
Hydrogeological Investigation 1300, 1316, 1326, 1342 and 1350 Bronte Road Oakville, Ontario

Prepared For:

Bronte River Limited Partnership

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca 20-186-100 March 28, 2023

Bronte River Limited Partnership C/O Argo Development Corporation 4900 Palladium Way, Suite 105 Burlington, ON L7M 0W7

Via email: scott@argoland.com

RE: Hydrogeological Investigation-1300, 1316, 1326,1342 and 1350 Bronte Road, Oakville

DS Consultants Limited (DS) was retained by Bronte River Limited Partnership to complete a Hydrogeological Investigation for the proposed development located at the site comprised of addresses 1300, 1316, 1326, 1342 and 1350 Bronte Road, Oakville, Ontario (Site). The site is located on the western side of Bronte Road between Upper Middle Road West and Highway 403. The Site currently includes three (3) single-storey residential buildings, and the western extent of the Site is bounded by a valley formed by Bronte Creek. It is understood that the proposed redevelopment will consist of residential townhouses and single detached houses with one (1) level of basement serviced by a network of roads and sewers. One Low Impact Development (LID) stormwater management facility with two cells will also be constructed as part of this development.

This hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, and impacts of the proposed development on the local groundwater and provides an estimation of construction dewatering during the proposed development phase. If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment Conservation and Parks (MECP). This report was prepared in support of the design for the proposed redevelopment of the Site for residential uses. Based on the results of this investigation, the following conclusions and recommendations are presented:

- 1. As part of the hydrogeological investigation, DS completed a search of the MECP Water Well Records (WWRs) database. Based on the MECP WWR search, there are nineteen (19) water wells within 500 meters of the site. Seven (7) wells were noted for domestic (DO) use, one (1) well was noted for irrigation (IR) use and one (1) well was noted for livestock (ST) use. All other wells were noted as either monitoring (MO), test hole (TH) or not in use (NU). A water well survey is recommended within the study area to confirm the presence and use of any domestic wells and this survey is better done closer to the start of construction.
- 2. In August 2020, DS drilled fourteen (14) boreholes at the site as part of the concurrent geotechnical and hydrogeological investigations. In October 2021, DS conducted an additional

geotechnical investigation and drilled two (2) boreholes at 1350 Bronte Road. The boreholes were advanced to depths ranging from 6.7 to 8.9 meters below the ground surface (mbgs). Also, Terraprobe drilled two boreholes in October 2021 to a depth of about 20 m and 25 m as part of slope stability analysis. Nine (9) monitoring wells were installed by DS at depths ranging from 4.6 to 8.7 mbgs.

- 3. The surficial geology at the site is characterized as coarse-textured glaciolacustrine deposits comprised of sand, gravel, minor silt, and clay. The western portion of the site is also characterized by till comprised of clay to silt-textured till (derived from glaciolacustrine deposits or shale) and Paleozoic bedrock surrounding Bronte Creek.
- 4. Groundwater levels were measured in all available wells between August 18th, 2020, and October 12th, 2021, by DS. Groundwater levels ranged from 0.92 to 5.1 mbgs or 122.1 to 129.6 meters above sea level (masl) at the site. Based on groundwater elevations, the flow direction is inferred to be northeast towards Fourteen Mile Creek and west towards Bronte Creek.
- 5. Five (5) single well response tests (slug tests) were completed by DS on November 3^{rd} , 2021, to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. The k-values ranged between 5.6 X 10^{-5} to 2.0×10^{-6} m/s with a geomean k-value of 7.6 x 10^{-6} m/s.
- 6. A preliminary site grading plan (March 2023) was available for the proposed development at the time of drafting the report. Based on the available plans, the following assumptions were made to assess groundwater seepage/dewatering requirements during the construction period.
 - a) The construction of the proposed development will be phased.
 - b) An assumption is that a 60 m long and 30 m wide block comprised of 5-6 townhomes or 3-4 detached homes with one (1) level of basement will be excavated at any given time within the larger site development with a maximum excavation depth of 5 m.
 - c) A 30 m long and 2 m wide trench will be opened per day for the site servicing at any given time with a maximum excavation depth of 4 m.
 - d) A 200 m long and 20 m wide trench/block for LID features will be opened at any given time with a maximum excavation depth of 3 m.
- 7. The requirements for dewatering/groundwater control during the construction period are as follows.
 - a) Residential block (townhomes/detached homes)- One level of basement (60 m x 30 m): 84,000 L/day without a safety factor and 126,000 L/day with a safety factor of x1.5. Also, about 18,000

- L/day of water into excavation areas may be needed to be removed because of major storm events (assuming 10 mm/24 hours).
- b) Site servicing trench (30 m x 2 m): 38,000 L/day without a safety factor and 57,000 L/day with a safety factor of x1.2. Also, about 1,000 L/day of water into excavation areas may be needed to be removed because of major storm events (assuming 10 mm/24 hours).
- c) LID Block (200 m x 20 m): 134,000 L/day without a safety factor and 201,000 L/day with a safety factor of x1.5. Also, about 40,000 L/day of water into excavation areas may be needed to be removed because of major storm events (assuming 10 mm/24 hours).
- 8. The total estimated steady-state flow rate for an assumed low residential area/block and servicing trench at any given time is 256,000 L/day without a safety factor and 384,000 L/day with a safety factor of x1.5. However, the total dewatering flow rate for assumed block/areas and trench including stormwater consideration is estimated at 443,000 L/day. The total estimated volume can vary depending on grading excavation depths, the permeable nature of soils, groundwater elevation, any hydraulic connection of the existing pond to groundwater and weather conditions.
- 9. DS anticipates that the construction of the proposed development will be phased. The total estimated dewatering rate of 443,000 L/day is based on an assumed block area and trenches for site servicing. If multiple blocks/trenches are excavated, additional dewatering may be required. Therefore, an EASR or PTTW requirement can be determined once the final design, revised dewatering rates, and construction sequences are available.
- 10. An EASR application is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day. The PTTW application is also an online registry and should be submitted to the MECP 90 days from the start of construction dewatering.
- 11. To assess the suitability for discharge of groundwater to the Halton Region sanitary sewers and/or the Town of Oakville storm sewers, one (1) unfiltered groundwater sample was collected from monitoring well BH20-10 on May 27th, 2021. The analytical results were also compared to Provincial Water Quality Objectives (PWQOs) to assess the baseline groundwater quality conditions and suitability for discharge overland. The reported analytical results indicate that only Total Suspended Solids (TSS) exceeded the Halton Region's sewer criteria, but several parameters exceeded the Town of Oakville's storm sewer criteria and PWQO. Therefore, groundwater encountered during construction at the site is not suitable for discharge into the Halton Region's sanitary and combined sewers or the Town of Oakville's storm sewers or overland without pre-

treatment. The Region or the Town should be consulted for discharge options and policies for short-term and long-term discharge at the site.

- 12. DS collected one (1) unfiltered surface water sample from the onsite pond on March 13, 2023. The water sample was analyzed against the PWQO, the Halton Region Sewer Use Bylaw and the Town of Oakville Sewer Use Bylaw to assess the baseline water quality conditions and suitability for discharge to the Region/Town's sewer system and nearby water bodies. The reported analytical results indicate that all parameters met the Halton Region's and the Town of Oakville's sewer discharge criteria, but various total metals, PAHs, OCs and Pesticides exceeded the PWQOs. Therefore, surface water at the development site is suitable for discharge into the Halton Region's or the Town of Oakville sewers system but not suitable for direct discharge to nearby water bodies without pre-treatment.
- 13. A seep area observed near the outlet from the Pond at an elevation of 128 masl was identified as a source of shallow interflow that may be wet in the spring or after precipitation events or related to water stored in the ponds. This seep is linked to the shallow sand unit found at the site and is the source of water to the onsite pond. Also, deeper groundwater-derived seeps were identified in the valley between the Site and Bronte Creek in an alluvial fan area at an elevation of 108.5 masl. Multiple seep zones are noted to the north and south of the site along the same general elevation indicative of natural groundwater discharge in the valley. These seeps are hydraulically connected to a more regionally expansive sand unit found at other sites to the east of Bronte Road. This area is expected to have longer seasonal longevity as reported by the previous owner.
- 14. There are artificial ponds located at the site and the nearest water feature is Bronte Creek located about 50 m from the western boundary of the development area. A drainage feature is located onsite (BCT-1) that drains from the onsite ponds into the river valley. According to the previous owner, these ponds are groundwater-fed. The outlet from the pond directly flows to the channel or gully within the ravine area associated with Bronte Creek (BCT-1). It is DS's opinion that the water stored in the ponds is likely to be from a groundwater source. Considering surficial geology, most of the areas of the Site are characterized by coarse-textured glaciolacustrine deposits of sand and gravel which can be considered a source of water for the ponds. Evidence of groundwater seeps identified and observed immediately near the outlet may be related to water stored in the ponds.
- 15. It is proposed to remove the ponds at the site as part of the development. Groundwater elevation varies within the pond area between 129.6 and 127 masl and the flow direction is inferred to be west towards Bronte Creek. The elevation of water in the ponds varies between 129.3 and 128.5 masl and is representative of groundwater levels and indicates groundwater-fed ponding conditions. Based on the grading plan, the approximate FFLs for the residential dwellings within the pond areas are between 133 to 132.5 masl and the expected lowest basement elevations are between 130.5-130 masl. An analysis of existing groundwater patterns and a review of the grading plan indicate that the seasonal high-water level will likely be below the basements and is

not expected to intersect the basements. Also, any long-term impacts on groundwater-derived seeps are not anticipated as a result of the removal of ponds due to the natural function of these seeps.

- 16. A water balance study was completed to maintain groundwater flow. A site-based water balance assessment using a Thornthwaite approach was completed which identified the infiltration deficit for the site because of the proposed development. Based on the results of the pre-development and post-development water balance completed, the proposed development without LID mitigation is expected to produce a decrease in annual infiltration of about 5,666 m³/year and an increase in annual runoff of about 16,763 m³/year. The effects are the result of increased impervious areas, replacing previous areas of the Site. With the proposed mitigation measures (redirecting of water to pervious areas with increased topsoil depth), the infiltration deficit is expected to be reduced from 5,666 m³/year to 1,618 m³/year. Also, the proposed Biofiltration Facility (with liner) has been proposed and designed to retain and store 25 mm of rainfall events and enhance evaporation.
- 17. It should be noted that due to the highly impervious nature of the post-development plan and the higher water level at the site, there are limited options to provide additional mitigation measures. As discussed in the FSR dated March 2023, there is a potential for infiltration through the biofiltration facility (no liner) subject to field determination of groundwater levels following the decommissioning of the on-site man-made pond which may lower groundwater levels. The post-development water balance with mitigation measures will be refined during detailed design.
- 18. The MECP PTTW Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there were five (5) active PTTWs within 1 km of the Site. Groundwater interferences may occur if multiple units and trench excavations are to occur at the same time for the proposed development. It is recommended that the development be constructed in phases to minimize total dewatering requirements at the site.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Pradeep Patel, M.Sc., P.Geo. Hydrogeologist PRADEEPKUMARA. PATEL SO PRACTISING MEMBER 2710

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Purpose	1
	1.2	Scope of Work	1
2.0	FIELD\	NORK	2
3.0	PHYSI	CAL SETTING	2
	3.1 P	hysiography and Drainage	3
	3.2	Geology	
	3.2.1	Quaternary Geology	
	3.2.2	Bedrock Geology	
	3.2.3	Site Geology	
	3.3	Hydrogeology	
	3.3.1	Local Groundwater Use	
	3.3.2	Groundwater Conditions	
	3.3.3	Hydraulic Conductivity	
	3.3.4	Groundwater Quality	
	3.3.5	Surface Water Conditions	
	3.3.6	Surface Water Quality	
	3.3.7	Groundwater seeps	
4.0		R BALANCE	
	4.1	Existing Conditions (Pre-Development)	9
	4.2	Proposed Development (Post-Development)	
	4.3	Water Balance Components (Thornthwaite Monthly Water Balance Model)	
	4.4	Water Balance Analysis	12
	4.4.1	Water Balance- Pre-Development	12
	4.4.2	Water Balance- Post-Development (Without mitigation)	12
	4.4.3	Water Balance Results - Pre-Development to Post-Development Changes (without	
		mitigation)	13
	4.4.4	Water Balance- With Mitigation Measures	13
5.0	CONST	RUCTION DEWATERING	14
	5.1	Estimation of Flow Rates- Proposed Buildings and Site Servicing	14
	5.2	Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)	
	5.3	Permit Requirements	
	5.3.1	Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW)	
		Application	16
	5.3.2	Discharge Permits	16

6.0	POTEN	TIAL IMPACTS	16
	6.1	Local Groundwater Use	16
	6.2	Current PTTW Search	17
	6.3	Source Protection Area	17
	6.4	Highly Vulnerable Aquifer	18
	6.5	Wellhead Protection Area	18
	6.6	Intake Protection Zone	18
	6.7	Surface Water and Groundwater Recharge	18
	6.8	Point of Discharge and Water Quality	
7.0	MONIT	ORING AND MITIGATION	19
8.0	LIMITA	TIONS	20
9.0	CONSU	ILTANT QUALIFICATIONS	21
10.0	REFERE	NCES	22
FIGU	JRES		
Figu	IRE 1	Development Site Location and MECP Water Well Record Map	
Figu	IRE 2	Surficial Geology Map	
Figu	IRE 3	Borehole and Monitoring Well Location Plan	
Figu	re 4	Groundwater Elevation Contours and Flow Direction Map	
Figu	re 5	Geological Cross-Section A-A'	
Figu	re 6 A	Pre- Development Land Use	
Figu	re 6 B	Post-Development Land Use	
APP	ENDICES	S:	
Арр	endix A	Borehole Logs	
Арр	endix B	Hydraulic Conductivity Analysis	
	endix C	Groundwater Quality Certificate of Analysis	
	endix D	MECP Water Wells Records	
	endix E	Water Balance Analysis	
		·	
Арр	endix F	Groundwater Monitoring Data	

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by Bronte River Limited Partnership to complete a Hydrogeological Investigation for the proposed development located at the site comprised of addresses 1300, 1316, 1326, 1342 and 1350 Bronte Road, Oakville, Ontario (Site). The site is located on the western side of Bronte Road between Upper Middle Road West and Highway 403. **Figure 1** presents the site location map that highlights the location of the site and the surrounding area.

The Site currently includes three (3) single-storey residential buildings, and the western extent of the Site is bounded by a valley formed by Bronte Creek. It is understood that the proposed redevelopment will consist of residential townhouses and single detached houses with one (1) level of basement serviced by a network of roads and sewers. One Low Impact Development (LID) stormwater management facility with two cells will also be constructed as part of this development.

This hydrogeological investigation will evaluate the groundwater conditions at the site for the proposed building to support construction and post-construction design. Construction dewatering volumes were estimated based on preliminary site plan dimensions provided to DS. Once below-grade and site plan designs are finalized, construction dewatering values should be reassessed.

1.1 Purpose

The purpose of this preliminary hydrogeological investigation is to assess the current groundwater conditions at the site to evaluate the following:

- Temporary construction dewatering for the excavations of the proposed unit(s), LID facility and the on-site site servicing trenches.
- Explore the potential need for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registration (EASR) for Construction Dewatering from the MECP.
- Temporary management and discharge of groundwater during short-term construction dewatering; and
- Assess groundwater quality to identify potential adverse impacts on the Town of Oakville sewer system.
- Water balance analysis.

1.2 Scope of Work

The scope of work for this investigation included:

- Site visits.
- Desktop review of pertinent geological and hydrogeological resources.
- Review the MECP Water Well Records and water use in the surrounding area.
- Fieldwork includes a monitoring well drilling program consisting of sixteen (16) boreholes and the installation of nine (9) monitoring wells.
- Conducting single well response tests (slug tests) to determine hydraulic conductivity values across the site.
- Characterize the stratigraphy and measure the groundwater levels across the site.
- Collection and analysis of groundwater samples to quantify and characterize any contaminants that may impact future discharge applications.
- Estimation of construction dewatering volumes, which is to be used to predict the short-term groundwater control requirements for the construction of the proposed building(s) on the site.

2.0 FIELDWORK

- In August 2020, DS drilled fourteen (14) boreholes at the site as part of the concurrent geotechnical and hydrogeological investigations. In October 2021, DS conducted an additional geotechnical investigation and drilled two (2) boreholes at 1350 Bronte Road. The boreholes were advanced to depths ranging from 6.7 to 8.9 meters below the ground surface (mbgs). Also, Terraprobe drilled two boreholes in October 2021 to a depth of about 20 m and 25 m as part of slope stability analysis.
- Nine (9) monitoring wells were installed at depths ranging from 4.6-8.7 mbgs. All monitoring
 wells were developed before any use to allow for groundwater level monitoring, hydraulic
 conductivity testing, and to assess groundwater quality.
- Total of seven (7) single well response tests (SWRTs) were completed by performing a rising head test (slug test) to estimate the hydraulic conductivity values of the soils at the site.
- One (1) unfiltered groundwater sample from a selected monitoring well and one surface water sample from the existing pond were collected and analyzed for the parameters listed under the Halton Region sewer discharge by-law, Town of Oakville storm sewer discharge by law, and PWQO. The borehole and monitoring well location plan are shown in Figure 3.

3.0 PHYSICAL SETTING

Available topographic maps, and environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. Borehole logs and the MECP WWRs were used to interpret the geological and hydrogeological conditions at the development site.

3.1 Physiography and Drainage

The site is currently occupied by residential dwellings, open spaces, woodland and man-made ponds. The topography at the site mainly slopes south towards Bronte Creek, located approximately 50 m west of the site. Surface elevation across the site ranges from 129.0 to 131.9 masl. The existing drainage from the site is segmented between Fourteen Mile Creek and Bronte Creek. Most of the site area drains to Bronte Creek. The northeast portion of the site drains to Fourteen Mile Creek.

3.2 Geology

The following presents a brief description of regional and development site geology based on the review of available information and development site-specific soil investigations.

3.2.1 Quaternary Geology

According to the Ontario Geological Survey mapping across the region, the site lies within the Iroquois Plain physiographic region of southern Ontario characterized by drumlinized till plains landforms. Shale plains landforms are located south adjacent to the site. The surficial geology at the site is characterized as coarse-textured glaciolacustrine deposits comprised of sand, gravel, minor silt, and clay. The western portion of the site is also characterized by till comprised of clay to silt-textured till (derived from glaciolacustrine deposits or shale) and Paleozoic bedrock surrounding Bronte Creek. The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

According to the Ontario Geological Survey mapping across the region, the bedrock at the site is comprised of shale, limestone, dolostone, and siltstone of the Queenston Formation.

3.2.3 Site Geology

On-site subsurface soil conditions were summarized from the boreholes advanced by DS and Terraprobe for the current investigation. Detailed subsurface conditions are presented in **Figure 5**, and the borehole logs are presented in **Appendix A**. The subsurface conditions in the boreholes are summarized in the following paragraphs.

Topsoil and Fill Materials

A surficial layer of topsoil ranging in thickness from 75mm to 150mm was found in the boreholes. Fill material consisting of sandy silt to silty sand, sand and gravel, clayey silt and inclusions of

topsoil/organics was found in boreholes, extending to depths varying from 0.8 to 3.0m below the ground surface.

Upper Silt, Sandy Silt/Silty Sand/Sand and Gravel/Gravelly Sand

Below the fill, silt, silty sand to sandy silt, and gravelly sand to sand and gravel were encountered in all boreholes except BH20-5 to BH20-7 and BH20-11, 21-1 and 21-2 extending to depths ranging from 2.3m to 6.0m. A lower layer of sand and gravel was found in boreholes BH20-8 and BH20-14 below the sandy silt till deposits, extending to the termination depths of boreholes.

Silty Clay/Clayey Silt Till:

Cohesive deposits of silty clay and clayey silt till were encountered in all boreholes below the upper cohesionless deposits, extending to maximum drilled depths of BH20-1 to BH20-3 and underlain by sandy silt till deposits in other boreholes.

Sandy Silt Till:

Sandy silt till deposits were encountered below the cohesive deposits in Boreholes BH20-4 through BH20-14, 21-1 and 21-2 extending to depths ranging from 6.0m to 8.2m below ground surface. Boreholes BH20-4 to BH20-7, BH20-9 to BH20-11 and BH20-13 were terminated in sandy silt till deposit.

Lower silty sand/sand and gravel:

These deposits were found in boreholes BH20-8, BH20-14, BH 21-1(Terraprobe) and BH 21-2(Terraprobe) below the sandy silt till deposits, extending to the bedrock depths at about 20-25 mbgs.

Shale Bedrock:

The shale bedrock of the Queenston Formation was encountered in BH 21-1(Terraprobe) and BH 21-2(Terraprobe) at about 20-25 mbgs with corresponding elevations of about 101-100 masl. The bedrock surface elevations at the borehole location were not proven by coring and therefore the actual depth of bedrock may vary from the noted elevations.

3.3 Hydrogeology

The hydrogeology at the site was evaluated using the on-site monitoring wells installed by DS, and the MECP WWRs in the study area.

3.3.1 Local Groundwater Use

As part of the hydrogeological investigation, DS completed a search of the MECP WWRs database. Based on the MECP WWR search, there are nineteen (19) water wells within 500 meters of the site (**Appendix D**). Seven (7) wells were noted for domestic (DO) use, one (1) well was noted for irrigation (IR) use and one (1)

well was noted for livestock (ST) use. All other wells were noted as either monitoring (MO), test hole (TH) or not in use (NU). **Figure 1** shows the MECP water well location plan. A water well survey is recommended within the study area to confirm the presence and use of any domestic wells.

3.3.2 Groundwater Conditions

Groundwater levels were measured in all available wells between August 18th, 2020, and October 12th, 2021, by DS. **Table 3-1** presents the groundwater levels in all monitoring wells. The groundwater in shallow wells was found between 0.9 and 3.1 mbgs and in deep well at 7.7 mbgs representing shallow and deep groundwater conditions at the site. The interpreted shallow groundwater contour map for the water level measurements is shown in **Figure 4.** Based on groundwater elevations, the flow direction is inferred to be northeast towards Fourteen Mile Creek and southwest towards Bronte Creek. The groundwater levels are subject to seasonal fluctuations and may vary in response to changing climate conditions and may also affect the shallow groundwater flow direction at the Site. Infilled material and underground utilities may also affect shallow groundwater flow direction at the Site. The groundwater monitoring data is presented in **Appendix F.**

Ground Well Groundwater Screened Depth to Well ID/ Location Water Elevation Depth Interval Date Elevation (masl) (mbgs) (masl) (mbgs) (masl) BH/MW 20-1 129.0 6.2 3.2-6.2 2.0-1.9 127.1-127.0 **BH/MW 20-2** 3.0-3.1 128.9-128.8 131.9 4.6 1.6-4.6 BH/MW 20-3 130.2 4.6 1.6-4.6 1.8-2.5 128.4-127.7 Between **BH/MW 20-5** 129.9 4.6 1.6-4.6 August 2020 & 1.1-1.6 128.8-128.3 June 2021 **BH/MW 20-8** 129.9 5.2 2.2-5.2 4.6-5.1 125.3-124.8 129.5-129.2 **BH/MW 20-10** 130.4 4.6 1.6-4.6 0.9-1.2 129.6-129.4 **BH/MW 20-13** 131.0 4.6 1.6-4.6 1.5-1.6 **BH/MW 21-1** 130.1 8.7 57-8.7 October 2021 7.7 122.4

Table 3-1: Groundwater Levels in Monitoring Wells

3.3.3 Hydraulic Conductivity

Five (5) Single Well Response Tests (slug tests) were completed by DS on November 3, 2021, to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. The testing was completed using data loggers placed at the bottom of the monitoring wells to accurately measure the change in the hydraulic head versus time. Hydraulic conductivity (k) values were calculated using the Bouwer and Rice method using the AquiferTest® Software. The semi-log plots for normalized drawdown versus time are provided in **Appendix B.** The k-values ranged between 5.6 X

 10^{-5} to 2.0 x 10^{-6} m/s with a geomean k-value of 7.6 x 10^{-6} m/s. **Table 3-2** presents the Hydraulic Conductivity (k) values for the representative geological units.

Table 3-2: Summary of Hydraulic Conductivity (k) Test Results

Well ID	Screened Interval (mbgs)	Screened Formation	K-value (m/s)
BH20-1	3.3-6.3	Silt to Sandy Silt & Clayey Silt Till	2.0 x 10 ⁻⁶
BH20-2	1.9-4.9	Fill & Sand	1.0 x 10 ⁻⁵
BH20-3	1.3-4.3	Fill, Silty Sand, & Silt	1.0 x 10 ⁻⁶
BH21-5	1.3-4.3	Sand, Silty Sand, Silt to Sandy Silt, Silty Clay, Clayey Silt Till	2.0 x 10 ⁻⁵
BH21-10	1.3-4.3	Sand, Silty Sand, Silt to Sandy Silt, Silty Clay, Clayey Silt Till	5.6 x 10 ⁻⁵
		Geomean	7.6 x 10 ⁻⁶

3.3.4 Groundwater Quality

To assess the suitability for discharge of groundwater to the Halton Region sanitary and combined (by-law 2_03) and Town of Oakville storm sewers (by-law 2009_031), one (1) unfiltered groundwater sample was collected from monitoring well BH20-10 on May 27th, 2021. Samples were also assessed against PWQO to assess the baseline water quality conditions and suitability for discharge overland. The samples were placed in pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The reported analytical results indicate that only TSS exceeded the Halton Region's sewer criteria, but several parameters exceeded the Town of Oakville's storm sewer criteria and the PWQOs. **Tables 3-3** a **3-4** present a summary of the exceeded parameters, and the certificates of analyses are provided in **Appendix D**.

Table 3-3: Parameters in Groundwater Exceeding Halton Region Sewer Use By-Law and Town of Oakville Storm Sewer Use By-law

Parameter	Unit	Halton Region Sanitary Sewer By-Law Criteria	Halton Region/Town of Oakville Storm Sewer By-Law Criteria	BH20-10
Hexachlorobenzene	mg/L	n/a	0.00004	*<0.0001
Total Suspended Solids (TSS)	mg/L	350	15	<u>791</u>
Copper	mg/L	3	0.04	0.0545
Total Manganese	mg/L	5	0.05	1.28
Total Phosphorus	mg/L	10	0.4	0.574
Zinc	mg/L	3	0.04	0.110

<u>0.00</u>- Exceeds Storm Sewer Criteria; **0.00(bold)**- Exceeds Sanitary and Combined Sewer Criteria; 0.00- Exceeds Both Criteria. *- Detection Limit Exceeds Criteria.

Table 3-4: Parameters in Groundwater Exceeding PWQO

Parameter	Unit	PWQO Criteria	BH20-10
Aldrin + Diedrin	mg/L	1x10 ⁻⁶	<0.00002*
Anthracene	mg/L	8x10 ⁻⁷	<0.0001*
Benz(a)anthracene	mg/L	4x10 ⁻⁷	<0.0001*
Benzo(k)fluranthene	mg/L	2x10 ⁻⁷	<000001*
Chlordane	mg/L	6x10 ⁻⁵	<0.0001*
Chyrsene	mg/L	1x10 ⁻⁷	<0.001*
DDT+Metabolites	mg/L	3x10 ⁻⁶	<0.0001*
Dibenz (a, h)anthracene	mg/L	2x10 ⁻⁶	<0.0004*
Fluoranthene	mg/L	8x10 ⁻⁷	<0.0001*
Hexachlorobenzene	mg/L	6.5x10 ⁻⁶	<0.0001*
Phenanthrene	mg/L	3x10 ⁻⁵	<0.0001*
Aluminum	mg/L	0.075	21.6
Arsenic	mg/L	0.005	0.0093
Cadmium	mg/L	0.0001	0.000268
Cobalt	mg/L	0.0009	0.018
Copper	mg/L	0.001	0.0545
Iron	mg/L	0.3	34.3
Lead	mg/L	0.011	0.0282
Nickel	mg/L	0.025	0.0363
Phosphorus	mg/L	0.01	0.773
Zinc	mg/L	0.02	0.11
4AAP-Phenolics	mg/L	0.001	<0.002*
0.00 - Exceeds PWQO Criteria; 0.00* - Detection	n Limit Exceeds PWQO	<u>'</u>	

3.3.5 Surface Water Conditions

The existing drainage from the site is segmented between Fourteen Mile Creek and Bronte Creek. Most of the site area drains to Bronte Creek. The northeast portion of the site drains to Fourteen Mile Creek. A large pond (Pond 1) is constructed for recreation purposes at the west portion of the site and connected with two other small ponds and ultimately discharge to Bronte Creek (BCT-1). The elevation of the water level at the larger pond was 129.35 masl on February 16, 2023. It is DS's opinion that the water stored in the ponds is likely to be from a groundwater source. Considering surficial geology, most of the areas of the Site are characterized by coarse-textured glaciolacustrine deposits of sand and gravel which can be considered a source of water for the ponds.

3.3.6 Surface Water Quality

DS collected one unfiltered surface water sample from the large pond (Pond 1) on March 13, 2023. The Sample was analyzed against the PWQO the Halton Region Sewer Use Bylaw and the Town of Oakville Sewer Use Bylaw to assess the baseline water quality conditions and suitability for discharge to the Region/Town's sewer system and nearby water bodies.

The reported analytical results indicate that all parameters met the Halton Region's and the Town of Oakville's sewer discharge criteria, but several parameters exceeded the PWQOs. **Table 3-5** presents a summary of the exceeded parameters, and the certificates of analyses are provided in **Appendix D.**

Table 3-5: Parameters in Surface Water Exceeding PWQO

Parameter	Unit	PWQO Criteria	Large Pond (Pond 1)
Aldrin + Diedrin	mg/L	1x10 ⁻⁶	<0.00002*
Anthracene	mg/L	8x10 ⁻⁷	<0.0001*
Benz(a)anthracene	mg/L	4x10 ⁻⁷	<0.0001*
Benzo(g,h,i)perylene		2x10 ⁻⁸	<0.0002*
Benzo(k)fluranthene	mg/L	2x10 ⁻⁷	<0001
Chlordane	mg/L	6x10 ⁻⁵	<0.001*
Chyrsene	mg/L	1x10 ⁻⁷	<0.0001*
DDT+Metabolites	mg/L	3x10 ⁻⁶	<0.00004*
Dibenz (a, h)anthracene	mg/L	2x10 ⁻⁶	<0.0001*
Fluoranthene	mg/L	8x10 ⁻⁷	<0.0001*
Hexachlorobenzene	mg/L	6.5x10 ⁻⁶	<0.0001*
Perylene		7x10 ⁻⁸	<0.0005*
Phenanthrene	mg/L	3x10 ⁻⁵	<0.0001*
Copper	mg/L	0.001	0.0055
Phosphorus	mg/L	0.01	0.014
4AAP-Phenolics	mg/L	0.001	<0.002*
0.00- Exceeds PWQO Criteria; 0.00*- Detection	n Limit Exceeds PWQO cr	riteria	

3.3.7 Groundwater seeps

A seep area observed near the outlet from the Pond at an elevation of 128 masl was identified as a source of shallow interflow that may be wet in the spring or after precipitation events or related to water stored in the ponds. This seep is linked to the shallow sand unit found at the site and is the source of water to the onsite pond. Also, deeper groundwater-derived seeps were identified in the valley between the Site and Bronte Creek in an alluvial fan area at an elevation of 108.5 masl. Multiple seep zones are noted to the north and south of the site along the same general elevation indicative of natural groundwater discharge in the valley. These seeps are hydraulically connected to a more

regionally expansive sand unit found at other sites to the east of Bronte Road. This area is expected to have longer seasonal longevity as reported by the previous owner.

4.0 WATER BALANCE

To inform the design of LIDs, a Thornthwaite Monthly Water Balance Model was completed and used to evaluate pre-development and post-development hydrological conditions at the Site. The results can be used to design appropriate LID measures to compensate for any anticipated changes or deficits in site hydrology.

4.1 Existing Conditions (Pre-Development)

The Site has a total area of 121,200 m² (12.12 ha) and includes approximate pervious areas of 110,400 m² and impervious areas of 10,800 m². Pre-development land use is summarised in **Table 4-1**. **Figure 6A** shows the pre-development conceptual model considered for establishing current hydrologic conditions.

4.2 Proposed Development (Post-Development)

The proposed area for subdivision is 121,200 m² (12.12 ha) with Low Impact Development (LID) measures. For the water balance calculations in this report, it is estimated that the proposed subdivision will include residential dwellings with a pervious area of about 84,500 m² and impervious area of about 36,700 m². Post-development land use is summarised in **Table 4-1**. **Figure 6B** shows the post-development conceptual model considered for establishing post-hydrologic conditions.

Table 4-1: Pre-Development and Post-Development Land Use

Land Use	Pre-Development Area (m²)	Post-Development Area (m²)
Impervi	ous Area	
Residential Dwellings/Townhomes(Roof)	2,500	16,700
Driveways/Roads/Paved surface	3,700	15,900
Pond	4,600	-
LID Facility	-	4,100
Sub-total	10,800	36,700
Pervio	us Area	
Open Space/Landscaped	51,000	18,800
Wooded Area/Buffers	59,400	65,700
Sub-total	110,400	84,500
Total	121,200	121,200

4.3 Water Balance Components (Thornthwaite Monthly Water Balance Model)

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, Site latitude, precipitation, and stormwater run-on. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed the water surplus (S). When long-term averages of P, R, I and ET are used, there is no net change in groundwater storage (ST). Annually, however, there is a potential for minor changes in ST. The annual water budget can be stated as P = ET + R + I + ST and the components are discussed below.

Precipitation (P)

Based on the 30-year average for Georgetown WWTP Station in Ontario, the average precipitation for the area is about 877.3 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table E1, Appendix E.**

Storage (ST)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types and respective water-holding capacities shown in **Table 4-2** were chosen to represent existing conditions and applied to March for monthly calculations.

Table 4-2: Water Holding Capacity of Native Soils in Pervious Areas

Land Uses	Soil Types	Water Holding Capacity (mm/year)		
Latiu Oses	Son Types	Pre-Development	Post-Development	
Wooded Area	Clayey Loam	400	400	
Landscape/Urban Lawn/grass	Silty Loam	200	200	

Using the procedures outlined in the SWM Planning & Design Manual for the above land use and soil type, the annual change in storage is zero (0).

Evapotranspiration (ET)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Hamon equation (Hamon, 1061).

PET Hamon = 13.97 * d * D2 * Wt

Where:

d = the number of days in the month

D = the mean monthly hours of daylight in units of 12 hours

Wt = a saturated water vapour density term = 4.95 * e0.627/100

T = the monthly mean temperature in degrees Celsius

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. Also, it is assumed that evaporation will occur and will amount to 15% of the total precipitation for an impervious cover.

Precipitation Surplus (S)

Precipitation surplus is calculated as P–ET. For pervious areas, ET is considered AET and for impervious areas, ET is evaporation.

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded) and an infiltration component. The accumulation of infiltration factors for topography, soil types and the cover as prescribed in Table 3.2 of the SWM Planning & Design Manual, MECP (2003) gives infiltration factors for existing conditions on the Site as shown below in **Table 4-3**. The runoff component calculated in the pre-development and post-development is the remaining volume of precipitation surplus following AET, ET and infiltration.

Table 4-3: Pre-Development and Post-Development Conditions – Infiltration Factors

Land Uses	Topography	Soil	Cover	Infiltration factor	Runoff Coefficient
Pre- Development Conditions					
Wooded Area	0.2	0.3	0.2	0.7	0.3
Agriculture land/ Grass area	0.2	0.3	0.1	0.6	0.4
Road/Walkway/Buildings/Pond	-	-	1	-	0.85

Land Uses	Topography	Soil	Cover	Infiltration factor	Runoff Coefficient	
Post-Development Conditions						
Urban Lawn/Landscape/Buffer Area	-	-	-	0.50	0.50	
Road/Walkway/Buildings/ LID Block	-	-	-	-	0.85	
lote: Table 3.2 of the SWM Planning & Design Manual (March 2003), MECP						

4.4 Water Balance Analysis

To predict outputs of the pre-development and post-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, Site latitude, water holding capacity values for native soils and factors of infiltration as discussed in section 4.3. The analysis is summarised below, and the detailed calculations are presented in **Table E 1-3**, **Appendix E.**

4.4.1 Water Balance- Pre-Development

The average precipitation for the area is about 877 mm/year. For the pervious area, the calculated PET is 585 mm/year or about 67 % of the total precipitation. The monthly distribution of ST for the pervious area in silty loam produced a unit area annual AET of 545 mm/year and 565 mm/year for landscaped and wooded lands. For the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation (877 mm/year). Given a total pervious area of 110,400 m² and impervious area of 10,800 m², the existing development is expected to produce an evapotranspiration/AET of 62,788 m³/year, an infiltration of 23,147 m³/year and a runoff of 20,394 m³/year. The analysis is summarised below in **Table 4-4**. The detailed calculations are presented in **Table E-2, Appendix E.**

4.4.2 Water Balance- Post-Development (Without mitigation)

A post-development water balance was completed using the conceptual plan of subdivision. In the post-construction scenario, changes in land use will result in about 36,700 m² of impervious paved/buildings/LID areas, and 84,500 m² of pervious areas (landscaped, wooded and buffer areas). The monthly distribution of ST for landscaped areas and the wooded area produced an annual AET of 545 mm/year and 565 mm/year, respectively. For the impervious areas, it is assumed that evaporation will occur and will amount to 15% of total precipitation (877 mm/year). Given a total pervious area of 36,700 m² and an impervious area of 84,500 m², the proposed development is expected to produce an evapotranspiration/AET of 52,205 m³/year, an infiltration of 17,480 m³/year and a runoff of 36,443 m³/year. The analysis is summarised below in **Table 4-4.** The detailed calculations are presented in **Table E-3-, Appendix E.**

4.4.3 Water Balance Results - Pre-Development to Post-Development Changes (without mitigation)

Based on the results of the pre-development and post-development water balance completed, the proposed development without mitigation is expected to produce a decrease in annual infiltration of about 5,666 m³/year and an increase in annual runoff of about 16,249 m³/year. The effects are the result of increased impervious areas, replacing pervious areas of the Site. The analysis is summarised below in Table 4-4.

Unit Infiltration Runoff **Evaporation/AET Development Stage Pre-Development** m³/year 23,147 20,394 62,788 Post-Development (No mitigation) m³/year 17,480 36,643 52,205 Change (Pre- to Post-Development)-No Change--5,666 +16,249 -10,583 Mitigation m³/year % Change -25 +81 -18

Table 4-4: Summary of Water Balance- Pre-Development and Post-Development

4.4.4 Water Balance- With Mitigation Measures

Based on the results of the site water balance, the overall infiltration deficit for the site is about 5,700 m³/year. DS reviewed the latest Functional Servicing Report (FSR) prepared by Urbantech dated March 2023. As per the FSR report, low-impact development (LID) measures are proposed at the site to manage stormwater and minimize surface runoff and promote infiltration. The following LID measures are proposed to meet the water balance deficit.

- Biofiltration Facility
- Downspout Disconnection
- Grassed Swales
- Rain Barrels
- Additional Topsoil Depth

The proposed Biofiltration Facility (with liner) has been proposed and designed to retain and store 25 mm of rainfall events and enhance evaporation. The total provided storage volume of the biofiltration facility is 4,438 m³. Furthermore, based on the water balance analysis, the roof area (impervious area) of about 16,700 m² for the proposed development will give about 12,435 m³/year of the clean water source to eliminate the infiltration deficit. Also, it is proposed minimum of 200 mm of topsoil in the landscape area to increase infiltration and promote evaporation.

With the proposed mitigation measures, (redirecting of water to the pervious areas with increased topsoil depth), the infiltration deficit is expected to be reduced from 5,666 m³/year to 1,618 m³/year. A

summary of Pre-and Post water balance with mitigations is presented in **Table 4-5** and various inputs and outputs of the post-development model with mitigation are presented in **Table E-4**, **Appendix E**.

Table 4-4: Summary	y of Water Balance- Pre- and Post-Develop	ment with mitigation

Development Stage	Unit	Infiltration	Runoff
Pre-Development	m³/year	23,147	20,394
Post-Development (No mitigation)	m³/year	17,480	36,643
Change (Pre- to Post-Development)-No Mitigation	Change- m³/year	-5,666	16,249
Post-Development -With Mitigation Measures	m³/year	21,528	33,472
Change (Pre- to Post-Development)-With Mitigation Measures	Change- m³/year	-1618	+13,078

It should be noted that due to the highly impervious nature of the post-development plan and the higher water level at the site, there are limited options to provide additional mitigation measures. As discussed in the FSR, there is a potential for infiltration through the biofiltration facility (no liner) subject to field determination of groundwater levels following the decommissioning of the on-site manmade pond which may lower groundwater levels. The post-development water balance with mitigation measures will be refined during detailed design.

5.0 CONSTRUCTION DEWATERING

5.1 Estimation of Flow Rates- Proposed Buildings and Site Servicing

A preliminary site and grading plans dated March 2023 were available for the proposed development at the time of drafting the report. Based on the available plans, the following assumptions were made to assess groundwater seepage/dewatering requirements during the construction period.

- a. The construction of the proposed development will be phased.
- b. A 60 m long and 30 m wide block comprised of 5-6 townhomes or 3-4 detached homes with one (1) level of basement will be excavated at any given time within the larger site development with a maximum excavation depth of 5 m.
- c. A 30 m long and 2 m wide trench will be opened per day for the site servicing at any given time with a maximum excavation depth of 4 m.
- d. A 200 m long and 20 m wide trench for the LID facility will be opened at any given time with a maximum excavation depth of 3 m.

The dewatering volume was estimated using the steady-state equation as below and **Table 4.1** presents the dewatering volume for the assumed blocks and site servicing at the site.

$$Q = K * (H^2 - h^2) / 0.733 * Log (R/r_e)$$

$$Q = (pi * K (H^2 - h^2)) / ln (R/r_e) + 2 x (X * K * (H^2 - h^2 2)) / 2 x L- where a/b>1.5$$

Where,

K – Hydraulic conductivity= 0.086 m/d

H – Distance from static water level to the bottom of an aquifer= 5.0

h – Depth of water in the well while pumping= 0.0

 r_e – equivalent radius [m] = $((a*b) / \pi)^{0.5}$ where a and b are excavation dimensions

R-Radius of the cone of depression = r_e + 3000 * (H - h) * $K^{0.5}$

Table 4-1- Dewatering Rates and Zone of Influence during the Construction of Subdivision

Block/ Trench	Established	Ground-	Flow Rate- Q(L/day)		Storm-	Total	Zone of
	Grade Elevation (masl)	water level (masl)	Without a Safety Factor	With a safety factor of x1.5	water 10mm/24 hrs.(L/day)	Flow Rate (L/day)	Influence R-(m)
Block Area= 60 m x 30 m (townhomes/detached homes) *One level of basement with the deepest excavation to a depth of 5 m * K = 1.0 x 10 ⁻⁵ m/s, H = 4.5	134-131	129.6- 127	84,000	126,000	18,000	144,000	67
Servicing Trench *Area= 30 m x 2 m with deepest excavation to a depth of 6 m * K = 1.0 x 10 ⁻⁵ m/s, H= 4	132.5-127		38,000	57,000	1,000	58,000	42
*Area= 200 m x 20 m with the deepest excavation to a depth of 4 m * K = 1.0 x 10 ⁻⁵ m/s, H= 4	130.5-128		134,000	201,000	40,000	241,000	74
Total			256,000	384,000	59,000	443,000	Max. 74 m

5.2 Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)

The total estimated steady-state flow rate for an assumed low residential area/block and servicing trench at any given time is 256,000 L/day without a safety factor and 384,000 L/day with a safety factor of x1.5. However, the total dewatering flow rate for assumed block/areas and trench including

stormwater consideration is estimated at 443,000 L/day. The total estimated volume can vary depending on grading excavation depths, the permeable nature of soils, groundwater elevation, and any hydraulic connection of the existing pond to groundwater.

5.3 Permit Requirements

5.3.1 Environmental Activity and Sector Registry (EASR) / Permit to Take Water (PTTW) Application

DS anticipates that the construction of the proposed construction will be phased. The total estimated dewatering rate of 443,000 L/day is based on the assumed blocks and trenches. If multiple blocks/trenches are excavated, additional dewatering may be required. Therefore, an EASR or PTTW requirement can be determined once the final design, revised dewatering rates, and construction sequences are available.

An Environmental Activity Sector Registration (EASR) is required to be submitted to the Ministry of the Environment, Conservation and Parks (MECP) if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day. The PTTW application is also an online registry and should be submitted to the MECP 90 days from the start of construction dewatering. Dewatering of up to 400,000 L/day is acceptable under an EASR registry. However, an EASR or a PTTW is not required for water taking less than 50,000 L/day.

5.3.2 Discharge Permits

A discharge permit will be required from the Halton Region/Town of Oakville if private water is to be sent to the sewer system for construction dewatering. Also, a permit from Conservation Halton may be needed if the water is discharged to Bronte Creek (BCT-1).

6.0 POTENTIAL IMPACTS

The following is the predicted potential impacts due to construction dewatering:

6.1 Local Groundwater Use

A water well survey is recommended within the study area to confirm the presence and use of any domestic wells identified within the MECP WWRs and to confirm the source of drinking water within the zone(s) of influence/study area.

6.2 Current PTTW Search

The MECP PTTW Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there were five (5) active PTTWs within 1 km of the Site. Groundwater interferences may occur if multiple detached units and trench excavations are to occur at the same time for the proposed. It is recommended that the development be constructed in phases to minimize total dewatering requirements at the site. The PTTW Search is summarized in **Table 5-1** below.

Table 5-1: PTTWs within 1 km of the Site

Permit Number	Permit Holder Name	Purpose	Specific Purpose	Max Litres Per Day	Source Type	Distance from Site (km)
4682- B44HF8	Bronte Green Corporation	Dewatering Construction	Construction	175,200	Surface and Groundwater	0.20
4682- B44HF8	Bronte Green Corporation	Dewatering Construction	Construction	838,480	Surface and Groundwater	0.38
4682- B44HF8	Bronte Green Corporation	Dewatering Construction	Construction	78,000	Surface and Groundwater	0.44
4682- B44HF8	Bronte Green Corporation	Dewatering Construction	Construction	787,400	Surface and Groundwater	0.69
2443- A86Q9R	Deerfield Golf & Recreation Centre Ltd.	Commercial	Golf Course Irrigation	1,362,600	Surface Water	0.88

6.3 Source Protection Area

The site is located within the Halton Region Source Protection Area (SPA). Source Protection Plans contain policies aimed at protecting drinking water sources by reducing or eliminating significant threats to the source of municipal drinking water. The study area is serviced by municipal water or domestic wells. There are no municipal drinking water supply wells existing within the predicted zone of influence. Therefore, impacts that may occur to the drinking water supply within the zone(s) of influence are unlikely.

6.4 Highly Vulnerable Aquifer

The site is not located in a Highly Vulnerable Aquifer (HVA). HVAs are aquifers that are more susceptible to contamination consisting of granular material (i.e., sand & gravel, and fractured rock near the surface of the ground).

6.5 Wellhead Protection Area

The site and the study area are not located within a municipal Wellhead Protection Area (WHPA). WHPAs are used to identify locations of potential water quantity threats. There are two types of threats: those associated with water demand and those associated with a reduction in groundwater recharge.

6.6 Intake Protection Zone

The site and the study area are not located within an Intake Protection Zone (IPZ). IPZs depend on surface water for municipal water supply and include areas of land adjacent to streams and storm sewers where runoff water can quickly reach an intake.

6.7 Surface Water and Groundwater Recharge

There are artificial ponds located at the site and the nearest water feature is Bronte Creek located about 50 m from the western boundary of the development area. According to the previous owner, these ponds are groundwater-fed from a shallow sand unit at the site. The outlet from the pond directly flows to the channel or gully within the ravine area associated with Bronte Creek (BCT-1). It is DS's opinion that the water stored in the ponds is likely to be from a groundwater source. Considering surficial geology, most of the areas of the Site are characterized by coarse-textured glaciolacustrine deposits of sand and gravel which can be considered a source of water for the ponds. Evidence of groundwater seeps identified and observed near the outlet may be related to water stored in the ponds. The multiple seep zones located across the Bronte Creek valley are also groundwater-fed from a deeper and regional sand unit (Figure 5) and will not be impacted by development activities including pond removal from the upper sand unit.

It is proposed to remove the ponds at the site as part of the development. The groundwater varies within the pond area between 129.6 and 127 masl and the flow direction is inferred to be west towards Bronte Creek. The elevations of water in the ponds vary between 129.3 and 128.5 masl and are representative of groundwater levels and indicate groundwater-fed ponding conditions. Based on the grading plan, the approximate FFLs for the residential dwellings within the pond areas are between 133 to 132.5 masl and the expected lowest basement elevations are between 130.5-130 masl. An analysis of existing groundwater patterns and a review of the grading plan indicate that the seasonal high-water level will likely be below the basements and is not expected to intersect the basements. Also, any long-

term impacts on groundwater-derived seeps are not anticipated as a result of the removal of ponds due to the natural function of these seeps.

A water balance study was completed to maintain groundwater flow. A site-based water balance assessment using a Thornthwaite approach was completed which identified the infiltration deficit for the site because of the proposed development. Based on the results of the pre-development and post-development water balance completed, the proposed development without LID mitigation is expected to produce a decrease in annual infiltration of about 8,030m³/year and an increase in annual runoff of about 24,839 m³/year. The effects are the result of increased impervious areas, replacing pervious areas of the Site. Mitigation measures using Low Impact Development (LID) techniques will be used at the site to lessen the effect of impervious surfaces added because of development.

6.8 Point of Discharge and Water Quality

Groundwater quality analysis indicated that TSS exceeded the Halton Region sanitary and combined sewer criteria and that several parameters exceeded the Town of Oakville storm sewer criteria and PWQO. Therefore, groundwater at the development site is not suitable for discharge into the Halton Region sanitary and combined sewers, the Town of Oakville's storm sewers or overland without pretreatment.

Surface water analysis indicated that all parameters met the Halton Region's and the Town of Oakville's sewer discharge criteria, but several parameters exceeded the PWQOs. Therefore, surface water at the development site is suitable for discharge into the Halton Region's or the Town of Oakville sewers system but not suitable for discharge to nearby water bodies without pre-treatment.

Treatment options include but are not limited to the settlement of suspended solids, filtration and oxidation followed by filtration to remove fines and associated metals. Discharge permits and agreements may be required from the Halton Region/Town of Oakville for short-term discharge. A surface water quality sample is recommended to be obtained from Bronte Creek (BCT-1) to assess baseline water quality if water is to be discharged to BCT1 during construction dewatering. Alternatively, if there are concerns with erosion along BCT-1, discharge may be directed to Bronte Creek through a hose to the base of BCT-1. In that case, a baseline water quality sample should be obtained from Bronte Creek.

7.0 MONITORING AND MITIGATION

Based on the findings of the hydrogeological investigation and associated potential impacts due to development, the following monitoring and mitigation program is provided:

 Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that

water quality meets the guideline or regulations associated with any permits from the MECP, Halton Region and Town of Oakville

- Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts because of dewatering including settlement.
- Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be conducted by a licensed water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

8.0 LIMITATIONS

This report was prepared for the sole use of the addressee to provide an assessment of the hydrogeological conditions on the property. The information presented in this report is based on information collected during the completion of the hydrogeological investigation. DS Consultants Limited was required to use and rely upon various information sources produced by other parties. The information provided in this report reflects DS' judgment considering the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of these documents or findings, conclusions, and recommendations represented herein are at the sole risk of said users. The conclusions drawn from the Hydrogeological report were based on information at selected observation and sampling locations. Different conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. DS Consultants Ltd. cannot be held responsible for hydrogeological conditions at the site that was not apparent from the available information.

Should you have any questions regarding these findings, please contact the undersigned.

PRACTISING MEMBER

DS Consultants Ltd.

Prepared By:

Reviewed By:

Pradeep Patel, M.Sc., P.Geo.

Hydrogeologist

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

DS Consultants Ltd.

9.0 CONSULTANT QUALIFICATIONS

Martin Gedeon, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with over 26 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations, and provincial infrastructure projects across the province.

Pradeep Patel, M.Sc., P.Geo. is a hydrogeologist at DS Consultants Ltd. and has more than 15 years of experience working in the environmental industry. He is involved in numerous Hydrogeological and Geotechnical investigation projects. His experience includes the preparation of construction dewatering activities and hydrogeological investigations in support of Environmental Activity and Sector Registry (EASR) and Permit to Take Water (PTTW) applications.

10.0 REFERENCES

Approved Source Protection Plan: CTC Source Protection Region. Prepared by: CTC Source Protection Committee. Amendment (Version 2.0). Effective March 25, 2019

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

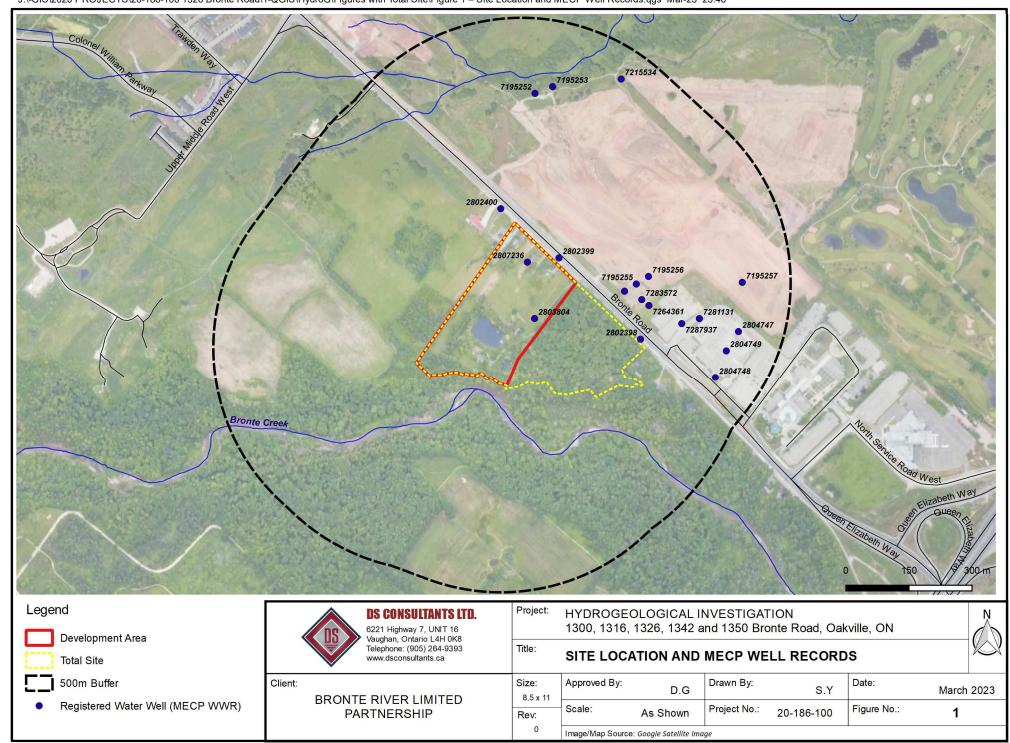
Freeze, R.A., and J.A. Cherry. "Groundwater." Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

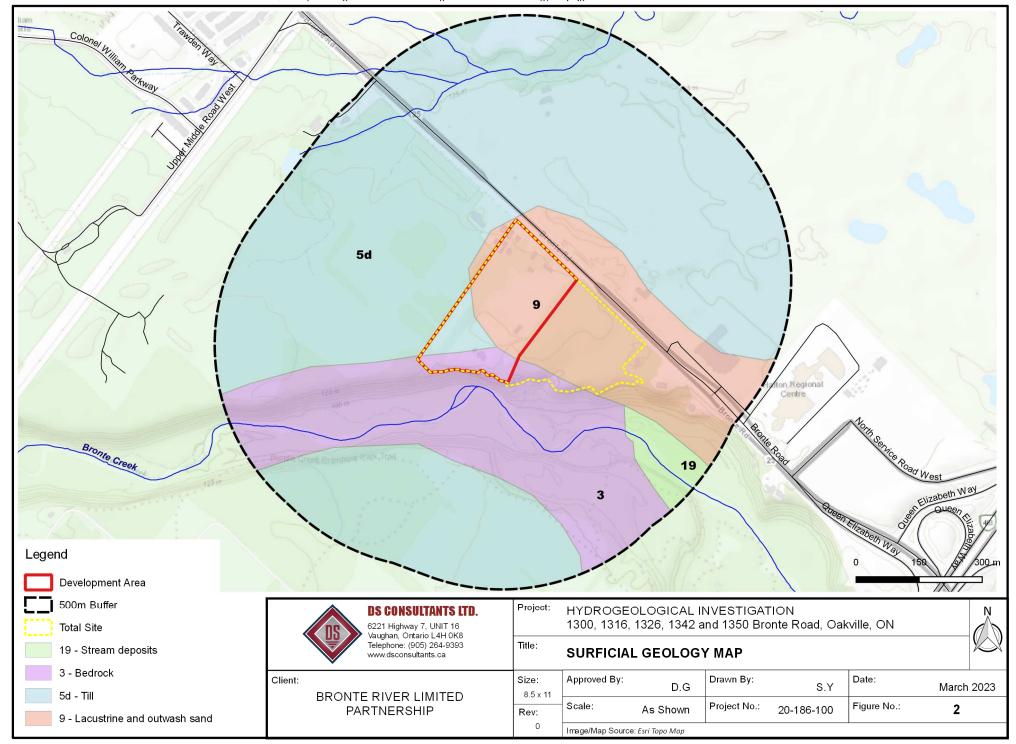
Functional Servicing and Stormwater Management Report, Bronte River Subdivision, March 2023, Prepared by Urbantech for Bronte River Limited Partnership

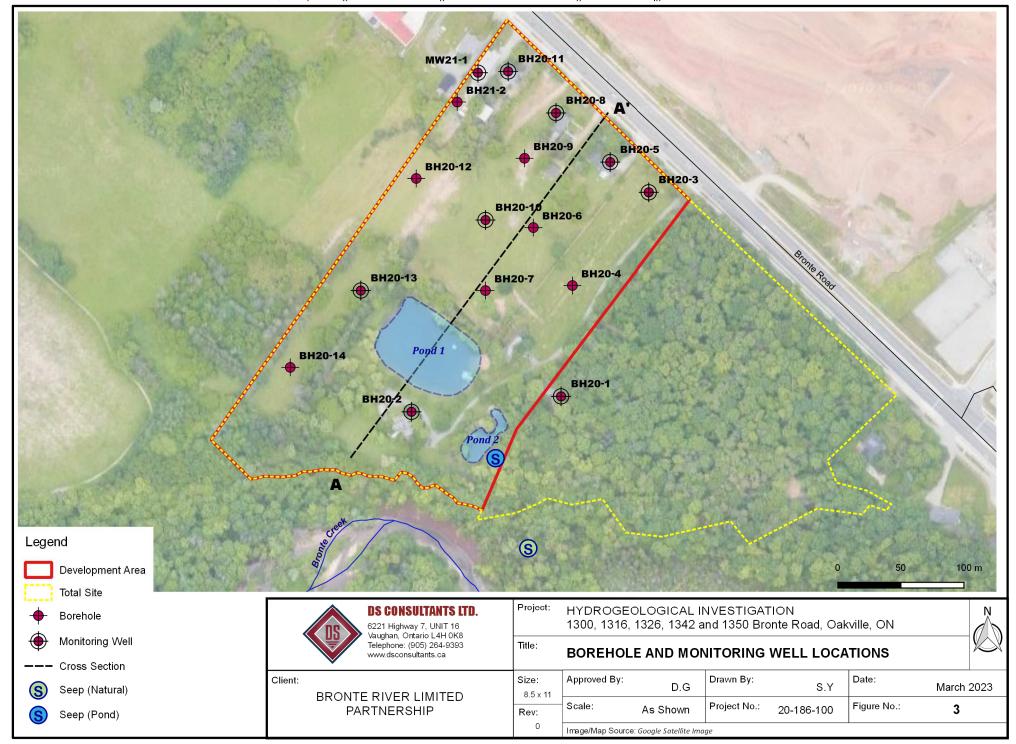
Ontario Regulation 245/11- Environmental Activity and Sector Registry.

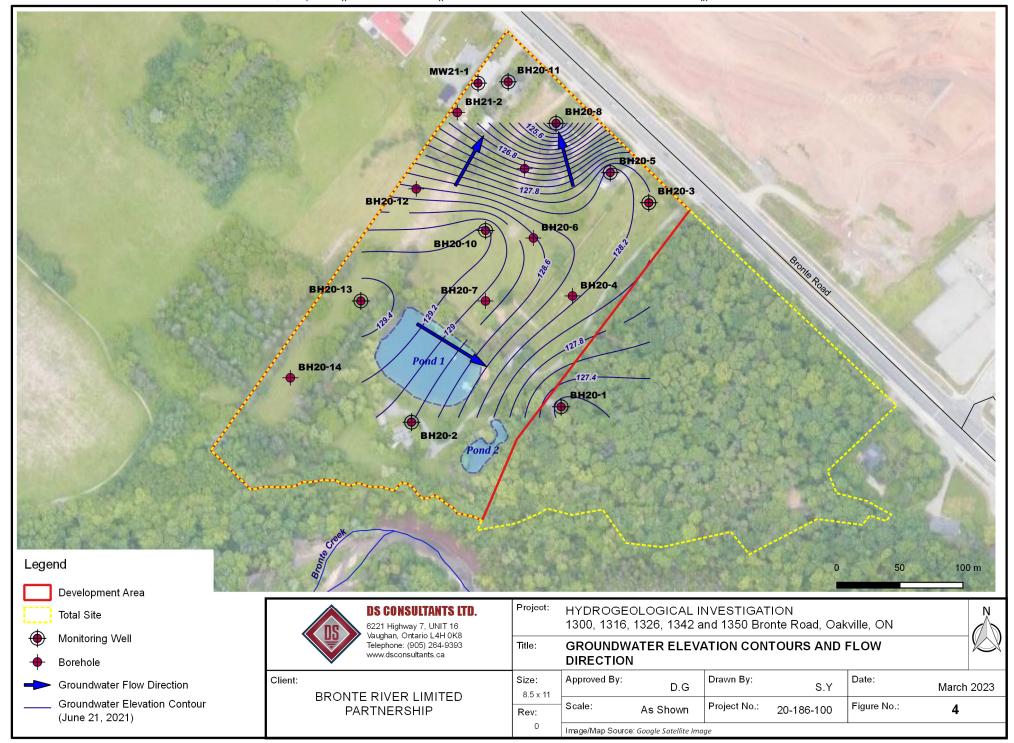
Ontario Ministry of Environment and Climate Change, Permit to Take Water Manual, April 2005

Ontario Ministry of the Environment, Conservation and Parks, Source Protection Information Atlas, 2019


Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.


Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.


Report on Preliminary Geotechnical Investigation- Proposed Residential Development at 1326-1350 Bronte Road, Oakville, ON by DS Consultants Ltd., March 2023.



Figures

As Shown

5

20-186-100

Appendix A

LOG OF BOREHOLE BH20-1 1 OF 1 PROJECT: Preliminary Geotechnical Investigation - proposed Subdivision **DRILLING DATA** CLIENT: Argo Development Method: Hollow Stem Auger PROJECT LOCATION: 1326 Bronte Road, Oakville, ON Diameter: 200mm REF. NO.: 20-186-100 DATUM: Geodetic Date: Aug/13/2020 ENCL NO.: 2 BH LOCATION: See Drawing 1 N 4807732.72 E 601031.73 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa) ELEV DEPTH + FIELD VANE & Sensitivity DISTRIBUTION DESCRIPTION NUMBER O UNCONFINED (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 40 60 80 10 20 30 GR SA SI CL TOPSOIL: 150mm 128.9 FILL: sandy silt, trace organics, SS 4 brown, moist, loose 128.2 FILL: silty sand, trace clay, trace 0.8 128 gravel, brown, moist, loose SS 7 2 0 -Bentonite 127.5 FILL: sand, trace gravel, brown, 1.5 wet, very loose 3 SS 3 W. L. 127.1 m Jun 10, 2021 126.7 2.3 SANDY SILT: trace clay, brown, wet, dense 126.4 SS 31 0 SILTY CLAY: trace sand, brown, moist, hard ₃126.0 126 SILT TO SANDY SILT: trace clay, brown, wet, compact SS 12 0 15 78 7 5 o

125

124

123

-Bentonite: Bottom of hole

Filter Pack -Slotted Pipe

6 SS 14

7 SS 16

8 SS 18

9 SS 13

20-186-100 1326 BRONTE ROAD Jun. 10, 2021 SOIL LOG-2021-FINAL 8 GROUNDWATER ELEVATIONS Measurement $\frac{1st}{\sqrt{}}$ $\frac{2nd}{\sqrt{}}$ $\frac{3rd}{\sqrt{}}$ $\frac{4th}{\sqrt{}}$

3/14/23

GDT

DS.

ARGO DEVELOPMENT.GPJ

CLAYEY SILT TILL: sandy, trace

brown to grey, moist, stiff to very

END OF BOREHOLE:

Aug 18, 2020 2.0 Mar. 16, 2021

during drilling.

gravel, occasional cobble, reddish

1) Water depth at 1.5m below grade

1.9

Water Level (mbgl):

2) 50mm dia. monitoring well installed upon completion.

3) Water level Reading:

0

o

8 29 48 15

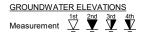
CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger


Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/12/2020 ENCL NO.: 11

	SOIL PROFILE		S	AMPL	ES	~		RI	ESIS	TANCE	NE PEI E PLOT		- NON		PLAST	IC NAT	URAL	LIQUID		TW.	REMARKS
n)		10			ω _l	GROUND WATER	2 _		2		0 60		1	100	LIMIT W _P	CON	NTENT W	LIMIT W _L	PEN.	NATURAL UNIT \ (kN/m³)	AND GRAIN SIZ
.EV PTH	DESCRIPTION	STRATA PLOT	R		BLOWS 0.3 m	100	ELEVATION	SI		R STI	RENGT	ΓΗ (k	FIÉLD \	/ANE	WP		·		POCKET PE (Cu) (kPa)	URAL (kN/m	DISTRIBUT
		IRAT	NUMBER	TYPE			EV A	Ĭ	Ql	JICK TI	RIAXIAL	. ×	LAB V	'ANE			ONTEN	. ,	120	NAT	(%)
0.4	TOPSOIL: 300mm	ν. Ω	ž	F	<u> </u>	<u></u> 0 0	3 🖬	+	2	0 4	0 60	0	80 1	100	1	0 2	20 :	30			GR SA SI
0.1		, <u>`</u>	1	SS	5		-Ren	‡ tonit	۵												
0.3	FILL: silty sand, trace topsoil, brown, moist, loose	\bowtie]	00				30	-												
9.6		\bowtie				i.	ÿ.	F													
0.8	SAND: trace silt, trace clay, grey, wet, compact							E													
	wet, compact		2	SS	13		w. ∟			n											
8.9						∤:E	Jun 1⊿	10, 2 29	2021												
1.5	SILTY SAND: trace clay, brown, wet, compact					ΙŒ		E													
	,		. 3	SS	10			F									•				
						╁┋		Ė													
2.3	SILT TO SANDY SILT: trace clay,	HH				∤:E	Filte	. F	ck-												
	brown, wet, compact		4	SS	17			ŀ								0					0 12 81
							:Slot	ted F	Pipe												
						 ∤:[ŀ													
7.0		Щ	5	SS	15		12	,-[-													
3.4	SILTY CLAY: grey, moist, very stiff						:	<u> </u>									0				
3.8	CLAYEY SILT TILL: sandy, trace					╂≣		Ė													
	gravel, occasional cobble/ boulder, brown, moist, very stiff to hard	H	6	SS	17			E								0					
	brown, moist, very sun to nard							<u>.</u>													
		1					12	26													
			_	00				ŀ													
				SS	20			F								0					
5.1	CANDY OUT THE Attack of the second				50/			ŀ													
5.3	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/		8	SS	50/ 125m	n	11 Ben	tonit	e: B	ottom	of hole	:			0						
	boulder, brown, moist, very dense							E													
								F													
			9	SS	50/ 150m	n		Ē								•					
					130111		12	24													
23.7 6.7	END OF BOREHOLE:	<u> </u>	\vdash					┿											\vdash		
	Notes: 1) Water depth at 0.8m below grade																				
	during drilling. 2) 50mm dia. monitoring well																				
	installed upon completion.																				
	3) Water level Reading:																				
	Date: Water Level (mbgl): Aug 18, 2020 1.2																				
	Mar. 16, 2021 1.0 Jun. 10, 2021 1.1																				
	,																				
						1	- 1	- 1			1		1	1	1				1	ı	

LOG OF BOREHOLE BH20-11 1 OF 1 PROJECT: Preliminary Geotechnical Investigation - proposed Subdivision **DRILLING DATA** CLIENT: Argo Development Method: Hollow Stem Auger PROJECT LOCATION: 1326 Bronte Road, Oakville, ON Diameter: 200mm REF. NO.: 20-186-100 DATUM: Geodetic Date: Aug/19/2020 ENCL NO.: 12 BH LOCATION: See Drawing 1 N 4807990.65 E 600989.21 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa) ELEV DEPTH + FIELD VANE & Sensitivity DISTRIBUTION DESCRIPTION NUMBER O UNCONFINED (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 40 60 80 10 20 30 GR SA SI CL TOPSOIL: 125mm FILL: silty sand, mixed with topsoil, SS 7 brown, moist, loose Bentonite 128.9 129 SILTY SAND: sandy silt, brown, 0.8 wet, loose 2 SS 7 128.2 FILL: clayey silt to silty clay, brown, wet, firm 128 SS 3 6 CLAYEY SILT TILL: trace sand, SS 7 0 4 trace gravel, grey, very moist, firm to -Filter Pack Slotted Pipe occasional cobble/ boulder below SS 11 5 0 126 125.2 SANDY SILT TILL: trace clay, 6 SS 50/ 0 trace gravel, occasional cobble/ 125 (25m) boulder, brown, moist, very dense Bentonite: Bottom of hole 124 END OF BOREHOLE: 6.2 00m Notes: 1) Water depth at 0.8m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading: Date: Water Level (mbgl): Aug 18, 2020 Dry

3/14/23

ARGO DEVELOPMENT.GPJ DS.GDT

20-186-100 1326 BRONTE ROAD

SOIL LOG-2021-FINAL

S

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/14/2020 ENCL NO.: 13

	SOIL PROFILE		S	AMPL	ES.	۳ ا		RESIS	STANCE	ONE PE E PLOT	NETRA	ATION		PLASTI	C NAT	URAL	רווטו ווט		₽	REMARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR STI NCONF UICK T	RENGTINED RIAXIAL	ΓΗ (kF + . ×	Pa) FIELD V & Sensiti LAB V	ANE vity ANE O0	w _P ⊢ WA1	TER CO		LIQUID LIMIT W _L IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUT (%)
0.0 131.2 0.3	TOPSOIL: 300mm FILL: sandy silt, some gravel/	<i>S S S S S S S S S S</i>	1	SS	7			- - - -						0						GR SA SI
30.7	cobble, trace rootlets, brown, moist, loose FILL: sand and gravel, some silt,					_	131	-												
30.0	trace clay, brown, moist, loose		2	SS	7		400	- - - -						0						
1.5	SAND: sand, trace silt, trace gravel, brown, wet, compact		3	SS	10		130	-							0					
29.2	SAND AND GRAGEL: silt seams, brown, wet, loose		4	SS	8	_	129	- - - - -							0			-		
3.0	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, brown, moist, stiff to hard		5	SS	9	-	128	-							0					
								- - - -												
						_	127	- - - -												
			7	SS	35	_		- - - -							o					
25.5							126	- - - -												
6.0	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/boulder, brown, wet, very dense		9	SS	50/ 90mn	1	125	- - - -						0				_		
24.8 6.7	END OF BOREHOLE:	 																		
	Notes: 1) Water depth at 1.5m below grade during drilling.																			

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

	M: Geodetic CATION: See Drawing 1 N 4807816.2	5 E 6	<u>30</u> 087	72.96					_	14/2020							NCL N		_	
	SOIL PROFILE		1	SAMPL	ES	۳		DYNA RESIS	MIC C STANC	ONE PE E PLOT	NETR	ATION		PLASTI	C NAT	URAL	LIQUID		Υ	REMARK
(m)		ТО			(0)	ATE!			20	40 6	0	80 1	00	v	CON	NTENT	LIMIT	OCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ
LEV	DESCRIPTION	\ PL(œ		BLOWS 0.3 m	M C				RENG	ΓH (k	Pa)	/ANF	W _P ⊢		w •	W _L	Э. Э. Э.	RAL (kN/m	DISTRIBUT
PTH	DEGGINI TIGIN	STRATA PLOT	NUMBER	TYPE	"N" 0.	GROUND WATER	ELEVATION	• Q		RIAXIAI	. ×		ANE			ONTEN		80	NATU	(%)
31.0 38:8	TOPSOIL: 200mm	ν ₁ /γ.		<u> </u>	-	0 0) Ш	<u> </u>	20	40 6	U 1	80 1	00	1	0 :	20 :	30			GR SA SI
0.2	FILL: silty sand, trace gravel, trace	XX	1	SS	3			ŀ												
	orgaics, brown, moist, very loose	\bowtie	1				-Bento	nite												
30.2		\otimes						F												
0.8	FILL: sand and gravel, silty, brown,						∴ 130	E]		
	moist, loose	\bowtie	2	SS	6			Έ							þ					
29.5		\bowtie						-												
1.5	FILL: sand and gravel, trace silt,	\bowtie	+				W. L.	⊢ 129.5	 m											
	trace clay, wet, loose	\times	3	SS	7		∴Jun 1	0, 202 ⁻	1						0					
		\bowtie					129		-									1		
28.7		\bigotimes]:目		E						1				1		
2.3	FILL: clayey silt, brown, very moist, loose					ľij		Ŀ												
28.4	FILL: sandy silt, brown, wet, loose	\bowtie	4	SS	8		Filton	Paak								0				
28.0	, ,	\bigotimes	<u></u>				-:+Filter	Pack						1				1		
3.0	SILT: trace sand, trace clay,	ÍΜ	<u> </u>				Slotte	ed Pipe	•									1		
	brown, wet, compact		5	SS	15	泪		E								0				1 0 00
				33	15			F								_				1 9 82
27.2		Щ						ļ.						1				1		
3.8	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder,						127	<u>/</u>				-						1		
	brown, moist, very stiff		6	SS	18			E						'	•			1		
26.5			\vdash					E												
4.5	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/	1.4.	\vdash			l:⊟	d.	-												
	boulder, brown, moist to very moist,		7	SS	50/ 140mi			<u></u>						0				1		
	very dense		<u> </u>				126	j 										1		
			\vdash					E												
		-[¢]	. 8	SS	50/		-Ront	F poite: F	 Pottom	of hole				0						
		[[:]}			125mı		-Denic	F												
							125	<u>-</u>										-		
					50/			ŀ										1		
<u>24.4</u> 6.6			9	SS	140mi			F						0				1		
6.6	END OF BOREHOLE:	1	T					†										H		
	Notes: 1) Water depth at 1.5m below grade																			
	during drilling. 2) 50mm dia. monitoring well																			
	installed upon completion.																			
	3) Water level Reading:																			
	Date: Water Level (mbgl):																	1		
	Aug 18, 2020 1.6 Mar. 16, 2021 1.6													1				1		
	Jun. 10, 2021 1.5													1				1		
														1				1		
			1	1		1	1	1					1	1				1	l	

CLIENT: Argo Development

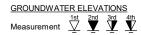
PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100


Date: Aug/13/2020 ENCL NO.: 15

BH LO	SOIL PROFILE			AMPL	.ES			DYNA	MIC CO STANCE	ONE PE	NETRA	NOITA			b1A	LIDA'				DEMARK
(m)	33.21.113.1.22	-от				VATER		2	20 4	ιο 6	0 8	30 1	00	PLASTI LIMIT W _P	C NATI MOIS CON	URAL STURE STENT W	LIQUID LIMIT W:	T PEN. <pa)< td=""><td>UNIT WT</td><td>REMARKS AND GRAIN SIZ</td></pa)<>	UNIT WT	REMARKS AND GRAIN SIZ
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	AR STI NCONF UICK T 20 4	INED RIAXIA	+ L ×	FIELD V & Sensiti LAB V	ANE vity ANE 00	WA	ER CO	ONTEN	LIQUID LIMIT W _L ——I T (%)	POCKE (Cu) (F	NATURAL (KN/r	DISTRIBUTI (%)
30.6	TOPSOIL: 200mm	ν. 1/γ.:	Z		F	00	 "	-	1				1	 						GR SA SI
0.2	FILL: sandy silt, brown, moist, loose		1	SS	5		400	- - - -							0					
29.8 0.8	FILL: silty sand, brown, wet, loose to very loose	$\overset{\times\times}{\otimes}$	2	SS	2		130	-								0				
		\bigotimes					129	-												
00.0	silt seams at 1.7m	\bigotimes	3	SS	5			- - - -								0				
28.3	SANDY SILT: some clay, brown, wet, compact		4	SS	10	-	128	-								0		-		
3.0	SILTY CLAY: trace gravel, grey, very moist, firm		5	ss	7	-		- - - -							c					
						_	127	- - - - -										-		
26.1 4.5	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/					_	126	-												
	boulder, brown, moist, very dense		6	SS	75	_		- - - -						0						
124 6							125	-												
6.0	SAND AND GRAVEL: brown, moist, very dense	0.0	7	SS	66	_		- - - -						0						
6.7	END OF BOREHOLE:	o.	\vdash				124							H				\vdash		
124.6 6.0 123.9 6.7	Notes: 1) Water depth at 0.8m below grade during drilling.																			

LOG OF BOREHOLE BH20-2 1 OF 1 PROJECT: Preliminary Geotechnical Investigation - proposed Subdivision **DRILLING DATA** CLIENT: Argo Development Method: Hollow Stem Auger PROJECT LOCATION: 1326 Bronte Road, Oakville, ON Diameter: 200mm REF. NO.: 20-186-100 DATUM: Geodetic Date: Aug/13/2020 ENCL NO.: 3 BH LOCATION: See Drawing 1 N 4807723.7 E 600908.24 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE CONTENT REMARKS LIQUID LIMIT GROUND WATER POCKET PEN. (Cu) (kPa) AND 40 60 100 NATURAL UNIT (KN/m³) (m) STRATA PLOT CONDITIONS GRAIN SIZE BLOWS 0.3 m SHEAR STRENGTH (kPa)
O UNCONFINED + ESensitivity ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER (%) WATER CONTENT (%) QUICK TRIAXIAL X LAB VANE 40 60 80 10 20 30 131.9 GR SA SI CL TOPSOIL: 75mm 130.9 0.1 -Concrete FILL: sand and gravel, trace SS 14 organics, brown, moist, compact 131.1 -Bentonite FILL: sandy silt, trace clay, trace 0.8 131 gravel, brown, moist, compact 2 SS 14 3 SS 13 130 129.6 FILL: silty sand, trace organics, trace wood pieces, brown, wet, SS 5 0 129 ₃128.9 SAND: trace silt, trace clay, W. L. 128.9 m reddish brown, wet, loose Jun 10, 2021 Slotted Pipe 5 SS 6 128 8 6 SS 127 -Bentonite: Bottom of hole 126I £125.9 **CLAYEY SILT TILL:** sandy, trace gravel, occasional cobble/ boulder, reddish brown to grey, moist, stiff SS 11 END OF BOREHOLE: 1) Water depth at 2.3m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion.

3) Water level Reading: Water Level (mbgl): Aug 18, 2020 3.1 Mar. 16, 2021 3.2 Jun. 10, 2021 3.0

3/14/23

ARGO DEVELOPMENT.GPJ DS.GDT

20-186-100 1326 BRONTE ROAD

SOIL LOG-2021-FINAL

S

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/13/2020 ENCL NO.: 4

	SOIL PROFILE		S	AMPL	ES.			DYN/ RESI	MIC CO STANC	ONE PEI E PLOT	NETR.	ATION		DI 10-	_ NAT	URAL			⊢	REMARKS
(m) ELEV	DESCRIPTION	, PLOT	~		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOL	SHE	20 AR ST	10 60 RENG) { [H (k	30 1 Pa)	00 ANE	PLASTI LIMIT W _P		STURE ITENT W	LIQUID LIMIT W _L ——I T (%)	CKET PEN. u) (kPa)	RAL UNIT W KN/m³)	AND GRAIN SIZE DISTRIBUTION
130.2		STRATA PLOT	NUMBER	TYPE	"N" 0.5	GROUN	ELEVATION	• 0		FINED RIAXIAL 10 60	. ×		ANE O0			ONTEN	T (%)	<u>8</u> 0	NATU	(%) GR SA SI C
130.9	TOPSOIL: 75mm FILL: sand and gravel, trace organics, brown, moist, very loose		1	SS	3		130 -Bento	F						0				_		
0.8	FILL: sandy silt, trace clay, trace to some gravel, brown, moist, compact		2	SS	10		129	-						0						
<u>2</u>			3	SS	22			- - - -						0						
2.3	SILTY SAND: trace clay, brown, wet, compact		4	SS	10		W. L. Jun 10 Filter Slotte	128.0), 202 Pack	1						C	>		_		
3.0	SILT: some sand, some clay, trace gravel, brown, wet, disturbed		5	SS	listurb	ed .	127	- - - - -								o		=		2 13 72
3.8	SAND: trace silt, brown, wet, compact		6	SS	16		126	-							o			-		
<u>5</u>			7	SS	26		125	-							o					
	very dense below 5.4m		8	SS	50/ 140mi			t	 Bottom	of hole	!			0						
6.0	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, reddish brown to grey, moist, hard		9	SS	50/ 140mi	-	124	- - - - -						0				-		
6.7	END OF BOREHOLE: Notes: 1) Water depth at 2.3m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading:																			
- 6.0 6.0 - 123.5 6.7	Date: Water Level (mbgl): Aug 18, 2020 2.5 Mar. 16, 2021 2.0 Jun. 10, 2021 2.2																			

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/13/2020 ENCL NO.: 5

	SOIL PROFILE		S	AMPL	.ES	1		RESIG	MIC CC	NE PE E PLOT	NE IRA	ATION			F14	I IDA:			l.	DENANDICO
(m)		LOT				WATER	z		20 4	0 6	0 8	30 1	00	PLASTI LIMIT W _P	C NATI MOIS CON	URAL STURE ITENT W	LIQUID LIMIT W _L	T PEN. kPa)	. UNIT WT	REMARKS AND GRAIN SIZE
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	NCONF	RIAXIA	+ L ×	& Sensiti	ANE ivity ANE 00	1	TER CO	ONTEN 20 3	LIQUID LIMIT W _L ——I T (%)	POCKE (Cu) (NATURAL (kN/	DISTRIBUTIO (%)
130.9 13 9.9	TOPSOIL: 100mm	(1) (1) (2) (3) (4) (4) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	_		-	00	Н	ļ '	-			 	1	<u> </u>						GR SA SI
0.7	FILL: sandy silt, trace gravel, brown, moist, loose		1	SS	4			-						(
130.1	511.	\bigotimes					400	-												
0.8	FILL: silty sand, some gravel, brown, moist, compact		2	SS	10		130	-							0					
1.3	SILTY SAND: trace clay, trace gravel, brown, wet, compact to dense							- - - -												
			3	SS	19		129	-							0			-		
			4	SS	31	_		- - -							c					
							128	-										-		
			5	SS	29			- - -							(φ				
						-	127	-										-		
26.4 4.5	SILTY CLAY TILL: sandy, trace																			
	gravel, occasional cobble/ boulder, grey, very moist, very stiff		6	SS	15		126	- - - -							0			-		
								- - -												
24.9	SANDY SILT TILL: trace clay,						125	-										-		
0.0	trace gravel, occasional cobble/ boulder, grey, moist, very dense		7	SS	52			-						0						
6.7	END OF BOREHOLE:		$\vdash\vdash$					-						_						
6.0 6.0 124.2 6.7	END OF BOREHOLE: Notes: 1) Water depth at 1.3m below grade during drilling.																			

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/14/2020 ENCL NO.: 6

	SOIL PROFILE		s	SAMPL	.ES			DYNA RESIS	MIC CO	ONE PEI E PLOT	NETR/	ATION			NAT	IDAI				REMARI
			\Box			GROUND WATER CONDITIONS		l		10 60		0 1	00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT W _L T (%)	z.	M F	REMAR AND
(m)		STRATA PLOT			یار	NS NS	z		1	11		1		W _P		TENT V	W_L	KPa)	3°E	GRAIN S
EPTH	DESCRIPTION	ΑP	e:		BLOWS 0.3 m	1 -	은		AR ST NCONF	RENG1	H (KI	'a) FIELD V. & Sensiti	ANE	<u>-</u>				88	R B	DISTRIBU
EF III		₹	MBE	Щ		S = 0	ELEVATION			RIAXIAL	×	& Sensiti LAB V	vity ANE	WAT	ER CO	NTEN	T (%)	1 ₂	¥	(%)
29.9		STF	NUMBER	TYPE	ż	GR CS				10 60		0 10		1	0 2	0 3	30			GR SA S
2 9.9	TOPSOIL: 100mm	31/2						-												
0.1	FILL: sandy silt, trace gravel, brown, moist, loose	\bowtie	1	SS	4			ļ.							•					
	brown, moist, roose	\bowtie	1				-Bento	nite												
29.1		\otimes	\vdash					Ł												
0.8	FILL: clayey silt, sand seams,	\bowtie	1				129	-												
	trace to some organics, brown to	\bigotimes	2	SS	3		129	-							0					
	grey, wet, very loose	\boxtimes		33	3		1	F												
28.4		\bigotimes	}			 ∷ ∷	.	Ė												
1.5	FILL: sandy silt, trace gravel,	XX				: 首:	.W. L.	128.4	m											
	brown, wet, loose	\bigotimes	3	SS	8		Jun 10), 202´	1											
		\bigotimes]				128	<u> </u>										1		
27.6		\bigotimes	\vdash			[日]	:	Ŀ												
27.6	SILTY CLAY TILL: sandy, trace	[**	+			甘	1	F												
	gravel, occasional cobble/ boulder,		4	SS	7		Filter	Post.							0					
	brown to grey, moist, firm (weathered/ disturbed)		"	ుప	'	[:甘:	Friiter	rack F												
26.9	(weathered/disturbed)		\perp			k 目:	Slotte	L d Pipe										1		
3.0	CLAYEY SILT TILL: sandy, trace	14	1					ţ .												
	gravel, occasional cobble/ boulder, grey, moist, very stiff to hard	ИИ	1				3	Ŀ												
	grey, moist, very still to hard		5	SS	20	:: ::	:	F							þ					
		K1,4	<u>[</u>] :目:	:	F												
		1111				[:目:		F												
		[14]]				126	-										1		
			6	SS	20	目:		ļ.						٥						
			1				1	Ŀ												
	grey to reddish brown below 4.5m	}	丄					ŀ												
	3 ,	1414	1					F												
		 	7	SS	37		125	F						-				-		
		W	1					-												
5.3	SANDY SILT TILL: trace clay,		\blacksquare					ļ.												
24.6 5.3 23.2 6.7	trace gravel, occasional cobble/	[][. 8	SS	92/		-Bento	∟ nite: E	। Bottom	of hole										
	boulder, reddish brown, moist, very		$ ^{\circ} $	33	280mı			Ė ¯	"	Ī										
	dense	•	\vdash				124	Ł_	L				L	L	L_		L			
		:[1					124	-												
		.[.						F												
]	9	SS	87			Ė						0						
23.2		$\ \cdot\ $						ļ.												
6.7	END OF BOREHOLE:																			
	Notes: 1) Water depth at 1.5m below grade																			
	during drilling.																			
	50mm dia. monitoring well installed upon completion.																			
	3) Water level Reading:																			
	Date: Water Level (mbgl): Aug 18, 2020 1.6																			
	Mar. 16, 2021 1.2																			
	Jun. 10, 2021 1.5																			
- 1																				
		1		ı	1	1	1	I	1			1	1	1	1	1	1	1	ı	l
								l												

LOG OF BOREHOLE BH20-6

PROJECT: Preliminary Geotechnical Investigation - proposed Subdivision

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/14/2020 ENCL NO.: 7

	SOIL PROFILE		S	AMPL	ES	<u>~</u>		DYNA RESIS	MIC CO STANCE	NE PE E PLOT	NETR/	ATION		PLASTI	C NATI	URAL	LIQUID		ΛΤ	REMARKS
m) LEV	DESCRIPTION	PLOT	œ		BLOWS 0.3 m	D WATE	NOL	SHEA	R ST	0 6 RENG	TH (kF	 Ра)	00 ANE	LIMIT W _P	CON	TURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI
30.5		STRATA PLOT	NUMBER	TYPE	"N" BLC	GROUND WATER CONDITIONS	ELEVATION	• Q		INED RIAXIAL 0 6	_ ×		ANE		TER CO		IT (%) 30	<u>8</u> 0	NATU	(%) GR SA SI
3 9.4	TOPSOIL: 100mm FILL: sandy silt, some clay, trace gravel, trace organics, brown, moist, loose		1	SS	5		130	-												
0.8	FILL: silty sand, trace gravel, brown, wet, compact to loose		2	SS	10			- - - - -						0						
			3	SS	6	<u>.</u>	129	- - - -								0				
28.2	FILL: silt to sandy silt, trace gravel, occasional cobble/ boulder, brown to grey, wet, loose		4	SS	5		128	- - - - - -								0		-		1 18 74
3.0	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, brown, moist, stiff to hard		5	SS	11		127	- - - - - -							0					
								-												
	grey to reddish brown below 4.5m		6	SS	30		126	- - - -						0				=		
							125	-												
24.5 6.0	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/		7	SS	50/			-						0						
23.8	boulder, brown, moist, very dense	0	,	33	(<u>50m</u> r	h	124	-						0						
	Notes: 1) Water depth at 0.8m below grade during drilling.																			

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/12/2020 ENCL NO.: 8

	SOIL PROFILE	_	Ls	AMPL	.ES	<u>_</u> ر		RESIS	STANCE	ONE PE E PLOT	NETRA	ATION		DI 407	NAT	URAL	1101.00		F	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER CONDITIONS		SHEA O U	20 4 AR STI NCONF	PENG RENG	0 8 TH (kF +	0 1	OO L ANE vity	W _P	١	TENT W	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	ATURAL UNIT W	AND GRAIN SIZ DISTRIBUTIO
130.6			N	TYPE	ż	GRC	ELE						00				30			GR SA SI
13 0 . 4 0.2	TOPSOIL: 100mm FILL: sandy silt, some clay, trace gravel, trace organics, brown, moist, loose		1	SS	5		130	-												
0.8	FILL: sand and gravel, trace silt, trace clay, reddish brown, wet, loose	$\stackrel{\times}{\times}$	2	SS	7	-		- - - -							o					
28.8 1.8	FILL: silt, some clay, brown, wet,		3	SS	8	-	129	-							О	0		_		
128.3	loose	\bigotimes						-												
2.3	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, brown, moist, stiff to very stiff		4	SS	18		128	-							0					
			5	SS	12	_	127	-							0					
								- - - -												
4.5	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/ boulder, brown to grey, moist,				0.4	_	126													
	dense to very dense		6	SS	34	-		- - -						C						
		0					125	-												
123.9		0	7	SS	66	-	124	-						0						
6.7	END OF BOREHOLE:	111																		
6.7	Notes: 1) Water depth at 0.8m below grade during drilling.																			

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Aug/12/2020 ENCL NO.: 9

	SOIL PROFILE		S	AMPL	ES			T	OYNA RESIS	MIC CO	NE PE PLOT	NETR	ATION			ΝΔΤ	URAI			_	REMAR	RKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	CONDITIONS	-	SHEA O UI	AR STINCONF	0 6 RENG	0 8 TH (kl + - ×	Pa) FIELD V & Sensit	00 /ANE tivity	W _P ⊢ WA	TER C	w O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WI (KN/m³)	ANI GRAIN DISTRIBU	O SIZI UTI(
129.9	FILL: sandy silt, mixed with topsoil, brown, moist, loose	Š	1	SS	4			- - - - - -								0					GR SA	21
0.8	FILL: silty sand, clay seams, brown, wet, loose to compact		2	SS	4			29 ntoni	ite								0					
127.6			3	SS	9		1	28									0		=			
2.3	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, brown, moist, stiff to hard		4	SS	10		1	27	-							0						
			5	SS	12				=							0						
25.4			6	SS	47			26 - - er P							,	•						
4.5	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/ boulder, brown, moist, very dense	00	7	SS	50/ 140m		1	25 - L. 12	Pipe	m					0							
			8	SS	99/ 290m	ŀ⊹⊨		10, - 24	2021						0							
		0	9	SS	58		1	23	-						0							
7.5	GRAVELLY SAND: some silt,	0						Ŀ	ite: B	ottom	of hole	9										
121.7	trace clay, brown, wet, very dense	0.00	10	SS	90		1	22							c						25 57 1	14
122.4 7.5 121.7 8.2	Notes: 1) Water depth at 0.8m below grade during drilling. 2) 50mm dia. monitoring well installed upon completion. 3) Water level Reading:																					
	Date: Water Level (mbgl): Aug 18, 2020 4.6 Mar. 16, 2021 dry Jun. 10, 2021 5.1																					

 $\frac{\text{GROUNDWATER ELEVATIONS}}{\text{Measurement}} \ \ \frac{\overset{1\text{st}}{\sqrt{2}}}{\sqrt{2}} \ \ \frac{\overset{3\text{rd}}{\sqrt{2}}}{\sqrt{2}} \ \ \frac{\overset{4\text{th}}{\sqrt{2}}}{\sqrt{2}}$

SRAPH NOTES +

+ 3 , imes 3 : Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

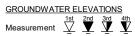
Date: Aug/12/2020 ENCL NO.: 10

	SOIL PROFILE		S	AMPL	ES] _~		RESIS	TANCE	NE PE		ATION		א ום	C NAT	URAL	HOHID		5	REMARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ш	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O U	20 4 AR STI	0 6 RENG	0 8 TH (kF +	Pa) FIELD V	ANE	W _P ⊢		TURE TENT W O	LIQUID LIMIT W _L ——I	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
30.6			NON	TYPE	þ	GRC	ELE			0 6			OO	1			30		2	GR SA SI
3 0 :9	TOPSOIL: 100mm FILL: silty sand, trace topsoil, trace rootlets, brown, moist, loose		1	SS	5		130	-						(9					
0.8	FILL: sand, trace silt, trace clay, reddish brown, wet, loose		2	SS	5			- - - -								0				
1.5	SILT: trace clay, trace sand, brown, wet, loose to compact		3	SS	8		129	-							0			-		
	grey below 2.3m		4	SS	12		128	-							0					
27.6 3.0	CLAYEY SILT TILL: sandy, trace gravel, occasional cobble/ boulder, brown, moist, stiff to hard		5	SS	12			-							o					
							127	- - - - -										-		
			6	SS	55		126	-							0					
							125	-												
24.6 6.0	SANDY SILT TILL: trace clay, trace gravel, occasional cobble/		7	SS	50/		123	-						0						
	boulder, brown, moist, very dense				(<u>40m</u> j	n I	124													
							400	- - - -												
22.4		φ	8	SS	98/ 280mr	n	123	-						0						
8.2	END OF BOREHOLE: Notes: 1) Water depth at 0.8m below grade during drilling.																			
24.6 6.0																				

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

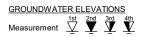
Date: Oct/07/2021 ENCL NO.: 16

	SOIL PROFILE		S	AMPL	ES.			DYNA RESI	MIC CO	NE PEI	NETRA	TION		PLASTI	_ NATI	URAL STURE	LIQUID		П	RE	MARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE.	AR STI NCONF UICK T	0 60 RENGT INED RIAXIAL	ΓΗ (kF + . ×	Pa) FIELD V & Sensiti LAB V	ANE ivity ANE O0	LIMIT W _P ⊢ WA¹	CON V TER CO	TENT W O ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTI	AND AIN SIZ RIBUTI (%)
130.1 130.0 129.9 0.2	CONCRETE: 100mm CRANULAR BASE: sand and gravel, trace cobbles, 100mm		1	ss	6		130								0			-		OK 0	N 01
129.3	FILL: clayey silt, trace organics, trace sand, trace cobbles, brown, very moist, firm FILL: silty sand, trace clay, trace							- - - -													
128.9 1.2 128.6	gravel, reddish brown, wet, loose SILTY CLAY TILL: sandy, trace gravel, trace shale fragments, brown, moist, stiff (weathered)		2	SS	8		129	- - -							0			-			
1.5	SILTY CLAY TILL: sandy, trace gravel, brown, moist, very stiff		3	SS	18		128	-							0						
	grey below 2.3m		4	SS	18		120	- - - -							∘ —	—I				6 2	5 48
							127	-										-			
			5	SS	24			- - - -							o						
							126	- - - -										-			
125.5 4.6	SILTY SAND TO SANDY SILT TILL: trace clay, trace to some		6	SS	50/ \30mr	- #		- - - -						0							
	gravel, greyish brown, moist, very dense						125	- - - -													
					50/		124	-													
			7	SS	50/ 25mm			- - - -						0						11 5	1 31
122.5 7.6							123	-													
122.5 7.6	SAND AND GRAVEL: trace silt, trace cobbles, brown, wet, very	φ. 		SS	07		W. L.	122.4	m												
	dense	00	8	<u> </u>	87		Oct 12		I 					0							
121.2 8.9	END OF BOREHOLE:	.o.	9	SS	50/ 100mr		:	-						()						
0.9	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																				
	Date: Water Level(mbgl): Oct. 12, 2021 7.7																				

CLIENT: Argo Development

PROJECT LOCATION: 1326 Bronte Road, Oakville, ON

DATUM: Geodetic


DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm REF. NO.: 20-186-100

Date: Oct/07/2021 ENCL NO.: 17

	SOIL PROFILE	1	S	SAMPL	ES	<u>ا</u>		RESIS	STANCE	NE PE PLOT	\geq			PLASTI	C NAT	URAL	LIQUID		₩	REMARK
n)		-01			81,	VATE VS	Z			0 6			00	LIMIT W _P	COV	ITENT W	LIMIT W _L	T PEN kPa)	UNIT	AND GRAIN SI
EV PTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0 U ● Q	NCONF	RIAXIAL	+ - ×	FIÉLD V. & Sensiti LAB V.	AŃE	WA	TER C	O ONTEN	—— і ІТ (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	DISTRIBU [*] (%)
30.6	TODOO!! . 100		ž		þ	5 5	ш	2	20 4	0 6	3 0	80 1	00	1	0 2	20	30			GR SA SI
0.2 0.2	TOPSOIL: 180mm FILL: silty sand, trace clay, trace rootlets,trace gravel, brown, wet, loose	<u> </u>	1	SS	4			-							0	•				
9.8	loose	\otimes				1	130	-										ł		
0.8	FILL: sand, trace silt, brown, wet, very loose		2	SS	3	_		- - - -								•				
9.1 1.5 8.8	SILT TO SANDY SILT: some clay, brown, wet, compact		3	SS	13		129	-										-		
1.8	SILTY CLAY TILL: sandy, trace gravel, occasional cobble, greyish brown, moist, stiff to hard	**** ****) —	33	13	-		-							o					
			4	SS	19		128	- - - -							0			=		
			┝			1		-												
	grey below 3.1m		5	SS	64	-		- - - -							0					
							127	-												
6.0							126	- - -												
1.6	SILTY SAND TO SANDY SILT TILL: trace clay, trace gravel/cobble, brown, moist, very dense		6	SS	50/ 50mm		120	- - - -						0						
							125	-												
					50/			- - -												
	reddish brown below 6.1m		7	SS	50/ 50mm	,		-						0						
							124	-										-		
								- - - -												
3.0		Ι.Ι.Ι. ΙφίΙ.						-												
7.6	GRAVELLY SAND: trace silt,	 					123	<u> </u>										1		
2.4	reddish brown, wet, very dense	.O.	8	SS	56			-						(
8.2	END OF BOREHOLE: Notes: 1) Water at depth of 7.6m during drilling.																			

Appendix B

1300, 1316, 1326 and 1342 Bronte Road, Oakville- MECP Water Well Records

OAKVILLE TOWN 17 W 601297 4807895 012/12 724 2 2 3 4807805 012/12 724 2 4807805 012/12 724 2 4807805 012/12 724 2 4807805 012/12 724 2 4807805 012/12 724 2 4807805 012/12 724 2 4807805 012/12 724 4807805 012/12 724 1.5 4807805 012/12 724	MONINGINE		_		DAME CNIME	a service	TAYA MED	DIMED INDOM	TATELY TION	CODDEN	*****	MATERIA TO A CO	FORMATION
OAKVILLE TOWN 17 W 601279 4907848 16/12 7230	TOWNSHIP	UTM	E	N	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	WELL TAG	FORMATION
OAKVILLE TOWN 17 W 601427 4807803 016/10 7247 2						_						,	
OAKVILLE TOWN 17 W 60127 4807803 12/12 724 2 2 2 2 2 2 2 2 2	OAKVILLE TOWN	17 W	601290	4807848	016/12 7230)					7283572		
OAKVILLE TOWN 17W 601529 4807889 012/12 724 15 TH 0004 10 7195257 7145288													
OAKVILLE TOWN 17 W 60159 4807889 012/12 724 15 "TH 0005 10 195255" A142618 0006 RED SHIE DINSE DOIS OF A 142619 1 10000 014 GREY SHIT SAND LOOS 0001 BRWN SHIT SAND ON OAKVILLE TOWN 17 W 60120" 4807889 012/12 724 15 "S" NO	OAKVILLE TOWN	17 W	601427	4807803	016/10 7247	7					7281131		
OAKVILLE TOWN 17 W 601306 4807903 012/12 724 1.5 TH 0005 10 7195256 (7164470) BRWN GRVL SAND LOOS 0001 BRWN SILT SAND OAKVILLE TOWN 17 W 601277 4807805 012/12 724 1.5 MO 0005 10 7195255 (7164470) BRWN GRVL SAND LOOS 0001 BRWN SILT SAND OAKVILLE TOWN 17 W 601078 4808354 012/12 724 1.5 TH 0015 10 7195255 (7164470) BRWN GRVL SAND LOOS 0001 BRWN SILT SAND OAKVILLE TOWN 17 W 601078 4808354 012/12 724 2 TH 0015 10 7195255 (7164470) BRWN GRVL SAND LOOS 0010 BRWN SILT SAND LOOS 0015 BRWN SILT SAND LOOS 0015 GRY SAND LOOS													
OAKVILLE TOWN 17 W 601274 8607868 012/12 724 1.5	OAKVILLE TOWN	17 W	601529	4807889	012/12 724	2			TH	0004 10	7195257	A142618	0006 RED SHLE DNSE 0014
OAKVILLE TOWN 17 W 601274 8607868 012/12 724 1.5													
OAKVILLE TOWN 17 W 601247 4807865 012/12 724 1.5 W 000510 7195255 A142688 CI (164473) BRWN CRVL. SAND LOOS 0001 BRWN SILT SAND LOOS 0015 BRWN SILT SAND LOOS 0016 BRWN SILT SAND LOOS 0015 BRWN SILT SAND LOOS 0015 BRWN SILT SAND LOOS 0016 BRWN SILT												,	
OAKVILLE TOWN 17 W 601249 4807868 012/12 724 1.5	OAKVILLE TOWN	17 W	601306	4807903	012/12 724	1.5			TH	0005 10	7195256	A142619	LOOS 0014 GREY SILT SAND LOOS 0015
OAKVILLE TOWN 17 W 601249 4807868 012/12 724 1.5													
OAKVILLE TOWN DS S Q 203												,	
OAKVILLE TOWN 17 W 601249 4807868 012/12 724 1.5	OAKVILLE TOWN	17 W	601277	4807885	012/12 724	1.5			MO	0005 10	7195255	A142688	LOOS 0014 GREY SILT SAND LOOS 0015
OAKVILLE TOWN 17 W 601249 4807868 012/12 724 1.5													
OAKVILLE TOWN DS S 02 030 17 W 60105 4807772 975/05 130 30 FR 0034 24//4/1:0 ST DO 2804748 BLCK 0000 BRWN SILT SAND DNSE 0016 BRWN SILT SAND DNSE												,	
OAKVILLE TOWN DS 02 030	OAKVILLE TOWN	17 W	601249	4807868	012/12 724	1.5			TH	0005 10	7195254	A142689	LOOS 0014 GREY SILT SAND LOOS 0015
OAKVILLE TOWN DSS 02 030													BLCK 0000 BRWN SILT SAND DNSE 0016 BRWN
OAKVILLE TOWN DSS 02 030 17 W 601241 4808372 014/01714 2.4 FR 0019 0AKVILLE TOWN DSS 02 031 17 W 601357 4807754 952/05 164 6 FR 0041 30//8/1LE TOWN DSS 02 031 17 W 601357 4807834 016/05 714 35.4 35.4 UT 0012 0AKVILLE TOWN DSS 02 031 17 W 601055 6874 0025 0AKVILLE TOWN DSS 02 031 17 W 601055 6874 0035 6874 0035 6874 0033 6874 17 U 60105 0AKVILLE TOWN DSS 02 031 17 W 601050 0AKVIL												(Z164473)	SAND GRVL DNSE 0018 BRWN SILT SAND DNSE
OAKVILLE TOWN DS S Q 303	OAKVILLE TOWN	17 W	601078	4808354	012/12 724	2			TH	0015 10	7195253	A142690	0025
OAKVILLE TOWN DS S Q 303													
OAKVILLE TOWN DS S 02 030												` ,	BLCK 0000 BRWN SILT SAND 0019 BRWN SAND
OAKVILLE TOWN DS S Q 2030	OAKVILLE TOWN	17 W	601036	4808338	012/12 724	2			TH	0014 10	7195252	A142621	GRVL 0022 BRWN SILT SAND 0024
OAKVILLE TOWN DSS 02 030												(Z254689)	SAND TILL 0004 SILT TILL 0012 CLAY TILL 0021
OAKVILLE TOWN DS S 02 030									TH MO	0012 10		A187682	SAND MSND CSND 0022
OAKVILLE TOWN DSS 02 030	OAKVILLE TOWN DS S 02 030	17 W	601520	4807772	975/05 130	30	FR 0034	20//1/1:0	DO		2804747		
OAKVILLE TOWN DSS 02 030													
OAKVILLE TOWN DS S 02 030	OAKVILLE TOWN DS S 02 030	17 W	601465	4807662	975/05 130	30	FR 0034	24//4/1:0	ST DO		2804748		0032 GRVL 0034
OAKVILLE TOWN DS S 02 030													
OAKVILLE TOWN DSS 02 030 17 W 601241 4808372 014/01 714 2.4 FR 0019 MO 0010 10 7215534 A149690 0020 OAKVILLE TOWN DSS 02 030 17 W 601307 4807834 016/05 714 35.4 35.4 UT 0012 7264361 (Z228020) A CLAY 0041 OAKVILLE TOWN DSS 02 031 17 W 601287 4807803 971/11 363 27 30 0011 FR 00 8/27//1:0 DO 2803804 PRDR 0010 GREY CLAY 0013 GREY SAND 0016 OAKVILLE TOWN DSS 02 031 17 W 600954 4808064 963/10 460 6 FR 0037 27/37/14/1:0 DO 2802400 LOAM MSND 0004 BRWN CLAY 0015 GREY CLAY 0043 OAKVILLE TOWN DSS 02 031 17 W 60193 4807947 955/12 230 6 SA 0050 50///: NU 2802400 LOAM MSND 0004 BRWN CSND LOOS 0009 BRWN CSND GRVL LOOS 0016 GREY CLAY 0035 GREY CLAY GRVL LOOS 0016 GREY CLAY GRVL LOOS 0039 GREY CLAY GRYL LOOS 0039 GREY GRYL SAND PCKD 0047 BRWN GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL LOOS 0039 GREY CLAY GRVL DOS 0039 GREY	OAKVILLE TOWN DS S 02 030	17 W	601491	4807726	975/06 130	30	FR 0011	5//6/1:0	DO		2804749		BRWN LOAM SAND 0011 SAND GRVL 0015
OAKVILLE TOWN DSS 02 031												(Z180516)	BRWN SAND GRVL FILL 0010 BRWN SAND SILT
OAKVILLE TOWN DS S 02 031	OAKVILLE TOWN DS S 02 030	17 W	601241		,	2.4	FR 0019		MO	0010 10	7215534		0020
OAKVILLE TOWN DS S 02 031 17 W 601035 4807803 971/11 363 27 30 0011 FR 00 8/27//1:0 D0 2803804 PRDR 0010 GREY CLAY 0013 GREY SAND 0016 BLUE CLAY 0027 GREY GRVL 0029 OAKVILLE TOWN DS S 02 031 17 W 600954 4808064 963/10 460 6 FR 0037 27/37/14/1:0 D0 2802400 0033 GRVL CLAY 0043 GREY CLAY 0043 GREY CLAY 0043 GREY CLAY 0043 GREY CLAY 0045 GREY CLAY 0050 GREY CLAY 0050 GREY CLAY 0050 GREY CLAY GRVL LOOS 0060 BRWN CSND GRVL LOOS 0060 GREY CLAY GRVL LOOS 0099 BRWN SAND CLAY GRVL LOOS 0099 GREY GRVL SAND PCKD 0055 GREY CLAY GRVL LOOS 0039 GREY CLAY GRVL LOOS 0039 GREY CLAY GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN	OAKVILLE TOWN DS S 02 030	17 W	601307	4807834	016/05 714	35.4 35.4	UT 0012				7264361	(Z228020) A	
OAKVILLE TOWN DS S 02 031	OAKVILLE TOWN DS S 02 031	17 W	601287	4807754	952/05 164	6	FR 0041	30//8/:	DO		2802398		CLAY 0041
OAKVILLE TOWN DS S 02 031													
OAKVILLE TOWN DS S 02 031													PRDR 0010 GREY CLAY 0013 GREY SAND 0016
OAKVILLE TOWN DS \$ 02 031	OAKVILLE TOWN DS S 02 031	17 W	601035	4807803	971/11 363	27 30	0011 FR 00	8/27//1:0	DO		2803804		BLUE CLAY 0027 GREY GRVL 0029
OAKVILLE TOWN DS S 02 031 17 W 601093 4807947 955/12 230 6 SA 0050 50///: NU 2802399 CLAY 0035 GRVL 0060 BRWN CSND LOOS 0009 BRWN CSND GRVL LOOS 0016 GREY CLAY GRVL LOOS 0019 BRWN SAND CLAY GRVL LOOS 0019 BRWN GRVL LOOS 0039 GREY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													LOAM MSND 0004 BRWN CLAY 0015 GREY CLAY
BRWN CSND LOOS 0009 BRWN CSND GRVL LOOS 0016 GREY CLAY GRVL LOOS 0019 BRWN SAND CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN	OAKVILLE TOWN DS S 02 031	17 W	600954			6	FR 0037	27/37/14/1:0			2802400		
0016 GREY CLAY GRVL LOOS 0019 BRWN SAND CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN	OAKVILLE TOWN DS S 02 031	17 W	601093	4807947	955/12 230	6	SA 0050	50///:	NU		2802399		CLAY 0035 GRVL 0060
0016 GREY CLAY GRVL LOOS 0019 BRWN SAND CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													
0016 GREY CLAY GRVL LOOS 0019 BRWN SAND CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													
CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039 GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													BRWN CSND LOOS 0009 BRWN CSND GRVL LOOS
GREY GRVL SAND PCKD 0047 BRWN GRVL SAND PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													0016 GREY CLAY GRVL LOOS 0019 BRWN SAND
PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN													CLAY GRVL 0033 GREY CLAY GRVL LOOS 0039
													GREY GRVL SAND PCKD 0047 BRWN GRVL SAND
OAKVILLE TOWN DS S 02 031													PCKD 0055 GREY CLAY GRVL PCKD 0063 BRWN
	OAKVILLE TOWN DS S 02 031	17 W	601018	4807937	989/03 400	6	UK 0042	29/30/24/2:0	DO IR	00423	2807236		CLAY GRVL PCKD 0071 RED SHLE HARD 0083

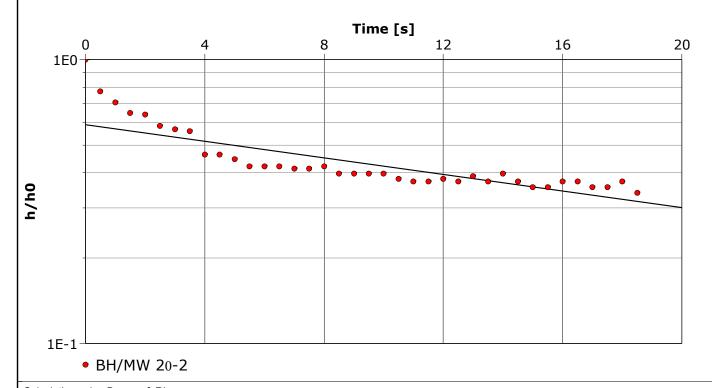
Appendix C

Slug Test Analysis Report Project: Hydrogelogical Investigation Number: 20-186-100 Client: Argo Development Corporation Location: 1326 Bronte Road, Oakville, ON Slug Test: BH/MW 20-1 Test Well: BH/MW 20-1 Test Conducted by: PP Test Date: 11/18/2021 Analysis Performed by: PP Bouwer & Rice Analysis Date: 11/18/2021 Aquifer Thickness: 4.21 m Time [s] 12 16 20 1E1h/h0 1E0-■ BH/MW 20-1 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s] 2.08 × 10⁻⁶ BH/MW 20-1

Slug Test Analysis Report Project: Hydrogelogical Investigation Number: 20-186-100 Client: Argo Development Corporation

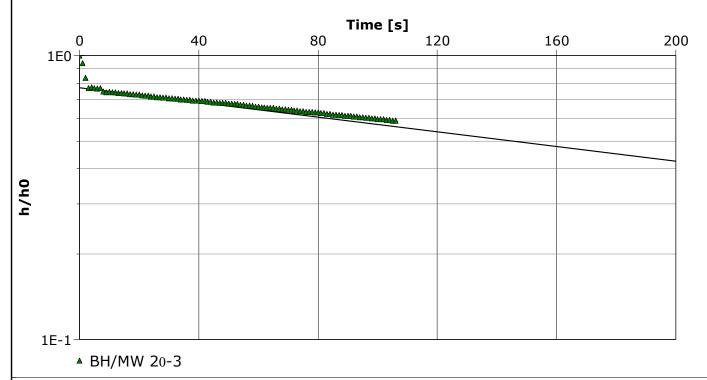
Location: 1326 Bronte Road, Oakville, ON Slug Test: BH/MW 20-2

Test Conducted by: PP


Test Date: 11/18/2021

Analysis Performed by: PP

Bouwer & Rice


Analysis Date: 11/18/2021

Aquifer Thickness: 1.61 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH/MW 20-2	1.03 × 10 ⁻⁵	


Slug Test Analysis Report Project: Hydrogelogical Investigation Number: 20-186-100 Argo Development Corporation Client: Location: 1326 Bronte Road, Oakville, ON Slug Test: BH/MW 20-3 Test Well: BH/MW 20-3 Test Conducted by: Test Date: 11/18/2021 Analysis Performed by: Bouwer& Rice Analysis Date: 11/18/2021 Aquifer Thickness: 2.81 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH/MW 20-3	1.03 × 10 ⁻⁶	

Slug Test Analysis Report Project: Hydrogelogical Investigation Number: 20-186-100 Client: Argo Development Corporation Location: 1326 Bronte Road, Oakville, ON Slug Test: BH/MW 20-5 Test Conducted by: PP Test Date: 11/18/2021 Analysis Performed by: Bouwer & Rice Analysis Date: 11/18/2021

Aquifer Thickness: 3.51 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH/MW 20-5	2.22 × 10 ⁻⁵	

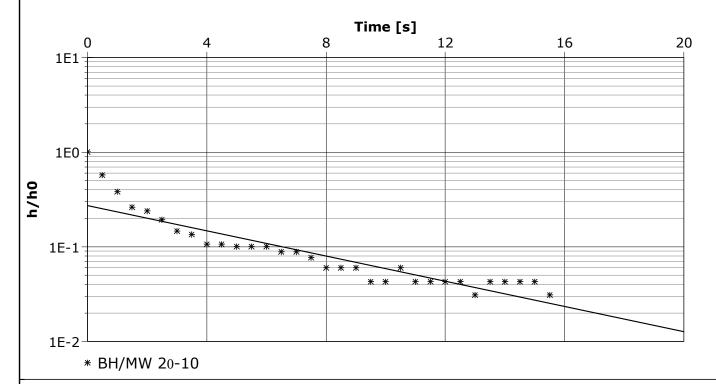
Slug Test Analysis Report Project: Hydrogelogical Investigation

Number: 20-186-100

Client: Argo Development Corporation

Location: 1326 Bronte Road, Oakville, ON Slug Test: BH/MW 20-10

Test Conducted by: PP


Test Date: 11/18/2021

Analysis Performed by: PP

Bouwer & Rice

Analysis Date: 11/18/2021

Aquifer Thickness: 3.71 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH/MW 20-10	5.61 × 10 ⁻⁵	

Appendix D

CA15892-MAY21 R1

20-186-100, 1326 Bronte Road, Oakville

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAI	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Pradeep Patel	Telephone	2165
Telephone	647-332-3482	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	pradeep.patel@dsconsultants.ca	SGS Reference	CA15892-MAY21
Project	20-186-100, 1326 Bronte Road, Oakville	Received	05/27/2021
Order Number		Approved	06/07/2021
Samples	Ground Water (1)	Report Number	CA15892-MAY21 R1
		Date Reported	06/07/2021

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:022085

Elevated result of <5cfu/100mL reported for Ecoli due to sample matrix.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-12
Exceedance Summary	13
QC Summary	14-25
Legend	26
Annexes	27

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

PACKAGE: SANSEW - Chloropheno					
PACKAGE: SANSEW - Chloropheno	I- /\A/ATED\		6-	ample Number	8
	IS (WATER)			•	
				Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Discharge - BL_2_03	Law - Sanitary and Combined	d Sewer	8	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Oakville - Storm Sewer Disc	harge - BL 2009 031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
	Office	KL	Li	LE	resuit
Chlorophenols					
Pentachlorophenol	mg/L	0.001		0.002	< 0.001
			0-	mania Nimat	0
PACKAGE: SANSEW - General Che	mistry		Sa	ample Number	8
(WATER)					
				Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By	Law - Sanitary and Combined	d Sewer	8	Sample Matrix	Ground Water
Discharge - BL_2_03					
L2 = SANSEW / WATER / Oakville - Storm Sewer Disc	harge - BL_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
i didiliotoi					
General Chemistry Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
General Chemistry	mg/L mg/L		300 350	15 15	< 4↑ 791
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids		2			
General Chemistry Biochemical Oxygen Demand (BOD5)	mg/L	2	350		791
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen	mg/L as N mg/L	2	350 100		791
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and In	mg/L as N mg/L	2	350 100	15	791 < 0.5
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and In	mg/L as N mg/L	2	350 100 Sa	15 ample Number	791 < 0.5
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and II (WATER)	mg/L as N mg/L norganics	2 2 0.5	350 100 Sa	15 ample Number	791 < 0.5 8 BH20-10
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and II (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By	mg/L as N mg/L norganics	2 2 0.5	350 100 Sa	15 ample Number	791 < 0.5 8 BH20-10
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and II (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By Discharge - BL_2_03	mg/L as N mg/L norganics	2 2 0.5	350 100 Sa	15 ample Number	791 < 0.5 8 BH20-10
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and It (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Disc	mg/L as N mg/L norganics Law - Sanitary and Combined	2 2 0.5	350 100 Sa	ample Number Sample Name Sample Matrix Sample Date	791 < 0.5 8 BH20-10 Ground Water 27/05/2021
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and III (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter	mg/L as N mg/L norganics	2 2 0.5	350 100 Sa	ample Number Sample Name Sample Matrix	791 < 0.5 8 BH20-10 Ground Water
General Chemistry Biochemical Oxygen Demand (BOD5) Total Suspended Solids Total Kjeldahl Nitrogen PACKAGE: SANSEW - Metals and It (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Disc	mg/L as N mg/L norganics Law - Sanitary and Combined	2 2 0.5	350 100 Sa	ample Number Sample Name Sample Matrix Sample Date	791 < 0.5 8 BH20-10 Ground Water 27/05/2021

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel Samplers: Pardeep Patel

PACKAGE: SANSEW - Metals and Inorganics

Sample Number

(WATER)

Sample Name

BH20-10 Sample Matrix Ground Water

8

L1 = SANSEW / WATER / - - Halton Sewer Discharge By Law - Sanitary and Combined Sewer

ischarge - BL_2_03	Camary and Combine			•	
2 = SANSEW / WATER / Oakville - Storm Sewer Discharg	ge - BL_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
letals and Inorganics (continued)					
Fluoride	mg/L	0.06	10		0.06
Sulphate	mg/L	0.2	1500		16
Aluminum (total)	mg/L	0.001	50		21.6
Aluminum (0.2µm)	mg/L	0.001			0.005
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0093
Beryllium (total)	mg/L	0.00000	5		0.00113
		7			
Cadmium (total)	mg/L	0.00000	1	0.008	0.000268
		3			
Chromium (total)	mg/L	0.00008	3	0.08	0.0284
Cobalt (total)	mg/L	0.00000	5		0.0180
		4			
Copper (total)	mg/L	0.0002	3	0.04	0.0545
Iron (total)	mg/L	0.007	50		34.3
Lead (total)	mg/L	0.00009	3	0.12	0.0282
Manganese (total)	mg/L	0.00001	5	0.05	1.28
Molybdenum (total)	mg/L	0.00004	5		0.00075
Nickel (total)	mg/L	0.0001	3	0.08	0.0363
Phosphorus (total)	mg/L	0.003	10	0.4	0.773
Selenium (total)	mg/L	0.00004	5	0.02	0.00020
Silver (total)	mg/L	0.00005	5	0.12	0.00007

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel
Samplers: Pardeep Patel

PACKAGE: SANSEW - Metals and Inorgan	ics		Si	ample Number	8
(WATER)					
(WATER)				Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - San	itary and Combine	ad Sawer		Sample Matrix	Ground Water
Discharge - BL_2_03	itary and combine	eu Sewei			
L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL	_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Tin (total)	mg/L	0.00006	5		0.00083
Titanium (total)	mg/L	0.00005	5		0.121
Zinc (total)	mg/L	0.002	3	0.04	0.110
			0.	l- N ll	0
PACKAGE: SANSEW - Microbiology (WATI	ER)			ample Number	8
				Sample Name	BH20-10
_1 = SANSEW / WATER / Halton Sewer Discharge By Law - San Discharge - BL_2_03	itary and Combine	ed Sewer		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL	_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Microbiology					
E. Coli	cfu/100mL	-		200	< 5↑
PACKAGE: SANSEW - Nonylphenol and			S	ample Number	8
Ethoxylates (WATER)					
				Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - San	itary and Combine	ed Sewer		Sample Matrix	Ground Water
Discharge - BL_2_03				0	07/05/0004
L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL				Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates				I	< 0.001

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel
Samplers: Pardeep Patel

					_
PACKAGE: SANSEW - Nonylphenol 8	and		Sa	mple Number	8
thoxylates (WATER)					
			5	Sample Name	BH20-10
.1 = SANSEW / WATER / Halton Sewer Discharge By L	Law - Sanitary and Combine	ed Sewer	8	Sample Matrix	Ground Water
Discharge - BL_2_03				Comple Date	27/05/2021
_2 = SANSEW / WATER / Oakville - Storm Sewer Disch				Sample Date	
Parameter	Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates (continu	ied)				
Nonylphenol Ethoxylates	mg/L	0.01		0.01	< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
			0-	ample Number	8
PACKAGE: SANSEW - Oil and Greas	SE (WATER)			•	
				Sample Name	
1 = SANSEW / WATER / Halton Sewer Discharge By L Discharge - BL_2_03	Law - Sanitary and Combine	ed Sewer		Sample Matrix	Ground Water
.2 = SANSEW / WATER / Oakville - Storm Sewer Disch	parge - BL 2009 031			Sample Date	27/05/2021
				Salliple Date	
Parameter	Units	RL	L1		Result
Parameter Oil and Grease	Units	RL		L2	Result
Oil and Grease					
Oil and Grease Oil & Grease (total)	mg/L	2	L1		< 2
Oil & Grease (total) Oil & Grease (animal/vegetable)	mg/L mg/L	2	L1 150		< 2 < 4
Oil & Grease (total)	mg/L	2	L1		< 2
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic)	mg/L mg/L mg/L	2	L1 150 15		< 2 < 4 < 4
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic)	mg/L mg/L mg/L	2	L1 150 15 Sa	L2	< 2 < 4 < 4
Oil and Grease Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP)	mg/L mg/L mg/L (WATER)	2 4 4	150 15 Sa	L2 L2 ample Number Sample Name	< 2 < 4 < 4 < 8 BH20-10
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP)	mg/L mg/L mg/L (WATER)	2 4 4	150 15 Sa	L2	< 2 < 4 < 4 8 BH20-10
Oil and Grease Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP) L1 = SANSEW / WATER / Halton Sewer Discharge By L Discharge - BL 2_03	mg/L mg/L mg/L (WATER)	2 4 4	150 15 Sa	L2 L2 ample Number Sample Name	< 2 < 4 < 4 8 BH20-10 Ground Water
Oil and Grease Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP) L1 = SANSEW / WATER / Halton Sewer Discharge By L Discharge - BL_2_03	mg/L mg/L mg/L (WATER)	2 4 4	150 15 Sa	L2 L2 ample Number Sample Name Sample Matrix	< 2 < 4 < 4 8 BH20-10 Ground Water
Oil and Grease Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP) L1 = SANSEW / WATER / Halton Sewer Discharge By L Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge	mg/L mg/L mg/L (WATER) Law - Sanitary and Combine harge - BL 2009_031	2 4 4	L1 150 15 Sa	L2 Imple Number Sample Name Sample Matrix Sample Date	< 2 < 4 < 4 < 8 BH20-10 Ground Water 27/05/2021
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic) PACKAGE: SANSEW - Other (ORP) 1 = SANSEW / WATER / Halton Sewer Discharge By L Discharge - BL _2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Disch Parameter	mg/L mg/L mg/L (WATER) Law - Sanitary and Combine harge - BL 2009_031	2 4 4	L1 150 15 Sa	L2 Imple Number Sample Name Sample Matrix Sample Date	< 2 < 4 < 4 < 8 BH20-10 Ground Water 27/05/2021

PACKAGE: SANSEW - Pesticides (WATER)

FINAL REPORT

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel
Samplers: Pardeep Patel

PACKAGE: SANSEW - Other (ORP) (WAT					
	TER)		Sa	ample Number	8
	,		,	Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa Discharge - BL_2_03	ınitary and Combini	ed Sewer	;	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - E	3L_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Other (ORP) (continued)					
Chromium VI	μg/L	0.2		40	< 0.2
Mercury (total)	mg/L	0.00001	0.05	0.0004	0.00001
					_
PACKAGE: SANSEW - PAHs (WATER)				ample Number	8
			,	Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa	initary and Combin	ed Sewer	,	Sample Matrix	Ground Water
Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - E	21 2000 021			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
PAHs	J				1100411
Benzo(b+j)fluoranthene		0.0001	T		< 0.0001
benzo(b+j)iluorantnene	mg/L	0.0001			~ 0.000 i
PACKAGE: SANSEW - PCBs (WATER)			Sa	ample Number	8
PACKAGE: SANSEW - PCBs (WATER)				ample Number Sample Name	8 BH20-10
PACKAGE: SANSEW - PCBs (WATER) L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa Discharge - BL_2_03	nitary and Combine	ed Sewer	;	•	
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa	-	ed Sewer	\$	Sample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa Discharge - BL_2_03	-	ned Sewer	\$	Sample Name	BH20-10 Ground Water
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - E	BL_2009_031		\$	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021
L1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sa Discharge - BL_2_03 L2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - E Parameter	BL_2009_031		\$	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021

BH20-10

Sample Number
Sample Name

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

PACKAGE: SANSEW - Pesticides (WA	ATER)		Sa	mple Number	8
			8	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Lav	w - Sanitary and Combine	ed Sewer	8	Sample Matrix	Ground Water
Discharge - BL_2_03					
L2 = SANSEW / WATER / Oakville - Storm Sewer Dischar	rge - BL_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Pesticides					
Hexachlorocyclohexane	mg/L	0.001		0.04	< 0.001
Aldrin + Dieldrin	mg/L	0.00002		8e-005	< 0.00002
Aldrin	mg/L	0.00002			< 0.00002
Dieldrin	mg/L	0.00002			< 0.00002
Chlordane (total)	mg/L	0.001		0.04	< 0.001
DDT+Metabolites	mg/L	0.00004			< 0.00004
Mirex	mg/L	0.001		0.04	< 0.001
		'			
PACKAGE: SANSEW - Phenols (WATI	ER)		Sa	mple Number	8
			8	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Lav	w - Sanitary and Combine	ed Sewer	s	Sample Matrix	Ground Water
ischarge - BL_2_03					
2 = SANSEW / WATER / Oakville - Storm Sewer Dischar	rge - BL_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

PACKAGE: SANSEW - SVOCs (WATER)			Sar	mple Number	8
			S	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanita ischarge - BL_2_03	tary and Combine	ed Sewer	s	Sample Matrix	Ground Water
2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_	_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
SVOCs					
PAHs (Total)	mg/L	-		0.002	< 0.001
di-n-Butyl Phthalate	mg/L	0.002		0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		0.0088	< 0.002
3,3-Dichlorobenzidine	mg/L	0.0005		0.0008	< 0.0005
Hexachlorobenzene	mg/L	0.00001		4e-005	< 0.0001↑
PACKAGE: Sansew - Svocs - Pahs (WA	ATER)			mple Number Sample Name	8 BH20-10
PACKAGE: SANSEW - SVOCs - PAHs (WA 1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitischarge - BL_2_03		ed Sewer	s	Sample Name	BH20-10 Ground Water
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanita	itary and Combine		s	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Saniti ischarge - BL_2_03	itary and Combine	ned Sewer	s	Sample Name	BH20-10 Ground Water
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitr ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_	itary and Combine		s s	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitalischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter	itary and Combine		s s	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitrischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHS	_2009_031 Units	RL	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitrischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHs Naphthalene	_2009_031 Units mg/L	RL 0.0005	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHs Naphthalene Anthracene	_2009_031 Units mg/L mg/L	RL 0.0005 0.0001	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitrischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHs Naphthalene Anthracene Benzo(a)anthracene	_2009_031 Units mg/L mg/L mg/L	RL 0.0005 0.0001 0.0001	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001 < 0.0001
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitrischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHs Naphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene	2009_031 Units mg/L mg/L mg/L mg/L	RL 0.0005 0.0001 0.0001 0.0001	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001 < 0.0001
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHs Naphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(ghi)perylene		RL 0.0005 0.0001 0.0001 0.0001 0.0002	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0002
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCS - PAHS Naphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(ghi)perylene Benzo(k)fluoranthene		RL 0.0005 0.0001 0.0001 0.0001 0.0002 0.0001	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001 < 0.0001 < 0.0002 < 0.0001
1 = SANSEW / WATER / Halton Sewer Discharge By Law - Sanitrischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge - BL_ Parameter SVOCs - PAHS Naphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	RL 0.0005 0.0001 0.0001 0.0002 0.0001 0.0001	S S L1	Sample Name Sample Matrix Sample Date	BH20-10 Ground Water 27/05/2021 Result < 0.0005 < 0.0001 < 0.0001 < 0.0002 < 0.0001 < 0.0001

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

			_		_
PACKAGE: Sansew - Svocs - Pahs ((WATER)		Sai	mple Number	8
			8	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Law - ischarge - BL_2_03	- Sanitary and Combine	ed Sewer	S	Sample Matrix	Ground Water
2 = SANSEW / WATER / Oakville - Storm Sewer Discharge	e - BL_2009_031			Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
SVOCs - PAHs (continued)					
Phenanthrene	mg/L	0.0001			< 0.0001
Pyrene	mg/L	0.0001			< 0.0001
PACKAGE: SANSEW - VOCs (WATER))		Sa	mple Number	8
			8	Sample Name	BH20-10
1 = SANSEW / WATER / Halton Sewer Discharge By Law -	- Sanitary and Combine	ed Sewer	s	Sample Matrix	Ground Water
1 = SANSEW / WATER / Halton Sewer Discharge By Law - ischarge - BL_2_03	- Sanitary and Combine	ed Sewer		•	
		ed Sewer		Sample Matrix Sample Date	Ground Water 27/05/2021
ischarge - BL_2_03		ed Sewer		•	
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge	e - BL_2009_031			Sample Date	27/05/2021
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter	e - BL_2009_031			Sample Date	27/05/2021
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform	e - BL_2009_031 Units mg/L	RL	L1	Sample Date L2 0.002	27/05/2021 Result
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene	e - BL_2009_031 Units mg/L mg/L	RL 0.0005 0.0005	L1 0.04	0.002 0.0056	27/05/2021 Result < 0.0005
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene	e - BL_2009_031 Units mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005	L1	0.002 0.0056 0.0068	27/05/2021 Result < 0.0005 < 0.0005
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethylene	mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005 0.0005	L1 0.04	0.002 0.0056 0.0056	27/05/2021 Result < 0.0005 < 0.0005 < 0.0005 < 0.0005
parameter Cocs Chloroform 1,2-Dichlorobenzene 1,4-Dichloroethylene trans-1,3-Dichloropropene	mg/L mg/L mg/L mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005 0.0005 0.0005	0.04 0.08	0.002 0.0056 0.0056 0.0056	27/05/2021 Result < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethylene trans-1,3-Dichloropropene Methylene Chloride	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.04 0.08	0.002 0.0056 0.0056 0.0056 0.0056	27/05/2021 Result < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
ischarge - BL_2_03 2 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethylene trans-1,3-Dichloropropene Methylene Chloride Tetrachloroethylene (perchloroethylene)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.04 0.08	0.002 0.0056 0.0056 0.0056 0.0056 0.0052	27/05/2021 Result < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005
scharge - BL_2_03 = SANSEW / WATER / Oakville - Storm Sewer Discharge Parameter OCS Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene cis-1,2-Dichloroethylene trans-1,3-Dichloropropene Methylene Chloride	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	RL 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.04 0.08	0.002 0.0056 0.0056 0.0056 0.0056	27/05/2021 Result < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

PACKAGE: SANSEW - VOCs - BTE	X (WATER)		Sar	nple Number	8
			s	ample Name	BH20-10
L1 = SANSEW / WATER / Halton Sewer Discharge By	y Law - Sanitary and Combined	d Sewer	s	ample Matrix	Ground Water
Discharge - BL_2_03					
.2 = SANSEW / WATER / Oakville - Storm Sewer Dis	scharge - BL_2009_031		;	Sample Date	27/05/2021
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene		0.0005	0.016	0.002	< 0.0005
	mg/L		0.016	0.002	
Xylene (total)	mg/L	0.0005			< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

				SANSEW / WATER	SANSEW / WATER
				/ Halton Sewer	/ Oakville -
				Discharge By Law -	Storm Sewer
				Sanitary and	Discharge -
				Combined Sewer	BL_2009_031
				Discharge -	
				BL_2_03	
Parameter	Method	Units	Result	L1	L2

BH20-10

Hexachlorobenzene	EPA 3510C/8270D	mg/L	< 0.0001		4e-005
Total Suspended Solids	SM 2540D	mg/L	791	350	15
Copper	SM 3030/EPA 200.8	mg/L	0.0545		0.04
Manganese	SM 3030/EPA 200.8	mg/L	1.28		0.05
Phosphorus	SM 3030/EPA 200.8	mg/L	0.773		0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.110		0.04

20210607 13 / 27

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
								Low	High	(%)	Low	High
Sulphate	DIO0566-MAY21	mg/L	0.2	<0.2	17	20	93	80	120	124	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0064-MAY21	mg/L	2	< 2	12	30	113	70	130	NV	70	130

Chlorophenols and Phenoxyacid Herbicides

Method: EPA 515.1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-003

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
								Low	High	(%)	Low	High
Pentachlorophenol	GCM0013-JUN21	mg/L	0.001	< 0.001	ND	30	92	50	140	94	50	140

20210607 14 / 27

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	its RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0283-MAY21	mg/L	0.01	<0.01	ND	10	90	90	110	NV	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0542-MAY21	mg/L	0.06	<0.06	ND	10	106	90	110	103	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference		Blank	Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0282-MAY21	ug/L	0.2	<0.2	ND	20	104	80	120	96	75	125

20210607 15 / 27

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
Ref	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0029-MAY21	mg/L	0.00001	< 0.00001	ND	20	101	80	120	115	70	130

20210607 16 / 27

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>!</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0150-MAY21	mg/L	0.00005	<0.00005	ND	20	106	90	110	118	70	130
Aluminum (total)	EMS0150-MAY21	mg/L	0.001	<0.001	2	20	103	90	110	115	70	130
Aluminum (0.2μm)	EMS0150-MAY21	mg/L	0.001	<0.001	2	20	103	90	110	115	70	130
Arsenic (total)	EMS0150-MAY21	mg/L	0.0002	<0.0002	5	20	105	90	110	108	70	130
Beryllium (total)	EMS0150-MAY21	mg/L	0.000007	<0.00007	ND	20	93	90	110	102	70	130
Cadmium (total)	EMS0150-MAY21	mg/L	0.000003	<0.000003	6	20	101	90	110	96	70	130
Cobalt (total)	EMS0150-MAY21	mg/L	0.000004	<0.000004	8	20	104	90	110	89	70	130
Chromium (total)	EMS0150-MAY21	mg/L	0.00008	<0.00008	ND	20	104	90	110	115	70	130
Copper (total)	EMS0150-MAY21	mg/L	0.0002	<0.0002	3	20	100	90	110	120	70	130
Iron (total)	EMS0150-MAY21	mg/L	0.007	<0.007	0	20	93	90	110	125	70	130
Manganese (total)	EMS0150-MAY21	mg/L	0.00001	<0.00001	6	20	103	90	110	103	70	130
Molybdenum (total)	EMS0150-MAY21	mg/L	0.00004	<0.00004	18	20	100	90	110	107	70	130
Nickel (total)	EMS0150-MAY21	mg/L	0.0001	<0.0001	8	20	98	90	110	94	70	130
Lead (total)	EMS0150-MAY21	mg/L	0.00009	<0.00001	ND	20	109	90	110	117	70	130
Phosphorus (total)	EMS0150-MAY21	mg/L	0.003	<0.003	0	20	94	90	110	NV	70	130
Antimony (total)	EMS0150-MAY21	mg/L	0.0009	<0.0009	ND	20	103	90	110	113	70	130
Selenium (total)	EMS0150-MAY21	mg/L	0.00004	<0.00004	8	20	100	90	110	125	70	130
Tin (total)	EMS0150-MAY21	mg/L	0.00006	<0.00006	10	20	104	90	110	NV	70	130
Titanium (total)	EMS0150-MAY21	mg/L	0.00005	<0.00005	14	20	102	90	110	NV	70	130
Zinc (total)	EMS0150-MAY21	mg/L	0.002	<0.002	8	20	98	90	110	114	70	130

20210607 17 / 27

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	=
					(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9483-MAY21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0480-MAY21	mg/L	0.01	<0.01			93	55	120			
Nonylphenol Ethoxylates	GCM0480-MAY21	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0480-MAY21	mg/L	0.01	<0.01			94	55	120			
Nonylphenol	GCM0480-MAY21	mg/L	0.001	<0.001			90	55	120			

20210607 18 / 27

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0505-MAY21	mg/L	2	<2	NSS	20	105	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0505-MAY21	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0505-MAY21	mg/L	4	< 4	NSS	20	NA	70	130			

20210607 19 / 27

QC SUMMARY

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Aldrin	GCM0496-MAY21	mg/L	0.00002	< 0.00002	ND	30	91	50	140	96	50	140
Dieldrin	GCM0496-MAY21	mg/L	0.00002	< 0.00002	ND	30	98	50	140	105	50	140
Hexachlorocyclohexane	GCM0496-MAY21	mg/L	0.001	< 0.001	ND	30	93	50	140	92	50	140
Mirex	GCM0496-MAY21	mg/L	0.001	< 0.001	ND	30	97	50	140	106	50	140

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		м	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recover	ry Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0539-MAY21	No unit	0.05	NA	0		99			NA		

20210607 20 / 27

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0018-JUN21	mg/L	0.002	<0.002	ND	10	103	80	120	107	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0043-JUN21	mg/L	0.0001	<0.0001	ND	30	98	60	140	113	60	140
Total												

20210607 21 / 27

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(19)	(%)	Low	High	(%)	Low	High
3,3-Dichlorobenzidine	GCM0471-MAY21	mg/L	0.0005	< 0.0005	NSS	30	88	30	130	NSS	30	130
Anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Benzo(a)anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Benzo(a)pyrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	100	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0472-MAY21	mg/L	0.0002	< 0.0002	NSS	30	96	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0472-MAY21	mg/L	0.002	< 0.002	NSS	30	103	50	140	NSS	50	140
Chrysene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	101	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0472-MAY21	mg/L	0.002	< 0.002	NSS	30	111	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	96	50	140	NSS	50	140
Fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Hexachlorobenzene	GCM0472-MAY21	mg/L	0.00001	< 0.0001	NSS	30	86	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0472-MAY21	mg/L	0.0002	< 0.0002	NSS	30	96	50	140	NSS	50	140
Naphthalene	GCM0472-MAY21	mg/L	0.0005	< 0.0005	NSS	30	80	50	140	NSS	50	140
Phenanthrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Pyrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140

20210607 22 / 27

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0567-MAY21	mg/L	2	< 2	0	10	97	90	110	NA			

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	Units RL	RL Method Blank	Duplicate		LC	S/Spike Blank		м	atrix Spike / Ref	· .
	Reference				RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
							(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0289-MAY21	as N mg/L	0.5	<0.5	5	10	103	90	110	88	75	125

20210607 23 / 27

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery		ory Limits %)	
						(76)	(%)	Low	High	(%)	Low	High	
1,1,2,2-Tetrachloroethane	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	87	60	130	84	50	140	
1,2-Dichlorobenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	96	60	130	94	50	140	
1,4-Dichlorobenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	97	60	130	95	50	140	
Benzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	113	60	130	110	50	140	
Chloroform	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	108	60	130	104	50	140	
cis-1,2-Dichloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	110	60	130	109	50	140	
Ethylbenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	102	50	140	
m-p-xylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	104	60	130	103	50	140	
Methylene Chloride	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	106	60	130	100	50	140	
o-xylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	101	50	140	
Tetrachloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	108	60	130	106	50	140	
(perchloroethylene)													
Toluene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	106	60	130	106	50	140	
trans-1,3-Dichloropropene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140	
Trichloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	110	60	130	107	50	140	

20210607 24 / 27

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210607 25 / 27

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210607 26 / 27

Request for Laboratory Services and CHAIN OF CUSTODY

No: 022085

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment -London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Relin	Sam	Obs	12	1	10	9	00	7	6	5	4	ω	2	-			Soil				Email:	Phone: Fax:		Add	Con		Rece	Zec	1
Relinquished by (NAME):	Sampled By (NAME):	Observations/Comments/Special Instructions		120										BH 20	SAMPLE IDE	RECORD OF	Soil Volume	Table 1	O.Reg 153/04	1	11: pradecy.	one: Eu)	BARON 600	1	Contact: Prad	REPORT IN	Received Time: Lb :		
Br. deep	Praders F	R												110	SAMPLE IDENTIFICATION	SITE CONDITION (RSC)	□ >350m3	Res/Park Soil Texture: Ind/Com Coarse Agri/Other Medium/Fine	O.Reg 406/19	REGI	px/el@ dscennul	35 38W		14 16 7	dect Parel	REPORT INFORMATION	(hr:min)	TO TO THE PERSON OF THE PERSON	
parer	ried,	no Compi												May 21/2,	DATE SAMPLED	□YES □	ODWS Not R	Reg 347/558 PWQO CCME MISA	Other Regulations:	REGULATIONS	Email:	Phone:	Address:	Contact:	Company:	INI			
Sig	Sig	are A											,	p.m.	TIME SAMPLED B	NO	ODWS Not Reportable *See note	Reg 347/558 (3 Day min TAT) PWQO MMER COME Other: MISA	S:						as Report Information)	INVOICE INFORMATION	Custody Seal Intact:	Received by (signature)	
Signature:	Signature:	a resu												20 4	# OF MA		ote	Municipality: 16	Sewer By-Law:						n)	MATION	act: Yes	- 2	Dallico.
0,0	0. A-P.	gults of			_									X	MATRIX Field Filtered	(Y/N	l)		Law:		Spec	PLEA	ļ		Quotation Project #:		z 8	1	
- P. KE	" Let	Pensy													Metals & Inorinci CrVI, CN,Hg pH,(B(HV)(Cl, Na-water) Full Metals St	uite oil only			M & -		Specify Due Date:	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	Regular		ation #:		Tempe	Carolin	The state of the s
		PWC	1853		10.		89%	WE							ICP Metals onl Sb,As,Ba,Be,B,Cd,Cr,Co,G	l y Cu,Pb,I	Mo,Ni,		SVOC			A RUSH FEA	Regular TAT (5-7days)		201		Temperature Upon Receipt (°C)	Anna Droppe	
		aB			0										SVOCS all incl PAHS, ABNS, CPS PCBs Total F1-F4 + BTEX			Aroclor	РСВ	AN		SIBILITY WIT			86 T vo		ceipt (°C)	1	
															F1-F4 only no BTEX VOCs all incl BTEX				PHC V	ALYSIS F	NOTE: D	∐1 H SGS REPR		TURNA			3,5	1	
Date Man 1 20 1 2021	202 (47) half : Date														Pesticides Organochlorine or spec	ify other	er		VOC Pest	ANALYSIS REQUESTED	RINKING (POTA	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION		TURNAROUND TIME (TAT) REQUIRED			1	4.21	
19212	2/11/														Oakivill Estorm	8	S	intary	Other	ŒD	WITH SGS DRI	TATIVE PRIOR TO SUBMISSION	Samples rece	E (TAT) REQU	P.O. #: Site Location/ID:				
	^														Appendix 2: 406/ Screening Levels			ate	1er (please specify)		SAMPLES FOR NKING WATER	S 4 Days	oted in business sived after 6pm	JIRED	ation/ID: /3				
mm/dd/vy) 4:15%	(mm/dd/gy) 15 /														Sewer Use: Specify pkg: Water Charact General	Ext	tended				CHAIN OF CU	#I	or on weekends		8		LAB LIMS #:		
	Pink C												v	Nov	□B(a)P □ABN □Ignit.			Specify TCLP tests	TCLP		SUMPTION ML		s: TAT begins		Brownte P		N.	SOS	1
Yellow & White Copy - SGS	Pink Copy - Client												1	v dillero		COMINICIA I G.	OMMENTS:				*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY		IA i's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day		Part, Catevill		INS# MAY2	-7	

Date of Issue: 22 May, 2020

Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA15892-MAY21 R1

20-186-100, 1326 Bronte Road, Oakville

Prepared for

DS Consultants

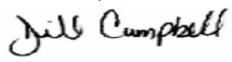
First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Pradeep Patel	Telephone	2165
Telephone	647-332-3482	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	pradeep.patel@dsconsultants.ca	SGS Reference	CA15892-MAY21
Project	20-186-100, 1326 Bronte Road, Oakville	Received	05/27/2021
Order Number		Approved	06/07/2021
Samples	Ground Water (1)	Report Number	CA15892-MAY21 R1
		Date Reported	08/16/2021

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 9 degrees C


Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:022085

Elevated result of <5cfu/100mL reported for Ecoli due to sample matrix.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

TABLE OF CONTENTS

First Page	1-2
Index	3
Results.	4-8
Exceedance Summary	9
QC Summary	10-21
Legend	22
Annexes	23

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

			Comple Niverhau	0
PACKAGE: Chlorophenols (WATER)			Sample Number	8
			Sample Name	BH20-10
_1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	3 3303E		Sample Matrix	Ground Water
			Sample Date	27/05/2021
Parameter	Units	RL	L1	Result
Chlorophenols				
Pentachlorophenol	mg/L	0.001		< 0.001
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑
Total Suspended Solids	mg/L	2		791
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Cyanide (total)	mg/L	0.01		< 0.01
Fluoride	mg/L	0.06		0.06
Sulphate	mg/L	0.2		16
Aluminum (total)	mg/L	0.001	0.075	21.6
Aluminum (0.2μm)	mg/L	0.001	0.015	0.005
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0093
Beryllium (total)	mg/L	0.00000	0.011	0.00113
		7		
Cadmium (total)	mg/L	0.00000	0.0001	0.000268
		3		
Chromium (total)	mg/L	0.00008	0.1	0.0284
Cobalt (total)	mg/L	0.00000	0.0009	0.0180
		4		
Copper (total)	mg/L	0.0002	0.001	0.0545
Iron (total)	mg/L	0.007	0.3	34.3
Lead (total)	mg/L	0.00009	0.011	0.0282

Nonylphenol monoethoxylate

mg/L

0.01

FINAL REPORT

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel
Samplers: Pardeep Patel

	<u> </u>			
PACKAGE: Metals and Inorganics (WATI	ER)		Sample Number	8
			Sample Name	BH20-10
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	3 3303E		Sample Matrix	Ground Water
			Sample Date	27/05/2021
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Manganese (total)	mg/L	0.00001		1.28
Molybdenum (total)	mg/L	0.00004	0.04	0.00075
Nickel (total)	mg/L	0.0001	0.025	0.0363
Phosphorus (total)	mg/L	0.003	0.01	0.773
Selenium (total)	mg/L	0.00004	0.1	0.00020
Silver (total)	mg/L	0.00005	0.0001	0.00007
Tin (total)	mg/L	0.00006		0.00083
Titanium (total)	mg/L	0.00005		0.121
Zinc (total)	mg/L	0.002	0.02	0.110
Microbiology				
E. Coli	cfu/100mL	0	100	< 5↑
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Nonylphenol diethoxylate	mg/L	0.01		< 0.01
··· ·				

< 0.01

Mirex

FINAL REPORT

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

PACKAGE: Oil and Grease (WATER)			Sample Number	8
			Sample Name	BH20-10
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	S 3303E		Sample Matrix	Ground Water
			Sample Date	27/05/2021
Parameter	Units	RL	L1	Result
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4
Other (ORP)				
рН	No unit	0.05	8.6	7.48
Chromium VI	μg/L	0.2	1	< 0.2
Mercury (total)	mg/L	0.00001	0.0002	0.00001
PAHs				
Benzo(b+j)fluoranthene	mg/L	0.0001		< 0.0001
PCBs	g/L	0.0001		
				< 0.0001
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Pesticides				
Hexachlorocyclohexane	mg/L	0.001		< 0.001
Aldrin + Dieldrin	mg/L	0.00002	1e-006	< 0.00002
Aldrin	mg/L	0.00002		< 0.00002
Dieldrin	mg/L	0.00002		< 0.00002
Chlordane (total)	mg/L	0.001	6e-005	< 0.001
DDT+Metabolites	mg/L	0.00004	3e-006	< 0.00004

< 0.001

0.001

mg/L

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel

Samplers: Pardeep Patel

10//10F 5 1			Comple Number	8
ACKAGE: Phenols (WATER)			Sample Number	
			Sample Name	BH20-10
= PWQO_L / WATER / Table 2 - General - July 1999 F	PIBS 3303E		Sample Matrix	
			Sample Date	27/05/2021
Parameter	Units	RL	L1	Result
henols				
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
VOCs				
PAHs (Total)	mg/L			< 0.001
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
3,3-Dichlorobenzidine	mg/L	0.0005		< 0.0005
Hexachlorobenzene	mg/L	0.00001	6.5e-00	< 0.0001↑
	· ·		6	
VOCs - PAHs				
Naphthalene	mg/L	0.0005	0.007	< 0.0005
Anthracene	mg/L	0.0001	8e-007	< 0.0001
Benzo(a)anthracene	mg/L	0.0001	4e-007	< 0.0001
Benzo(a)pyrene	mg/L	0.0001		< 0.0001
Benzo(ghi)perylene	mg/L	0.0002	2e-008	< 0.0002
Benzo(k)fluoranthene	mg/L	0.0001	2e-007	< 0.0001
Chrysene	mg/L	0.0001	1e-007	< 0.0001
Dibenzo(a,h)anthracene	mg/L	0.0001	2e-006	< 0.0001
Fluoranthene	mg/L	0.0001	8e-007	< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L	0.0002	33 331	< 0.0002
	mg/L	0.0001	3e-005	< 0.0001
Phenanthrene				

CA15892-MAY21 R1

Client: DS Consultants

Project: 20-186-100, 1326 Bronte Road, Oakville

Project Manager: Pradeep Patel
Samplers: Pardeep Patel

PACKAGE: VOCs (WATER) Sample Number

Sample Name BH20-10

8

			Sample Name	BH20-10	
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	S 3303E		Sample Matrix	Ground Water	
			Sample Date	27/05/2021	
Parameter	Units	RL	L1	Result	
VOCs					
Chloroform	mg/L	0.0005		< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005	
cis-1,2-Dichloroethylene	mg/L	0.0005		< 0.0005	
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005	
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005	
VOCs - BTEX					
Benzene	mg/L	0.0005	0.1	< 0.0005	
Ethylbenzene	mg/L	0.0005	0.008	< 0.0005	
Toluene	mg/L	0.0005	0.0008	< 0.0005	
Xylene (total)	mg/L	0.0005		< 0.0005	
m-p-xylene	mg/L	0.0005	0.002	< 0.0005	
o-xylene	mg/L	0.0005	0.04	< 0.0005	

EXCEEDANCE SUMMARY

PWQO_L / WATER

/ - - Table 2 -

General - July 1999

PIBS 3303E

Parameter Method Units Result L1

BH20-10

Aldrin + Dieldrin	EPA 3510C/8270D	mg/L	< 0.00002	1e-006
Anthracene	EPA 3510C/8270D	mg/L	< 0.0001	8e-007
Benz(a)anthracene	EPA 3510C/8270D	mg/L	< 0.0001	4e-007
Benzo(g,h,i)perylene	EPA 3510C/8270D	mg/L	< 0.0002	2e-008
Benzo(k)fluoranthene	EPA 3510C/8270D	mg/L	< 0.0001	2e-007
Chlordane	EPA 3510C/8270D	mg/L	< 0.001	6e-005
Chrysene	EPA 3510C/8270D	mg/L	< 0.0001	1e-007
DDT+Metabolites	EPA 3510C/8270D	mg/L	< 0.00004	3e-006
Dibenz(a,h)anthracene	EPA 3510C/8270D	mg/L	< 0.0001	2e-006
Fluoranthene	EPA 3510C/8270D	mg/L	< 0.0001	8e-007
Hexachlorobenzene	EPA 3510C/8270D	mg/L	< 0.0001	6.5e-006
Phenanthrene	EPA 3510C/8270D	mg/L	< 0.0001	3e-005
Aluminum	SM 3030/EPA 200.8	mg/L	21.6	0.075
Arsenic	SM 3030/EPA 200.8	mg/L	0.0093	0.005
Cadmium	SM 3030/EPA 200.8	mg/L	0.000268	0.0001
Cobalt	SM 3030/EPA 200.8	mg/L	0.0180	0.0009
Copper	SM 3030/EPA 200.8	mg/L	0.0545	0.001
Iron	SM 3030/EPA 200.8	mg/L	34.3	0.3
Lead	SM 3030/EPA 200.8	mg/L	0.0282	0.011
Nickel	SM 3030/EPA 200.8	mg/L	0.0363	0.025
Phosphorus	SM 3030/EPA 200.8	mg/L	0.773	0.01
Zinc	SM 3030/EPA 200.8	mg/L	0.110	0.02
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20210816 9 / 23

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO0566-MAY21	mg/L	0.2	<0.2	17	20	93	90	110	124	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0064-MAY21	mg/L	2	< 2	12	30	113	70	130	NV	70	130

Chlorophenols and Phenoxyacid Herbicides

Method: EPA 515.1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Pentachlorophenol	GCM0013-JUN21	mg/L	0.001	< 0.001	ND	30	92	50	140	94	50	140

20210816 10 / 23

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0283-MAY21	mg/L	0.01	<0.01	ND	10	90	90	110	NV	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)	
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Fluoride	EWL0542-MAY21	mg/L	0.06	<0.06	ND	10	106	90	110	103	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Chromium VI	SKA0282-MAY21	ug/L	0.2	<0.2	ND	20	104	80	120	96	75	125

20210816 11 / 23

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter QC batch Reference	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	•
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Mercury (total)	EHG0029-MAY21	mg/L	0.00001	< 0.00001	ND	20	101	80	120	115	70	130

20210816 12 / 23

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>!</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0150-MAY21	mg/L	0.00005	<0.00005	ND	20	106	90	110	118	70	130
Aluminum (total)	EMS0150-MAY21	mg/L	0.001	<0.001	2	20	103	90	110	115	70	130
Aluminum (0.2μm)	EMS0150-MAY21	mg/L	0.001	<1	2	20	103	90	110	115	70	130
Arsenic (total)	EMS0150-MAY21	mg/L	0.0002	<0.0002	5	20	105	90	110	108	70	130
Beryllium (total)	EMS0150-MAY21	mg/L	0.000007	<0.00007	ND	20	93	90	110	102	70	130
Cadmium (total)	EMS0150-MAY21	mg/L	0.000003	<0.000003	6	20	101	90	110	96	70	130
Cobalt (total)	EMS0150-MAY21	mg/L	0.000004	<0.000004	8	20	104	90	110	89	70	130
Chromium (total)	EMS0150-MAY21	mg/L	0.00008	<0.00008	ND	20	104	90	110	115	70	130
Copper (total)	EMS0150-MAY21	mg/L	0.0002	<0.0002	3	20	100	90	110	120	70	130
Iron (total)	EMS0150-MAY21	mg/L	0.007	<0.007	0	20	93	90	110	125	70	130
Manganese (total)	EMS0150-MAY21	mg/L	0.00001	<0.00001	6	20	103	90	110	103	70	130
Molybdenum (total)	EMS0150-MAY21	mg/L	0.00004	<0.00004	18	20	100	90	110	107	70	130
Nickel (total)	EMS0150-MAY21	mg/L	0.0001	<0.0001	8	20	98	90	110	94	70	130
Lead (total)	EMS0150-MAY21	mg/L	0.00009	<0.00001	ND	20	109	90	110	117	70	130
Phosphorus (total)	EMS0150-MAY21	mg/L	0.003	<0.003	0	20	94	90	110	NV	70	130
Antimony (total)	EMS0150-MAY21	mg/L	0.0009	<0.0009	ND	20	103	90	110	113	70	130
Selenium (total)	EMS0150-MAY21	mg/L	0.00004	<0.00004	8	20	100	90	110	125	70	130
Tin (total)	EMS0150-MAY21	mg/L	0.00006	<0.00006	10	20	104	90	110	NV	70	130
Titanium (total)	EMS0150-MAY21	mg/L	0.00005	<0.00005	14	20	102	90	110	NV	70	130
Zinc (total)	EMS0150-MAY21	mg/L	0.002	<0.002	8	20	98	90	110	114	70	130

20210816 13 / 23

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9483-MAY21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recover	ry Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0480-MAY21	mg/L	0.01	<0.01			93	55	120			
Nonylphenol Ethoxylates	GCM0480-MAY21	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0480-MAY21	mg/L	0.01	<0.01			94	55	120			
Nonylphenol	GCM0480-MAY21	mg/L	0.001	<0.001			90	55	120			

20210816 14 / 23

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0505-MAY21	mg/L	2	<2	NSS	20	105	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0505-MAY21	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0505-MAY21	mg/L	4	< 4	NSS	20	NA	70	130			

20210816 15 / 23

QC SUMMARY

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike Recovery	Recove	y Limits 6)	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Aldrin	GCM0496-MAY21	mg/L	0.00002	< 0.00002	ND	30	91	50	140	96	50	140
Dieldrin	GCM0496-MAY21	mg/L	0.00002	< 0.00002	ND	30	98	50	140	105	50	140
Hexachlorocyclohexane	GCM0496-MAY21	mg/L	0.001	< 0.001	ND	30	93	50	140	92	50	140
Mirex	GCM0496-MAY21	mg/L	0.001	< 0.001	ND	30	97	50	140	106	50	140

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	•
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0539-MAY21	No unit	0.05	NA	0		99			NA		

20210816 16 / 23

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0018-JUN21	mg/L	0.002	<0.002	ND	10	103	80	120	107	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0043-JUN21	mg/L	0.0001	<0.0001	ND	30	98	60	140	113	60	140
Total												

20210816 17 / 23

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(19)	(%)	Low	High	(%)	Low	High
3,3-Dichlorobenzidine	GCM0471-MAY21	mg/L	0.0005	< 0.0005	NSS	30	88	30	130	NSS	30	130
Anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Benzo(a)anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Benzo(a)pyrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	100	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0472-MAY21	mg/L	0.0002	< 0.0002	NSS	30	96	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	102	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0472-MAY21	mg/L	0.002	< 0.002	NSS	30	103	50	140	NSS	50	140
Chrysene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	101	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0472-MAY21	mg/L	0.002	< 0.002	NSS	30	111	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	96	50	140	NSS	50	140
Fluoranthene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Hexachlorobenzene	GCM0472-MAY21	mg/L	0.00001	< 0.0001	NSS	30	86	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0472-MAY21	mg/L	0.0002	< 0.0002	NSS	30	96	50	140	NSS	50	140
Naphthalene	GCM0472-MAY21	mg/L	0.0005	< 0.0005	NSS	30	80	50	140	NSS	50	140
Phenanthrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Pyrene	GCM0472-MAY21	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140

20210816 18 / 23

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0567-MAY21	mg/L	2	< 2	0	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0289-MAY21	as N mg/L	0.5	<0.5	5	10	103	90	110	88	75	125

20210816 19 / 23

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	87	60	130	84	50	140
1,2-Dichlorobenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	96	60	130	94	50	140
1,4-Dichlorobenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	97	60	130	95	50	140
Benzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	113	60	130	110	50	140
Chloroform	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	108	60	130	104	50	140
cis-1,2-Dichloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	110	60	130	109	50	140
Ethylbenzene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	102	50	140
m-p-xylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	104	60	130	103	50	140
Methylene Chloride	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	106	60	130	100	50	140
o-xylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	101	50	140
Tetrachloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	108	60	130	106	50	140
(perchloroethylene)												
Toluene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	106	60	130	106	50	140
trans-1,3-Dichloropropene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	99	60	130	96	50	140
Trichloroethylene	GCM0008-JUN21	mg/L	0.0005	<0.0005	ND	30	110	60	130	107	50	140

20 / 23

CA15892-MAY21 R1

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210816 21 / 23

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210816 22 / 23

Request for Laboratory Services and CHAIN OF CUSTODY

No: 022085

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment -London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Relin	Sam	Obs	12	1	10	9	00	7	6	5	4	ω	2	-			Soil				Email:	Phone: Fax:		Add	Con		Rece	Zec	1
Relinquished by (NAME):	Sampled By (NAME):	Observations/Comments/Special Instructions		120										BH 20	SAMPLE IDE	RECORD OF	Soil Volume	Table 1	O.Reg 153/04	1	11: pradecy.	one: Eu)	BARON 600	1	Contact: Prad	REPORT IN	Received Time: Lb :		
Br. deep	Praders F	R												110	SAMPLE IDENTIFICATION	SITE CONDITION (RSC)	□ >350m3	Res/Park Soil Texture: Ind/Com Coarse Agri/Other Medium/Fine	O.Reg 406/19	REGI	px/el@ dscennul	35 38W		14 16 7	dect Parel	REPORT INFORMATION	(hr:min)	TO TO THE PERSON OF THE PERSON	
parer	ried,	no Compi												May 21/2,	DATE SAMPLED	□YES □	ODWS Not R	Reg 347/558 PWQO CCME MISA	Other Regulations:	REGULATIONS	Email:	Phone:	Address:	Contact:	Company:	INV			
Sig	Sig	are A											,	p.m.	TIME SAMPLED B	NO	ODWS Not Reportable *See note	Reg 347/558 (3 Day min TAT) PWQO MMER COME Other: MISA	S:						as Report Information)	INVOICE INFORMATION	Custody Seal Intact:	Received by (signature)	
Signature:	Signature:	a resu												20 4	# OF MA		ote	Municipality: 16	Sewer By-Law:						n)	MATION	act: Yes	- 2	Dallico.
0,0	0. A-P.	gults of			_									X	MATRIX Field Filtered	(Y/N	l)		Law:		Spec	PLEA	ļ		Quotation Project #:		z 8	1	
- P. KE	" Let	Pensy													Metals & Inorinci CrVI, CN,Hg pH,(B(HV)(Cl, Na-water) Full Metals Start CP metals plus B(HWS-set)	uite oil only			M & -		Specify Due Date:	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	Regular		ation #:		Tempe	Carolin	The state of the s
		PWC	1853		10.		89%	WE							ICP Metals onl Sb,As,Ba,Be,B,Cd,Cr,Co,G	l y Cu,Pb,I	Mo,Ni,		SVOC			A RUSH FEA	Regular TAT (5-7days)		201		Temperature Upon Receipt (°C)	Anna Droppe	
		aB			0										SVOCS all incl PAHS, ABNS, CPS PCBs Total F1-F4 + BTEX			Aroclor	РСВ	AN		SIBILITY WIT			86 T vo		ceipt (°C)	1	
															F1-F4 only no BTEX VOCs all incl BTEX				PHC V	ALYSIS F	NOTE: D	∐1 H SGS REPR		TURNA			3,5	1	
Date Man 1 20 1 2021	202 (47) half : state														Pesticides Organochlorine or spec	ify other	er		VOC Pest	ANALYSIS REQUESTED	RINKING (POTA	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION		TURNAROUND TIME (TAT) REQUIRED			1	4.21	
19212	2/11/														Oakivill Estorm	8	S	intary	Other	ŒD	WITH SGS DRI	TATIVE PRIOR TO SUBMISSION	Samples rece	E (TAT) REQU	P.O. #: Site Location/ID:				
	^														Appendix 2: 406/ Screening Levels			ate	1er (please specify)		SAMPLES FOR NKING WATER	S 4 Days	oted in business sived after 6pm	JIRED	ation/ID: /3				
mm/dd/vy) 4:15%-	(mm/dd/gy) 15 /														Sewer Use: Specify pkg: Water Charac General	Ext	tended				CHAIN OF CU	#I	or on weekends		E		LAB LIMS #:		
	Pink C												v	Nov	□B(a)P □ABN □Ignit.			Specify TCLP tests	TCLP		SUMPTION ML		s: TAT begins		Brownte P		N.	SOS	1
Yellow & White Copy - SGS	Pink Copy - Client												1	v dillero		COMINICIA I G.	OMMENTS:				*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY		IA i's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day		Part, Catevill		INS# MAY2	-7	

Date of Issue: 22 May, 2020

Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA40134-MAR23 R1

20-186-101, 1300 Bronte Rd, Oakville ON

Prepared for

DS Consultants

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Pradeep Patel	Telephone	2165
Telephone	647-332-3482	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	pradeep.patel@dsconsultants.ca	SGS Reference	CA40134-MAR23
Project	20-186-101, 1300 Bronte Rd, Oakville ON	Received	03/13/2023
Order Number		Approved	01/01/1970
Samples	Ground Water (1)	Report Number	CA40134-MAR23 R1
		Date Reported	03/15/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 4

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029248

SIGNATORIES

The signatories will be applied on the final report.

Jill Campbell, B.Sc.,GISAS

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-9
Exceedance Summary	10
QC Summary	11-21
Legend	22
Annexes	23

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER			8	Sample Number	7
				Sample Name	PO1
1 = SANSEW / WATER / Halton Sewer Use ByLaw - Sanitary	y and Combined Sewer	Discharge -		Sample Matrix	Ground Water
L_2_03	O Disabase St	0000 004		Sample Date	13/03/2023
2 = SANSEW / WATER / Oakville Sewer Use By Law - Storm Parameter	n Sewer Discharge - BL Units	2009_031 RL	L1	L2	Result
General Chemistry	Office	NL.		L2	Nesuit
Biochemical Oxygen Demand (BOD5)	mg/L	2			NVL
Carbonaceous Biochemical Oxygen		2			NVL
Demand Demand	mg/L	2			INVL
Total Suspended Solids	mg/L	2	350	15	3
Total Kjeldahl Nitrogen	as N mg/L	0.5	100		< 0.5
Metals and Inorganics					
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Fluoride	mg/L	0.06	10		< 0.06
Sulphate	mg/L	2	1500		69
Aluminum (total)	mg/L	0.001	50		0.005
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0003
Beryllium (total)	mg/L	0.000007	5		0.000007
Cadmium (total)	mg/L	0.000003	1	0.008	0.000015
Chromium (total)	mg/L	0.00008	3	0.08	0.00019
Copper (total)	mg/L	0.0002	3	0.04	0.0055
Cobalt (total)	mg/L	0.000004	5		0.000030
Iron (total)	mg/L	0.007	50		0.019
Lead (total)	mg/L	0.00009	3	0.12	0.00055
Manganese (total)	mg/L	0.00001	5	0.05	0.0103
Molybdenum (total)	mg/L	0.00004	5		0.00024

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER			S	ample Number	7
				Sample Name	PO1
L1 = SANSEW / WATER / Halton Sewer Use ByLaw - San BL_2_03	nitary and Combined Sewer	r Discharge -		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Oakville Sewer Use By Law - S	storm Sewer Discharge - BL	_2009_031		Sample Date	13/03/2023
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Nickel (total)	mg/L	0.0001	3	0.08	0.0004
Phosphorus (total)	mg/L	0.003	10	0.4	0.014
Selenium (total)	mg/L	0.00004	5	0.02	0.00032
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00019
Titanium (total)	mg/L	0.00005	5		0.00051
Zinc (total)	mg/L	0.002	3	0.04	0.006
Microbiology					
E. Coli	cfu/100mL	0		200	0
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001		0.001	< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		0.01	< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER			s	Sample Number	7
				Sample Name	PO1
L1 = SANSEW / WATER / Halton Sewer Use ByLaw - Sanita	ary and Combined Sewer	r Discharge -		Sample Matrix	Ground Water
BL_2_03				Sample Date	13/03/2023
L2 = SANSEW / WATER / Oakville Sewer Use By Law - Ston Parameter	rm Sewer Discharge - BL Units	2009_031 RL	L1	L2	Result
Organochlorine Pests (OCs)	Office	NL.			Nesuit
Hexachlorobenzene	ma/l	0.00001		0.00004	< 0.00001
	mg/L	0.00001		0.00001	- 0.00001
Other (ORP)	No unit	0.05	10	8.5	8.25
Chromium VI		0.05	10	40	< 0.2
	μg/L		0.05	0.0004	< 0.00001
Mercury (total)	IIIg/L	0.00001	0.05	0.0004	< 0.00001
PAHs					
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		0.0004	< 0.0001
Pesticides					
Aldrin + Dieldrin	mg/L	0.00002		0.00008	< 0.00002
Chlordane (total)	mg/L	0.001		0.04	< 0.001
DDT+Metabolites	mg/L	0.00004			< 0.00004
op-DDT	mg/L	0.00002			< 0.00002
pp-DDD	mg/L	0.00002			< 0.00002
pp-DDE	mg/L	0.00001			< 0.00001
pp-DDT	mg/L	0.00002			< 0.00002
o,p-DDD	mg/L	0.00002			< 0.00002
o,p-DDE	mg/L	0.00001			< 0.00001
Mirex	mg/L	0.001		0.04	< 0.001
Hexachlorocyclohexane	mg/L	0.001		0.04	< 0.001

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

			Sample Number	7
			Sample Name	PO1
ary and Combined Sewer	Discharge -		Sample Matrix	Ground Water
O Di -i	0000 001		Sample Date	13/03/2023
		11	· · · · · · · · · · · · · · · · · · ·	Result
Office	RL.		LE	Result
	0.002	1	0.008	< 0.002
mg/L	0.002	1	0.008	< 0.002
		I		
mg/L			0.002	< 0.001
mg/L	0.0005			< 0.0005
mg/L	0.002		0.015	< 0.002
mg/L	0.002		0.0088	< 0.002
mg/L	0.0005		0.0008	< 0.0005
mg/L	0.0005		0.002	< 0.0005
mg/L	0.0005	0.14		< 0.0005
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0002			< 0.0002
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
mg/L	0.0001			< 0.0001
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.002 mg/L 0.0005 mg/L 0.0002 mg/L 0.0002 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0001	my/L 0.0001 mg/L 0.0001	Sample Matrix Sample Matrix Sample Matrix Sample Date

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

		Sa	mple Number	7
		;	Sample Name	PO1
y and Combined Sewer Disc	charge -		•	Ground Water
m Sewer Discharge - BL_200	09_031		Sample Date	13/03/2023
Units F	RL	L1	L2	Result
mg/L 0.0	.0001			< 0.0001
mg/L 0.0	.0002			< 0.0002
mg/L 0.0	.0001			< 0.0001
mg/L 0.0	.0001			< 0.0001
mg/L 0.0	.0005	0.04	0.002	< 0.0005
mg/L 0.0	.0005		0.0056	< 0.0005
mg/L 0.0	.0005	0.08	0.0068	< 0.0005
mg/L 0.0	.0005		0.0056	< 0.0005
mg/L 0.0	.0005		0.0056	< 0.0005
mg/L 0.0	.0005	2	0.0052	< 0.0005
mg/L 0.0	.0005	1	0.0044	< 0.0005
mg/L 0.0	.0005	0.4	0.0076	< 0.0005
mg/L 0.0	.0005		0.017	< 0.0005
	m Sewer Discharge - BL_20 Units mg/L 0	mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0001 mg/L 0.0005	ry and Combined Sewer Discharge - m Sewer Discharge - BL_2009_031 Units RL L1 mg/L 0.0001 mg/L 0.0002 mg/L 0.0001 mg/L 0.0005 1 mg/L 0.0005 1 mg/L 0.0005	m Sewer Discharge - BL_2009_031 Sample Date Units RL L1 L2 mg/L 0.0001

CA40134-MAR23 R1

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WA	ΓER			Sa	ample Number	7
					Sample Name	PO1
L1 = SANSEW / WAT BL_2_03	ER / Halton Sewer Use ByLaw - Sanitary and Combine	ed Sewer	Discharge -		Sample Matrix	Ground Water
	ER / Oakville Sewer Use By Law - Storm Sewer Disch:	arge - BL	_2009_031		Sample Date	13/03/2023
Parameter		Units	RL	L1	L2	Result
VOCs - BTEX						
Benzene		mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene		mg/L	0.0005	0.16	0.002	< 0.0005
Toluene		mg/L	0.0005	0.016	0.002	< 0.0005
Xylene (total)		mg/L	0.0005			< 0.0005
m-p-xylene		mg/L	0.0005			< 0.0005
o-xylene		mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20230315 10 / 23

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank	S/Spike Blank Recovery Limits (%)		Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike				Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5052-MAR23	mg/L	2	<2	4	20	106	80	120	110	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank Recovery Limits (%)		м	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike			Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0122-MAR23	mg/L	0.01	<0.01	ND	10	92	90	110	106	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	f.	
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0238-MAR23	mg/L	0.06	<0.06	2	10	100	90	110	91	75	125

20230315 11 / 23

QC SUMMARY

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0132-MAR23	ug/L	0.2	<0.2	2	20	101	80	120	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0022-MAR23	mg/L	0.00001	< 0.00001	0	20	114	80	120	116	70	130

20230315 12 / 23

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0108-MAR23	mg/L	0.00005	<0.00005	ND	20	106	90	110	98	70	130
Aluminum (total)	EMS0108-MAR23	mg/L	0.001	<0.001	ND	20	107	90	110	114	70	130
Arsenic (total)	EMS0108-MAR23	mg/L	0.0002	<0.0002	12	20	101	90	110	99	70	130
Beryllium (total)	EMS0108-MAR23	mg/L	0.000007	<0.000007	0	20	100	90	110	87	70	130
Cadmium (total)	EMS0108-MAR23	mg/L	0.000003	<0.000003	ND	20	105	90	110	109	70	130
Cobalt (total)	EMS0108-MAR23	mg/L	0.000004	<0.000004	ND	20	106	90	110	99	70	130
Chromium (total)	EMS0108-MAR23	mg/L	0.00008	<0.00008	ND	20	109	90	110	109	70	130
Copper (total)	EMS0108-MAR23	mg/L	0.0002	<0.0002	5	20	106	90	110	108	70	130
ron (total)	EMS0108-MAR23	mg/L	0.007	<0.007	ND	20	101	90	110	100	70	130
Manganese (total)	EMS0108-MAR23	mg/L	0.00001	<0.00001	6	20	102	90	110	98	70	130
Molybdenum (total)	EMS0108-MAR23	mg/L	0.00004	<0.00004	7	20	104	90	110	104	70	130
Nickel (total)	EMS0108-MAR23	mg/L	0.0001	<0.0001	9	20	108	90	110	101	70	130
Lead (total)	EMS0108-MAR23	mg/L	0.00009	<0.00001	ND	20	93	90	110	91	70	130
Phosphorus (total)	EMS0108-MAR23	mg/L	0.003	<0.003	13	20	94	90	110	NV	70	130
Antimony (total)	EMS0108-MAR23	mg/L	0.0009	<0.0009	ND	20	101	90	110	109	70	130
Selenium (total)	EMS0108-MAR23	mg/L	0.00004	<0.00004	ND	20	106	90	110	101	70	130
Tin (total)	EMS0108-MAR23	mg/L	0.00006	<0.00006	ND	20	100	90	110	NV	70	130
Titanium (total)	EMS0108-MAR23	mg/L	0.00005	<0.00005	13	20	101	90	110	NV	70	130
Zinc (total)	EMS0108-MAR23	mg/L	0.002	<0.002	10	20	109	90	110	76	70	130

20230315 13 / 23

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank RPD AC Spike Recovery (%)		•	Spike Recovery	Recovery Limits					
						(%)	Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9175-MAR23	cfu/100mL	-	ACCEPTED	ACCEPTE								
					D								

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	,
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol Ethoxylates	GCM0172-MAR23	mg/L	0.01	< 0.01								
Nonylphenol	GCM0172-MAR23	mg/L	0.001	<0.001			69	55	120			

20230315 14 / 23

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0183-MAR23	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0183-MAR23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0183-MAR23	mg/L	4	< 4	NSS	20	NA	70	130			

20230315 15 / 23

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref	l.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Hexachlorobenzene	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	90	50	140	90	50	140
Hexachlorocyclohexane	GCM0194-MAR23	mg/L	0.001	< 0.001	ND	30	100	50	140	97	50	140
Mirex	GCM0194-MAR23	mg/L	0.001	< 0.001	ND	30	99	50	140	113	50	140
o,p-DDD	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	96	50	140	105	50	140
o,p-DDE	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	102	50	140	111	50	140
op-DDT	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	103	50	140	119	50	140
pp-DDD	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	105	50	140	117	50	140
pp-DDE	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	98	50	140	108	50	140
pp-DDT	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	111	50	140	133	50	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0233-MAR23	No unit	0.05	NA	0		101			NA		

20230315

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0120-MAR23	mg/L	0.002	<0.002	ND	10	102	80	120	101	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0176-MAR23	mg/L	0.0001	<0.0001	NSS	30	96	60	140	NSS	60	140
Total												

20230315 17 / 23

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
3,3-Dichlorobenzidine	GCM0181-MAR23	mg/L	0.0005	< 0.0005	NSS	30	106	30	130	NSS	30	130
7Hdibenzo(c,g)carbazole	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	129	50	140	NSS	50	140
Anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Benzo(a)anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	108	50	140	NSS	50	140
Benzo(a)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	113	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	119	50	140	NSS	50	140
Benzo(e)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0182-MAR23	mg/L	0.0002	< 0.0002	NSS	30	111	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0182-MAR23	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140
Chrysene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	106	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0182-MAR23	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	110	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	116	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	113	50	140	NSS	50	140
Fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	112	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0182-MAR23	mg/L	0.0002	< 0.0002	NSS	30	109	50	140	NSS	50	140
Naphthalene	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	91	50	140	NSS	50	140
Pentachlorophenol	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	117	50	140	NSS	50	140
Perylene	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	109	50	140	NSS	50	140

20230315 18 / 23

Semi-Volatile Organics (continued)

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phenanthrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	Blank RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0234-MAR23	mg/L	2	< 2	1	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0118-MAR23	as N mg/L	0.5	<0.5	1	10	102	90	110	101	75	125

20230315 19 / 23

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ory Limits %)
						(76)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	117	60	130	98	50	140
1,2-Dichlorobenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	101	50	140
1,4-Dichlorobenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	100	50	140
Benzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	108	60	130	92	50	140
Chloroform	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	105	60	130	94	50	140
cis-1,2-Dichloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	91	50	140
Ethylbenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	102	50	140
m-p-xylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	102	50	140
Methylene Chloride	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	104	60	130	79	50	140
o-xylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	108	60	130	102	50	140
Tetrachloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	99	50	140
(perchloroethylene)												
Toluene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	121	60	130	100	50	140
Trichloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	106	60	130	95	50	140

20230315 20 / 23

SGS

PRELIMINARY REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230315 21 / 23

CA40134-MAR23 R1

PRELIMINARY REPORT

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230315 22 / 23

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS:

Note: 105-652-6365 Web: www.sgs.com/environment | Note: 105-652-6365 Web: 105-652-6365 - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 029248

- SGS	ellow & White Copy	Signature: 10X Date: 05 15 25 (mm/dd/yy) Yellow & White Copy - SGS	(mm/d	23	3	3	Date: Q5	Da	amples to	sion of s	ol Suhmi	amples	tation of s	transpor	handling and	ollection/	e: Q	Signatur.	that you have be	acknowledgement	Relinquished by (NAME): Note: Submission of samples to SGS is	elinquis
	Pink Copy - Client	id/yy) Pi	(mm/dd/yy)	23	N	3	te: 0	Da								,	" ************************************	Signature:			Sampled By (NAME): Abdillalis	ampled
															T.						Observations/Comments/Special Instructions	bservat
																						12
															- AG							1
														SCHOOLS	7							10
				N-1															1891			9
			1				P.D.S.				1.76			7								8
			1.0									7										7
														Bullen								6
							3.6		in a												the state of the s	CI
																						4
																						ω
	non filtered				7	-								Establish		Singer Si	4		1.00	5101		2
	3		7		7			44000						le de		×	M M	- 0		13/Mar	Po1	_
		General Ext	Sewer Use: Ool Specify pkg: Water Character	10(1070)	Cakville s Halton	Organochlorine or specif	BTEX only Pesticides	VOCs all incl BTEX	F1-F4 only	F1-F4 + BTEX	PCBs Total	SVOCs all incl PAHs, ABNs, CPs	ICP Metals on Cr,Co,Cu,Pb,Mo,Ni,Se,Ag PAHs only	Full Metals SI ICP metals plus B(HWS-s	Metals & Inor incl CrVI, CN,Hg pH,(B(H (CI, Na-water)	Field Filtered (ES MATRIX	# OF D BOTTLES	TIME	DATE	SAMPLE IDENTIFICATION	
Ü	COMMENTS	ended	izati	,,,,,	540	fy othe							TI,U,V,	_	WS),E	(Y/N			NO	YES	RECORD OF SITE CONDITION (RSC)	
}		Metals	llesi falle on Pka	rufac	in						Aroclor		,As,Ba,Be,B,C Zn		C,SAR-soil)	U-POGIS SPECIAL	Jakville &		MISAOther: ODWS Not Reportable *See note	MISA ODWS No	Jable Agriculter Mediatriffile Appx. Soil Volume <350m3 >350m3	Tab
		Specify Specify tests tests	m .	9				Taken.					a,				Sanitary		Reg 347/558 (3 Day min TAT) PWQO MMER	Reg 347/5	Res/Park Soil	Таы
		SPLP TCLP	Other (please specify)	ther (ple		Pest	Pe	VOC	Ċ	PHC	PCI	SVOC	10		M &		Sewer By-Law:	S	lations:	Other Regulations:	O.Reg 153/04 O.Reg 406/19	0.F
					ED	EST	QU	SRE	ANALYSIS REQUESTED	NAI										REGULATIONS	REGUI	
ITTED	ON MUST BE SUBN	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	IPLES FOR H NG WATER C	ATER SAM 3S DRINKI	SLE) W	(POTAE W	VIKING (E: DRII	*NOT)ate:	Specify Due Date:	Spec				Email:	drep fatel@dxamulkin	Email:
			☐ 3 Days ☐ 4 Days OR TO SUBMISSION	3 Days [TO SUBI	RIOR	2 Days	ENTA	1 Day	GS RE	oly): NITH S	lay Ap	EASIE	nal Cha	Additio	RUSH TAT (Additional Charges May Apply):	PLE				Phone:	Phone: 26 4-451-8164 Fax:	Phone:_ Fax:
nds). day	y holidays & weeke egins next business	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	d after 6pm or	are quoted les receive	Samp)	1					lays)	Regular TAT (5-7days)	Jular T/	Reg					Address:		<
3			8	TURNAROUND TIME (TAT) REQUIRED	(TAT)	TIME	OUND	RNAR	UT		*							0		Contact:	thay to Unit 16	Address
Oakville	P.	O Brante	Site Location/ID: 1300	e Location	Sit					0	1	126	1	2	Project #:	Proje		true	Roser	Company: A	Prodecp Partel	Contact:
				P.O. #:	P.0										Quotation #:_	Quot		nation)	Report Inforr	(same as Report Information)	DS Consultants	Company
																	N	ORMATIC	INVOICE INFORMATION		REPORT INFORMATION	
Z Z	0134-114	LABLIMS # (PMO) 3M-MARZ					é	Type: 1		F = 2	Yes X	esent: in Recei	Cooling Agent Present: Yes Temperature Upon Receipt (°C)	Cooling empera	100		Yes No	Custody Seal Intact: Yes	Custody Seal Preser Custody Seal Intact:	0	Received Date: $\frac{10W_1}{13}$ $\frac{3}{133}$ (mm/dd/yy)	Received
)	1		only	b use	on - La	Section	nation	Laboratory Information Section - Lab use only	orator		Received By (signature):	Received E		ved By: Mille Brigan Z	Received By:
-	. ago	OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	The latest the same of the sam					Section 1.	Water Street, Square, San St.		STATE OF THE PARTY OF				The second second	1					THE RESERVE THE PROPERTY OF TH	

CA40134-MAR23 R1

20-186-101, 1300 Bronte Rd, Oakville ON

Prepared for

DS Consultants

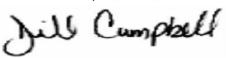
First Page

CLIENT DETAIL:	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Pradeep Patel	Telephone	2165
Telephone	647-332-3482	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	pradeep.patel@dsconsultants.ca	SGS Reference	CA40134-MAR23
Project	20-186-101, 1300 Bronte Rd, Oakville ON	Received	03/13/2023
Order Number		Approved	01/01/1970
Samples	Ground Water (1)	Report Number	CA40134-MAR23 R1
		Date Reported	03/16/2023

COMMENTS

RL - SGS Reporting Limit

Temperature of Sample upon Receipt: 4


Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 029248

SIGNATORIES

The signatories will be applied on the final report.

Jill Campbell, B.Sc.,GISAS

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-9
Exceedance Summary	10
QC Summary	11-21
Legend	22
Annexes	23

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER			Sample Number	7
			Sample Name	PO1
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIB:	S 3303E		Sample Matrix	Ground Water
			Sample Date	13/03/2023
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		NVL
Carbonaceous Biochemical Oxygen Demand	mg/L	2		NVL
Total Suspended Solids	mg/L	2		3
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Cyanide (total)	mg/L	0.01		< 0.01
Fluoride	mg/L	0.06		< 0.06
Sulphate	mg/L	2		69
Aluminum (total)	mg/L	0.001		0.005
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0003
Beryllium (total)	mg/L	0.000007	0.011	0.000007
Cadmium (total)	mg/L	0.000003	0.0001	0.000015
Chromium (total)	mg/L	0.00008	0.1	0.00019
Copper (total)	mg/L	0.0002	0.001	0.0055
Cobalt (total)	mg/L	0.000004	0.0009	0.000030
Iron (total)	mg/L	0.007	0.3	0.019
Lead (total)	mg/L	0.00009	0.005	0.00055
Manganese (total)	mg/L	0.00001		0.0103
				0.00004
Molybdenum (total)	mg/L	0.00004	0.04	0.00024

SGS

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER			Sample Number	7
			Sample Name	PO1
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3	3303E		Sample Matrix	Ground Water
			Sample Date	13/03/2023
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Phosphorus (total)	mg/L	0.003	0.01	0.014
Selenium (total)	mg/L	0.00004	0.1	0.00032
Silver (total)	mg/L	0.00005	0.0001	< 0.00005
Tin (total)	mg/L	0.00006		0.00019
Titanium (total)	mg/L	0.00005		0.00051
Zinc (total)	mg/L	0.002	0.02	0.006
Vicrobiology				
E. Coli	cfu/100mL	0	100	0
Nonylphenol and Ethoxylates				
Nonylphenol	mg/L	0.001		< 0.001
				< 0.001
Nonylphenol Ethoxylates	mg/L	0.01		< 0.01
Oil and Grease				
Oil & Grease (total)	mg/L	2		< 2
Oil & Grease (animal/vegetable)	mg/L	4		< 4
Oil & Grease (mineral/synthetic)	mg/L	4		< 4

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

			Comple North or	7
MATRIX: WATER			Sample Number	7
			Sample Name	PO1
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix Sample Date	Ground Water 13/03/2023
Parameter	Units	RL	L1	Result
Organochlorine Pests (OCs)	Units	KL.	Li	resuit
		0.00004	0.00000	< 0.00001
Hexachlorobenzene	mg/L	0.00001	65	< 0.00001
Other (ORP)			- 00	
рн	No unit	0.05	8.6	8.25
Chromium VI	µg/L	0.2	1	< 0.2
		0.00001	0.0002	< 0.00001
Mercury (total)	IIIg/L	0.00001	0.0002	< 0.00001
PAHs				
Benzo(b+j)fluoranthene	mg/L	0.0001		< 0.0001
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Pesticides				
Aldrin + Dieldrin	mg/L	0.00002	0.00000	< 0.00002
			1	
Chlordane (total)	mg/L	0.001	0.00006	< 0.001
DDT+Metabolites	mg/L	0.00004	0.00000	< 0.00004
			3	
op-DDT		0.00002		< 0.00002
pp-DDD	mg/L	0.00002		< 0.00002
pp-DDE	mg/L	0.00001		< 0.00001
pp-DDT	mg/L	0.00002		< 0.00002
o,p-DDD	mg/L	0.00002		< 0.00002
o,p-DDE	mg/L	0.00001		< 0.00001

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

			0	-
MATRIX: WATER			Sample Number	7
			Sample Name	PO1
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Ground Water
			Sample Date	13/03/2023
Parameter	Units	RL	L1	Result
Pesticides (continued)				
Mirex	mg/L	0.001		< 0.001
Hexachlorocyclohexane	mg/L	0.001		< 0.001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
SVOCs				
PAHs (Total)	mg/L			< 0.001
		2 2225		
Perylene	mg/L	0.0005	0.00000	< 0.0005
di-n-Butyl Phthalate	mg/L	0.002	007	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
3,3-Dichlorobenzidine		0.0005		< 0.0005
	mg/L			
Pentachlorophenol	mg/L	0.0005		< 0.0005
SVOCs - PAHs				
Naphthalene	mg/L	0.0005	0.007	< 0.0005
7Hdibenzo(c,g)carbazole	mg/L	0.0001		< 0.0001
Anthracene	mg/L	0.0001	0.00000	< 0.0001
			08	
Benzo(a)anthracene	mg/L	0.0001	0.00000	< 0.0001
			04	
Benzo(a)pyrene	mg/L	0.0001		< 0.0001
Benzo(e)pyrene	mg/L	0.0001		< 0.0001
Benzo(ghi)perylene	mg/L	0.0002	0.00000	< 0.0002
			002	

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

				_
MATRIX: WATER			Sample Number	7
			Sample Name	PO1
1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Ground Water
			Sample Date	13/03/2023
Parameter	Units	RL	L1	Result
SVOCs - PAHs (continued)				
Benzo(k)fluoranthene	mg/L	0.0001	0.00000	< 0.0001
			02	
Chrysene	mg/L	0.0001	0.00000	< 0.0001
			01	
Dibenzo(a,h)anthracene	mg/L	0.0001	0.00000	< 0.0001
Dibenzo(a,i)pyrene	mg/L	0.0001	2	< 0.0001
Dibenzo(a,j)acridine	mg/L	0.0001		< 0.0001
Fluoranthene	mg/L	0.0001	0.00000	< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L	0.0002	08	< 0.0002
			0.00000	
Phenanthrene	mg/L	0.0001	0.00003	< 0.0001
Pyrene	mg/L	0.0001		< 0.0001
OCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethylene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005

CA40134-MAR23 R1

Client: DS Consultants

Project: 20-186-101, 1300 Bronte Rd, Oakville ON

Project Manager: Pradeep Patel

MATRIX: WATER	Sample Number	7

			Sample Name	PO1
			Sample Matrix	Ground Water
			Sample Date	13/03/2023
Units	RL	L1		Result
mg/L	0.0005	0.1		< 0.0005
mg/L	0.0005	0.008		< 0.0005
mg/L	0.0005	0.0008		< 0.0005
mg/L	0.0005			< 0.0005
mg/L	0.0005	0.002		< 0.0005
mg/L	0.0005	0.04		< 0.0005
	mg/L mg/L mg/L mg/L	mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005	mg/L 0.0005 0.1 mg/L 0.0005 0.008 mg/L 0.0005 0.0008 mg/L 0.0005 mg/L 0.0005 0.002	Sample Matrix Sample Date

EXCEEDANCE SUMMARY

PWQO_L / WATER

/ - - Table 2 -

General - July 1999

PIBS 3303E

Parameter Method Units Result L1

PO1

Aldrin + Dieldrin	EPA 3510C/8270D	mg/L	< 0.00002	0.000001
Anthracene	EPA 3510C/8270D	mg/L	< 0.0001	80000000
Benz(a)anthracene	EPA 3510C/8270D	mg/L	< 0.0001	0.000004
Benzo(g,h,i)perylene	EPA 3510C/8270D	mg/L	< 0.0002	0.00000002
Benzo(k)fluoranthene	EPA 3510C/8270D	mg/L	< 0.0001	0.0000002
Chlordane	EPA 3510C/8270D	mg/L	< 0.001	0.00006
Chrysene	EPA 3510C/8270D	mg/L	< 0.0001	0.000001
DDT+Metabolites	EPA 3510C/8270D	mg/L	< 0.00004	0.000003
Dibenz(a,h)anthracene	EPA 3510C/8270D	mg/L	< 0.0001	0.000002
Fluoranthene	EPA 3510C/8270D	mg/L	< 0.0001	0.0000008
Hexachlorobenzene	EPA 3510C/8270D	mg/L	< 0.00001	0.0000065
Perylene	EPA 3510C/8270D	mg/L	< 0.0005	0.0000007
Phenanthrene	EPA 3510C/8270D	mg/L	< 0.0001	0.00003
Copper	SM 3030/EPA 200.8	mg/L	0.0055	0.001
Phosphorus	SM 3030/EPA 200.8	mg/L	0.014	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001

20230316 10 / 23

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5052-MAR23	mg/L	2	<2	4	20	106	80	120	110	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0122-MAR23	mg/L	0.01	<0.01	ND	10	92	90	110	106	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS/Spike Blank				Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)		Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Fluoride	EWL0238-MAR23	mg/L	0.06	<0.06	2	10	100	90	110	91	75	125	

20230316 11 / 23

QC SUMMARY

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0132-MAR23	ug/L	0.2	<0.2	2	20	101	80	120	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0022-MAR23	mg/L	0.00001	< 0.00001	0	20	114	80	120	116	70	130

20230316 12 / 23

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC:	S/Spike Blank		Ма	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits
						. ,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0108-MAR23	mg/L	0.00005	<0.00005	ND	20	106	90	110	98	70	130
Aluminum (total)	EMS0108-MAR23	mg/L	0.001	<0.001	ND	20	107	90	110	114	70	130
Arsenic (total)	EMS0108-MAR23	mg/L	0.0002	<0.0002	12	20	101	90	110	99	70	130
Beryllium (total)	EMS0108-MAR23	mg/L	0.000007	<0.000007	0	20	100	90	110	87	70	130
Cadmium (total)	EMS0108-MAR23	mg/L	0.000003	<0.000003	ND	20	105	90	110	109	70	130
Cobalt (total)	EMS0108-MAR23	mg/L	0.000004	<0.000004	ND	20	106	90	110	99	70	130
Chromium (total)	EMS0108-MAR23	mg/L	0.00008	<0.00008	ND	20	109	90	110	109	70	130
Copper (total)	EMS0108-MAR23	mg/L	0.0002	<0.0002	5	20	106	90	110	108	70	130
Iron (total)	EMS0108-MAR23	mg/L	0.007	<0.007	ND	20	101	90	110	100	70	130
Manganese (total)	EMS0108-MAR23	mg/L	0.00001	<0.00001	6	20	102	90	110	98	70	130
Molybdenum (total)	EMS0108-MAR23	mg/L	0.00004	<0.00004	7	20	104	90	110	104	70	130
Nickel (total)	EMS0108-MAR23	mg/L	0.0001	<0.0001	9	20	108	90	110	101	70	130
Lead (total)	EMS0108-MAR23	mg/L	0.00009	<0.00001	ND	20	93	90	110	91	70	130
Phosphorus (total)	EMS0108-MAR23	mg/L	0.003	<0.003	13	20	94	90	110	NV	70	130
Antimony (total)	EMS0108-MAR23	mg/L	0.0009	<0.0009	ND	20	101	90	110	109	70	130
Selenium (total)	EMS0108-MAR23	mg/L	0.00004	<0.00004	ND	20	106	90	110	101	70	130
Tin (total)	EMS0108-MAR23	mg/L	0.00006	<0.00006	ND	20	100	90	110	NV	70	130
Titanium (total)	EMS0108-MAR23	mg/L	0.00005	<0.00005	13	20	101	90	110	NV	70	130
Zinc (total)	EMS0108-MAR23	mg/L	0.002	<0.002	10	20	109	90	110	76	70	130

20230316 13 / 23

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9175-MAR23	cfu/100mL	-	ACCEPTED	ACCEPTE							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	,
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol Ethoxylates	GCM0172-MAR23	mg/L	0.01	< 0.01								
Nonylphenol	GCM0172-MAR23	mg/L	0.001	<0.001			69	55	120			

20230316 14 / 23

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019


Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0183-MAR23	mg/L	2	<2	NSS	20	100	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0183-MAR23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0183-MAR23	mg/L	4	< 4	NSS	20	NA	70	130			

20230316 15 / 23

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Hexachlorobenzene	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	90	50	140	90	50	140
Hexachlorocyclohexane	GCM0194-MAR23	mg/L	0.001	< 0.001	ND	30	100	50	140	97	50	140
Mirex	GCM0194-MAR23	mg/L	0.001	< 0.001	ND	30	99	50	140	113	50	140
o,p-DDD	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	96	50	140	105	50	140
o,p-DDE	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	102	50	140	111	50	140
op-DDT	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	103	50	140	119	50	140
pp-DDD	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	105	50	140	117	50	140
pp-DDE	GCM0194-MAR23	mg/L	0.00001	< 0.00001	ND	30	98	50	140	108	50	140
pp-DDT	GCM0194-MAR23	mg/L	0.00002	< 0.00002	ND	30	111	50	140	133	50	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0233-MAR23	No unit	0.05	NA	0		101			NA		

20230316

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0120-MAR23	mg/L	0.002	<0.002	ND	10	102	80	120	101	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0176-MAR23	mg/L	0.0001	<0.0001	NSS	30	96	60	140	NSS	60	140
Total												

20230316 17 / 23

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
3,3-Dichlorobenzidine	GCM0181-MAR23	mg/L	0.0005	< 0.0005	NSS	30	106	30	130	NSS	30	130
7Hdibenzo(c,g)carbazole	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	129	50	140	NSS	50	140
Anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Benzo(a)anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	108	50	140	NSS	50	140
Benzo(a)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	113	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	119	50	140	NSS	50	140
Benzo(e)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0182-MAR23	mg/L	0.0002	< 0.0002	NSS	30	111	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0182-MAR23	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140
Chrysene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	106	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0182-MAR23	mg/L	0.002	< 0.002	NSS	30	117	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	110	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	116	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	113	50	140	NSS	50	140
Fluoranthene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	112	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0182-MAR23	mg/L	0.0002	< 0.0002	NSS	30	109	50	140	NSS	50	140
Naphthalene	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	91	50	140	NSS	50	140
Pentachlorophenol	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	117	50	140	NSS	50	140
Perylene	GCM0182-MAR23	mg/L	0.0005	< 0.0005	NSS	30	109	50	140	NSS	50	140

20230316 18 / 23

Semi-Volatile Organics (continued)

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phenanthrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	107	50	140	NSS	50	140
Pyrene	GCM0182-MAR23	mg/L	0.0001	< 0.0001	NSS	30	109	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0234-MAR23	mg/L	2	< 2	1	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0118-MAR23	as N mg/L	0.5	<0.5	1	10	102	90	110	101	75	125

20230316 19 / 23

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ory Limits %)
						(76)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	117	60	130	98	50	140
1,2-Dichlorobenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	101	50	140
1,4-Dichlorobenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	100	50	140
Benzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	108	60	130	92	50	140
Chloroform	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	105	60	130	94	50	140
cis-1,2-Dichloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	91	50	140
Ethylbenzene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	102	50	140
m-p-xylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	109	60	130	102	50	140
Methylene Chloride	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	104	60	130	79	50	140
o-xylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	108	60	130	102	50	140
Tetrachloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	99	50	140
(perchloroethylene)												
Toluene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	107	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	121	60	130	100	50	140
Trichloroethylene	GCM0186-MAR23	mg/L	0.0005	<0.0005	ND	30	106	60	130	95	50	140

20230316 20 / 23

SGS

PRELIMINARY REPORT

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230316 21 / 23

CA40134-MAR23 R1

PRELIMINARY REPORT

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte

ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230316 22 / 23

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS:

Note: 105-652-6365 Web: www.sgs.com/environment | Note: 105-652-6365 Web: 105-652-6365 - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 029248

l &	Signature: 104 Date: Q5 15 23 (mm/dd/yy) Yellow & White Copy - SGS	ld/yy) Ye	(mm/d	23	3	3	Date: Q5	Da	moles to	sion of sa	Submis	moles f	ation of s	fransnor	andling and	llection/h	ion on sample co	Signature:	at vou have been	acknowledgement the	Relinquished by (NAME):	elinquished
	Pink Copy - Client	td/yy) Pir	(mm/dd/yy)	23	N	3	te: 0	Da									8	Signature:			(NAME): Abdillalia	Sampled By (NAME):
793																					Observations/Comments/Special Instructions)bservations/t
														-726	4							12
															- 26							11
											1				7							10
														70416		St. Sept.						9
			1				10.0				1.76			A STATE OF THE STA			77			W (8)		8
																						7
									1-24					- Anna								6
							236	40	ues.													5
	-																					4
									F31 E10		18 ·			0.00								ω
ľ	non filtered				1	+		5 5 5			5			Estables			1	+		5101		2
	K 6.1		7		7			44000						and the same		7	M	19	1	13/Mar	201	7
		General Ext	Sewer Use:		Cakville s Halton	Organochlorine or specif	BTEX only Pesticides	VOCS all incl BTEX	F1-F4 only	F1-F4 + BTEX	PCBs Total	SVOCs all incl PAHs, ABNs, CPs	Cr,Co,Cu,Pb,Mo,Ni,Se,Ag	Full Metals SI ICP metals plus B(HWS-s ICP Metals on	Metals & Inor incl CrVI, CN,Hg pH,(B(H (CI, Na-water)	Field Filtered (MATRIX	# OF BOTTLES	TIME	DATE	SAMPLE IDENTIFICATION	co.
	COMMENTS	ended	izati		510	fy othe							TI,U,V,	_	WS),E				NO	YES	RECORD OF SITE CONDITION (RSC)	21
		Metals	lle In Pko	-172	nil	r					Aro		Zn		C,SAR-so	NEU AR	Halton 7		ODWS Not Reportable *See note	ODWS Not I	Appx >350m3 >350m3	Soil Volume
		Specify Specify tests tests	en	7							clor		,5,54,				Storm	5.70	PWQO MMER CCME Other:	PWQ0	Ind/Com Coarse Agri/Other Medium/Fine	Table 2
		SPLP TCLP	ase specify)	Other (please specify)	0	Pest		Voc	C	PHC	PCB	SVOC	(0		M Qo		Sewer By-Law:		tions:	Other Regulations:		O.Reg 153/04
					ED	EST	UDE	SRE	ANALYSIS REQUESTED	NAL	1									REGULATIONS	REGUL	
Ü	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	HAIN OF CUSTODY	IPLES FOR H	S DRINKIN	JITH SG	W W	VIKING (!! DRIP	*NOTE					ate:	Specify Due Date:	Speci				Email:	Email: CEP gateled xamulting	Email:
			3 Days 4 Days	RUSH TAT (Additional Charges May Apply):	RIOR	2 Days	ENTA	1 Day	GS RE	VITH S	ay Apı	rges M	RUSH F	ddition FIRM I	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	RUSH				Phone:	Phone: 26 4-951-8164 P	Phone: 26
	IAI's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	days (exclude statutory on weekends: TAT beg	d after 6pm or	es received	Sampl.))					ays)	Regular TAT (5-7days)	ular TA	Regu					Address:		Van
3	,		8	TURNAROUND TIME (TAT) REQUIRED	(TAT)	TIME	DUND	RNAR	TU									0		Contact:	thuy t, Unit 16	Address: 6221
7	Rd. Oakril	O Brante	Site Location/ID: 1360	Location	Situ					0	1	126	1	20	ct #:	Project #:		the same	Raini	Company: A	Pradecp Patel o	Contact: X
3				P.O. #:	P.C										Quotation #:	Quota		ation)	eport Informa	(same as Report Information)	Consultants	Company:
																		RMATION	INVOICE INFORMATION	ī	REPORT INFORMATION	
N	LABLIMS#(JAMO)3M-MARZ	AB LIMS #: CAUC					de	Type: 1		£ □	SI	Receip	Cooling Agent Present: Yes Temperature Upon Receipt (°C)	cooling /	T ₀		Yes No	Custody Seal Present: Yes Custody Seal Intact: Yes	Custody Seal Preser Custody Seal Intact:		te: $1607 : 30$ (hr: min)	Received Date: Received Time:
							J _	")		only	b use	n-La	Section	ation	Laboratory Information Section - Lab use only	ratory	Labo	(signature):	Received By (signature):		Midle Brigan Z	Received By:
	. ago	STATE OF THE PARTY	The state of the s								1					1	The state of the s		Pro un riverson trace		STREET OF THE PROPERTY OF THE	CHANGE BASEFOLD OF

Appendix E

TABLE A-1 CLIMATE NORMALS 1981-2010 (GEORGETOWN WWTP, ONTARIO)

Water Balance -1300-1350 Bronte Road, Oakville

			Thornthy	waite (1948)		
Month	Mean Temperature (°C)	Heat Index	Unadjusted Potential Evapotranspiration (mm)	Daylight Correction Value	Adjusted Potential Evapotranspiration (mm)	Total Precipitation (mm)
January	-6.3	0.0	0.0	0.81	0.0	67.8
February	-5.2	0.0	0.0	0.82	0.0	60.0
March	-0.9	0.0	0.0	1.02	0.0	57.2
April	6.0	1.3	28.0	1.13	31.6	76.5
May	12.3	3.9	59.7	1.27	75.8	79.3
June	17.4	6.6	86.1	1.29	111.1	74.8
July	20.0	8.2	99.8	1.30	129.7	73.5
August	19.0	7.5	94.5	1.20	113.4	79.3
September	14.8	5.2	72.6	1.04	75.5	86.2
October	8.4	2.2	39.9	0.95	37.9	68.3
November	2.8	0.4	12.5	0.8	10.0	88.5
December	-2.9	0.0	0.0	0.76	0.0	65.9
TOTALS		35.3	493.2		585.2	877.3

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

TABLE E-2
Post-development Water Balance
Water Balance -Water Balance -1300-1350 Bronte Road, Oakville

Water Balance -Water Bal		·						Mo	onth						
Ca	tchments and Hydi	rologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - A	Adjusted Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
		P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	200.00	200.00	200.00	163.70	107.50	73.39	84.08	114.45	192.93	200.00	200.00	200.00	-
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	107.81	111.60	94.73	75.51	37.94	10.02	0.00	0.00	0.00	545.08
		P-AET (mm)	57.20	44.87	3.45	-33.01	-38.10	-15.43	10.69	30.36	78.48	65.90	67.80	60.00	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-33.01	-71.11	-86.53	-75.84	-45.48	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	33.01	38.10	15.43	-10.69	-30.36	-45.48	0.00	0.00	0.00	-
	Previous Area-	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	33.00	65.90	67.80	60.00	332.22
	grass area	MOECC Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	
	8	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
		Infiltration (mm)	34.32	26.92	2.07	0.00	0.00	0.00	0.00	0.00	19.80	39.54	40.68	36.00	199.33
		Run-Off (mm)	22.88	17.95	1.38	0.00	0.00	0.00	0.00	0.00	13.20	26.36	27.12	24.00	132.89
		Catchment Area (m²) = 51000.00					Subcato	hment Monthly	Volumes						
		Infiltration (m ³)	1750.32	1372.88	105.64	0.00	0.00	0.00	0.00	0.00	1009.92	2016.54	2074.68	1836.00	10165.98
		Run-Off (m ³)	1166.88	915.25	70.43	0.00	0.00	0.00	0.00	0.00	673.28	1344.36	1383.12	1224.00	6777.32
		Soil Moisture Storage (mm)	400.00	400.00	400.00	363.70	307.50	273.39	284.08	314.45	392.93	400.00	400.00	400.00	-
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	109.46	120.65	104.07	75.51	37.94	10.02	0.00	0.00	0.00	565.12
		P-AET (mm)	57.20	44.87	3.45	-34.66	-47.15	-24.77	10.69	30.36	78.48	65.90	67.80	60.00	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-34.66	-81.80	-106.57	-95.88	-65.51	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	34.66	47.15	24.77	-10.69	-30.36	-65.51	0.00	0.00	0.00	-
	Pervious Area-	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	12.97	65.90	67.80	60.00	312.18
	Wooded area	MOECC Infiltration Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
		Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Infiltration (mm)	40.04	31.41	2.42	0.00	0.00	0.00	0.00	0.00	9.08	46.13	47.46	42.00	218.53
1300-1350 Bronte Road		Run-Off (mm)	17.16	13.46	1.04	0.00	0.00	0.00	0.00	0.00	3.89	19.77	20.34	18.00	93.66
1300-1330 Biolite Road		Catchment Area (m²) = 59400.00					Subcato	hment Monthly	Volumes						
		Infiltration (m ³)	2378.38	1865.50	143.54	0.00	0.00	0.00	0.00	0.00	539.15	2740.12	2819.12	2494.80	12980.62
		Run-Off (m³)	1019.30	799.50	61.52	0.00	0.00	0.00	0.00	0.00	231.07	1174.34	1208.20	1069.20	5563.12
		Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	Impervious Area- Roof Area to	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
	Grass Area(Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
	Assumed 30 % of	Evaporation (mm)	8.58	11.48	11.90	11.22	11.03	11.90	12.93	10.25	13.28	9.89	10.17	9.00	131.60
	total runoff from	Run-Off (mm)	48.62	65.03	67.41	63.58	62.48	67.41	73.27	58.06	75.23	56.02	57.63	51.00	745.71
	the roof	Catchment Area (m ²) = 2500.00					Subcato	hment Monthly	Volumes						
	infiltrates into the soil)	Evaporation (m ³)	21.45	28.69	29.74	28.05	27.56	29.74	32.33	25.61	33.19	24.71	25.43	22.50	328.99
	3011)	Run-Off (m ³)	121.55	162.56	168.51	158.95	156.19	168.51	183.18	145.14	188.06	140.04	144.08	127.50	1864.26

TABLE E-2
Post-development Water Balance
Water Balance -1300-1350 Bronte Road, Oakville

Catchmon	nte and Undra	ologic Components						Mo	onth						Total
Cattimer	ints and nyurc	nogic components	March	April	May	June	July	August	September	October	November	December	January	February	iotai
	PET - Ad	justed Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
		P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	-
		Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
		Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
· ·	ervious Area way/ Road/	Evaporation (mm)	8.58	11.48	11.90	11.22	11.03	11.90	12.93	10.25	13.28	9.89	10.17	9.00	131.60
	ed Surface	Run-Off (mm)	48.62	65.03	67.41	63.58	62.48	67.41	73.27	58.06	75.23	56.02	57.63	51.00	745.71
	Paved Surrace	Catchment Area (m ²) = 8300.00					Subcato	hment Monthly	Volumes						
		Evaporation (m ³)	71.21	95.24	98.73	93.13	91.51	98.73	107.32	85.03	110.18	82.05	84.41	74.70	1092.24
		Run-Off (m³)	403.55	539.71	559.46	527.71	518.54	559.46	608.14	481.86	624.37	464.92	478.33	423.30	6189.35
							Tota	I Catchment Vol	umes						
		Total AET (m³)	0.00	3492.47	8373.60	12000.06	12858.03	11012.58	8336.00	4188.08	1106.07	0.00	0.00	0.00	61366.88
		Total Evaporation (m³)	92.66	123.93	128.47	121.18	119.07	128.47	139.64	110.65	143.37	106.76	109.84	97.20	1421.23
		Total Infiltration (m³)	4128.70	3238.38	249.18	0.00	0.00	0.00	0.00	0.00	1549.08	4756.66	4893.80	4330.80	23146.60
	·	Total Runoff (m³)	2711.28	2417.02	859.92	686.66	674.73	727.97	791.32	626.99	1716.78	3123.66	3213.72	2844.00	20394.06

TABLE E-3
Post-development Water Balance
Water Balance -1300-1350 Bronte Road, Oakville

Water Balance -Water								Month							
	Catchments and	Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
		P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	
		Soil Moisture Storage (mm)	200.00	200.00	200.00	163.70	107.50	73.39	84.08	114.45	192.93	200.00	200.00	200.00	
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	107.81	111.60	94.73	75.51	37.94	10.02	0.00	0.00	0.00	545.08
		P-AET (mm)	57.20	44.87	3.45	-33.01	-38.10	-15.43	10.69	30.36	78.48	65.90	67.80	60.00	
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-33.01	-71.11	-86.53	-75.84	-45.48	0.00	0.00	0.00	0.00	-
		Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	33.01	38.10	15.43	-10.69	-30.36	-45.48	0.00	0.00	0.00	-
	Pervious Area-	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	33.00	65.90	67.80	60.00	332.22
	Landscape/Grass	MOECC Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	Areas	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
		Infiltration (mm)	28.60	22.43	1.73	0.00	0.00	0.00	0.00	0.00	16.50	32.95	33.90	30.00	166.11
		Run-Off (mm)	28.60	22.43	1.73	0.00	0.00	0.00	0.00	0.00	16.50	32.95	33.90	30.00	166.11
		Catchment Area (m²) = 18800.00					Subcato	hment Monthly	Volumes						
		Infiltration (m³)	537.68	421.73	32.45	0.00	0.00	0.00	0.00	0.00	310.24	619.46	637.32	564.00	3122.88
		Run-Off (m³)	537.68	421.73	32.45	0.00	0.00	0.00	0.00	0.00	310.24	619.46	637.32	564.00	3122.88
		Soil Moisture Storage (mm)	400.00	400.00	400.00	363.70	307.50	273.39	284.08	314.45	392.93	400.00	400.00	400.00	
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	109.46	120.65	104.07	75.51	37.94	10.02	0.00	0.00	0.00	565.12
		P-AET (mm)	57.20	44.87	3.45	-34.66	-47.15	-24.77	10.69	30.36	78.48	65.90	67.80	60.00	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-34.66	-81.80	-106.57	-95.88	-65.51	0.00	0.00	0.00	0.00	-
	Pervious Area-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	34.66	47.15	24.77	-10.69	-30.36	-65.51	0.00	0.00	0.00	-
	Wooded Area	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	12.97	65.90	67.80	60.00	312.18
	including Buffer	MOECC Infiltration Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
	Area	Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Infiltration (mm)	40.04	31.41	2.42	0.00	0.00	0.00	0.00	0.00	9.08	46.13	47.46	42.00	218.53
1300-1350 Bronte		Run-Off (mm)	17.16	13.46	1.04	0.00	0.00	0.00	0.00	0.00	3.89	19.77	20.34	18.00	93.66
Road		Catchment Area (m²) = 65700.00						hment Monthly	Volumes						
		Infiltration (m³)	2630.63	2063.36	158.77	0.00	0.00	0.00	0.00	0.00	596.34	3030.74	3118.12	2759.40	14357.35
		Run-Off (m ³)	1127.41	884.30	68.04	0.00	0.00	0.00	0.00	0.00	255.57	1298.89	1336.34	1182.60	6153.15
		Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	Impervious Area-	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
	Roof Area to Grass Area(Assumed 30	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
	% of total runoff	Evaporation (mm)	8.58	11.48	11.90	11.22	11.03	11.90	12.93	10.25	13.28	9.89	10.17	9.00	131.60
	from the roof	Run-Off (mm)	48.62	65.03	67.41	63.58	62.48	67.41	73.27	58.06	75.23	56.02	57.63	51.00	745.71
	infiltrates into the	Catchment Area (m²) = 16700.00						hment Monthly							
	soil)	Evaporation (m ³)	143.29	191.63	198.65	187.37	184.12	198.65	215.93	171.09	221.69	165.08	169.84	150.30	2197.64
		Run-Off (m ³)	811.95	1085.92	1125.66	1061.79	1043.33	1125.66	1223.61	969.52	1256.26	935.45	962.42	851.70	12453.27

TABLE E-3
Post-development Water Balance
Water Balance -1300-1350 Bronte Road, Oakville

Catchments and	Hydrologic Components						Month							Total
Catchinents and	r Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
	P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	•
Impervious Area	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
Driveway/ Road/ Paved	Evaporation (mm)	8.58	11.48	11.90	11.22	11.03	11.90	12.93	10.25	13.28	9.89	10.17	9.00	131.60
Surface/Walkway/LI	Run-Off (mm)	48.62	65.03	67.41	63.58	62.48	67.41	73.27	58.06	75.23	56.02	57.63	51.00	745.71
D	Catchment Area (m²) = 20000.00					Subcato	hment Monthly	Volumes						
	Evaporation (m ³)	171.60	229.50	237.90	224.40	220.50	237.90	258.60	204.90	265.50	197.70	203.40	180.00	2631.90
	Run-Off (m³)	972.40	1300.50	1348.10	1271.60	1249.50	1348.10	1465.40	1161.10	1504.50	1120.30	1152.60	1020.00	14914.10
	36700.00					Tota	l Catchment Vol	umes						
	Total AET (m³)	0.00	2673.13	6409.14	9218.16	10024.60	8618.05	6380.36	3205.55	846.59	0.00	0.00	0.00	47375.58
	Total Evaporation (m³)	314.89	421.13	436.55	411.77	404.62	436.55	474.53	375.99	487.19	362.78	373.24	330.30	4829.54
	Total Infiltration (m³)	3168.31	2485.09	191.22	0.00	0.00	0.00	0.00	0.00	906.58	3650.20	3755.44	3323.40	17480.2
	Total Runoff (m ³)	3449.45	3692.45	2574.26	2333.39	2292.83	2473.76	2689.01	2130.62	3326.57	3974.10	4088.68	3618.30	36643.41

TABLE E-4
Post-development Water Balance With Mitigation
Water Balance -Water Balance -1300-1350 Bronte Road, Oakville

		nte Road, Oakville						Month							
	Catchments and H	lydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
		PET - Adjusted Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
		P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	-
		Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	-
		Soil Moisture Storage (mm)	200.00	200.00	200.00	163.70	107.50	73.39	84.08	114.45	192.93	200.00	200.00	200.00	-
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	107.81	111.60	94.73	75.51	37.94	10.02	0.00	0.00	0.00	545.08
		P-AET (mm)	57.20	44.87	3.45	-33.01	-38.10	-15.43	10.69	30.36	78.48	65.90	67.80	60.00	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-33.01	-71.11	-86.53	-75.84	-45.48	0.00	0.00	0.00	0.00	-
	Pervious Area-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	33.01	38.10	15.43	-10.69	-30.36	-45.48	0.00	0.00	0.00	-
	Landscape/Grass	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	33.00	65.90	67.80	60.00	332.22
	(with Increased	MOECC Infiltration Factor	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
	Topsoil of about 200	Run-Off Coefficient	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	-
	mm)	Infiltration (mm)	31.46	24.68	1.90	0.00	0.00	0.00	0.00	0.00	18.15	36.25	37.29	33.00	182.72
		Run-Off (mm)	25.74	20.19	1.55	0.00	0.00	0.00	0.00	0.00	14.85	29.66	30.51	27.00	149.50
		Catchment Area (m²) = 18800.00					Subcato	hment Monthly	Volumes						
		Infiltration (m ³)	591.45	463.91	35.70	0.00	0.00	0.00	0.00	0.00	341.26	681.41	701.05	620.40	3435.17
		Run-Off (m³)	483.91	379.56	29.21	0.00	0.00	0.00	0.00	0.00	279.21	557.51	573.59	507.60	2810.59
		Soil Moisture Storage (mm)	400.00	400.00	400.00	363.70	307.50	273.39	284.08	314.45	392.93	400.00	400.00	400.00	-
		Actual Potential Evapotranspiration (mm)	0.00	31.63	75.85	109.46	120.65	104.07	75.51	37.94	10.02	0.00	0.00	0.00	565.12
		P-AET (mm)	57.20	44.87	3.45	-34.66	-47.15	-24.77	10.69	30.36	78.48	65.90	67.80	60.00	-
		Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-34.66	-81.80	-106.57	-95.88	-65.51	0.00	0.00	0.00	0.00	-
	Pervious Area-	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	34.66	47.15	24.77	-10.69	-30.36	-65.51	0.00	0.00	0.00	-
	Wooded	Precipitation Surplus (mm)	57.20	44.87	3.45	0.00	0.00	0.00	0.00	0.00	12.97	65.90	67.80	60.00	312.18
	area(NHL)including	MOECC Infiltration Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
	buffer	Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
		Infiltration (mm)	40.04	31.41	2.42	0.00	0.00	0.00	0.00	0.00	9.08	46.13	47.46	42.00	218.53
		Run-Off (mm)	17.16	13.46	1.04	0.00	0.00	0.00	0.00	0.00	3.89	19.77	20.34	18.00	93.66
		Catchment Area (m ²) = 65700.00					Subcato	hment Monthly	Volumes						
		Infiltration (m ³)	2630.63	2063.36	158.77	0.00	0.00	0.00	0.00	0.00	596.34	3030.74	3118.12	2759.40	14357.35
1300-1350 Bronte Road		Run-Off (m³)	1127.41	884.30	68.04	0.00	0.00	0.00	0.00	0.00	255.57	1298.89	1336.34	1182.60	6153.15
ROdu		Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
		Evaporation Factor	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	-
	Impervious Area-Roof	Run-Off Coefficient	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	-
	Area to Grass Area	Evaporation (mm)	8.58	11.48	11.90	11.22	11.03	11.90	12.93	10.25	13.28	9.89	10.17	9.00	131.60
	with additional 200	Run-Off (mm)	48.62	65.03	67.41	63.58	62.48	67.41	73.27	58.06	75.23	56.02	57.63	51.00	745.71
	mm topsoil	Catchment Area (m ²) = 16700.00	0.30				Subcato	hment Monthly	Volumes						
		Evaporation (m³)	143.29	191.63	198.65	187.37	184.12	198.65	215.93	171.09	221.69	165.08	169.84	150.30	2197.64
		Unmitigated Run-Off (m ³)	811.95	1085.92	1125.66	1061.79	1043.33	1125.66	1223.61	969.52	1256.26	935.45	962.42	851.70	12453.27
		Volume from the Roof and directed for infiltration (Assumed 30 % of total runoff from roof	243.59	325.78	337.70	318.54	313.00	337.70	367.08	290.86	376.88	280.64	288.73	255.51	3735.98
		infiltration into the soil) Runffo Reduction													3735.98

TABLE E-4
Post-development Water Balance With Mitigation
Water Balance -Water Balance -1300-1350 Bronte Road, Oakville

Catchments and	Hydrologic Components						Month							Total
Catcillients and	Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	31.63	75.85	111.10	129.70	113.41	75.51	37.94	10.02	0.00	0.00	0.00	585.15
	P - Total Precipitation (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	P-PET (mm)	57.20	44.87	3.45	-36.30	-56.20	-34.11	10.69	30.36	78.48	65.90	67.80	60.00	
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-36.30	-92.50	-126.61	-115.92	-85.55	-7.07	0.00	0.00	0.00	
	Precipitation Surplus (mm)	57.20	76.50	79.30	74.80	73.50	79.30	86.20	68.30	88.50	65.90	67.80	60.00	877.30
	Evaporation Factor	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	-
Impervious Area	Run-Off Coefficient	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	-
Driveway/ Road/	Evaporation (mm)	5.72	7.65	7.93	7.48	7.35	7.93	8.62	6.83	8.85	6.59	6.78	6.00	87.73
Paved	Run-Off (mm)	51.48	68.85	71.37	67.32	66.15	71.37	77.58	61.47	79.65	59.31	61.02	54.00	789.57
Surface/Walkway/LID	Catchment Area (m ²) = 20000.00					Subcato	hment Monthly	Volumes						
	Evaporation (m ³)	114.40	153.00	158.60	149.60	147.00	158.60	172.40	136.60	177.00	131.80	135.60	120.00	1754.6
	Run-Off (m ³)	1029.60	1377.00	1427.40	1346.40	1323.00	1427.40	1551.60	1229.40	1593.00	1186.20	1220.40	1080.00	15791.4
						Tota	l Catchment Vol	umes						
	Total AET (m³)	0.00	2673.13	6409.14	9218.16	10024.60	8618.05	6380.36	3205.55	846.59	0.00	0.00	0.00	47375.5
	Total Evaporation (m³)	257.69	344.63	357.25	336.97	331.12	357.25	388.33	307.69	398.69	296.88	305.44	270.30	3952.2
	Total Infiltration (m ³)	3222.08	2527.26	194.46	0.00	0.00	0.00	0.00	0.00	937.60	3712.15	3819.17	3379.80	21528.
	Total Runoff (m ³)	3452.88	3726.77	2650.31	2408.19	2366.33	2553.06	2775.21	2198.92	3384.05	3978.05	4092.75	3621.90	33472.4

Appendix F- Groundwater Monitoring Data

Groundwater Levels- 1326 Bronte Road, Oakville

	Date		18-A	ug-20	16-N	lar-21	01-A	pr-21	23-A	pr-21	07-M	lay-21	27-N	lay-21	10-J	un-21
Well ID	Ground Level	Well Depth	Water Level	Water Level Elev.												
Well ID	Level	mbgs	(mbgs)	m	mbgs	m	(mbgs)	m								
BH 20-1	129	6.2	2	127	1.9	127.1	1.86	127.14	1.87	127.13	1.86	127.14	1.92	127.08	1.91	127.09
BH 20-2	131.9	4.9	3.1	128.8	3.2	128.7	3.1	128.8	3.09	128.81	3.08	128.82	3.06	128.84	3.03	128.87
BH 20-3	130.2	4.3	2.5	127.7	2	128.2	1.8	128.4	1.99	128.21	2.04	128.16	2.07	128.13	2.18	128.02
BH 20-5	129.9	4.3	1.6	128.3	1.2	128.7	1.06	128.84	1.31	128.59	1.37	128.53	1.49	128.41	1.51	128.39
BH 20-8	129.9	5.2	4.6	125.3	Dry	n/a	4.98	124.92	5.02	124.88	5.06	124.84	Dry	n/a	5.07	124.83
BH 20-10	130.4	4.3	1.2	129.2	1.04	129.36	0.92	129.48	1.05	129.35	1.08	129.32	1.1	129.3	1.13	129.27
BH 20-13	131	4.7	1.6	129.4	1.6	129.4	1.53	129.47	1.49	129.51	1.45	129.55	1.41	129.59	1.46	129.54