00
                                       5.00
   Average Slope
                  (%)=
                            1.00
                                       2.00
   Length
                   (m) =
                           30.00
                                      40.00
   Mannings n
                            .013
                                       .250
   Max.eff.Inten.(mm/hr)=
                           70.53
                                      26.86
            over (min)
                            1.00
                                      13.00
    Storage Coeff. (min)=
                            1.43 (ii)
                                      13.37 (ii)
```

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

- $CN^* = 70.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(hrs)=

(mm) =

Unit Hvd. Tpeak (min)=

Unit Hyd. peak (cms)=

TOTAL RAINFALL (mm) =

RUNOFF COEFFICIENT =

PEAK FLOW

TIME TO PEAK

RUNOFF VOLUME

0.08:00.04-----

1 00

.86

2.06

12.00

61.89

63.89

.97

13 00

.09

.05

12.12

20.67

63.89

.32

TOTALS

12.000

57.771

63.892

.904

2.105 (iii)

* SWM POND AREA

CALIB STANDHYD	Area	(ha) =	.87		
02:003 DT= 1.00	Total	Imp(%)=	50.00 Di	r. Conn.(%)=	50.00
	-				
		IMPERVIOUS	PERVIOU	S (i)	
Surface Area	(ha)=	.44	.44		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m)=	22.00	10.00		
Mannings n		.013	.250		
_					
Max.eff.Inten.(mm	n/hr)=	70.53	29.45		
over	(min)	1.00	6.00		
Storage Coeff.	(min)=	1.18 (i	i) 6.19	(ii)	

File: N:\	otthvmo\	\1870\1870PST.	out 9/23	/2021.	11:14:12 AM
-----------	----------	----------------	----------	--------	-------------

Unit Hyd. Tpeak Unit Hyd. peak		1.00	6.00		
	(,			*TOTALS*	
PEAK FLOW	(cms)=	.09	.03	.114 (iii)	
TIME TO PEAK	(hrs)=	12.00	12.02	12.000	
RUNOFF VOLUME	(mm) =	61.89	20.67	41.284	
TOTAL RAINFALL	(mm) =	63.89	63.89	63.892	
RUNOFF COEFFICIA	ENT =	.97	.32	.646	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

008:0005----

*	IINCONTROLLED	APFA	TO	MINGTON	CHITECUTI.I.	BT.WD

ļ	CALIB STANDHYD		(ha)=			
	03:004 DT= 1.00	Total	Imp(%)=	25.00 Di	r. Conn.(%)=	25.00
			IMPERVIOU:	S PERVIOUS	S (i)	
	Surface Area	(ha)=	.04	.10		
	Dep. Storage	(mm) =	2.00	5.00		
	Average Slope	(%)=	1.00	2.00		
	Length	(m) =	30.00	10.00		
	Mannings n	=	.013	.250		
	_					
	Max.eff.Inten.(r	nm/hr)=	70.53	29.45		
	over	(min)	1.00	6.00		
	Storage Coeff.	(min)=	1.43	(ii) 6.44	(ii)	
	Unit Hyd. Tpeak	(min)=	1.00	6.00		
	Unit Hyd. peak	(cms)=	.86	.18		
					*TOTALS	*
	PEAK FLOW	(cms)=	.01	.01	.014	(iii)
	TIME TO PEAK	(hrs)=	12.00	12.02	12.000	
	RUNOFF VOLUME	(mm) =	61.89	20.67	30.979	
	TOTAL RAINFALL	(mm) =	63.89	63.89	63.892	
	RUNOFF COEFFICIA		.97	.32	.485	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

008:0006-----

* UNCONTROLLED AREA TO CHANNEL

01	NCONIROLLED AREA .	IO CHANNEL		
	ALIB NASHYD 4:005 DT= 1.00	Ia	. ,	Curve Number (CN)=70.00 # of Linear Res.(N)= 3.00
	Unit Hyd Qpeak	(cms)=	.055	
	PEAK FLOW	(cms)=	.013 (i)	

Page: 33 Page: 34

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

TIME TO PEAK (hrs)= 12.067 RUNOFF VOLUME (mm)= 20.674 TOTAL RAINFALL (mm)= 63.892 RUNOFF COEFFICIENT = .324

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

008:0007-----

* Discharge rates from the SWMP, buildings and paved area * Total Area = 12.56 ha

ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
		(ha)	(cms)	(hrs)	(mm)	(cms)
ID1	01:002	11.69	2.105	12.00	57.77	.000
+ID2	02:003	.87	.114	12.00	41.28	.000
====			=======	======	======	
SUM	06:000300	12.56	2.219	12.00	56.63	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

000.0000

*STORMWATER MANAGEMENT FACILITY

INFLOW > 06: (000300)

OUTFLOW<07: (000200)

*PERMANENT WL 91.10 ORIFICE 125mm

*EROS/EXT WL 91.90 WEIR 175mm

ROUTE RESERVOIR IN>06:(000300)	Requested	d routing t	time step = 1	.0 min.
OUT<07:(000200)	=======	= OUTLFOW	STORAGE TABLE	=======
	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	.000	.0000E+00	.178	.6238E+00
	.013	.7430E-01	.256	.7344E+00
	.020	.1543E+00	.391	.9076E+00
	.025	.2403E+00	2.321	.1028E+01
	.029	.3146E+00	3.906	.1089E+01
	.060	.4139E+00	5.775	.1152E+01
	.112	.5169E+00	7.890	.1215E+01
ROUTING RESULTS	AI	REA QPI	EAK TPEAK	R.V.

(ha)

12.56

12.56

PEAK	FLO	W	REDUC	CTION	[Oout/Oin](%)=	4.228
TIME	SHIFT	OF			(min)=	122.00
MAXTM	ITIM S'	TOR	AGE	HSED	(ha m)=	4810E+00

(cms)

2.219

.094

(hrs)

12.000

14.033

(mm)

56.629

56.626

 $[\]mbox{\ensuremath{^{\star}}}$ Discharge rates from the SWMP, buildings, paved area and

^{*} Uncontrolled discharge being released onto Winston Churchill

```
*****************
| ADD HYD (000300) | ID: NHYD
                  AREA
                       QPEAK TPEAK R.V.
                                     DWF
                   (ha)
                       (cms)
                            (hrs)
                                ( mm )
                                    (cms)
         ID1 07:000200
                        .094
                            14.03 56.63
                                     .000
                  12.56
        +ID2 03:004
                   .14
                        .014 12.00 30.98
                                     000
         ______
                        ._____
         SUM 08:000300 12.70
                       .095 14.00 56.34
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
______
*************************
0.08:00.02------
0.08:00.02------
008:0002-----
0.08:00.02-----
 ** END OF RUN : 8
*******************
         | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
------ Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
  TZERO = .00 hrs on
  METOUT= 2 (output = METRIC)
  NRUN = 009
  NSTORM= 1
     # 1=10Y24HS.STM
*# Project Name: 560 Winston Churchill Blvd., Oakville
 Project Number: 1870
        : DECEMBER 15, 2020
*# Revised
        : SEPTEMBER 22, 2020
*# Modeller
        : JMN
*# Company
        : a.m. candaras associates inc.
*# License # : 3813174
*#*****************************
```

Page: 35

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

READ STOR		-		\ D001711	1 \ 2 D24T2TT	1) ppormo	D) GERRINAGO	100
Dtotal- '		Com	ename: C:	10 VEXE	I (ADMINI~	CTODM 1	P\SWMHYMO\ 5 min TIM	/187
Ptotal= '	iiiii		wents.	IO IEAR	3C3 24111	510KH, 1	J 11111 11111	2 01
	TIME		TIME	RAIN	TIME	RAIN	TIME	RAI
	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/h
		.800	6.25	1.460	12.25			
	.50	.800	6.50	1.460	12.50	10.500	18.50	1.31
	.75	.800	6.75	1.460	12.75	5.400	18.75	1.31
	1.00	.800	7.00	1.460	13.00	5.400	19.00	1.31
	1.25	.800	7.25	1.460 1.460 1.460	13.25	5.400 5.400 1.020	19.25	1.31
	1.50	.800						1.31
	1.75	.800	7.75	1.460	13.75	5.980	19.75	1.31
	2.00	.800	8.00	1.460	14.00	5.980 2.190 2.190	20.00	
	2.25	.950	8.25	1.970	14.25	2.190	20.25	.88
	2.50					2.190	20.50	
	2.75	.950	8.75	1.970	14.75	2.190	20.75	.88
	3.00	.950	9.00	1.970	15.00	2.190	21.00	
	3.25	.950	9.25	2.330	15.25	2.190	21.25	.88
	3.50	.950	9.50	2.330	15.50	2.190 2.190 2.190 2.190	21.50	
	3.75	.950	9.75	2.630	15.75	2.190	21.75	.88
	4.00					2.190		
	4.25	1.170 1.170	10.25	3.350	16.25	1.310 1.310	22.25	.88
				3.350	16.50	1.310	22.50	.88
	4.75	1.170	10.75	4.520	16.75	1.310	22.75	.88
	5.00	1.170	11.00	4.520	17.00	1.310	23.00	.88
	5.25	1.170	11.25	7.000	17.25	1.310	23.25	.88
	5.50	1.170	11.50	7.000	17.50	1.310	23.50	.00
	5.75 6.00	1.170	11.75	30.330	17.75	1.310	23.75	.88
	5.75 6.00	1.170	11.75	30.330 80.500	17.75	1.310	23.00 23.25 23.50 23.75 24.00	.88 .88
************	**************************************	*******						
************	**************************************	*******						
********** SITE 560 WI	******** INSTON CF	******* HURCHILL:	*					
**************************************	******** INSTON CF	******* HURCHILL ******	* LANDSCAP	ED AREAS				
**************************************	******** INSTON CF	******* HURCHILL ******	* LANDSCAP	ED AREAS				
*********** SITE 560 W: ********** BUILDING,	********* INSTON CH ******** PAVED AF NDHYD DT= 1.00	********* HURCHILL ******** REAS AND Are	* LANDSCAP	ED AREAS				
*********** SITE 560 W: ************************************	********* INSTON CH ******** PAVED AF NDHYD DT= 1.00	********* HURCHILL ******** REAS AND Are	* LANDSCAP ea (ha	ED AREAS)= 11.)= 90.	69 00 Dir.	Conn.(%		
********** SITE 560 W ********* BUILDING,	******** INSTON CE ******* PAVED AF	********* HURCHILL ******** REAS AND Are	* LANDSCAP ea (ha tal Imp(%	ED AREAS)= 11.)= 90.	69 00 Dir.	Conn.(%		
********** SITE 560 W: ********** BUILDING,	******** INSTON CE ******* PAVED AF	********* HURCHILL ******** REAS AND Are	* LANDSCAP ea (ha tal Imp(% IMPERV 10.	ED AREAS)= 11.)= 90. TOUS	69 00 Dir. PERVIOUS 1.17	Conn.(%		
SITE 560 W. SITE 560 W. *********** BUILDING,	PAVED AF	******** HURCHILL ******* REAS AND Are 0 Tol (ha)= (mm)=	* LANDSCAP ea (ha tal Imp(% IMPERV 10. 2.	ED AREAS)= 11.)= 90. TOUS	69 00 Dir. PERVIOUS 1.17 5.00	Conn.(%		
CALIB STAN 01:002 Surface Dep. Si Average	********* INSTON CE ******** PAVED AF DT= 1.00 Area torage e Slope	******** HURCHILL ******* REAS AND Are 0 Tol (ha)= (mm)=	* LANDSCAP ea (ha tal Imp(% IMPERV 10. 2.	ED AREAS)= 11.)= 90. TOUS 52 00 00	69 00 Dir. PERVIOUS 1.17 5.00 2.00	Conn.(%		
********* SITE 560 W ******** BUILDING,	PAVED AF	******** HURCHILL ******* REAS AND Are 0 Tol (ha)= (mm)=	* LANDSCAP ea (ha tal Imp(% IMPERV 10. 2.	ED AREAS)= 11.)= 90. IOUS 52 00 00 00	69 00 Dir. PERVIOUS 1.17 5.00 2.00 40.00	Conn.(%		
********* SITE 560 W ********* BUILDING,	********* INSTON CH ******** PAVED AF TODHYD DT= 1.00 Area Corage e Slope gs n	********* ******* ******* Arr Arr O Tol (ha) = (mm) = (%) = (%) = (m) = (%) = (m) = (%) =	* LANDSCAP ea (ha tal Imp(% IMPERV 10. 2. 1. 30.	DED AREAS)= 11.)= 90. TOUS 52 00 00 13	69 00 Dir. PERVIOUS 1.17 5.00 2.00	Conn.(%		
********* SITE 560 W ********* BUILDING,	********* PAVED AF ******** ******** ******* ********	******** ******* ****** ******* ******	* LANDSCAP Ea (ha cal Imp(% 100 2. 1. 30. 00 80.	ED AREAS)= 11.)= 90. TOUS 522 00 00 00 13	69 00 Dir. PERVIOUS 1.17 5.00 2.00 40.00 .250 34.46	Conn.(%		
********* SITE 560 W ********* BUILDING,	********* INSTON CH ******** PAVED AF TOTAL TOTA	********* #URCHILL ******* REAS AND (ha) = (mn) = (mn) = (mn) = (mn/hr) = c (min)	* LANDSCAP ea (ha cal Imp(% IMPERV 10. 2. 1. 30. 0	ED AREAS)= 11.)= 90. TOUS 52 00 00 13	69 00 Dir. PERVIOUS 1.17 5.00 2.00 40.00 .250 34.46 12.00	Conn.(%		
********* SITE 560 W ********* BUILDING,	********* INSTON CH ******** PAVED AF TOTAL TOTA	********* #URCHILL ******* REAS AND (ha) = (mn) = (mn) = (mn) = (mn/hr) = c (min)	* LANDSCAP ea (ha cal Imp(% IMPERV 10. 2. 1. 30. 0	ED AREAS)= 11.)= 90. TOUS 52 00 00 13	69 00 Dir. PERVIOUS 1.17 5.00 2.00 40.00 .250 34.46 12.00	Conn.(%		
********* SITE 560 W ********* BUILDING,	********* INSTON CH ******** PAVED AF TOTAL TOTA	********* #URCHILL ******* REAS AND (ha) = (mn) = (mn) = (mn) = (mn/hr) = c (min)	* LANDSCAP ea (ha cal Imp(% IMPERV 10. 2. 1. 30. 0	ED AREAS)= 11.)= 90. TOUS 52 00 00 13	69 00 Dir. PERVIOUS 1.17 5.00 2.00 40.00 .250 34.46	Conn.(%		

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)=	2.35	.07	2.414 (iii)
	12.00	12.10	12.000
	70.94	26.10	66.459
TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	72.94	72.94	72.942
	.97	.36	.911

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

* SWM POND AREA

*	SWM POND AREA					
	CALIB STANDHYD 02:003 DT= 1.00				Conn.(%)= 50.00	
_		_	TMPERVIOUS	PERVIOUS	(i)	
	Surface Area	(ha)=			(1)	
	Dep. Storage					
	Average Slope					
	Length	(m)=	22.00	10.00		
	Mannings n	=	.013	.250		
	Max.eff.Inten.(m	m/hr)=	80.50	37.03		
	over	(min)	1.00	6.00		
	Storage Coeff.	(min)=	1.12 (:	ii) 5.69 (ii)	
	Unit Hyd. Tpeak	(min)=	1.00	6.00		
	Unit Hyd. peak	(cms)=	1.00	.20		
					TOTALS	
	PEAK FLOW					
	TIME TO PEAK					
	RUNOFF VOLUME					
	TOTAL RAINFALL					
	RUNOFF COEFFICIE	NT =	.97	.36	.665	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^*}$ = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

009:0005-----

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

-	UNCONTROLLED AREA I	O MINSION	CHURCHILL	BLAD		
		-				
	CALIB STANDHYD 03:004 DT= 1.00	Area Total	(ha)= Imp(%)=	.14 25.00	Dir. Conn.(%)=	25.00
		-				
			IMPERVIOUS	PERV	TOUS (i)	
	Surface Area	(ha)=	.04		.10	
	Dep. Storage	(mm) =	2.00	5	.00	
	Average Slope	(%)=	1.00	2	.00	
	Length	(m) =	30.00	10	.00	
	Mannings n	=	.013		250	

Page: 37

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

```
37 03
Max.eff.Inten.(mm/hr)=
                          80 50
          over (min)
                           1.00
                                       6.00
Storage Coeff. (min)=
                           1.35 (ii)
                                       5.92 (ii)
Unit Hyd. Tpeak (min)=
                           1.00
                                       6.00
Unit Hyd. peak (cms)=
                           .89
                                        .19
                                                   *TOTALS*
PEAK FLOW
               (cms)=
                            .01
                                        .01
                                                      .017 (iii)
TIME TO PEAK (hrs)=
                          12.00
                                      12.02
                                                    12.000
RUNOFF VOLUME
                          70.94
                                       26.11
                                                    37.317
               ( mm ) =
TOTAL RAINFALL (mm)=
                          72.94
                                      72.94
                                                    72.942
RUNOFF COEFFICIENT =
                            .97
                                                      .512
                                        .36
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

009:0006-----

* UNCONTROLLED AREA TO CHANNEL

CALIB NASHYD	Area (ha)=	.23	Curve Number (CN)=7	0.00					
04:005 DT= 1.00	Ia (mm)=	5.000	# of Linear Res.(N)=	3.00					
	U.H. Tp(hrs)=	.160							

Unit Hyd Qpeak (cms)= .055

```
PEAK FLOW (cms) = .016 (i)
TIME TO PEAK (hrs) = 12.067
RUNOFF VOLUME (mm) = 26.108
TOTAL RAINFALL (mm) = 72.942
RUNOFF COEFFICIENT = .358
```

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

009:0007-----

* Discharge rates from the SWMP, buildings and paved area

* Total Area = 12.56 ha

	ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWE
-			(ha)	(cms)	(hrs)	(mm)	(cms)
	ID1	01:002	11.69	2.414	12.00	66.46	.000
	+ID2	02:003	.87	.134	12.00	48.53	.000
	===:					======	
	SUM	06:000300	12.56	2.548	12.00	65.22	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

0.09:0.008----

*STORMWATER MANAGEMENT FACILITY

*PERMANENT WL 91.10 ORIFICE 125mm

*EROS/EXT WL 91.90 WEIR 175mm

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

*****		*****	*****			
ROUTE RESERVOIR IN>06:(000300)		ested routi	ng time s	tep = 1	.0 min.	
OUT<07:(000200)		==== OUTI				
	OUTF	LOW STOF	-	OUTFLOW (cms)	STOR <i>I</i> (ha.r	
		000 .0000		.178	.6238E-	
		013 .7430E	-		.7344E-	
		020 .1543E 025 .2403E		2.321	.9076E-	
		029 .3146E		3.906	.1089E-	
		060 .4139E 112 .5169E		5.775 7.890	.1152E-	
			'			
ROUTING RESUL		AREA (ha)	QPEAK (cms)	TPEAK (hrs)		.V. nm)
INFLOW >06: (12.56	2.548	12.000	65.2	216
OUTFLOW<07: (000200)	12.56	.127	13.017	65.2	214
	PEAK FLOW	W REDUCTI	ON [Qout/	Qin](%)=	4.99	97
	TIME SHIFT			(min)=		
	MAXIMUM S	TORAGE US	SED	(ha.m.)=	.541/E+C	00
009:0009						

* Discharge rates						
* Uncontrolled dis	charge being	g released *******	onto Wins	ton Chur	chill	
ADD HYD (000300)	ID: NHYD	AREA (ha)	QPEAK (cms)	TPEAK (hrs)	R.V.	DWF (cms)
I	D1 07:00020		.127	13.02		.000
	D2 03:004	.14	.017		37.32	.000
	======== UM 08:00030		.129		64.91	.000
NOTE: PEAK FLO	WS DO NOT II	NCLUDE BASE	FLOWS IF	ANY.		
009:0010						
009:0002						
009:0002						
009:0002						
009:0002						
009:0002						
009:0002						
009:0002						

Page: 39 Page: 40

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
0.09:0.00.2-----
 ** END OF RUN : 9
******************
            | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
START
------ Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
  TZERO = .00 hrs on 0
METOUT= 2 (output = METRIC)
                        0
  NRUN = 010
  NSTORM= 1
       # 1=25Y24HS.STM
______
*#*********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
            : DECEMBER 15, 2020
*# Revised
            : SEPTEMBER 22, 2020
*# Modeller
           : JMN
*# Company
            : a.m. candaras associates inc.
*# License # : 3813174
010:0002-----
READ STORM
                  Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 Ptotal= 85.25 mm
                 Comments: * 25 YEAR SCS 24hr STORM, 15 min TIME ST
          TIME
                RATN
                        TIME
                              RATN
                                     TIME
                                           RATN
                                                  TIME
                                                        RATN
           hrs
                mm/hr
                        hrs
                             mm/hr
                                     hrs
                                          mm/hr
                                                   hrs
                                                        mm/hr
           .25
                .940
                        6.25
                             1.710
                                    12.25 12.280
                                                 18.25
                                                        1.530
           .50
                 .940
                        6.50
                                    12.50
                                         12.280
                                                  18.50
                                                        1.530
                             1.710
           .75
                 .940
                        6.75
                             1.710
                                    12.75
                                          6.310
                                                 18.75
                                                        1.530
                 .940
                                          6.310
          1 00
                       7.00
                             1.710
                                    13.00
                                                 19 00
                                                        1 530
          1.25
                 .940
                        7.25
                             1.710
                                    13.25
                                           1.190
                                                 19.25
                                                        1.530
          1.50
                 .940
                       7.50
                             1.710
                                    13.50
                                           1.190
                                                 19.50
                                                       1.530
          1.75
                 .940
                        7.75
                             1.710
                                    13.75
                                           6.990
                                                  19.75
                                                        1.530
          2.00
                 .940
                        8.00
                             1.710
                                    14.00
                                           6.990
                                                  20.00
                                                        1.530
          2.25
                1.110
                        8.25
                             2.300
                                    14.25
                                           2.560
                                                 20.25
                                                        1.020
                             2.300
                                           2.560
          2.50
                1.110
                       8.50
                                    14.50
                                                 20.50
                                                        1.020
          2.75
                1.110
                        8.75
                             2.300
                                    14.75
                                           2.560
                                                 20.75
                                                        1.020
          3.00
                1.110
                        9.00
                             2.300
                                    15.00
                                           2.560
                                                 21.00
                                                        1.020
          3.25
                1.110
                        9.25
                             2.730
                                    15.25
                                           2.560
                                                 21.25
                                                        1.020
          3.50
                1.110
                       9.50
                             2.730
                                    15.50
                                           2.560
                                                  21.50
                                                        1.020
                                    15 75
                                           2 560
                                                 21 75
          3 75
                1 110
                       9 75
                             3 070
                                                        1 020
          4.00
                1.110
                       10.00
                             3.070
                                    16.00
                                           2.560
                                                 22.00
                                                        1.020
          4.25
                1.360
                       10.25
                             3.920
                                    16.25
                                           1.530
                                                  22.25
                                                        1.020
               1.360
                       10.50
                             3.920
                                    16.50
                                          1.530
                                                 22.50
                                                       1.020
          4.75
                       10.75
                            5.290
                                    16.75
                                         1.530
                                                 22.75
                                                       1.020
               1.360
```

5.00	1.360	11.00	5.290	17.00	1.530	23.00	1.020
5.25	1.360	11.25	8.190	17.25	1.530	23.25	1.020
5.50	1.360	11.50	8.190	17.50	1.530	23.50	1.020
5.75	1.360	11.75	35.470	17.75	1.530	23.75	1.020
6.00	1.360	12.00	94.140	18.00	1.530	24.00	1.020

SITE 560 WINSTON CHURCHILL

* BUILDING, PAVED AREAS AND LANDSCAPED AREAS

CALIB STANDHYD 01:002 DT= 1.00		(ha)= 1 Imp(%)= 9		onn.(%)= 90.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	10.52	1.17	
Dep. Storage	(mm) =	2.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	30.00	40.00	
Mannings n	=	.013	.250	
Max.eff.Inten.(mm/hr)=	94.14	45.55	
		1.00		
Storage Coeff.	(min)=	1.27 (ii) 10.94 (ii)	
Unit Hyd. Tpeak				
Unit Hyd. peak	(cms)=	.93	.10	
				TOTALS
PEAK FLOW	(cms)=	2.75	.10	2.840 (iii)
TIME TO PEAK	(hrs)=	12.00	12.08	12.000
RUNOFF VOLUME	(mm) =	83.24	34.05	78.329
TOTAL RAINFALL	(mm) =	85.25	85.25	85.248
RUNOFF COEFFICI:	ENT =	.98	.40	.919

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

010:0004-----

* SWM POND AREA

CALIB STANDHYD 02:003	Area Total	(ha)= . Imp(%)=	.87 50.00 Dir	. Conn.(%)=	50.00
		IMPERVIOUS	PERVIOUS	(i)	
Surface Area	(ha) =	.44	.44		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	22.00	10.00		
Mannings n	=	.013	.250		
Max.eff.Inten.(mm/hr)=	94.14	48.55		

Page: 41

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

over Storage Coeff. Unit Hyd. Tpeak	(min)= (min)=	1.00 1.06 (ii) 1.00	5.00 5.16 (ii) 5.00	
Unit Hyd. peak	(cms)=	1.04	.22	*TOTALS*
PEAK FLOW	(cms)=	.11	.05	.164 (iii)
TIME TO PEAK	(hrs)=	12.00	12.02	12.000
RUNOFF VOLUME	(mm) =	83.25	34.05	58.651
TOTAL RAINFALL	(mm) =	85.25	85.25	85.248
RUNOFF COEFFICE	ENT =	.98	.40	.688

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

	CALIB STANDHYD		(ha)=		G (e. \	F 00
1	03:004 DT= 1.00	locar	TIIID (&) =	25.00 DIE	. com. (6)= 2	5.00
			IMPERVIOUS	PERVIOUS	(i)		
	Surface Area	(ha)=	.04	.10			
	Dep. Storage	(mm) =	2.00	5.00			
	Average Slope	(%)=	1.00	2.00			
	Length	(m)=	30.00	10.00			
	Mannings n	=	.013	.250			
	Max.eff.Inten.(n	nm/hr)=	94.14	48.55			
	over	(min)	1.00	5.00			
	Storage Coeff.	(min)=	1.27 (ii) 5.37	(ii)		
	Unit Hyd. Tpeak	(min)=	1.00	5.00			
	Unit Hyd. peak	(cms)=	.93	.22			
					*	TOTALS*	
	PEAK FLOW	(cms)=	.01	.01		.021	(iii)
	TIME TO PEAK	(hrs)=	11.98	12.02		12.000	
	RUNOFF VOLUME	(mm) =	83.25	34.05		46.352	
	TOTAL RAINFALL	(mm) =	85.25	85.25		85.248	
	RUNOFF COEFFICIE		.98	.40		.544	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

______ 010:0006-----

* UNCONTROLLED AREA TO CHANNEL

Ia		5.000	Curve Number (CN)=70.00 # of Linear Res.(N)= 3.00
 U.H. T	p(nrs)=	.160	

Unit Hyd Qpeak (cms)= .055

```
PEAK FLOW
                 (cms)=
                           .022 (i)
    TIME TO PEAK
                 (hrs)= 12.067
    RUNOFF VOLUME
                 ( mm ) =
                         34.052
    TOTAL RAINFALL
                 ( mm ) =
                         85.248
    RUNOFF COEFFICIENT =
                          399
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
* Discharge rates from the SWMP, buildings and paved area
* Total Area = 12.56 ha
10td Alca - 12.30 m
| ADD HYD (000300) | ID: NHYD
                            AREA
                                   OPEAK TPEAK R.V.
                                                         DME
-----
                            (ha)
                                    (cms) (hrs) (mm)
                                                       (cms)
                                   2.840
                                          12.00
                                                78.33
                            11.69
                                                        .000
             +ID2 02:003
                            .87
                                   .164 12.00 58.65
                                                        .000
              ______
              SUM 06:000300 12.56 3.005 12.00 76.97 .000
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
***********
*STORMWATER MANAGEMENT FACILITY
*PERMANENT WL 91.10 ORIFICE 125mm
*EROS/EXT WL 91.90 WEIR 175mm
**********
_____
 ROUTE RESERVOIR
                     Requested routing time step = 1.0 min.
  IN>06:(000300)
 OUT<07:(000200)
                     ======= OUTLFOW STORAGE TABLE =======
                    OUTFLOW STORAGE
                                        OUTFLOW
                                                STORAGE
                      (cms)
                             (ha.m.)
                                          (cms)
                                                  (ha.m.)
                       000 0000E+00
                                           .178 .6238E+00
                       .013 .7430E-01
                                           .256 .7344E+00
                            .1543E+00
                                           .391
                                                .9076E+00
                       .020
                       .025 .2403E+00
                                          2.321 .1028E+01
                       .029 .3146E+00
                                          3.906 .1089E+01
                       .060
                            .4139E+00
                                          5.775
                                                .1152E+01
                       .112 .5169E+00
                                          7.890 .1215E+01
    ROUTING RESULTS
                          AREA
                                  OPEAK
                                          TPEAK
                                                    R.V.
                          (ha)
                                  (cms)
                                          (hrs)
                                                    (mm)
    INFLOW > 06: (000300)
                                  3.005
                                          12.000
                                                   76.965
                          12.56
    OUTFLOW<07: (000200)
                          12.56
                                  .181
                                         13.000
                                                   76.963
                PEAK FLOW REDUCTION [Qout/Qin](%)=
                TIME SHIFT OF PEAK FLOW
                                          (min)=
                                                   60.00
                                         (ha.m.) = .6275E + 00
               MAXIMIM STORAGE USED
```

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
```

```
* Discharge rates from the SWMP, buildings, paved area and
* Uncontrolled discharge being released onto Winston Churchill
*****************
_____
| ADD HYD (000300) | ID: NHYD
                     AREA
                           OPEAK
                               TPEAK
                                     R.V.
                                           DWF
-----
                     (ha)
                           (cms)
                                (hrs)
                                     ( mm )
                                         (cms)
          ID1 07:000200
                     12.56
                           .181
                                13.00
                                    76.96
                                          .000
          +ID2 03:004
                     .14
                           .021
                               12.00 46.35
                                          .000
          _____
          SUM 08:000300 12.70
                           .183 13.00 76.63
                                          .000
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
*******************
010:0002----
010:0002-----
 ** END OF RUN : 10
START | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
 ------ Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
  TZERO = .00 hrs on
                    0
  METOUT= 2 (output = METRIC)
  NRUN = 011
  NSTORM= 1
      # 1=100Y24HS.STM
*#**********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
 Project Number: 1870
          : DECEMBER 15, 2020
 Date
*# Revised
          : SEPTEMBER 22, 2020
```

```
*# Modeller
             : .TMN
*# Company
             : a.m. candaras associates inc.
*# License # : 3813174
*#***************************
011:0002-----
 READ STORM
                    Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 Ptotal = 103.37 mm
                    Comments: * 100 YEAR SCS 24hr STORM, 15 min TIME S
._____.
           TIME RAIN
                          TIME RAIN
                                         TIME
                                               RAIN
                                                        TIME
                                               mm/hr
            hrs
                  mm/hr
                           hrs
                                mm/hr
                                          hrs
                                                         hrs
                                                              mm/hr
            .25
                 1.140
                           6.25
                                2.070
                                         12.25 14.890
                                                       18.25
                                                             1.860
            .50
                 1 140
                          6 50
                                2 070
                                        12.50 14.890
                                                       18 50
                                                              1 860
             . 75
                  1.140
                           6.75
                                2.070
                                        12.75
                                               7.650
                                                       18.75
                                                              1.860
           1.00
                 1.140
                          7.00
                                2.070
                                        13.00
                                              7.650
                                                       19.00
                                                             1.860
           1.25
                  1.140
                           7.25
                                2.070
                                        13.25
                                               1.450
                                                       19.25
           1.50
                 1.140
                          7.50
                                2.070
                                        13.50
                                               1.450
                                                       19.50
                                                              1.860
           1.75
                  1.140
                          7.75
                                2.070
                                        13.75
                                               8.480
                                                       19.75
                                                              1.860
           2.00
                 1 140
                          8.00
                                2.070
                                        14 00
                                               8.480
                                                       20.00
                                                              1 860
           2.25
                  1.340
                          8.25
                                2.790
                                        14.25
                                               3.100
                                                       20.25
                                                              1.240
           2.50
                  1.340
                           8.50
                                2.790
                                        14.50
                                               3.100
                                                       20.50
                                                              1.240
           2.75
                 1.340
                          8.75
                                2.790
                                        14.75
                                               3.100
                                                       20.75
                                                              1.240
                 1.340
                          9.00
                                2.790
                                        15.00
           3.00
                                               3.100
                                                       21.00
                                                              1.240
           3 25
                 1 340
                          9 25
                                3 310
                                        15 25
                                               3 100
                                                       21 25
                                                              1 240
           3.50
                 1.340
                          9.50
                                3.310
                                        15.50
                                               3.100
                                                       21.50
                                                             1.240
            3.75
                  1.340
                          9.75
                                 3.720
                                        15.75
                                               3.100
                                                       21.75
            4.00
                 1.340
                         10.00
                                3.720
                                        16.00
                                               3.100
                                                       22.00
                                                              1.240
           4.25
                 1.650
                         10.25
                                4.760
                                        16.25
                                               1.860
                                                       22.25
                                                              1.240
                 1.650
                                4.760
                                               1.860
            4.50
                         10.50
                                        16.50
                                                       22.50
                                                              1.240
                 1.650
                                6.410
           4.75
                         10.75
                                        16.75
                                               1.860
                                                       22 75
                                                             1 240
           5.00
                 1.650
                         11.00
                                6.410
                                        17.00
                                               1.860
                                                       23.00
                                                              1.240
            5.25
                 1.650
                         11.25
                                9.920
                                        17.25
                                               1.860
                                                       23.25
                                                             1.240
            5.50
                 1.650
                         11.50
                               9.920
                                        17.50
                                               1.860
                                                       23.50
                                                             1.240
           5 75 1 650
                         11 75 43 010
                                        17 75
                                              1 860
                                                       23 75
                                                             1 240
           6.00 1.650
                         12.00 114.144
                                        18.00 1.860
                                                       24.00
                                                             1.240
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
 CALIB STANDHYD
                     Area (ha)= 11.69
 01:002 DT= 1.00 | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
                          IMPERVIOUS
                                     PERVIOUS (i)
                   (ha)=
                                        1.17
    Surface Area
                            10.52
                                         5 00
    Dep. Storage
                   ( mm ) =
                             2 00
    Average Slope
                   (왕)=
                             1.00
                                        2.00
    Length
                    (m) =
                            30.00
                                        40.00
    Mannings n
```

Page: 45 Page: 46

```
File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM
```

Max.eff.Inten.(mm/	hr)= 114.14	62.99	
over (m	in) 1.00	10.00	
Storage Coeff. (m	in)= 1.18	(ii) 9.67 (i	i)
Unit Hyd. Tpeak (m	in)= 1.00	10.00	
Unit Hyd. peak (c	ms)= .97	.12	
			TOTALS
PEAK FLOW (c	ms)= 3.34	.15	3.471 (iii)
TIME TO PEAK (h	rs)= 12.00	12.07	12.000
RUNOFF VOLUME (mm) = 101.37	46.69	95.906
TOTAL RAINFALL (mm) = 103.37	103.37	103.374
RUNOFF COEFFICIENT	.98	.45	.928

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 70.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

011.0004

* SWM POND AREA

CALTE STANDHYD | Area (ha)=

CALIB STANDHYD	Area	(na)=	.8/			
02:003 DT= 1.00	Total	Imp(%)=	50.00 Dir	. Conn.(%)=	50.00	
	-	IMPERVIOUS	PERVIOUS	: (i)		
				, ,		
Surface Area						
Dep. Storage	(mm) =	2.00	5.00			
Average Slope	(%)=	1.00	2.00			
Length	(m)=	22.00	10.00			
Mannings n	=	.013	.250			
Max.eff.Inten.(m	m/hr)=	114.14	65.98			
			5.00			
Storage Coeff.						
Unit Hyd. Tpeak						
Unit Hyd. peak	(cms)=	1.09	.24			
				TOTAl	LS	
PEAK FLOW	(cms)=	.14	.07	. 20	09 (iii)	
TIME TO PEAK	(hrs)=	11.98	12.00	12.00	00	
RUNOFF VOLUME	(mm) =	101.38	46.70	74.03	37	
TOTAL RAINFALL	(mm) =	103.37	103.37	103.3	74	
RUNOFF COEFFICIE	NT =	.98	.45	.73	16	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

011:0005-----

* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD

| CALIB STANDHYD | Area (ha)= .14 | 03:004 | DT= 1.00 | Total Imp(%)= 25.00 | Dir. Conn.(%)= 25.00 | IMPERVIOUS | PERVIOUS (i)

File: N:\otthymo\1870\1870PST.out 9/23/2021, 11:14:12 AM

Surface Area	(ha) =	.04	.10		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m)=	30.00	10.00		
Mannings n	=	.013	.250		
Max.eff.Inten.(nm/hr)=	114.14	65.98		
over	(min)	1.00	5.00		
Storage Coeff.	(min)=	1.18	(ii) 4.80	(ii)	
Unit Hyd. Tpeak	(min)=	1.00	5.00		
Unit Hyd. peak	(cms)=	.97	.23		
				TOTALS	
PEAK FLOW	(cms)=	.01	.02	.028	(iii)
TIME TO PEAK	(hrs)=	11.98	12.00	12.000	
RUNOFF VOLUME	(mm) =	101.37	46.70	60.368	
TOTAL RAINFALL	(mm) =	103.37	103.37	103.374	
RUNOFF COEFFICIE	ENT =	.98	.45	.584	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 70.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

011:0006-----

* UNCONTROLLED AREA TO CHANNEL

CALIB NASHYD	Area	(ha)=	.23	Curve Number (CN)=70.00
04:005 DT= 1.00	Ia	(mm) =	5.000	# of Linear Res.(N)= 3.00
	U.H.	Tp(hrs)=	.160	

Unit Hyd Qpeak (cms)= .055

PEAK FLOW .030 (i) TIME TO PEAK (hrs) = 12.067 RUNOFF VOLUME (mm) = 46.698 TOTAL RAINFALL (mm) = 103.374 RUNOFF COEFFICIENT = .452

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

011:0007-----

* Discharge rates from the SWMP, buildings and paved area

* Total Area = 12.56 ha

ADD HYD (000300)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
		(ha)	(cms)	(hrs)	(mm)	(cms)
ID1	01:002	11.69	3.471	12.00	95.91	.000
+ID2	02:003	.87	.209	12.00	74.04	.000
===:			=======		======	
SUM	06:000300	12.56	3.680	12.00	94.39	.000

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

Page: 47 Page: 48

File: N:\otthymo\1870)\1870PST.ou	t 9/23/	2021, 1	1:14:12 AM		
011:0008						
*STORMWATER MANAGEMEN *PERMANENT WL 91.10 C *EROS/EXT WL 91.90 WE	NT FACILITY DRIFICE 125mm EIR 175mm	m				
ROUTE RESERVOIR	Pemiest	ed routi	na time	step = 1	0 min	
IN>06: (000300)	Request	ea routi	ng time	scep - I	.0 111111.	
OUT<07:(000200)				RAGE TABLE	======	
	- OUTFLOW (cms)			OUTFLOW (cms)	STORAC (ha.m.	
	.000			.178		
	.013			.256	.7344E+0	
	.020			.391		
	.025			2.321	.1028E+0	
	.060			5.775		
		.5169E		7.890		
ROUTING RESULTS	;	AREA	OPEAK	TPEAK	R.V	I.
		(ha)	(cms)	(hrs)	(mr	
INFLOW >06: (000		2.56	3.680	12.000	94.39	
OUTFLOW<07: (000)200) 1:	2.56	.269	12.667	94.38	39
PE	EAK FLOW	REDUCTI	ON [Qout	t/Qin](%)=	7.309	9
	IME SHIFT OF			(min)=		
M.A	AXIMUM STOR	AGE US	ED	(ha.m.)=	.7510E+00	J
011:0009						

* Discharge rates fro						
* Uncontrolled discha						
ADD HYD (000300)	ID: NHYD	AREA	QPEA		R.V.	DWF
	07:000200	(ha) 12.56	(cms)		(mm) 94.39	(cms)
	03:004	.14	.028			.000
SUM	08:000300	12.70	. 272	2 12.55	94.01	.000
NOTE: PEAK FLOWS	DO NOT INCL	UDE BASE	FLOWS I	F ANY.		
011:0010						

011:0002						
011:0002						
011.0000						
011:0002						
011:0002						

```
Metric units
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
              : DECEMBER 15, 2020
*# Date
             : SEPTEMBER 23, 2021
*# Revised
*# Modeller
             : JMN
              : a.m. candaras associates inc.
  Company
*# License #
             : 3813174
START
                 TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN= [001]
READ STORM
                 STORM FILENAME= ["storm.001"]
*******
*SITE 560 WINSTON CHURCHILL*
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
CALIB STANDHYD
                 ID=[1], NHYD=["002"], DT=[1](min), AREA=[11.69](ha),
                 XIMP=[0.90], TIMP=[0.90], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[86.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[40.0](m), MNP=[0.25],
                                    SCP=[0.0](min),
                 Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[196](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ] (mm/hr) , END=-1
* SWM POND AREA
CALIB STANDHYD
                 ID=[2], NHYD=["003"], DT=[1](min), AREA=[0.87](ha),
                 XIMP=[0.50], TIMP=[0.50], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[86.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[10.0](m), MNP=[0.25],
                                    SCP=[0.0](min),
                 Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[22.0](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ] (mm/hr) , END=-1
* UNCONTROLLED AREA TO WINSTON CHURCHILL BLVD
                 ID=[3], NHYD=["005"], DT=[1](min), AREA=[0.14](ha),
CALIB STANDHYD
                 XIMP=[0.25], TIMP=[0.25], DWF=[0.0](cms), LOSS=[2],
                 SCS curve number CN=[86.0],
                 Pervious surfaces: IAper=[5](mm), SLPP=[2.0](%),
                                    LGP=[10.0](m), MNP=[0.25],
                                    SCP=[0.0](min),
                 Impervious surfaces: IAimp=[2](mm), SLPI=[1.0](%),
                                    LGI=[300](m), MNI=[0.013],
                                    SCI=[0.0](min),
                 RAINFALL=[ , , , , ] (mm/hr) , END=-1
```

Page: 1 Page: 2

FINISH

```
* INCONTROLLED AREA TO CHANNEL
CALIB NASHYD
                ID=[4], NHYD=["004"], DT=[1]min, AREA=[0.23](ha),
                DWF=[0.0](cms), CN/C=[86], IA=[5](mm),
                N=[3], TP=[0.16]hrs,
               RAINFALL=[ , , , , ](mm/hr), END=-1
*************
* Discharge rates from the SWMP, buildings and paved area
* Total Area = 12.56 ha
***************
               IDsum=6 NHYD=300 IDs to add=1+2
ADD HYD
***********
*STORMWATER MANAGEMENT FACILITY
*PERMANENT WL 91.10 ORIFICE 125mm
*EROS/EXT WL 91.90 WEIR 175mm
ROUTE RESERVOIR
               IDout= 7 ,
                         NHYD= 200 . IDin= 6 .
               RDT=[1](min),
                TABLE of ( OUTFLOW-STORAGE ) values
                (cms) - (ha-m)
                0.0000 0.0000
                0.0127 0.0743
                0.0199 0.1543
                0.0251 0.2403
                0.0294 0.3146
                0.0598 0.4139
                0.1120 0.5169
                0.1783 0.6238
                0.2560 0.7344
                0.3907 0.9076
                2.3211 1.0278
                3.9062 1.0893
                5.7754 1.1518
                7.8899 1.2152
                IDovf=[ ], NHYDovf=[ ]
****************
* Discharge rates from the SWMP, buildings, paved area and
* Uncontrolled discharge being released onto Winston Churchill
ADD HYD
               TDsum=8 NHVD=300 TDs to add=7+3
******************
```

File: N:\otthymo\1870\1870Reg.dat 9/23/2021, 11:11:26 AM

```
_____
SSSSS W W M M H H Y Y M M OOO
                                  999
                                     999 ======
    W W W MM MM H H Y Y MM MM O O
                                 9 9 9 9
SSSSS W W W M M M HHHHHH Y
                      M M M O O ## 9
                                   a
                                     9
                                        9 Ver. 4.02
  S WW M M H H
                  Y M M O
                                  9999
                                     9999 July 1999
SSSSS WW M M H H
                  Y
                      M M 000
                                   9
                                       9 =======
                                 9 9 9 # 3813174
                                  999
                                      999 ======
   StormWater Management HYdrologic Model
********************
****** A single event and continuous hydrologic simulation model ******
      based on the principles of HYMO and its successors
               OTTHYMO-83 and OTTHYMO-89.
********************
****** Distributed by: J.F. Sabourin and Associates Inc.
               Ottawa, Ontario: (613) 727-5199
******
               Gatineau, Quebec: (819) 243-6858
                                          *****
                                          ******
               E-Mail: swmhymo@jfsa.Com
******************
++++++ Licensed user: A.M. Candaras Associates Inc.
             Woodbridge SERIAL#:3813174
********************
           ++++++ PROGRAM ARRAY DIMENSIONS ++++++
*****
           Maximum value for ID numbers : 10
                                          *****
*****
                                          ++++++
           Max. number of rainfall points: 15000
           Max. number of flow points : 15000
                                          *****
******** DETAILED OUTPUT *************
*******************
    DATE: 2021-09-23 TIME: 11:11:53 RUN COUNTER: 000655
***************
* Input filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870Reg.dat *
* Output filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870Reg.out *
* Summary filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\1870Reg.sum *
* Higer comments:
* 1:__
* 2:
**************************
*#**********************
*# Project Name: 560 Winston Churchill Blvd., Oakville
*# Project Number: 1870
*# Date
         : DECEMBER 15 2020
*# Revised
         : SEPTEMBER 23, 2021
 Modeller
         : JMN
*# Company
         : a.m. candaras associates inc.
```

Page: 1

CN* = 86.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

```
File: N:\otthymo\1870\1870Reg.out 9/23/2021, 11:12:00 AM
*# License # : 3813174
START | Project dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
Rainfall dir.: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\1870\
   TZERO = .00 hrs on 0
   METOUT= 2 (output = METRIC)
  NRUN = 001
  NSTORM= 1
        # 1=HAZEL.STM
______
                   Filename: C:\DOCUME~1\ADMINI~1\DESKTOP\SWMHYMO\187
 READ STORM
 Ptotal= 212.00 mm
                   Comments: HURRICANE HAZEL STORM
 _____
           TIME
                         TIME
                               RAIN
                 RAIN
                                       TIME
                                             RAIN
                                                     TIME
                                                           RAIN
           hrs
                mm/hr
                         hrs
                             mm/hr
                                       hrs
                                           mm/hr
                                                     hrs
                                                          mm/hr
           1.00
                6.000
                         4.00 13.000
                                       7.00 23.000
                                                    10.00 53.000
                         5.00 17.000
           2 00
                4 000
                                       8.00 13.000
                                                    11.00 38.000
           3.00
                6.000
                         6.00 13.000
                                       9.00 13.000
                                                    12.00 13.000
*******
*SITE 560 WINSTON CHURCHILL*
*******
* BUILDING, PAVED AREAS AND LANDSCAPED AREAS
-----
 CALIB STANDHYD
                    Area
                        (ha)= 11.69
 01:002 DT= 1.00
                   Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
                        IMPERVIOUS
                                   PERVIOUS (i)
                  (ha)=
                          10.52
                                      1.17
   Surface Area
   Dep. Storage
                  ( mm ) =
                           2 00
                                      5 00
   Average Slope
                  (왕)=
                           1.00
                                      2.00
   Length
                  (m)=
                          196.00
                                     40.00
                                      .250
   Mannings n
                           .013
   Max.eff.Inten.(mm/hr)=
                          53.00
                                     50.52
            over (min)
                           5.00
                                     14.00
    Storage Coeff. (min)=
                           4.93 (ii)
                                     14.21 (ii)
   Unit Hyd. Tpeak (min)=
                           5.00
                                     14.00
   Unit Hyd. peak (cms)=
                            .23
                                       .08
                                                *TOTALS*
    PEAK FLOW
                 (cms)=
                           1.55
                                       .16
                                                 1.709 (iii)
    TIME TO PEAK
                 (hrs)=
                          10.00
                                     10.02
                                                 10.000
   RINOFF VOLUME
                ( mm ) =
                          209.99
                                    172.52
                                                206.253
    TOTAL RAINFALL
                          212.00
                                                212.000
                 ( mm ) =
                                    212.00
   RUNOFF COEFFICIENT =
                                                  .973
                            .99
                                       81
     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
```

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

001:0004 * SWM POND AREA				
CALIB STANDHYD 02:003 DT= 1.00	Area (ha) = Total Imp(%) =	.87 50.00	Dir. Conn.(%)=	50.00

02:003	DT= 1.00	Total	Imp(%)=	50.00	Dir. Conn	. (%)=	50.00
			IMPERVIOUS				
	ace Area						
Dep	. Storage	(mm) =	2.00	5.	00		
Ave	age Slope						
Leng	gth	(m) =	22.00	10.	00		
Manı	nings n	=	.013	. 2	250		
Max	.eff.Inten.(1	mm/hr)=	53.00	50.	62		
	over	(min)	1.00	5.	00		
Sto	age Coeff.	(min)=	1.33 (ii) 5.	36 (ii)		
Unit	Hyd. Tpeak	(min)=	1.00	5.	00		
Unit	: Hyd. peak	(cms)=	.90		22		
						*TOTALS	*
PEAR	C FLOW	(cms)=	.06		06	.125	(iii)
TIME	E TO PEAK	(hrs)=	9.33	10.	00	10.000	
RUNG	OFF VOLUME	(mm) =	210.00	172.	53	191.267	
TOTA	AL RAINFALL	(mm) =	212.00	212.	00	212.000	
RUNG	OFF COEFFICI	ENT =	.99		81	.902	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 86.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

001:0005-----

*	UNCONTROLLED	AREA	TO	WINSTON	CHURCHILL	BLVD

CALIB STANDHYD	Area	(ha)=	.14		
03:005 DT= 1.00	Total	Imp(%)=	25.00 Dir	. Conn.(%)=	25.00
		IMPERVIOU	S PERVIOUS	(i)	
Surface Area	(ha)=	.04	.10		
Dep. Storage	(mm) =	2.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	300.00	10.00		
Mannings n	=	.013	.250		
Max.eff.Inten.(mm/hr)=	53.00	50.56		
over	(min)	6.00	10.00		
Storage Coeff.	(min)=	6.37	(ii) 10.40	(ii)	
Unit Hyd. Tpeak	(min)=	6.00	10.00		
Unit Hyd. peak	(cms)=	.18	.11		
				TOTA	LS
PEAK FLOW	(cms)=	.01	.01	.0	20 (iii)
TIME TO PEAK	(hrs)=	10.00	10.00	10.0	00
RUNOFF VOLUME	(mm) =	209.99	172.53	181.9	01
	Surface Area Dep. Storage Average Slope Length Mannings n Max.eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK	03:005	03:005 DT= 1.00 Total Imp(%)=	03:005 DT= 1.00 Total Imp(%) = 25.00 Dir	O3:005 DT= 1.00 Total Imp(%) = 25.00 Dir. Conn.(%) =

Page: 4 Page: 3

File: N:\otthymo\1870\1870Reg.out 9/23/2021, 11:12:00 AM

TOTAL RAINFALL RUNOFF COEFFICIEN		212.00 .99	212.0	00	212.000					
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 86.0										
001:0006* * UNCONTROLLED AREA TO										
CALIB NASHYD 04:004 DT= 1.00	Ia	(ha)= (mm)= (hrs)=	5.000 #	Curve Num of Line	ber (C ar Res.((N) = 86.00 N) = 3.00				
Unit Hyd Qpeak (cms)= .	.055								
TIME TO PEAK (1 RUNOFF VOLUME	nrs)= 10. (mm)= 172. (mm)= 212.	.535								
(i) PEAK FLOW DOE:										
001:0007										
* Discharge rates from * Total Area = 12.56 ha	* Discharge rates from the SWMP, buildings and paved area * Total Area = 12.56 ha									
ADD HYD (000300) II	O: NHYD	AREA (ha)	QPEAK (cms)	TPEAK (hrs)		DWF				
ID1 0	1:002	11.69	1.709	10.00 2	06.25	.000				
+ID2 0:	2:003 =======	.87				.000				
	======= 5:000300									
NOTE: PEAK FLOWS DO	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.									
001:0008										
*STORMWATER MANAGEMENT FACILITY *PERMANENT WL 91.10 ORIFICE 125mm *EROS/EXT WL 91.90 WEIR 175mm ***********************************										
ROUTE RESERVOIR	Requeste	ed routing	g time st	ep = 1.	0 min.					
IN>06:(000300) OUT<07:(000200)	======	======= OUTLFOW STORAGE TABLE =======								
	OUTFLOW			UTFLOW	STORAG					
	(cms)	(ha.m	.)	(cms)	(ha.m.					
		.0000E+			.6238E+0					

File:	N:\otthymo\1870\1870Reg.out	9/23/2021	11:12:00 AM

	.020 .15433 .025 .24031 .029 .31461 .060 .41391 .112 .51691	E+00 E+00 E+00	.391 2.321 3.906 5.775 7.890	.1028E+ .1089E+ .1152E+	01 01 01				
ROUTING RESULTS	AREA	QPEAK	TPEAK	R.					
INFLOW >06: (000300) OUTFLOW<07: (000200)	12.56	(cms) 1.834 1.814	(hrs) 10.000 10.017	0m) 205.2 205.2	15				
PEAK FLOW REDUCTION [Qout/Qin](%)= 98.931 TIME SHIFT OF PEAK FLOW (min)= 1.00 MAXIMUM STORAGE USED (ha.m.)=.9962E+00									
001:0009	·								
* Discharge rates from the SWMP, buildings, paved area and * Uncontrolled discharge being released onto Winston Churchill ***********************************									
ADD HYD (000300) ID: 1		QPEAK		R.V.	DWF				
ID1 07:00 +ID2 03:00	00200 12.56 05 .14	(cms) 1.814 .020	10.02 10.00	181.90	(cms) .000 .000				
======= SUM 08:00	00300 12.70	1.834		204.95	.000				
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.									
001:0010									
**************************************		******	*****	*****	*****	****			
Simulation ended on 202		11:11:53	======			=====			

APPENDIX C SWM FACILITY CALCULATIONS

SWM Facility Calculations

Drawdown Time

The drawdown time for this facility was determined using the falling head equation as per the MOE manual 2003 which is represented below.

$$t = \frac{2Ap}{(CA_o)\sqrt{2g}} \left(\sqrt{h_1} - \sqrt{h_2}\right) \\ \begin{cases} A_p = & \text{surface area of the pond } (m^2) \\ C = & \text{discharge coefficient } (0.63) \\ A_o = & \text{cross-sectional area of the orifice} \\ g = & \text{gravitational acceleration constant } (9.81\text{m/s}^2) \\ h_1 = & \text{starting water elevation above the orifice} \\ h_2 = & \text{ending water elevation above the orifice} \end{cases}$$

The calculation has been completed based on a 125mm orifice at an invert of 91.10m. This orifice will be a vertical orifice located within the outlet control structure as shown on Plan C-1. Since this orifice is greater than 100mm, protection of the orifice is not required in accordance to the M.O.E. SWMP manual. The proposed orifice will provide a 61 hr 6 min drain time for erosion control volume as calculated below.

```
t = \frac{2 \times 4,220.7}{(0.63 \times 0.0123)\sqrt{2 \times 9.81}} (\sqrt{0.80})
t = 219,970.4 sec
t = 61.1 \, hr
t =
             draw down time in seconds
A_p =
             4,220.7m<sup>2</sup> (average area at elevations 91.10m and 91.90m)
C =
            discharge coefficient (0.63)
A_o =
            (\pi x(0.125 \text{ m})^2) \div 4 = 0.0123\text{m}^2
g =
             gravitational acceleration constant (9.81m/s<sup>2</sup>)
h_1 =
            91.10m
h_2 =
            91.90m
```

Emergency Overflow

The emergency overflow for this facility has been sized to convey the uncontrolled 100-Year (CHIC) post-development flow, which yields the largest flow rate of the storms, of 6.355m³/s, refer to SWMHYMO Output. The emergency overflow will operate between the 93.00m elevation and the 93.50m elevation which is the top of the facility. The emergency overflow will be a weir configuration as calculated below:

where:
$$\begin{array}{rcl} Q & = & 1.7 \text{ x L x h} \, ^{3/2} \\ \text{where:} \\ Q & = & 6.355 \, \text{m}^3/\text{s} \\ \text{h} & = & 93.00 \text{m} - 93.50 \text{m} = 0.50 \text{m} \\ \text{therefore:} \\ L & = & \frac{Q}{1.7 \, \text{x h}^{3/2}} & = & \frac{6.355}{1.7 \text{x } (0.50)^{3/2}} \\ L & = & 10.6 \text{m} \\ \text{set:} \\ L & = & 12.0 \text{m} \end{array}$$

A 12.0m emergency overflow at elevation 93.00 will be constructed to direct the uncontrolled 100-Year post-development inflow in a safe manner if the outlet control structure becomes inoperable. The resulting depth of flow based on a 12.0m emergency overflow weir is 0.46m, as calculated below:

Q =
$$1.7 \times L \times h^{3/2}$$

H = $(Q / 1.7 \times L)^{2/3}$
= $(6.355 / (1.7 \times 12.0))^{2/3}$
= 0.46 m

Erosion control for the emergency overflow will be provided by the Terrafix Terraweb liner, which may accommodate velocities up to 6.0m/s. Based on the peak flow, the maximum velocity is 1.18m/s, as calculated below:

Q =
$$V \times A$$

V = $6.355 \text{m}^3/\text{s} / (12.0 \text{m} \times 0.46 \text{m})$
= 1.18m/s

Sediment Forebay Sizing

An additional requirement for this stormwater quality facility is a sediment forebay. The sediment forebay is required to provide a localized area for the majority of the sediments within the stormwater facility to settle out. This sediment forebay makes maintenance of the stormwater quality facility easier and minimizes total wetland disruption. As per the MOE Stormwater Management Planning and Design Manual (March 2003), there are two equations for the design of a sediment forebay as listed below:

Equation 4.5: Forebay Settling Length

$$Dist = \sqrt{\frac{rQ_p}{V_s}}$$
 where: Dist = sediment forebay length (m)
$$Q_p = \text{peak flow rate from the pond during design quality storm } (0.025\text{m}^3/\text{s} @ 91.10)$$

$$V_s = \text{settling velocity } (0.0003\text{m/s})$$

$$r = \text{length-to-width ratio of forebay } (2:1 \text{ min})$$

$$Dist = \sqrt{\frac{2(0.025)}{0.0003}}$$

$$= 12.9\text{m}$$

Equation 4.6: Dispersion Length

$$Dist = rac{8Q}{dV_f}$$
 where: Dist = sediment forebay length (m)
$$Q = \text{inlet flow rate } (4.178 \text{m}^3/\text{s}, \text{SWMHYMO output}))$$

$$V_f = \text{desired velocity in the forebay } (0.5 \text{m/s})$$

$$d = \text{depth of permanent pool in the forebay } (1.10 \text{m})$$

$$Dist = rac{8 \times 4.178}{1.10 \times 0.5}$$

$$= 60.8 m$$

Equation 4.7: Minimum Forebay Deep Zone Bottom Width

$$Width = \frac{Dist}{8}$$
$$= \frac{60.8m}{8}$$
$$= 7.6m$$

The sediment forebay will have a length of 62m and a minimum width of 7.6. Therefore, the sediment forebay will accommodate the proposed development and will promote localized settling of particulate matter.

Average Forebay Velocity:

$$V = \frac{Q}{A} = \frac{4.355 \, m^3 / s}{62m \, x \, 1.10m} = 0.063 \, m/s$$

Therefore, the average velocity through the forebay will be 0.063 m/s. This velocity is acceptable as it is less than the 0.15 m/s permissible velocity to prevent erosion.