

REPORT ON PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 50 SPEERS ROAD OAKVILLE, ONTARIO

REPORT NO.: 5557-21-EB REPORT DATE: JUNE 20, 2023

PREPARED FOR
HELBERG PROPERTIES LIMITED
SUBMISSION V2

110 KONRAD CRESCENT, UNIT 16, MARKHAM, ONTARIO L3R 9X2 TEL.: 905-940-8509 FAX: 905-940-8192

Table of Contents	
1. EXECUTIVE SUMMARY	1
2. INTRODUCTION	
2.1. Site Description	
2.2. Property Ownership	
2.3. Legal Description	
2.4. Adjacent and Surrounding Areas	
2.5. General Hydrogeology	
2.6. Current & Proposed Future Uses	
2.7. Applicable Site Condition Standard	
3. BACKGROUND INFORMATION	8
3.1. Physical Setting	
3.1.1. Water Bodies and Area of Natural Significance	
3.1.2. Site Drainage	8
3.1.3. Groundwater Flow	8
3.1.4. Topography	8
3.2. Past Investigations	
4. SCOPE OF INVESTIGATION	
4.1. Overview of site investigation	
4.2. Media Investigated	
4.3. Phase One Conceptual Site Model	
4.3.1 Site Overview	
4.3.2 Physical Setting of Phase One Property	
4.3.4 Sources of Contamination	
1.1.1. 4.3.5 Contaminants of Concerns	
4.3.6 Potential for Underground Utilities to Affect Contaminant Distribution	
Transport	
4.3.7 Uncertainty or Absence of Information	
4.4. Deviations from Sampling and Analysis Plan (SAP)	
4.5. Impediments	
5. INVESTIGATION METHOD.	
5.1. General	
5.2. Drilling	
5.3. Soil Sampling	
5.4. Field Screening Measurements	
5.5. Cross Contamination Mitigation	
5.6. Groundwater Monitoring Well Installation and Development	21

5.11. Elevation Surveying	22
5.12. Quality Assurance and Quality Control Measures	
6. REVIEW AND EVALUATION	
6.1. Geology	
6.2. Groundwater Elevations and Flow Direction	
6.3. Groundwater : Hydraulic Gradients	
6.3.1. Horizontal Gradient	
6.3.2. Vertical Gradient	
6.4. Soil : Field Screening	
6.5. Soil Quality	
6.6. Groundwater Quality	
6.7. Sediment Quality	
6.8. Soil Vapour	
6.9. Quality Assurance and Quality Control Results	27
6.10. Phase Two Conceptual Site Model	27
7. CONCLUSION	36
8. Monitoring Well Decommissioning	
9. REFERENCES	38
10. GENERAL STATEMENT OF LIMITATION	39
FIGURES	
Regional Topography and Site Location (from Phase One ESA)	Figure No. 1
Phase One Conceptual Model – PCA Locations	Figure No. 2
(from Phase One ESA)	· ·
Phase One Conceptual Site Model - APEC Locations	Figure No. 3
(from Phase One ESA)	· ·
Borehole and Monitoring Well Location Plan	Figure No. 4
Groundwater Exceedance Location Plan	Figure No. 5a-5b
Cross Section A-A'	Figure Nos. 6-6g
Cross Section B-B'	Figure Nos. 7-7g

APPENDICES

Appendix ABorehole Logs
Gradation Curves

Appendix BLaboratory Analytical Test Results

left blank for notes

1. EXECUTIVE SUMMARY

Toronto Inspection Ltd. was retained by Helberg Properties Limited (the client) to conduct a Phase Two Environmental Site Assessment (Phase Two ESA) for the property identified as 50 Speers Road, Oakville, Ontario (hereinafter described as "the Site" or "the Phase Two Property").

This Phase Two ESA was carried out in general accordance with Ontario Regulation 153/04, as amended, Records of Site Condition – Part XV.1 of the Environmental Protection Act, under the general supervision of a Qualified Person, Sajjad Din, PGeo.

The Site is a rectangular-shaped property located east of Speers Road and approximately 115 m north of Kerr Street in Oakville, Ontario. The Site is occupied by a seven (7) storey apartment building.

The objective of this Phase Two ESA was to assess the subsoil and groundwater condition at the Site, specifically addressing Areas of Potential Environmental Concern (APECs) identified in a Phase One ESA prepared by *Toronto Inspection Ltd*.

The Potentially Contaminating Activities (PCA) identified on the Site – importation of fill material of unknown quality, contributes to one (1) APEC at the Site. The remaining PCAs associated with off-Site sources of concern contribute to three (3) APECs at the Site.

APEC	Location of APEC on Phase One Property	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC-1	Entire Site	PCA # 30 – Importation of Fill Material of Unknown Quality	On-Site	- Metals - Metals, Hydride-Forming (As, Se and Sb) - PAHs	Soil
APEC-2	South Portion of the Site	PCA#30 – Importation of Fill Material of Unknown Quality	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater
APEC-3	North Portion of Site	PCA#6 – Battery manufacturing, Recycling and Bulk Storage PCA#19 – Electronic and Computer Equipment Manufacturing PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks PCA#31 – Ink Manufacturing, processing and bulk storage PCA#33 – Metal treatment, Coating, Plating and Finishing PCA#54 – Textile Manufacturing and Processing PCA#57 – Vehicles and Associated Parts Manufacturing	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater

A total of seven boreholes were advanced at the Site, all of which completed as long term monitoring wells.

The soil stratigraphy at the boreholes generally consisted of a surface cover of asphalt over granular bases extending to depths of 0.3 m below grade. Underlying the surface cover a layer of fill generally consisting of clayey silt, sandy silt, silty sand was encountered. The fill material was underlain by a clayey silt formation at the location of borehole 21BH-1(MW). Weathered shale was encountered underlying the clayey silt deposit at the location of borehole 21BH-1(MW) location and underlying the fill at the locations of boreholes 21BH-2(MW) to 21BH-4(MW), at depths ranging from 1.2 m to 4.3 m below grade.

The following Site Condition Standard for the Phase Two property were used for evaluating the analytical test results for the Site:

The Ministry of Environment, Conservation and Parks (MECP) Table 3: Full Depth Generic Site Condition Standards for Use within in a Non-Potable Ground Water Condition, listed in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" document, dated April 15, 2011 for Residential/Parkland/ Institutional property use with coarse textured soils (MECP Table 3 SCS).

Soil samples were submitted for analysis of PHCs, BTEX, VOCs, Metals, Hydride-Forming As, Se, Sb and PAHs. Soil duplicates were collected during sampling activities as a duplicate ratio of 1 to 10 was maintained for each parameter group. Laboratory analytical results for testing for PHCs, VOCs, Metals, Hydride-Forming As, Se, Sb and PAHs parameters in the soil samples met the MECP Table 3 SCS.

Groundwater samples were submitted for analysis of PHCs, BTEX, VOCs, Metals and Hydride-Forming As, Se, Sb. Laboratory analytical results for testing for PHCs, BTEX, VOC, Metals, Hydride-Forming As, Se, Sb parameters in the groundwater samples met the MECP Table 3 SCS with the following exceptions:

21BH-4(MW)-2021:

- PHC Fraction F1 of 857 ug/L vs the MECP Table 3 SCS of 750 ug/L
- PHC Fraction F2 of 14200 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 8920 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-4(MW)-2023:

- PHC Fraction F2 of 47000 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 23000 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-102(MW)-2023:

- PHC Fraction F2 of 5700 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 2000 ug/L vs the MECP Table 3 SCS of 500 ug/L

The groundwater impacts appear to be localized in the northeast portion of the Site. It is recommended that the groundwater exceedance be addressed during the future redevelopment activities. Possible methods of treatment at that time may include chemical oxidation or pump and treat. Furthermore, as the source is likely offsite, engineering controls such as a permeable reactive barrier may also be considered as options for the Site.

If the monitoring wells on-Site are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells".

2. INTRODUCTION

Toronto Inspection Ltd. was retained by Helberg Properties Limited (the client) to conduct a Phase Two Environmental Site Assessment (Phase Two ESA) for the property identified as 50 Speers Road, Oakville, Ontario (hereinafter described as "the Site" or "the Phase Two Property").

The purpose of this Phase Two ESA was to investigate potential environmental concerns from the current and past activities on the Site and surrounding properties, specifically addressing Areas of Potential Environmental Concern identified in a Phase One ESA prepared by *Toronto Inspection Ltd.* This Phase Two ESA was carried out in general accordance with Ontario Regulation 153/04, as amended, Records of Site Condition – Part XV.1 of the Environmental Protection Act, under the general supervision of a Qualified Person, Sajjad Din, PGeo.

2.1. Site Description

The Site is a rectangular-shaped property located east of Speers Road and approximately 115 m north of Kerr Street in Oakville, Ontario. The Site is occupied by a seven (7) storey apartment building and it is described as follows:

Information pertaining to the Site is described as follows:

- Municipal Address: 50 Speers Road, Oakville, Ontario
- Legal Description (general): Part of Lots 15 and 16, Concession 3 Trafalgar, south of Dundas Street; PT RDAL Between Lots 15 & 16, Concession 3, south of Dundas Street, as is 274152; Oakville/Trafalgar
- Ownership: Helberg Properties Limited
- Site Area: 0.4180 hectares
- Property Coordinates (approximate centroid): Zone 17 606369.93m E 4811365.36m N
- Property Identification Number: 24817-0036 (LT)
- Current Zoning: Residential-High (RH)
- Current Land Use: Residential
- Proposed Land Use: Residential

The layout of the Phase Two Property is presented in Image No. 1, below.

Image No. 1: 2019 Aerial photograph showing subject site (Source: Oakville Interactive Map)

2.2. Property Ownership

Helberg Properties Limited c/o Arcanos Property Management Corporation 235 Carlaw Avenue, Suite 403 Toronto, Ontario M4S 2M7

Contact: Ali Saneinejad Email: ali@collageworks.ca

2.3. Legal Description

A legal survey, dated March 2, 2020, completed by J.D. Barnes was provided by the Client. The Site was legally described as "Part of Lots 15 and 16 and Part of Road Allowance Between Lots 15 & 16, Concession 3, South of Dundas Street, Town of Oakville, Regional Municipality of Halton".

2.4. Adjacent and Surrounding Areas

Adjacent Properties

Occupants and/or land usage of the adjacent and neighboring properties at the time of the site reconnaissance include the following:

Address / Orientation	Owner / Occupant	Observations	Potentially Contaminating Activity (PCA)
North of the Site 30 Speers Road	Residential	Residential Apartment Building	No obvious evidence of PCA
East of the Site 357 Bartos Drive	Oakwood Public School	School yard	No obvious evidence of PCA
South of the Site 80 Speers Road	Residential	Residential Apartment Building	No obvious evidence of PCA
West of the Site 41 Speers Road (Beyond Speers Road)	Residential	Residential Apartment Building	No obvious evidence of PCA

Neighboring Properties

The neighboring property uses (excluding rights-of-way) observed at the time of the site reconnaissance are summarized in the table below:

Observations of Neighbouring Properties

Location	Land Use	Observations
North	Residential	Residential developments.
		No obvious signs of potential environmental concerns were observed.
East	Residential and Institutional	Residential developments and school.
		No obvious signs of potential environmental concerns were observed.
South/Southwest	Residential and Commercial	Residential developments and Speedy Auto Service located at 112 Speers Road (160m south) (PCA#10).
West	Residential and Commercial	Residential and commercial plaza.
		No obvious signs of potential environmental concerns were observed.

2.5. General Hydrogeology

Based on the topographic map, Natural Resources of Canada – The Atlas of Canada – Toporama, local groundwater flow direction is inferred to be northeast towards Sixteen Mile Creek. The closest point of Sixteen Mile Creek in relation to the Site is located approximately 215 m north-west of the Site. Sixteen Mile Creek flows east and drains into Lake Ontario, which is located approximately 1.7 km east of the Site.

2.6. Current & Proposed Future Uses

At the time of this Phase Two ESA, the Site was a being used for residential purposes. Proposed redevelopment includes a residential apartment building.

2.7. Applicable Site Condition Standard

Toronto Inspection Ltd. has considered the following conditions to determine the applicable Site Condition Standard for the Phase Two property.

Condition	Evaluation
Current land use	Residential
Proposed land use	Residential
Area of natural significance	According to the on-line mapping application of the Ministry of Natural Resources and Forestry, no areas of natural significance are located within the Study Area.
Proximity to surface water body	The closest water body is Sixteen Mile Creek, located approximately 215m north of the Site.
Potable or Non Potable Ground Water	The Site was municipally serviced by the Town of Oakville, which supplies treated drinking water derived from Lake Ontario.
Soil pH	Accredited laboratory chemical test results indicated that the soil at the property had a pH value between 5 and 9. Therefore, Section 41 of the Regulation does not apply.
Depth to bedrock	Bedrock was encountered at depths greater than 1.5 m below grade for more than 2/3 of the Site.
Soil texture	Coarse textured soils were deemed applicable to the Site. Grain size analysis conducted on a soil sample collected from 21BH-4 at a depth of 1.1 m below grade indicated 79.9% coarse textured soils.

Based on the above evaluation, the Ministry of Environment, Conservation and Parks (MECP) Table 3: Full Depth Generic Site Condition Standards for Use within in a Non-Potable Ground Water Condition, listed in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" document, dated April 15, 2011 (MECP Table 3 SCS) for Residential/Parkland/Institutional property use with coarse textured soils were determined to be applicable for the Site.

3. BACKGROUND INFORMATION

3.1. Physical Setting

3.1.1. Water Bodies and Area of Natural Significance

According to the on-line mapping application of the Ministry of Natural Resources and Forestry, no areas of natural significance are located within the Study Area. The closest water body is Sixteen Mile Creek, located approximately 215m north of the Site.

3.1.2. Site Drainage

Surface drainage is expected to flow into the catch basins located along Speers Road and infiltrate into the ground within the landscape areas.

3.1.3. Groundwater Flow

Groundwater flow is anticipated to be in northeast direction towards Sixteen Mile Creek, the closest water body located approximately 215 m from the Site boundary.

3.1.4. Topography

As indicated on the topographic map, the average elevation of the Site is approximately 100 m above mean sea level. The mapped contours for the Site and surrounding areas indicate downward slope to the northeast direction towards Sixteen Mile Creek.

3.2. Past Investigations

The following report was reviewed as part of this Phase II ESA:

"Report on Phase One Environmental Site Assessment, 50 Speers Road, Oakville, Ontario", Report No. 5557-21-EA, prepared by *Toronto Inspection Ltd.*, dated July 6, 2021.

The following potential environmental concerns were identified:

- The potential presence of fill of unknown quality across the Site.
- Off-Site activities south of the Site including autobody shop, an underground tank leak of furnace oil and an off-Site underground storage tank (UST).
- Off-Site activities west of the Site including manufacturing, waste generation, the presence of USTs and previous remediation activities.

Based on these findings, a Phase II ESA was recommended to be conducted at the Site.

4. SCOPE OF INVESTIGATION

4.1. Overview of site investigation

The objective of this Phase Two ESA was to assess the subsoil and groundwater condition at the Site, specifically addressing Areas of Potential Environmental Concern identified in a Phase One ESA prepared by *Toronto Inspection Ltd*.

The following scope of work was developed and implemented at the Site:

- Developed a site-specific Sampling Analysis Plan (SAP);
- Ensured all public and private utilities at the Site were located and marked out prior to drilling;
- Drilled seven (7) boreholes 21BH-1(MW), 21BH-2(MW), 21BH-3(MW), 21BH-4(MW), 21BH-101(MW), 21BH-102(MW) and 21-BH104(MW) extending to depths ranging from 0.3 m to 11.1 m below grade;
- Collected soil samples during borehole drilling, and logged the soil samples for visual and olfactory characteristics, and evidence of petroleum hydrocarbon and/or chemical impact;
- Installed groundwater monitoring wells at all borehole locations;
- Measured soil head space vapour concentrations in the soil samples for field screening purposes;
- Submitted representative or "worst case" soil samples for laboratory analyses for Petroleum Hydrocarbons Fraction F1-F4 (PHCs), Volatile Organic Compounds (VOCs), Metals and Inorganics (M&Is) and Polycyclic Aromatic Hydrocarbons (PAHs);
- Inspected the monitoring wells for presence of Light Non-Aqueous Phase Liquid (LNAPL);
- Submitted representative groundwater samples for laboratory analyses for the parameters of PHCs, VOCs and M&Is.
- Determined the applicable Site Condition Standards (SCS) from the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 and the Ontario Regulation (O. Reg.) 153/04 "Record of Site Condition Part XV.1 of the Environmental Protection Act"; and
- Prepared a report that evaluated the laboratory analytical results with respect to the SCS; interpreted the findings of the Phase Two ESA, and evaluated the nature and amount of impact(s), if any.

4.2. Media Investigated

Soil and groundwater was investigated. There was no water body on-Site, therefore, no sediment or surface water sampling was undertaken.

4.3. Phase One Conceptual Site Model

A Conceptual Site Model (CSM) was developed during the Phase One ESA. The CSM consists of figures of the Phase One Study Area which include: the physical characteristics and PCAs identified within the Study Area, as well as APECs identified for the Site. The CSM also provides a description and assessment of any identified PCAs and APECs, contaminants of potential concern, pathways for distribution and potential migration of contaminants, geological and hydrogeological information.

4.3.1 Site Overview

The Site is a residential apartment building with underground parking garage constructed circa 1965. Prior to 1965 the site was undeveloped.

4.3.2 Physical Setting of Phase One Property

Regional Geological and Hydrogeological Information

Based on topography of the area, groundwater flow is anticipated to be in a southeast According to the Ontario Geophysical Survey "OGS Earth" application, the Phase One Study Area is situated within the physiographic region of Iroquois Plain, which consisted of sand plains. The surficial geology in the area was identified as Shale Plains. The Bedrock Geology of Ontario, Southern Sheet Map 2544 shows that the bedrock under the Phase One Property consists of Ordovician: upper Ordovician: shale, limestone, dolostone, siltstone of the Queenston Formation. The depth to the bedrock is approximately 6 m below ground surface.

Water Bodies and Areas of Natural Significance in Phase One Study Area

Based on information provided on the Ministry of Natural Resources and Forestry (MNRF) on-line application "Make A Map: Natural Heritage Areas", the Phase One Property is not located within or adjacent to an area of natural and scientific interest (ANSI), a woodland area or within a provincially significant wetland.

The closest water body is Sixteen Mile Creek, which located approximately 215 m north of the Phase One Property at its closest point. Sixteen Mile Creek flows east and drains into Lake Ontario, which is located approximately 1.7 km east of the Phase One Property.

Phase One Property Topographic, Geologic, and Hydrogeologic Conditions

At the time of the site reconnaissance, the Phase One Property grade was observed to be relatively flat and generally at the same elevation in relation to neighbouring properties. Soil features were not possible to be determined due to asphalt-paved areas located to the west (driveway) and to the south (parking lot area). The Phase One Property was also provided with a landscaped area located at the west portion of the Site. Surface drainage is expected to flow towards the on-Site catch basins located at the parking lot area or towards the catch basins located along Speers Road.

The topographic features and surface gradient are expected to influence shallow groundwater flow at the Phase One Property and within adjacent/neighbouring lands. Also, groundwater flow at the Site may be influenced by underground utility corridors or structures.

Fill Materials

At the time of the site reconnaissance, no fill material was observed on the Phase One Property. However, due to the age of the development, and presence of paved areas, i.e., driveways and parking lot, it is possible that fill material may have been used on the property. No debris pile was observed on the Site.

Drinking Water Wells at the Phase One Property

No drinking water wells were identified on the Site.

Proposed Property Use at the Phase One Property

The proposed property use for the Site will be residential.

4.3.4 Sources of Contamination

Potentially Contaminating Activity

Numerous PCAs were identified within the Phase One Study Area. The locations of PCAs within the Site and the Phase One Study Area that may be contributing to an area of APEC are shown on Figure No. 2 and summarized in Table 4.2-1.

Table 4.3.4-1: Potentially Contaminating Activities Within the Phase One Study Area

Potential Environmental Concerns	Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
Potential presence of fill material of unknown quality.	PCA#30 – Importation of Fill Material of Unknown Quality	Yes
	Potential presence of fill material of	Activity (Table 2, Schedule D of O.Reg. 153/04) Potential presence of fill material of PCA#30 – Importation of

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
80 Speers Road Adjacent to the south of the Site	A MECP incident report dated 8/13/1991 indicating an underground tank leak of 1,350L of furnace oil.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes
533 Kerr Street Approximately 90 m southwest of the Site	A Record of Site condition was filed for the property in 2014, RSC ID: 212887. Historically, the property was occupied by an autobody/auto repair shop, automobile sales with an auto repair shop and residential dwellings. A Phase Two investigation was conducted on the property and a review of the chemical testing results indicated that soil and groundwater with concentrations of parameters exceeding the 2011 MOE Table 3 Standards were identified. The sources of contamination were attributed to the historical autobody and auto repairs activities on the property. As of September 20, 2013, all soil and shale bedrock to a depth of approximately 6 m below grade has been removed from areas of identified impacts on the property. After remediation, all soil and groundwater samples submitted for analysis met the MOE Table 3 RPI Standards released in 2011. Based on the 1967 FIP, the property was occupied by an auto repairs facility, one (1) UST was observed at the south portion of the property addressed previously as 557 Kerr Street.	PCA#10 Commercial Autobody Shop PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes
66 Shepherd Avenue (Formerly 68 Shepherd Avenue) Approximately 105 m west of the Site	The address was listed as European Auto Centre – Automobile Parts and Supplies-Used & Rebuilt. The address was listed as Economy Performance - Automobile Parts and Supplies-Used & Rebuilt. The property was occupied by an auto repair facility based on the 1967 FIPs.	PCA#10 Commercial Autobody Shop	Yes
62 Shepherd Avenue (Formerly 60 Shepherd Avenue) Approximately 110 m west of the Site	The property was occupied by a Contractors Yard and an equipment repair facility. One (1) UST was observed at the north section of the property.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
58 Shepherd Avenue (Formerly 54 Shepherd Avenue) Approximately 105 m west of the Site	The address was listed as Lesmith Limited, an electronic components manufacturer established in 1973. Lesmith Ltd. was reported as a wasted generator of halogenated solvents, emulsified oils and aliphatic solvents (1988-2001). The address was listed as Ratelle Communications Ltd. an electronic parts and equipment manufacturer established in 1982. Ratelle Communications Ltd. (Battery Industry) was reported as waste generator of alkaline wastes – heavy metal (1996-1999) The address was listed as Kanopys Canada, a textile bag and canvas mills established in 1990.	(Table 2, Schedule D of	Yes
	The property was occupied by an auto clutch manufacturing. One (1) UST was located at the south section of the property based on the 1967 FIP. A Record of Site Condition was filed for the property on January 01, 2017. Historically, the property was used for commercial/industrial purposes including metal manufacturing and battery recycling, electronic component manufacturing, printing company and various commercial companies, including the use of underground storage tank (UST). A Phase Two was performed on the property to investigate the quality of the soil and groundwater. The chemical analytical results indicated soil and groundwater with concentrations of parameters exceeding the 2011 MOECC Table 3 Standards. A remediation program started on February 1, 2016 and was completed on April 30, 2016. After remediation, all post-remediation soil and groundwater samples met the generic MOECC Table 3 standards.	Associated Parts Manufacturing	

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
20 Shepherd Road Approximately 115m northwest of the Site	The address was listed as Nortec Industries. The facility was reported as a waste generator of paint/pigment/coating residues, aliphatic solvents, petroleum distillates and waste oils and lubricants (2000-2005)	PCA#39 – Paints, manufacturing, Processing and Bulk Storage PCA#43 – Plastics (including fiberglass) manufacturing and processing	Anticipated to be low based on distance and trans/down gradient orientation.
33 Shepherd Road Approximately 190 m northwest of Site	The address was listed as Truso Ltd. – Perfume, cosmetic and toilet preparations manufacturer established in 1945. The address was listed as Group Four Furniture Inc. – a furniture (except wood) manufacturer established in 1981.	PCA#13 – Cosmetics Manufacturing, processing and Bulk Storage PCA#33 – Metal treatment, Coating, Plating and Finishing	Anticipated to be low based on distance and trans/down gradient orientation.
40 Shepherd Road Approximately 105 m northwest of Site	This address was previously occupied by an air reconditioning, painting and welding facility.	PCA#33 – Metal treatment, Coating, Plating and Finishing	Anticipated to be low based on distance and trans/down gradient orientation.

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
485 Kerr Street (Formerly 479 Kerr Street) Approximately 105 m northwest of Site	The address was reported as Sunoco Inc. – through agent Pioneer Petroleums Mana. A private and retail fuel storage tank was listed for the property. A MECP (formerly MOE) spillage incident report dated 12/20/1997 indicated an underground tank leak due to pressure in the system. Amount of leak was not reported. A service station-gasoline, oil & natural gas was listed for the property. Five (5) distilled fuel tanks were listed for Pioneer Energy Management Inc. Record dated March 2012. Four (4) 22700-litres gasoline single wall steel USTs were installed on the property in 1973. A list of four (4) expired tanks were reported for the property. An auto service facility was observed at this address, one (1) UST was located to the south of the former auto service building. A Record of Site Condition was filed for the property was remediated and as of January 29, 2008, based on confirmatory sampling, the property met the applicable full depth site condition standard.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and trans/down gradient orientation.
112 Speers Road Approximately 160 m south of the Site	Speedy Auto Service, an auto body shop.	PCA#10 Commercial Autobody Shop	Anticipated to be low based on distance and trans/down gradient orientation.
Main intersection Kerr Street and Speers Road Approximately 120 m southwest of the Site	A MECP (formerly MOE) spillage incident report dated 6/11/2003 indicated a container leak from a trucks diesel tank. Reason not determined and amount of leak was not reported.	Undefined PCA	Anticipated to be low based on distance and trans/down gradient orientation.
	A MECP (formerly MOE) spillage incident report dated 19/04/2012 indicated that 20 litres of hydraulic oil leaked to the ground.		

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
Approximately 150 m southeast of the Site	A MECP (formerly MOE) spillage incident report dated 6/7/1991 indicated a container leak of 118 litres of gasoline into valve box. The address was listed as Sunoco service station. A MECP (formerly MOE) spillage incident report dated 10/5/1989 indicated a leak of 600 litres of hydraulic oil to ground and road. A private and retail fuel storage tank was reported for the address. Imperial Oil Limited was listed as a waste generator of light fuels, oil skimming and sludges and waste oils and lubricants (2007-2014). Four (4) expired distilled fuel tanks were listed for John Pocrnic. Record dated March 2012. Three (3) 22700-litres gasoline single wall steel USTs were installed on the property in 1978. An auto service facility was observed at this address, one (1) UST was located to the north of the former auto service building. A Record of Site Condition was filed for the property on March 29, 2018. Historically, the property was developed as a retail fuel outlet and automobile repair facility. A Phase Two was performed to investigate the soil and groundwater on the property and based on the chemical analytical results, no contaminants were present at concentrations greater than the applicable standards.	PCA#27 – Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and down gradient orientation.

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
461 Kerr Street (Formerly 459 Kerr Street) Approximately 95 m northwest of Site	A MECP (formerly MOE) spillage incident report dated 12/8/1992 indicated an underground tank leak. Gasoline was detected in boreholes. The address was occupied by Petro-Canada. A private and retail fuel storage tank was reported for the address.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and down gradient orientation.
	One (1) distilled fuel tank was listed for Allan Parkhill Holdings Ltd. Record dated May 2013. One (1) gasoline single wall steel UST was installed on the property in 1989. An auto service facility was observed at this address, one (1) UST was located to the north of the former auto service building.		
506 Kerr Street Approximately 130m south of the Site	An auto service facility was observed at this address, one (1) UST was located at the northeast section of the property.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and trans/down gradient orientation.
550 Kerr Street Approximately 165 m southwest of the Site	Canadian Tire – auto supplies Store and automotive repair was listed as a waste generator of paint/pigment/ coating residues, halogenated solvents (2000-2011).	PCA#10 Commercial Autobody Shop	Anticipated to be low based on distance and trans gradient orientation.

Areas of Potential Environmental Concern

The PCA identified on the Site – importation of fill material of unknown quality, contributes to one (1) APEC at the Site. The remaining PCAs associated with off-site sources of concern contribute to three (3) APECs at the Site. The locations of these APECs are shown on Figure No. 3 and summarized in Table 4.3.4-2.

Table 4.3.4-2 Areas of Potential Environmental Concern

APEC	Location of APEC on Phase One Property	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC-1	Entire Site	PCA # 30 – Importation of Fill Material of Unknown Quality	On-Site	- Metals - Metals, Hydride- Forming (As, Se and Sb) - PAHs	Soil
APEC-2	South Portion of the Site	PCA # 30 – Importation of Fill Material of Unknown Quality	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater

APEC	Location of APEC on Phase One Property	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC-3	North Portion of Site	PCA#6 – Battery manufacturing, Recycling and Bulk Storage PCA#19 – Electronic and Computer Equipment Manufacturing PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks PCA#31 – Ink Manufacturing, processing and bulk storage PCA#33 – Metal treatment, Coating, Plating and Finishing PCA#54 – Textile Manufacturing and Processing PCA#57 – Vehicles and Associated Parts Manufacturing	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater

4.3.5 Contaminants of Concerns

The contaminants of concerns associated with each APEC are provided in Table 4.3.4-2 *Areas of Potential Environmental Concern.*

4.3.6 Potential for Underground Utilities to Affect Contaminant Distribution and Transport

The presence of underground utility corridors or structures represents potential pathways which can affect the distribution and transport of potential contaminants of concern. Also, groundwater flow at the Site may be influenced by underground utility corridors or structures.

Also, preferential pathways in subsurface soils within developed areas and nearby catch basins connecting to the local storm sanitary network may influence shallow groundwater flow in the Study Area.

4.3.7 Uncertainty or Absence of Information

There is no known data gap identified that affects the findings of this Phase One ESA.

4.4. Deviations from Sampling and Analysis Plan (SAP)

The sampling and analysis plan was followed in regards to the soil and groundwater sampling.

4.5. Impediments

Generally, no impediments were encountered as part of this investigation.

5. INVESTIGATION METHOD

5.1. General

Prior to drilling at the Site, *Toronto Inspection Ltd.* contacted Ontario One Call to obtain clearance from public utility companies for borehole locations. In addition, *Toronto Inspection Ltd.* contracted a private locating company to clear the borehole locations of any private utilities at the Site.

A site-specific health and safety plan (HASP) was prepared by *Toronto Inspection Ltd.* prior to the field work. The HASP was reviewed by all workers including staff from *Toronto Inspection Ltd.* and subcontractors prior to the commencement of work on the Site.

5.2. Drilling

On May 11, 2021 and October 14 and 15, 2021, *Toronto Inspection Ltd.* retained a drilling contractor, with a Ministry of the Environment, Conservation and Parks (MECP) license for well installation, to advance seven boreholes at locations shown in Figure No. 4. The boreholes were drilled using a track-mounted CME-75 rig equipped with 150 mm solid stem augers for the exterior borehole locations and a Pionjar Drill for the interior borehole locations. The borehole locations were selected, with consideration of buried utility lines at the Site, to assess the potential environmental concerns from on-site as indicated in the Sampling and Analysis Plan. The interior borehole was installed with a hand-held Pionjar drilling equipment.

5.3. Soil Sampling

Soil samples were collected using a split spoon sampler during the drilling. Soil samples that were collected on Site were divided into two portions — one portion for visual examination/laboratory submission and the second portion for field vapour screening. Upon visual identification in the field, a portion of the sample was placed into a Ziploc[™] Bag for later visual examination at *Toronto Inspection Ltd.* laboratory. Another portion of the sample was placed into laboratory supplied sample bottles and/or vials, as applicable, based on visual observations and field vapour screening results. The Ziploc[™] Bags, laboratory supplied bottles and vials were labelled with the identified project location, borehole ID and sampling depth.

5.4. Field Screening Measurements

Soil samples for field vapour screening were placed in separately labelled clean plastic bags, broken into pieces, and set aside to come to ambient room temperature before conducting head space screening measurements. The soil vapour head space measurements were recorded on the field borehole logs, and documented in the finalized logs.

The vapour screening process was undertaken for the retrieved soil samples from the boreholes. The procedure was followed as outlined in "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" using an RKI Eagle 2 gas monitor meter. Specifics of the equipment are provided below:

Equipment	Parameters	Detection Limit	Accuracy	Calibration Standard	Calibration Frequency
RKI Eagle 2	Combustible gas	0-50,000 ppm	±5%	Hexane	Yearly by supplier (Maxim Environmental), and
	VOC	0-2,000 ppm	±5%	Isobutylene	manufacturer instructions prior to field work

5.5. Cross Contamination Mitigation

To avoid potential for cross contamination, disposable nitrile gloves were used during sampling. The gloves were changed between collection of each soil sample. Non-dedicated equipment such as split spoon sampler was washed between sampling rounds using AlconoxTM detergent and distilled water. The augers were brushed clean and spoils were placed in sealed drums for removal off-Site.

5.6. Groundwater Monitoring Well Installation and Development

The groundwater monitoring wells were constructed with screens and solid stem piping consisted of 50 mm (37.5 mm for interior) diameter and Schedule 40 polyvinyl chloride (PVC) well piping. Silica sand was used to cover the section of the PVC screen and to a height of 600 mm above the screen. The remainder of the borehole was backfilled with bentonite pellet hole plug, placed above the silica sand and activated with distilled water. The top of the borehole/monitoring well was sealed with flush mounted well casing. The monitoring well screens were installed to intersect the groundwater table, and account for fluctuations.

The groundwater monitoring wells were monitored on May 21, 2021, May 25, 2021, October 26, 2021 and May 3, 2023.

5.7. Sediment Sampling

No sediment sampling was conducted as there was no surface water body present.

5.8. Soil Vapour Sampling

No vapour-related contaminants were identified in the soils at the Site. Therefore, soil vapour sampling was not conducted.

5.9. Analytical Testing

The soil samples were delivered to SGS Laboratories, a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited environmental laboratory located in Lakefield, Ontario, for analytical testing.

5.10. Residue Management Procedures

The spoils from drilling were temporarily stored on-Site in sealed drums for removal off-Site.

5.11. Elevation Surveying

The borehole/monitoring well locations were established in the field by our site personnel, shown on the attached Borehole Location Plan (Figure No. 3). The ground elevations at the borehole locations were determined using the topographic survey listed previously in this report.

5.12. Quality Assurance and Quality Control Measures

Soil sampling was conducted in accordance with procedures outlined in the previous sections. The following QA/QC measures were implemented during the scope of this investigation :

- The field personnel were briefed by the QP.
- QP and field personnel ensured all field work was conducted in accordance with the required procedures for drilling, soil and groundwater collection, sample preservation and delivery to the laboratory.
- Field personnel ensured that all soil samples were adequately identified with the following: Company Information, Project Number, Sample ID, Date Collected, Time Collected and Parameters to be Tested.
- Field personnel ensured that a Chain of Custody was completed for each round of submission to the laboratory by verifying the sample details and information on the Chain of Custody, to ensure the analytical parameters were correct.
- All samples were placed in a cooler packed with ice from the office and/or field, and transported to the laboratory.
- Field personnel ensured that sample containers were packed upright and not lying on their sides.
- QP and field personnel ensured that all samples were analyzed within the established protocol times for each parameter groups.
- A copy of the original chain of custody form was included with the cooler, with a copy obtained after delivery to the laboratory.

6. REVIEW AND EVALUATION

6.1. Geology

Ground Surface

Asphalt pavement, consisting of approximately 65 mm - 75 mm asphalt over granular bases, was contacted at the ground surface at borehole locations 21BH-1(MW), 21BH-2(MW), and 21BH-3(MW). Topsoil 100 mm in thickness was encountered as the surface cover at the location of borehole 21BH-4(MW). A concrete floor was encountered at the surface at the location of borehole 21BH-101(MW). Topsoil was encountered at the surface of the locations of boreholes 21BH-102(MW) and 21BH-103(MW), 250 mm and 200 mm in thickeness respectively.

Fill

Underlying the asphalt pavement structure or the topsoil at the borehole locations, a layer of fill was encountered. The fill consisted of a mixture of clayey silt, sandy silt, silty sand, trace to some gravel, occasional shale or limestone pieces, with occasional topsoil or rootlets. The fill extended to depths of 1.5 m, 1.2 m, 4.3 m and 2.3 m below grade at the locations of boreholes 21BH-1(MW) through 21BH-4(MW), respectively.

Clayey Silt

Native clayey silt deposit was encountered underlying the fill at the location of borehole 21BH-1(MW), at a depth of 1.5 m below grade. The deposit contained occasional layers of sandy silt, silty sand, some gravel, with occasional shale pieces close to the lower portion of the deposit. The clayey silt deposit extended to a depth of 2.3 m below grade.

Silty Sand

A native silty sand deposit was encountered under the granular fill (21BH-101) and topsoil (21BH-102 and 21BH-103). The silty sand was generally reddish brown, moist, fine grained and contained trace gravel.

Shale Bedrock

Weathered shale was encountered underlying the clayey silt deposit at the location of borehole 21BH-1(MW) location and underlying the fill at the locations of boreholes 21BH-2(MW) to 21BH-4(MW), at depths ranging from 1.2 m to 4.3 m below grade.

Borehole 21BH-4(MW) was terminated in the weathered shale at a depth of 6.2 m below grade. At the location of boreholes 21BH-1(MW) to 21BH-3(MW), the weathered shale extended to depths ranging from 5.6 m to 6.5 m below grade, where virtual refusal to auguring was encountered. The weathered shale was stratified, with seams of clayey silt.

A copy of the borehole logs showing the soil conditions encountered in the boreholes and measured soil head space vapour concentrations for the soil samples are presented in Appendix A.

6.2. Groundwater Elevations and Flow Direction

Groundwater elevations are summarized in Table 6.2-1 below.

Table 6.2-1: Groundwater Elevations

Monitoring Well Location	Date Measured	Water Depth (m bg)
040114(84)84)	05/25/21	7.89
21BH-1(MW)	05/03/23	7.15
OADLL O(MAA)	05/25/21	4.83
21BH-2(MW)	05/03/23	3.96
04 D11 0 (MAA)	05/25/21	4.89
21BH-3(MW)	05/03/23	4.28
04511 4/84040	05/25/21	4.54
21BH-4(MW)	05/03/23	3.87
24011 404 (84)(4)	10/26/21	0.63
21BH-101(MW)	05/03/23	0.36
24011 402(84)4()	10/26/21	4.29
21BH-102(MW)	05/03/23	4.32
24011 402(84)4()	10/26/21	3.46
21BH-103(MW)	05/03/23	3.31

Groundwater flow direction was not ascertained during this investigation.

6.3. Groundwater: Hydraulic Gradients

6.3.1. Horizontal Gradient

The horizontal hydraulic gradient was not calculated as part of this Phase Two ESA.

6.3.2. Vertical Gradient

The vertical hydraulic gradient was not calculated as part of this Phase Two ESA.

6.4. Soil: Field Screening

Vapour concentrations measured in the soil samples collected during the drilling investigation were measured below 20 parts per million by volume (ppm). The readings are presented in the attached field logs.

6.5. Soil Quality

To address the APECs identified in the Phase One ESA, parameter groups of PHCs, BTEX, VOCs, Metals, Hydride-Forming Metals (As, Se, Sb) and PAHs were analyzed within the soil and shown in the table below:

Borehole		Investigation Depths Sample Or		ters				
or Well ID	Rationale	Media	Screened Intervals* (m bg)	PHCs	втех	VOCs	Metals and Hydride- Forming (As, Se, Sb)	PAHs
21BH-2(MW)		Soil	0.3	х	х	х	х	х
21BH-3(MW)	To investigate the potential presence of fill material.	Soil	0.3	х	х	х	х	х
21BH-101(MW)	'	Soil	0.3	х	x	x		
21BH-102(MW)	To investigate the off-site	Soil	4.5	х	х	x		
21BH-103(MW)	concerns to the north.	Soil	2.3	х	х	х		
Dup	QA/QC	Soil	-	х	х	х	х	
Dup B	QA/QC	Soil	-					х

A minimum duplicate ratio of 1:10 was maintained for each parameter group during the soil analytical testing.

Laboratory analytical results for testing for PHCs, BTEX, VOCs, M&Is and PAH parameters in the soil samples met the MECP Table 3 SCS.

For safety of vehicular or pedestrian traffic under conditions of snow or ice (or both), de-icing salts may have been applied within the paved areas during the winter months. As such, salt-related parameters (Electrical Conductivity, Sodium Adsorption Ratio, Sodium and Chloride) are not considered potential contaminants of concern at the Site, as per Section 49.1 of O.Reg. 153/04.

The pH for near-surface soils (Surface to 1.5 m) and sub-surface soils (below 1.5 m) ranged from 7.59 to 8.00 in the analysed soil samples and were within the applicable ranges specified in O.Reg. 153/04.

6.6. Groundwater Quality

To address the APECs identified in the Phase One ESA, parameter groups of PHCs, BTEX, VOCs, Metals and Hydride-Forming Metals (As, Se, Sb) were analyzed within the groundwater and shown in the table below:

Borehole	hole		Sample		Investigation Depths or	Test Parameters				
or Well ID	Rationale	Media	Screened Intervals* (m bg)	PHCs	втех	VOCs	Metals and Hydride- Forming (As, Se, Sb)	PAHs		
21BH-1(MW)	To investigate the off-site concerns to the north.	GW	8.0 – 11.0	х	х	x	х			
21BH-2(MW)	To investigate the off-site	GW	4.6 – 6.1	х	х	х	х			
21BH-3(MW)	concerns to the south.	GW	4.6 – 6.1	х	х	х				
21BH-4(MW)		GW	3.1 – 6.1	х	х	х				
21BH-102(MW)	To investigate the off-site concerns to the north.	GW	4.3 – 5.2	х	х	х				
21BH-103(MW)		GW	2.9 – 4.3	х	х	х				

Laboratory analytical results for testing for PHCs, BTEX, VOCs, M&Is and PAH parameters in the soil samples met the MECP Table 3 SCS with the following exceptions:

21BH-4(MW)-2021:

- PHC Fraction F1 of 857 ug/L vs the MECP Table 3 SCS of 750 ug/L
- PHC Fraction F2 of 14200 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 8920 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-4(MW)-2023:

- PHC Fraction F2 of 47000 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 23000 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-102(MW)-2023:

- PHC Fraction F2 of 5700 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 2000 ug/L vs the MECP Table 3 SCS of 500 ug/L

6.7. Sediment Quality

There was no water body on-Site, therefore, no sediment sampling was undertaken.

6.8. Soil Vapour

No soil vapour probes were installed. Therefore, this section is not applicable.

6.9. Quality Assurance and Quality Control Results

Field QA/QC procedures were followed by *Toronto Inspection Ltd.* field staff as outlined in Section 5.12, which included appropriate decontamination of sampling equipment, using dedicated samplers and laboratory supplied jars and vials. Duplicates for QA/QC included duplicate samples for every parameter group analyzed; maintaining a minimum ratio of 1 in 10.

All samples were analyzed within the holding time as prescribed in Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (Dec. 1996) and Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (March 9, 2004, amended as of July 1, 2011).

The soil and groundwater samples were analyzed by SGS Laboratories an independent laboratory in Lakefield, Ontario, which is accredited by CALA. The analytical results were performed under a Quality Assurance/Quality Control (QA/QC) program by the laboratory. The Certificate of Analysis signed by a Chartered Chemical Professional of SGS Laboratories are attached in Appendix C.

Relative Percentage Differences (RPD) were calculated to determine the variation of results between the original and duplicate samples. The RPD percentages were compared to limits provided in Protocol for Analytical Methods used in the Assessment of Properties under Par XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011. All RPD percentages were found to be within the acceptable tolerances.

6.10. Phase Two Conceptual Site Model

Description & Assessment

Condition	Evaluation
Current land use	Residential
Proposed land use	Residential
Area of natural significance	According to the on-line mapping application of the Ministry of Natural Resources and Forestry, no areas of natural significance are located within the Study Area.
Proximity to surface water body	The closest water body is Sixteen Mile Creek, located approximately 215 m north of the Site.
Potable or Non Potable Ground Water	The Site was municipally serviced by the Town of Oakville, which supplies treated drinking water derived from Lake Ontario.
Soil pH	Accredited laboratory chemical test results indicated that the soil at the property had a pH value between 5 and 9. Therefore, Section 41 of the Regulation does not apply.

Condition	Evaluation
Depth to bedrock	Bedrock was encountered at depths greater than 1.5 m below grade for more than 2/3 of the Site.
Soil texture	Coarse textured soils were deemed applicable to the Site. Grain size analysis conducted on a soil sample collected from 21BH-4 at a depth of 1.1 m below grade indicated 79.9% coarse textured soils.

Based on the above evaluation, the Ministry of Environment, Conservation and Parks (MECP) Table 3: Full Depth Generic Site Condition Standards for Use within in a Non-Potable Ground Water Condition, listed in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" document, dated April 15, 2011 (MECP Table 3 SCS) for Residential/Parkland/Institutional property use with coarse textured soils were determined to be applicable for the Site.

Potential Contaminating Activities

Table of PCAs

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
50 Speers Road Site	Potential presence of fill material of unknown quality.	PCA#30 – Importation of Fill Material of Unknown Quality	Yes
80 Speers Road Adjacent to the south of the Site	A MECP incident report dated 8/13/1991 indicating an underground tank leak of 1,350L of furnace oil.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
533 Kerr Street Approximately 90 m southwest of the Site	A Record of Site condition was filed for the property in 2014, RSC ID: 212887. Historically, the property was occupied by an autobody/auto repair shop, automobile sales with an auto repair shop and residential dwellings. A Phase Two investigation was conducted on the property and a review of the chemical testing results indicated that soil and groundwater with concentrations of parameters exceeding the 2011 MOE Table 3 Standards were identified. The sources of contamination were attributed to the historical autobody and auto repairs activities on the property. As of September 20, 2013, all soil and shale bedrock to a depth of approximately 6 m below grade has been removed from areas of identified impacts on the property. After remediation, all soil and groundwater samples submitted for analysis met the MOE Table 3 RPI Standards released in 2011. Based on the 1967 FIP, the property was occupied by an auto repairs facility, one (1) UST was observed at the south portion of the property addressed previously as 557 Kerr Street.	PCA#10 Commercial Autobody Shop PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes
66 Shepherd Avenue (Formerly 68 Shepherd Avenue) Approximately 105 m west of the Site	The address was listed as European Auto Centre – Automobile Parts and Supplies-Used & Rebuilt. The address was listed as Economy Performance - Automobile Parts and Supplies-Used & Rebuilt. The property was occupied by an auto repair facility based on the 1967 FIPs.	PCA#10 Commercial Autobody Shop	Yes
62 Shepherd Avenue (Formerly 60 Shepherd Avenue) Approximately 110 m west of the Site	The property was occupied by a Contractors Yard and an equipment repair facility. One (1) UST was observed at the north section of the property.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Yes

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
58 Shepherd Avenue (Formerly 54 Shepherd Avenue)	The address was listed as Lesmith Limited, an electronic components manufacturer established in 1973.	PCA#6 – Battery manufacturing, Recycling and Bulk Storage	Yes
Approximately 105 m west of the Site	Lesmith Ltd. was reported as a wasted generator of halogenated solvents, emulsified oils and aliphatic solvents (1988-2001).	PCA#19 – Electronic and Computer Equipment Manufacturing PCA#28 – Gasoline and Associated	
	The address was listed as Ratelle Communications Ltd. an electronic parts and equipment manufacturer	Products Storage in Fixed Tanks PCA#31 – Ink Manufacturing,	
	established in 1982.	processing and bulk storage PCA#33 – Metal treatment, Coating,	
	Ratelle Communications Ltd. (Battery Industry) was reported as waste generator of alkaline wastes – heavy metal (1996-1999)	Plating and Finishing PCA#54 – Textile Manufacturing and	
	The address was listed as Kanopys Canada, a textile	Processing PCA#57 – Vehicles and Associated	
	bag and canvas mills established in 1990.	Parts Manufacturing	
	The property was occupied by an auto clutch manufacturing. One (1) UST was located at the south section of the property based on the 1967 FIP.		
	A Record of Site Condition was filed for the property on January 01, 2017. Historically, the property was used for commercial/industrial purposes including metal manufacturing and battery recycling, electronic component manufacturing, printing company and various commercial companies, including the use of underground storage tank (UST). A Phase Two was performed on the property to investigate the quality of the soil and groundwater. The chemical analytical results indicated soil and groundwater with concentrations of parameters exceeding the 2011 MOE Table 3 Standards. A remediation program started on February 1, 2016 and was completed on April 30, 2016. After remediation, all post-remediation soil and groundwater samples met the generic MOECC Table 3 standards.		
20 Shepherd Road Approximately 115m northwest of the Site	The address was listed as Nortec Industries. The facility was reported as a waste generator of paint/pigment/coating residues, aliphatic solvents, petroleum distillates and waste oils and lubricants (2000-2005)	PCA#39 – Paints, manufacturing, Processing and Bulk Storage PCA#43 – Plastics (including fiberglass) manufacturing and processing	Anticipated to be low based on distance and trans/down gradient orientation.
33 Shepherd Road	The address was listed as Truso Ltd. – Perfume, cosmetic and toilet preparations manufacturer	PCA#13 – Cosmetics Manufacturing, processing and Bulk Storage	Anticipated to be low based on distance and trans/down gradient
Approximately 190 m northwest of Site.	established in 1945. The address was listed as Group Four Furniture Inc. – a furniture (except wood) manufacturer established in 1981.	PCA#33 – Metal treatment, Coating, Plating and Finishing	orientation.
40 Shepherd Road Approximately 105 m northwest of Site	This address was previously occupied by an air reconditioning, painting and welding facility.	PCA#33 – Metal treatment, Coating, Plating and Finishing	Anticipated to be low based on distance and trans/down gradient orientation.

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
485 Kerr Street (Formerly 479 Kerr Street) Approximately 105 m northwest of Site	The address was reported as Sunoco Inc. – through agent Pioneer Petroleums Mana. A private and retail fuel storage tank was listed for the property. A MECP (formerly MOE) spillage incident report dated 12/20/1997 indicated an underground tank leak due to pressure in the system. Amount of leak was not reported. A service station-gasoline, oil & natural gas was listed for the property. Five (5) distilled fuel tanks were listed for Pioneer Energy Management Inc. Record dated March 2012. Four (4) 22700-litres gasoline single wall steel USTs were installed on the property in 1973. A list of four (4) expired tanks were reported for the property. An auto service facility was observed at this address, one (1) UST was located to the south of the former auto service building. A Record of Site Condition was filed for the property on June 25, 2008. The property was remediated and as of January 29, 2008, based on confirmatory.		Anticipated to be low based on distance and trans/down gradient orientation.
112 Speers Road Approximately 160 m south of the Site	sampling, the property met the applicable full depth site condition standard. Speedy Auto Service, an auto body shop.	PCA#10 Commercial Autobody Shop	Anticipated to be low based on distance and trans/down gradient orientation.
Main intersection Kerr Street and Speers Road Approximately 120 m southwest of the Site	A MECP (formerly MOE) spillage incident report dated 6/11/2003 indicated a container leak from a truck's diesel tank. Reason not determined and amount of leak was not reported. A MECP (formerly MOE) spillage incident report dated 19/04/2012 indicated that 20 litres of hydraulic oil leaked to the ground.	Undefined PCA	Anticipated to be low based on distance and trans/down gradient orientation.
458 Kerr Street Approximately 150 m southeast of the Site	A MECP (formerly MOE) spillage incident report dated 6/7/1991 indicated a container leak of 118 litres of gasoline into valve box. The address was listed as Sunoco service station. A MECP (formerly MOE) spillage incident report dated 10/5/1989 indicated a leak of 600 litres of hydraulic oil to ground and road. A private and retail fuel storage tank was reported for the address. Imperial Oil Limited was listed as a waste generator of light fuels, oil skimming and sludges and waste oils and lubricants (2007-2014).	PCA#27 – Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and down gradient orientation.
	Four (4) expired distilled fuel tanks were listed for John Pocrnic. Record dated March 2012. Three (3) 22700-litres gasoline single wall steel USTs were installed on the property in 1978. An auto service facility was observed at this address, one (1) UST was located to the north of the former auto service building. A Record of Site Condition was filed for the property on March 29, 2018. Historically, the property was developed as a retail fuel outlet and automobile repair facility. A Phase Two was performed to investigate the soil and groundwater on the property and based on the chemical analytical results, no contaminants were present at concentrations greater than the applicable standards.		

Location	Potential Environmental Concerns	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Potential to Impact Site
461 Kerr Street (Formerly 459 Kerr Street) Approximately 95 m northwest of Site	A MECP (formerly MOE) spillage incident report dated 12/8/1992 indicated an underground tank leak. Gasoline was detected in boreholes. The address was occupied by Petro-Canada. A private and retail fuel storage tank was reported for the address. One (1) distilled fuel tank was listed for Allan Parkhill Holdings Ltd. Record dated May 2013. One (1) gasoline single wall steel UST was installed on the property in 1989. An auto service facility was observed at this address, one (1) UST was located to the north of the former auto service building.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and down gradient orientation.
506 Kerr Street Approximately 130m south of the Site	An auto service facility was observed at this address, one (1) UST was located at the northeast section of the property.	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Anticipated to be low based on distance and trans/down gradient orientation.
550 Kerr Street Approximately 165 m southwest of the Site	Canadian Tire – auto supplies Store and automotive repair was listed as a waste generator of paint/pigment/ coating residues, halogenated solvents (2000-2011).	PCA#10 Commercial Autobody Shop	Anticipated to be low based on distance and trans gradient orientation.

Areas of Potential Environmental Concern

Table of APECs

APEC	Location of APEC on Phase One Property	Potentially Contaminating Activity (Table 2, Schedule D of O.Reg. 153/04)	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, Soil and/or Sediment)
APEC-1	Entire Site	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	- Metals - Metals, Hydride-Forming Metals (As, Se and Sb) - PAHs	Soil
APEC-2	South Portion of the Site	PCA#30 – Importation of Fill Material of Unknown Quality	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater
APEC-3	North Portion of Site	PCA#6 – Battery manufacturing, Recycling and Bulk Storage PCA#19 – Electronic and Computer Equipment Manufacturing PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks PCA#31 – Ink Manufacturing, processing and bulk storage PCA#33 – Metal treatment, Coating, Plating and Finishing PCA#54 – Textile Manufacturing and Processing PCA#57 – Vehicles and Associated Parts Manufacturing	Off-Site	- PHCs - BTEX - VOCs	Soil and Groundwater

Subsurface Structures & Utilities

Gas, hydro, electric, water and sewer lines were present on the west side of the building and were connected to mains located within Speers Road.

Stratigraphy

Ground Surface

Asphalt pavement, consisting of approximately 65 mm - 75 mm asphalt over granular bases, was contacted at the ground surface at borehole locations 21BH-1(MW), 21BH-2(MW), and 21BH-3(MW). Topsoil 100 mm in thickness was encountered as the surface cover at the location of borehole 21BH-4(MW).

Fill

Underlying the asphalt pavement structure or the topsoil at the borehole locations, a layer of fill was encountered. The fill consisted of a mixture of clayey silt, sandy silt, silty sand, trace to some gravel, occasional shale or limestone pieces, with occasional topsoil or rootlets. The fill extended to depths of 1.5 m, 1.2 m, 4.3 m and 2.3 m below grade at the locations of boreholes 21BH-1(MW) through 21BH-4(MW), respectively.

Clayey Silt

Native clayey silt deposit was encountered underlying the fill at the location of borehole 21BH-1(MW), at a depth of 1.5 m below grade. The deposit contained occasional layers of sandy silt, silty sand, some gravel, with occasional shale pieces close to the lower portion of the deposit. The clayey silt deposit extended to a depth of 2.3 m below grade.

Silty Sand

A native silty sand deposit was encountered under the granular fill (21BH-101) and topsoil (21BH-102 and 21BH-103). The silty sand was generally reddish brown, moist, fine grained and contained trace gravel.

Shale Bedrock

Weathered shale was encountered underlying the clayey silt deposit at the location of borehole 21BH-1(MW) location and underlying the fill at the locations of boreholes 21BH-2(MW) to 21BH-4(MW), at depths ranging from 1.2 m to 4.3 m below grade.

Borehole 21BH-4(MW) was terminated in the weathered shale at a depth of 6.2 m below grade. At the location of boreholes 21BH-1(MW) to 21BH-3(MW), the weathered shale extended to depths ranging from 5.6 m to 6.5 m below grade, where virtual refusal to auguring was encountered. The weathered shale was stratified, with seams of clayey silt.

Hydrogeological Characteristics

Hydraulic gradients were not calculated.

Depth to Bedrock

Bedrock was generally encountered at depths between 2 m to 3 m below grade.

Depth of Water Table

The water table was generally encountered at depths between 3.46 m to 7.89 m below grade.

Soil From Another Property

Not applicable.

Proposed Buildings and Other Structures

A twenty-seven storey condominium tower is proposed for the Site.

Areas of Contamination

Contaminant Areas

Northeast property boundary portion of the Site.

Contaminants

Petroleum Hydrocarbon Fractions F2 and F3.

Medium Contaminated

Groundwater.

Description & Assessment

Soil Quality

The pH for near-surface soils (surface to 1.5 m) and sub-surface soils (below 1.5 m) ranged from 7.59 to 8.00 in the analysed soil samples and were within the applicable ranges specified in O.Reg. 153/04.

Laboratory analytical results for testing for PHCs, VOCs, PAHs and M&Is parameters in the soil samples met MECP Table 3 SCS.

Groundwater Quality

Laboratory analytical results for testing for PHCs, BTEX, VOCs, M&Is and PAH parameters in the soil samples met the MECP Table 3 SCS with the following exceptions:

21BH-4(MW)-2021:

- PHC Fraction F1 of 857 ug/L vs the MECP Table 3 SCS of 750 ug/L
- PHC Fraction F2 of 14200 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 8920 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-4(MW)-2023:

- PHC Fraction F2 of 47000 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 23000 ug/L vs the MECP Table 3 SCS of 500 ug/L

21BH-102(MW)-2023:

- PHC Fraction F2 of 5700 ug/L vs the MECP Table 3 SCS of 150 ug/L
- PHC Fraction F3 of 2000 ug/L vs the MECP Table 3 SCS of 500 ug/L

Distribution of Contamination

To be determined.

Reason for Contamination

Undetermined. Likely migration from off-site.

Climatic or Meteorological Conditions

Periods of higher amounts of precipitation may affect the water table at the Site through groundwater recharge. Such periods may affect the overall hydraulic gradient and groundwater flow direction at the Site. This may, during such times of increased precipitation, affect the overall contaminant transport. However, it is not expected that changes in climatic or meteorological conditions would significantly affect the migration of contaminants at the Site.

Contaminant Transport Pathway

Contaminants within the soil may leach into the groundwater table through surface runoff or stormwater percolating through the vadose zone soil. Further contaminant transport would occur through the movement of groundwater. Sewers are present in the vicinity of the identified impacts and could pose as a preferential pathway for migration.

7. CONCLUSION

The groundwater impacts appear to be localized in the northeast portion of the Site. It is recommended that the groundwater exceedances be addressed during future development activities. Possible methods of treatment at that time may include chemical oxidation or pump and treat. Futhermore, as the source is likely offsite, engineering controls such as a permeable reactive barrier may also be considered as options for the Site.

8. MONITORING WELL DECOMMISSIONING

If the monitoring wells on-Site are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells". It should be noted that the decommissioning of monitoring wells is not part of the current scope of work. *Toronto Inspection Ltd.* would be pleased to assist and arrange to perform this work upon request.

9. REFERENCES

- 1. Ontario Regulation 153/04, as amended Records of Site Condition Part XV.1 of the Environmental Protection Act.
- 2. "Report on Phase One Environmental Site Assessment, 50 Speers Road, Oakville, Ontario", Report No. 5557-21-EA, prepared by *Toronto Inspection Ltd.*, dated July 6, 2021.

10. GENERAL STATEMENT OF LIMITATION

The comments presented in this report are based on the soil and groundwater samples gathered from the borehole/monitoring well locations indicated on the plan of this report. There is no warranty expressed or implied or representations made by *Toronto Inspection Ltd.* that this program has discovered all potential environmental risks or liabilities associated with the subject site.

Although we consider this report to be representative of the subsurface conditions at the subject property in the areas investigated, any interpretation of factual data or unexpected soil conditions which exhibit noticeable discolouration, odour, etc. in areas not investigated in this report, should be discussed in consultation with us prior to any initiation of activity. Our responsibility is limited to an accurate assessment of the soil condition prevailing at the locations investigated at the time of the study.

To the fullest extent permitted by law, the clients maximum aggregate recovery against *Toronto Inspection Ltd.*, its directors, employees, sub-contractors and representatives, for any and all claims by Helberg Properties Limited for all causes including, but not limited to, claims of breach of contact, breach of warranty and/or negligence, shall be the amount of professional fees paid by the client.

Any use and/or interpretation of the data presented in this report, and any decisions made on it by the third party are responsibility of the third party. *Toronto Inspection Ltd.* accepts no responsibility for loss of time and damages, if any, suffered by the third party as a result of decisions or actions based on this report.

Any legal actions arising directly or indirectly from this work and/or *Toronto Inspection Ltd.*'s performance of the services shall be filed no longer than two years from the date of *Toronto Inspection Ltd.*'s substantial completion of the services. *Toronto Inspection Ltd.* shall not be responsible to the client for lost revenues, loss of profits, cost of content, claims of customers, or other special indirect, consequential, or punitive damages.

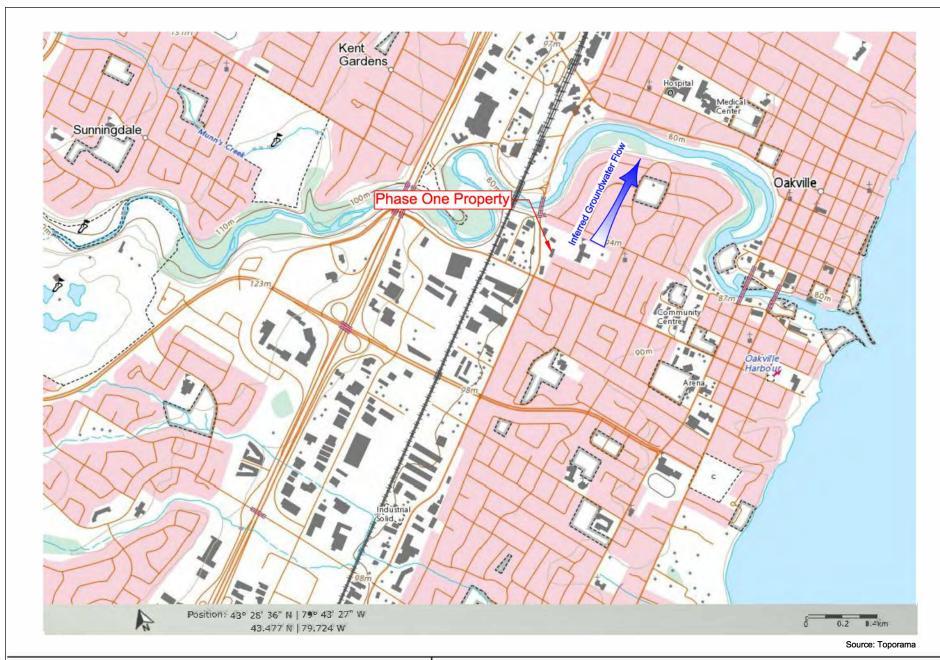
Yours truly,

Toronto Inspection Ltd.

Matthew Pietrzyk, BES

Mattlew Pictorale

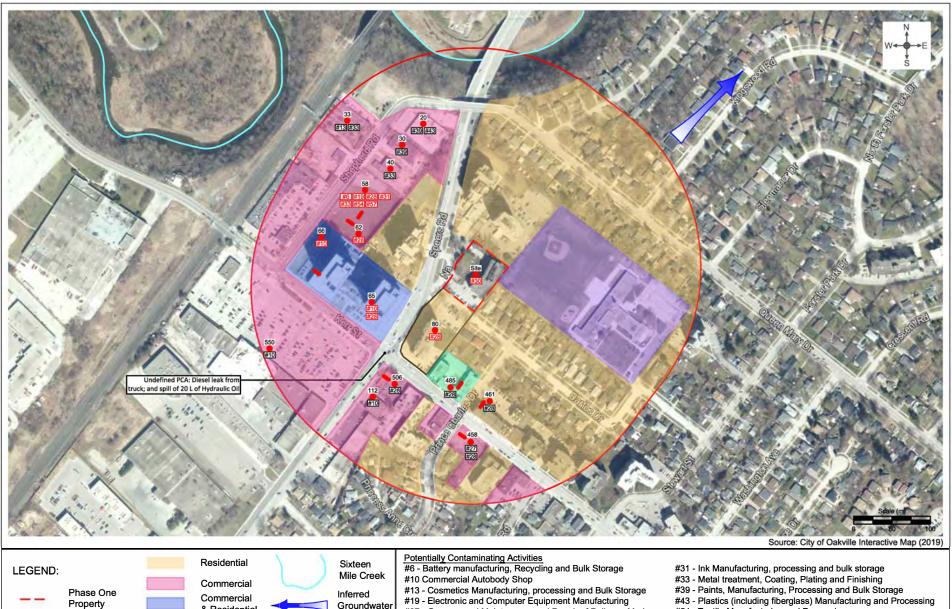
Environmental Project Manager


Sajjad Din, PGeo, CET, QPESA Senior Geoscientist

Certified Engineering Technologist

SAJJAD M. N. DIN PRACTISING MEMBER 1519

FIGURES


G F O - E N V I R O N M E N T A L CONSULTANTS

Fax: 905-940 8192

Tel: 905-940 8509

110 Konrad Crescent, Unit 16 Markham, Ontario L3R 9X2 Email: TIL@torontoinspection.com

TITLE:	Regional Topography and Site Location				
LOCATION:	TION: 50 Speers Road, Oakville, Ontario				
PROJECT NO.	5557-21-EA	DATE:	June 2023	FIGURE NO. :	1

Fax: 905-940 8192

Phase I Study

Area (250m)

Tel: 905-940 8509

& Residential

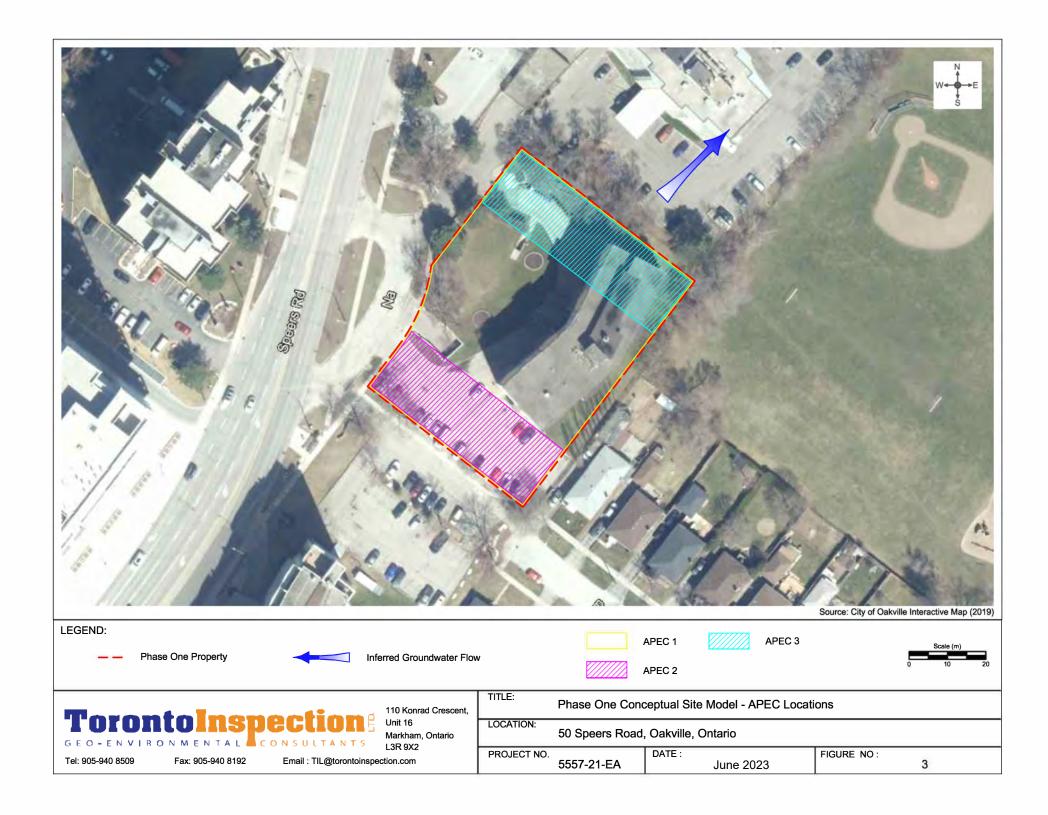
Institutional

Community

110 Konrad Crescent, Unit 16 Markham, Ontario L3R 9X2

Groundwater

Historical


Flow

UST

Email: TIL@torontoinspection.com

- #19 Electronic and Computer Equipment Manufacturing
- #27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles
- #28 Gasoline and Associated Products Storage in Fixed Tanks
- #30 Importation of Fill Material of Unknown Quality
- #43 Plastics (including fiberglass) Manufacturing and Processing
- #54 Textile Manufacturing and Processing
- #57 Vehicles and Associated Parts Manufacturing

TITLE: Phase One Conceptual Site Model - PCA Locations LOCATION: 50 Speers Road, Oakville, Ontario PROJECT NO. DATE : FIGURE NO: 5557-21-EA June 2023 2

LEGEND:

Tel: 905-940 8509

♦ / ♦ Borehole and Monitoring Well Locations

Site Boundary

Email: TIL@torontoinspection.com

Scale (m) 0 10 20

TorontoInspection	me	1
GEO-ENVIRONMENTAL CONSULTA	NTS	L

Fax: 905-940 8192

110 Konrad Crescent, Unit 16 Markham, Ontario L3R 9X2 TITLE:


Borehole and Monitoring Well Location Plan

LOCATION:
50 Speers Road, Oakville, Ontario

PROJECT NO.
5557-23-EE

DATE:
July 2023

FIGURE NO.
4

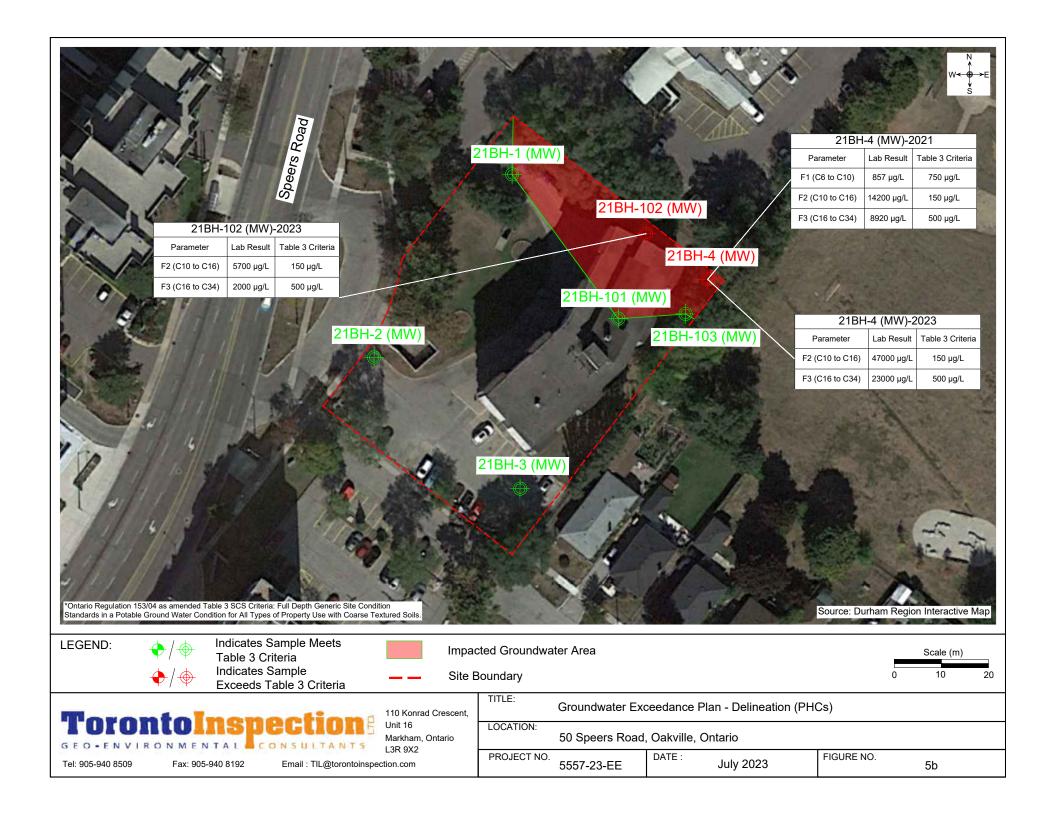
TOTONTO TOTON MENTAL Unit 16 Markham, Ontario L3R 9X2

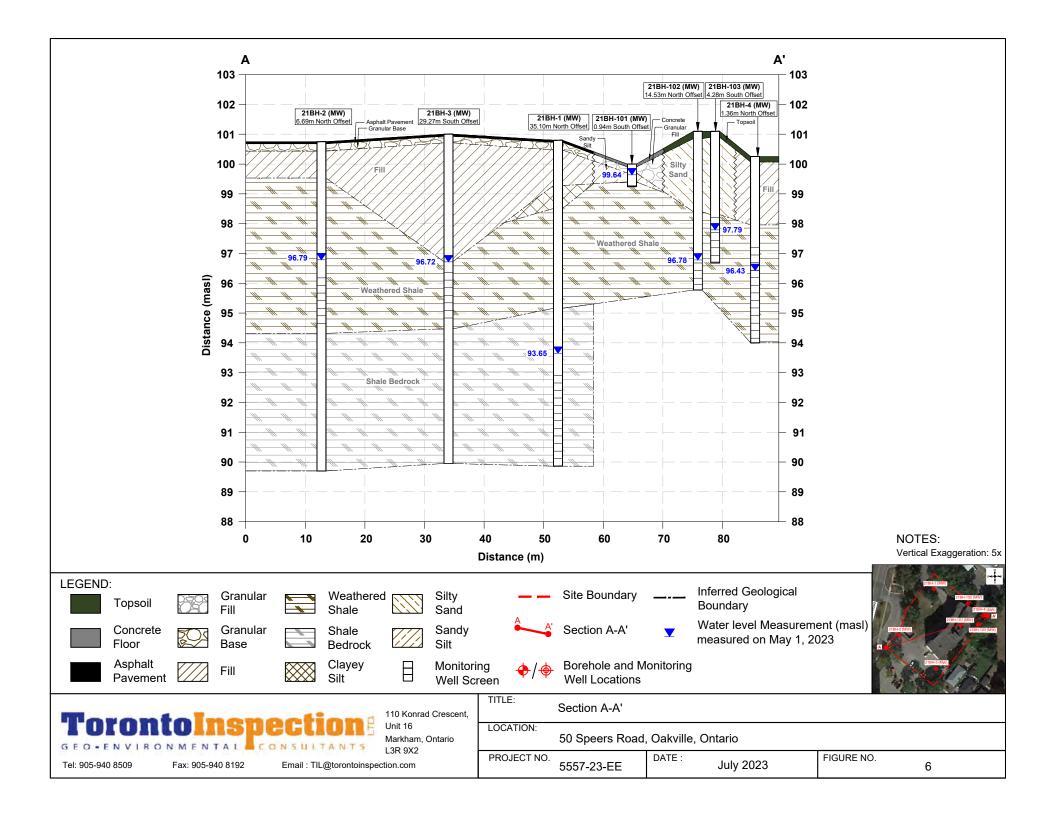
Tel: 905-940 8509 Fax: 905-940 8192 Email : TIL@torontoinspection.com

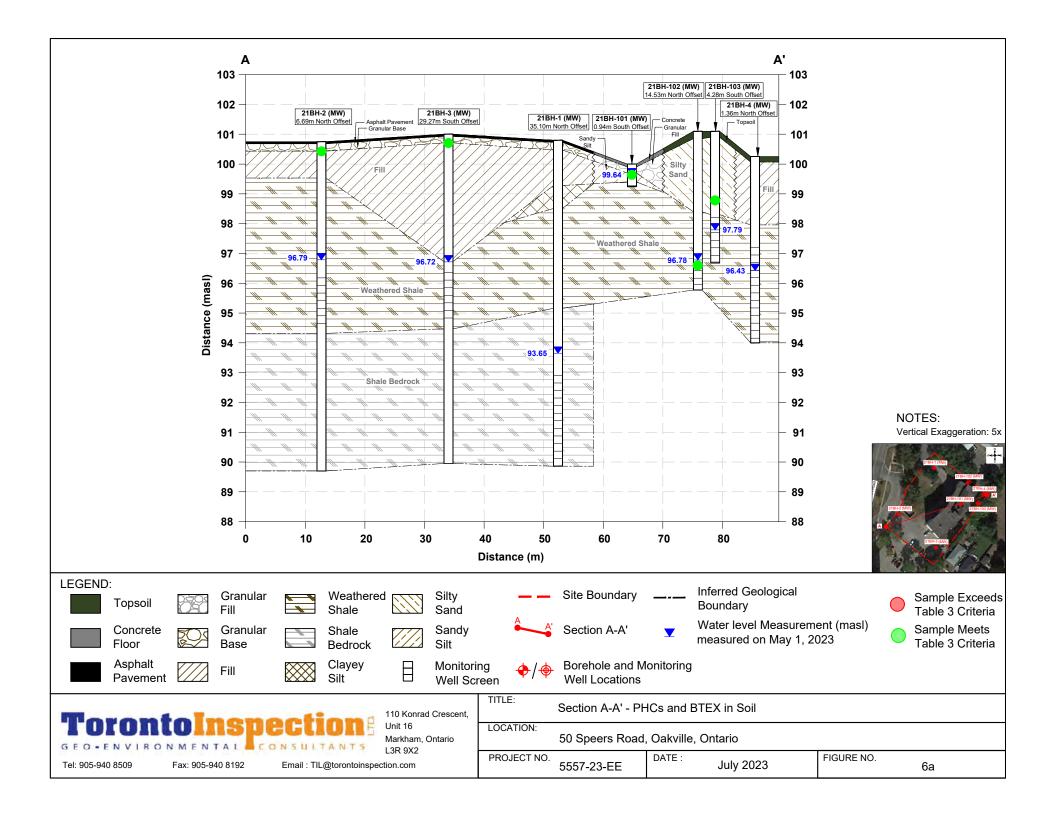
Totonto Totol Crescent, Unit 16 Markham, Ontario L3R 9X2

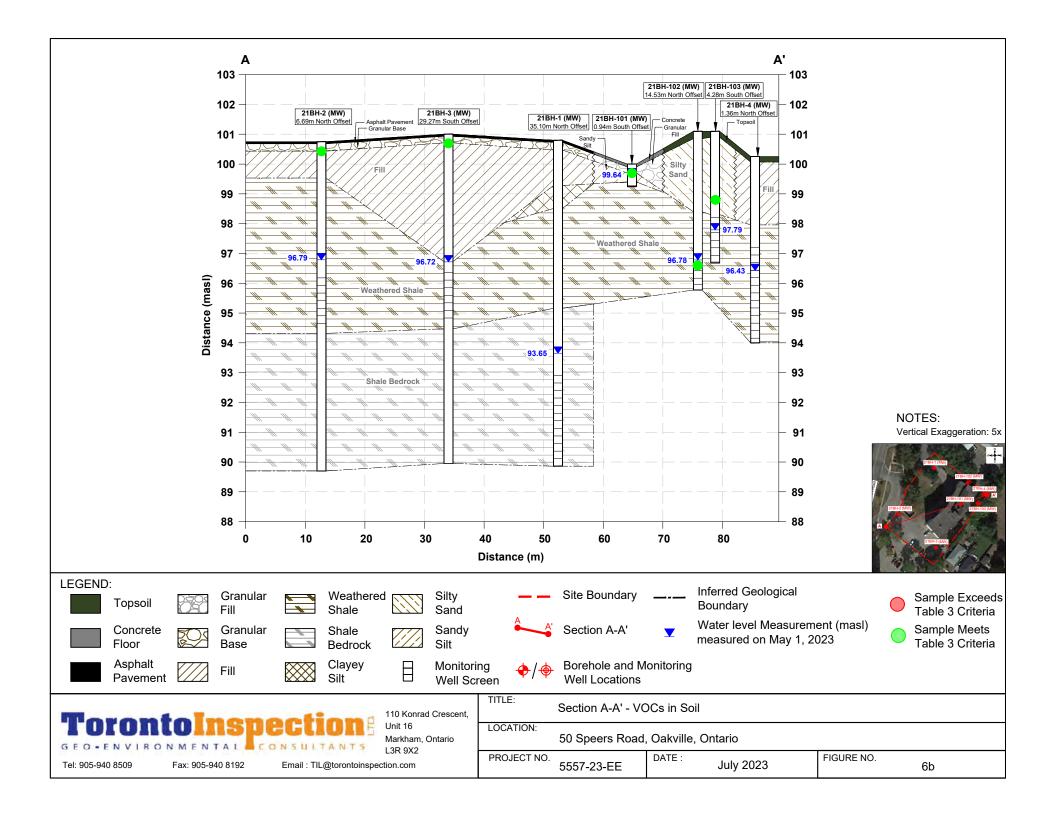
Tel: 905-940 8509 Fax: 905-940 8192 Email : TIL@torontoinspection.com

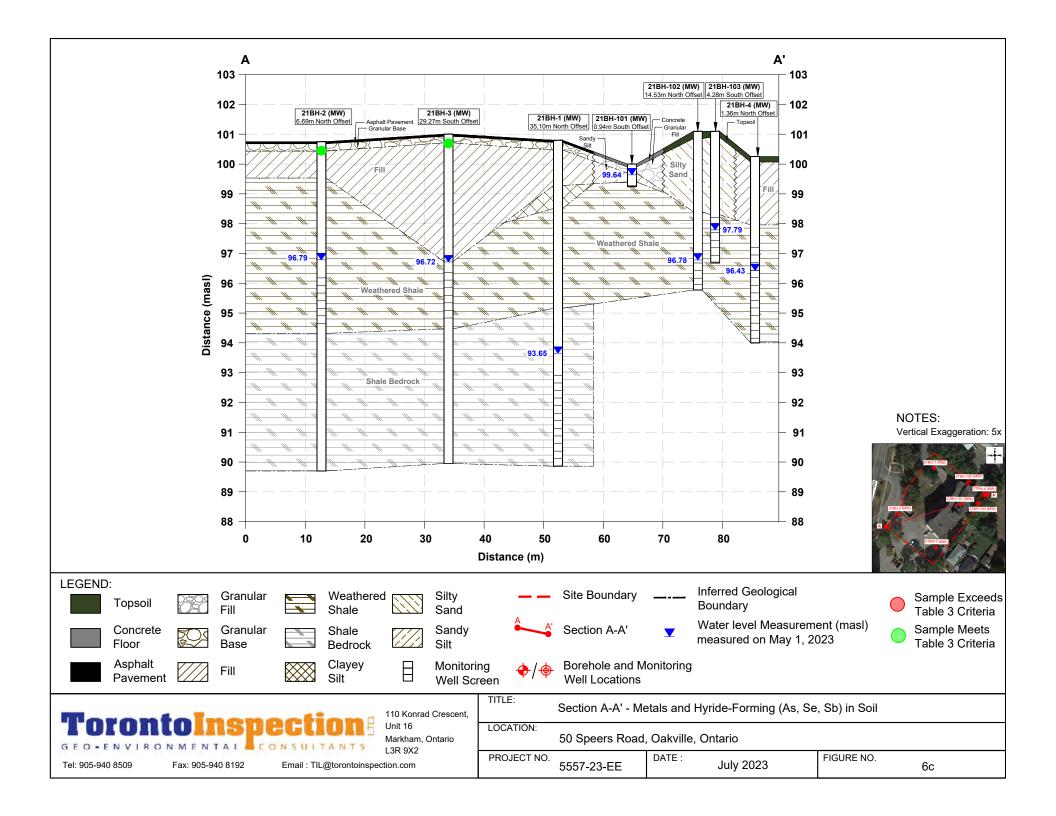
Totonto Totol Crescent, Unit 16 Markham, Ontario L3R 9X2

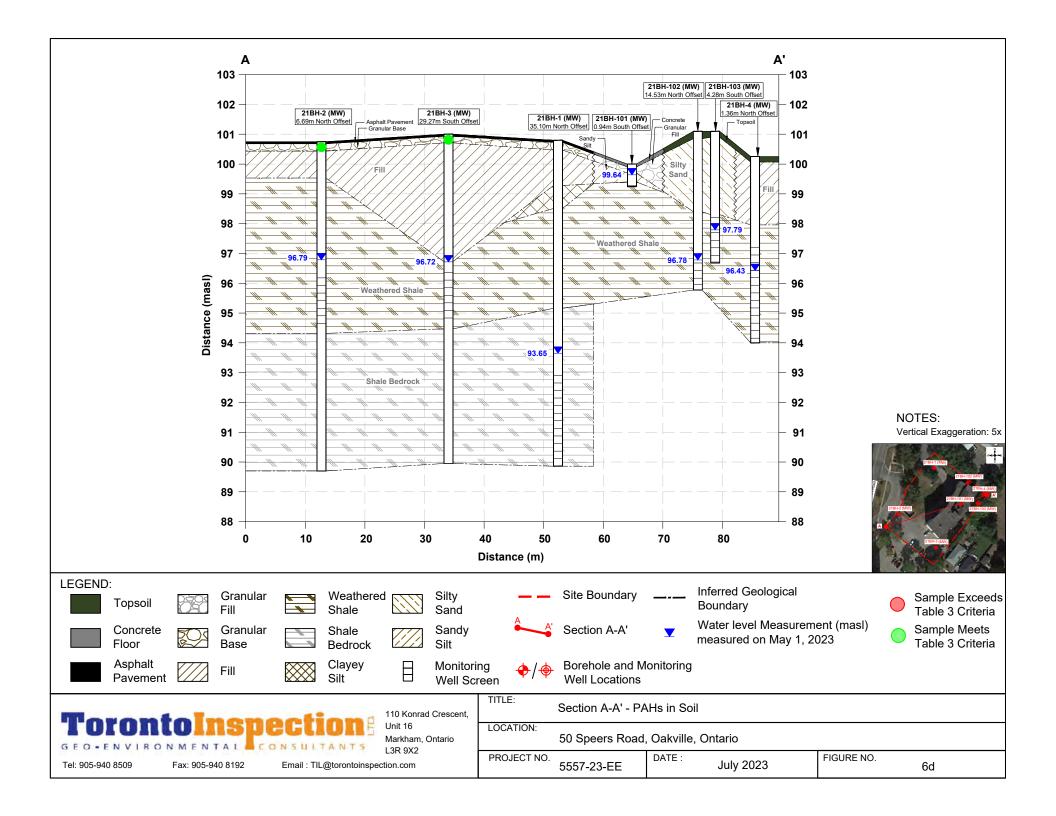

DOCATION:

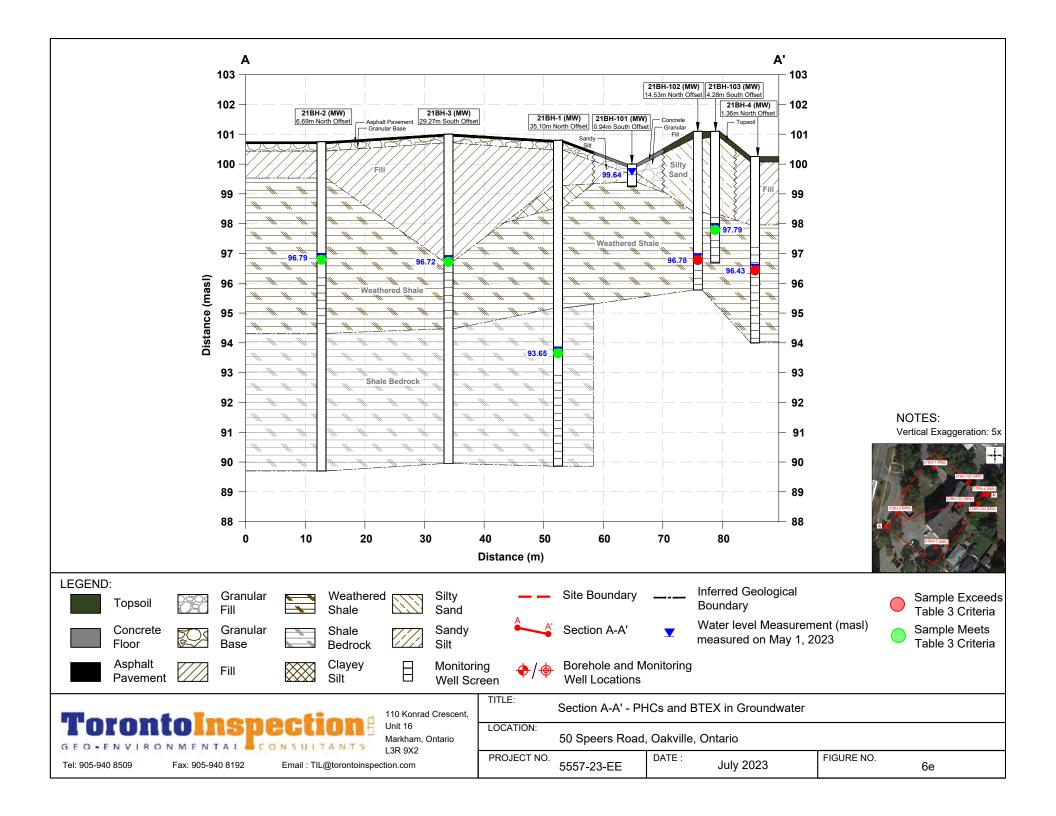

50 Speers Road, Oakville, Ontario

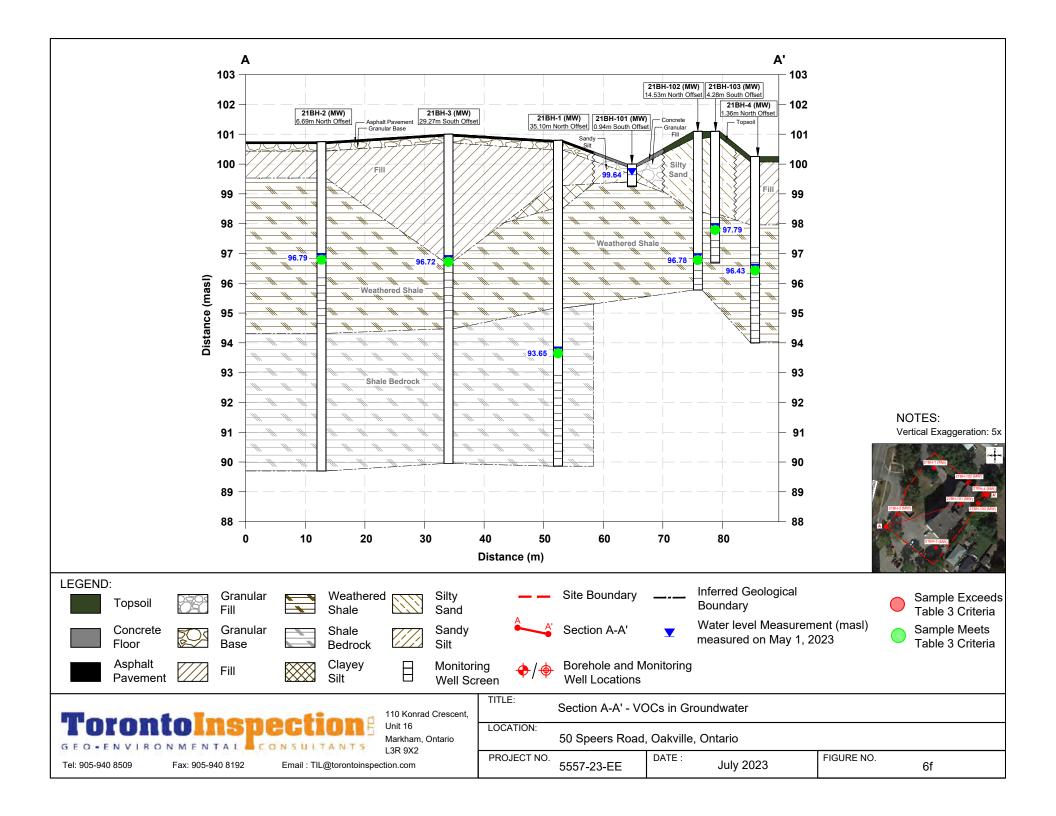

PROJECT NO.

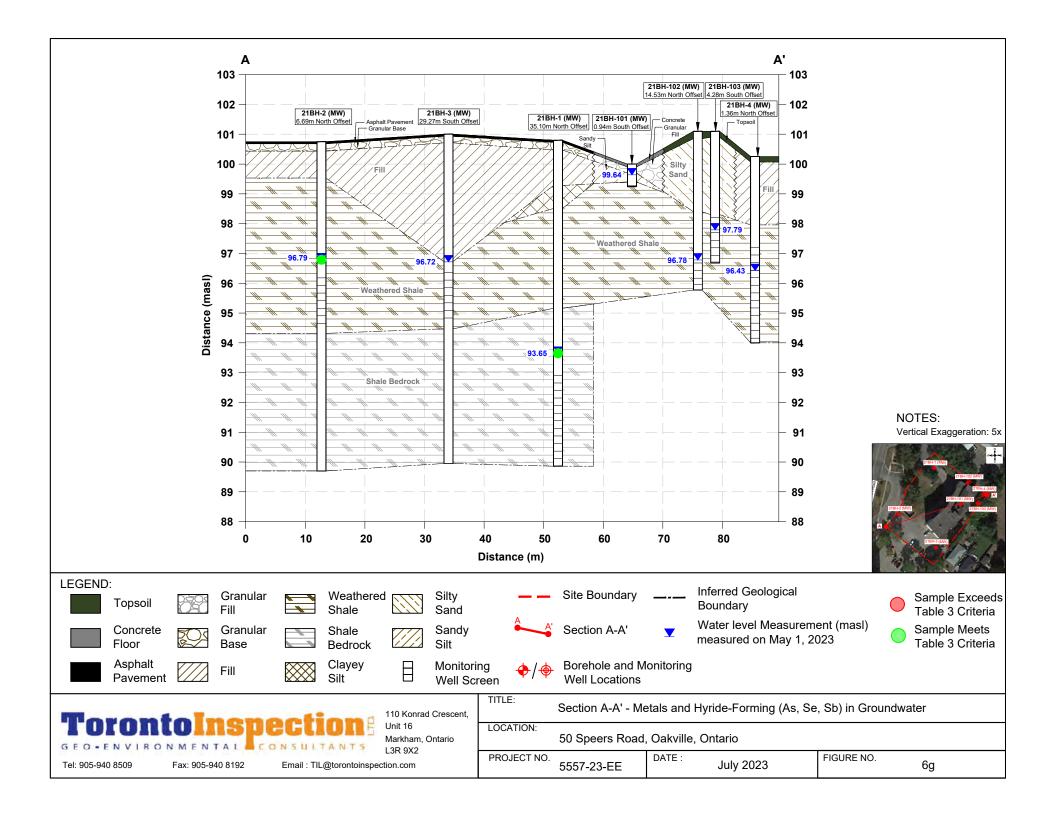

5557-23-EE DATE: July 2023 FIGURE NO.

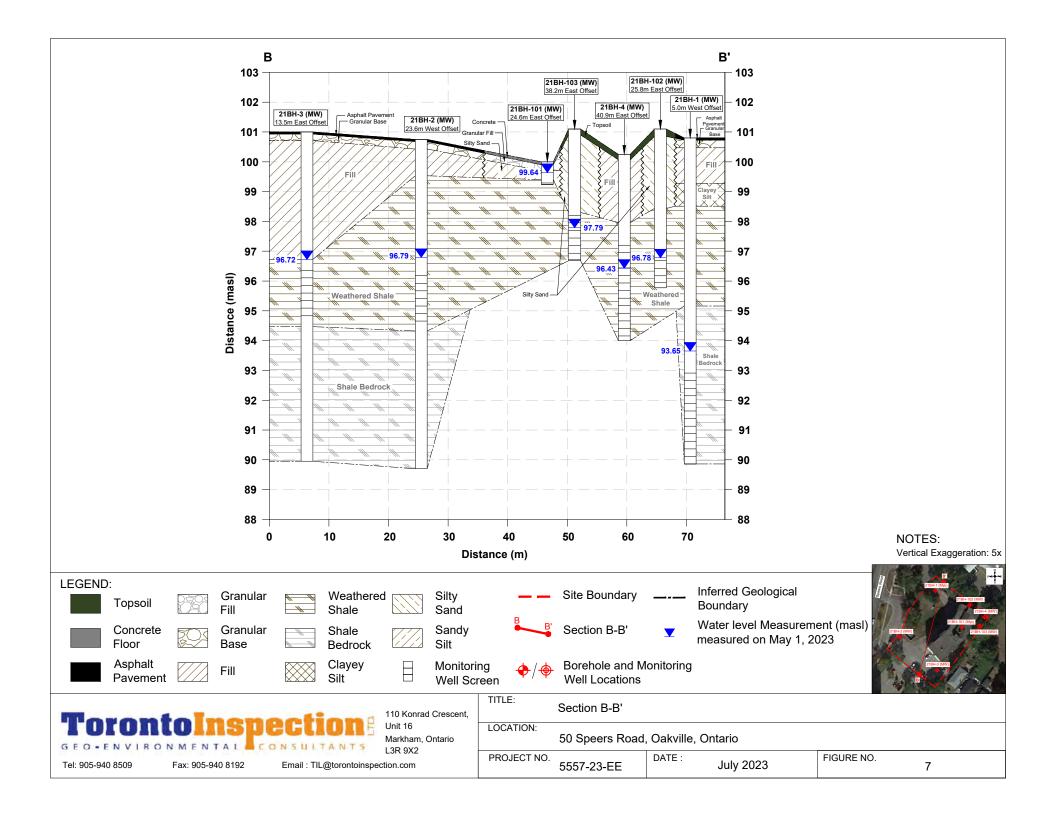

5a

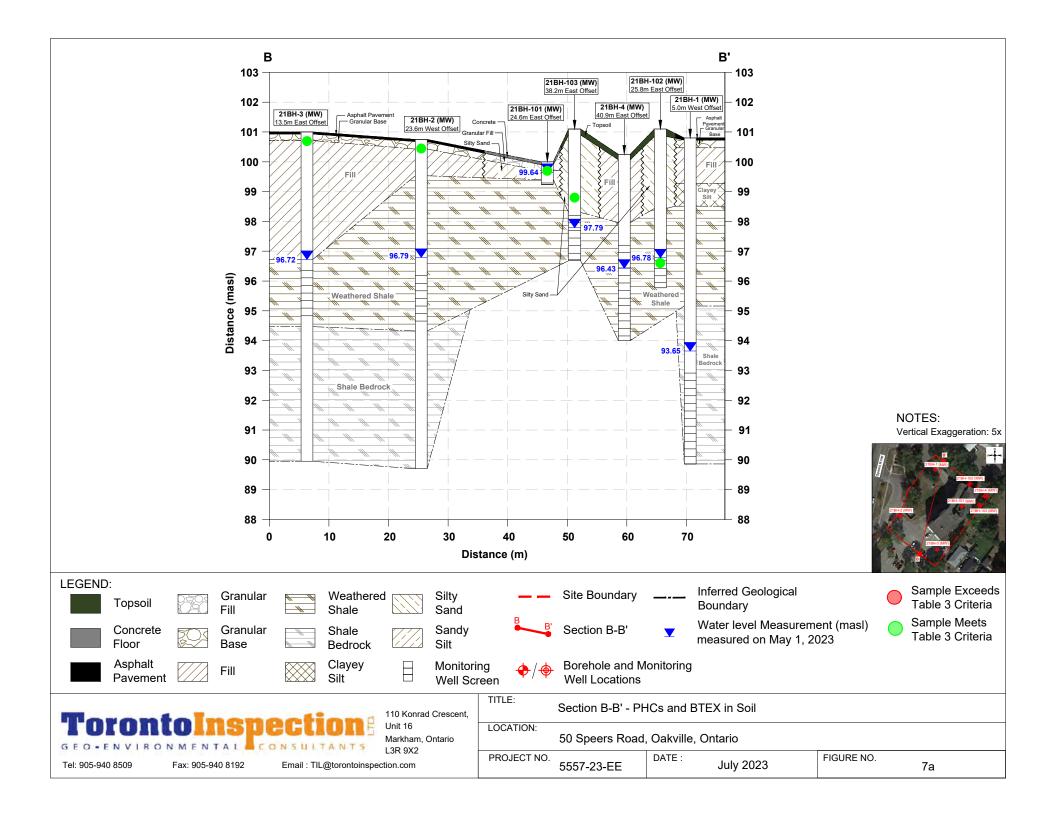


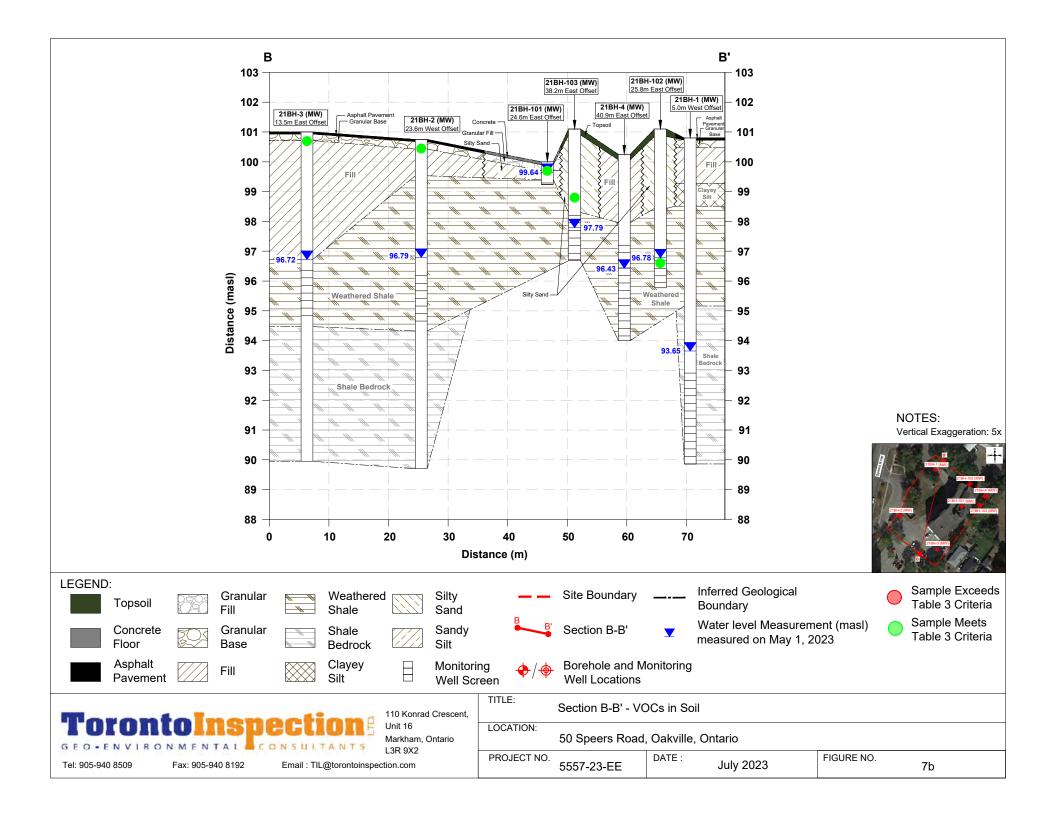


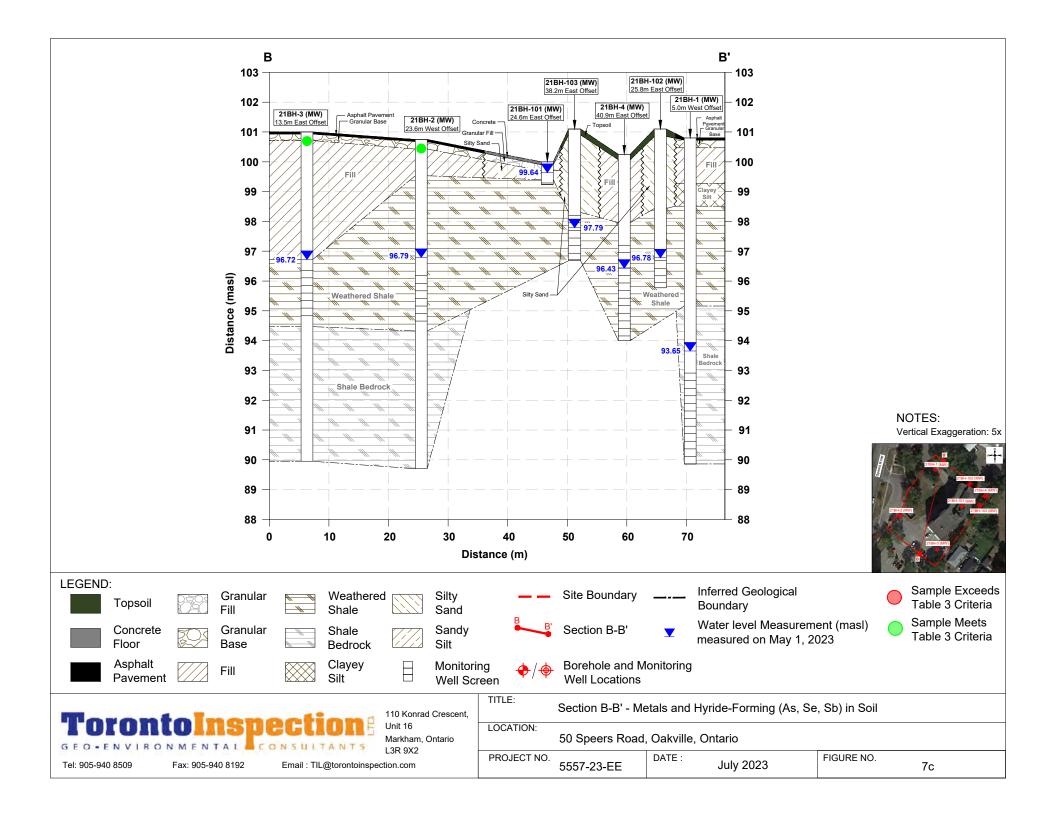


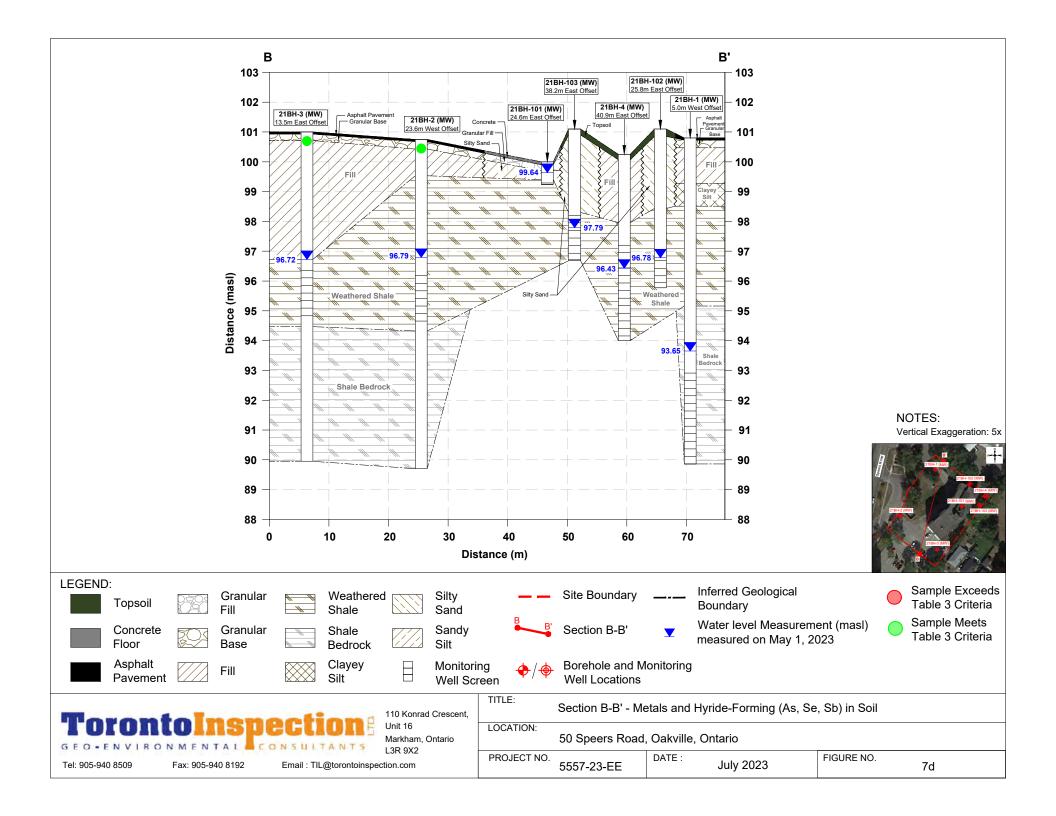


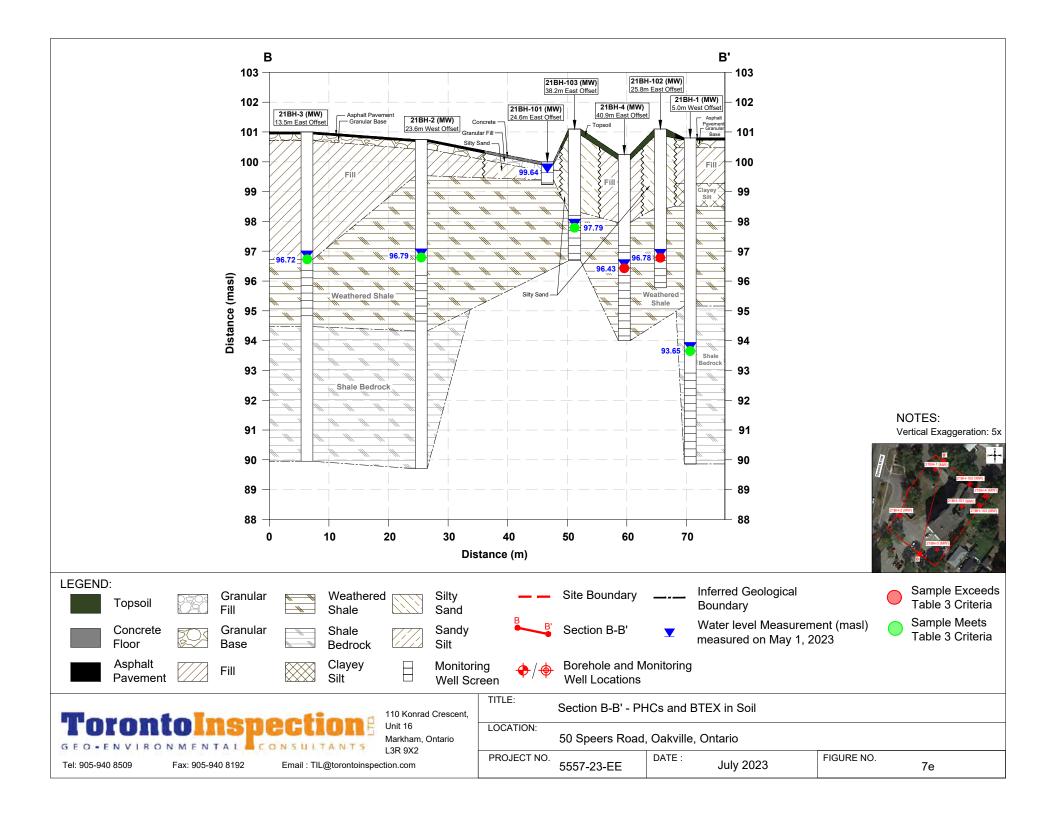


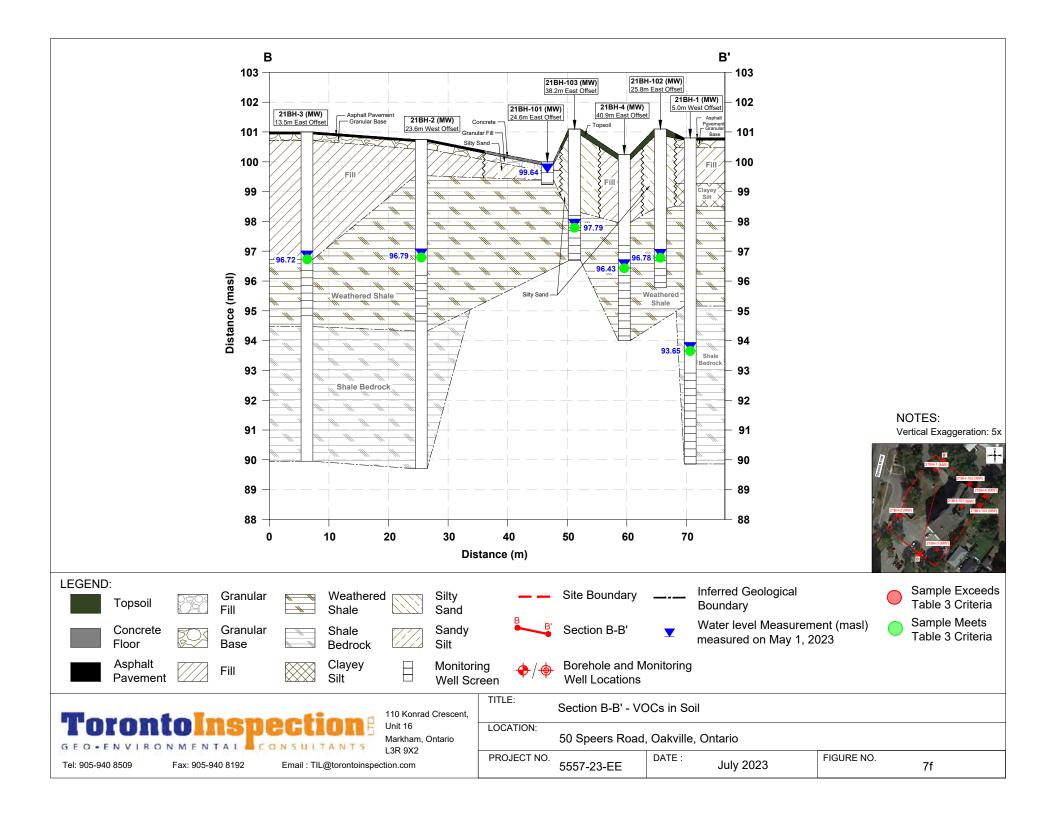


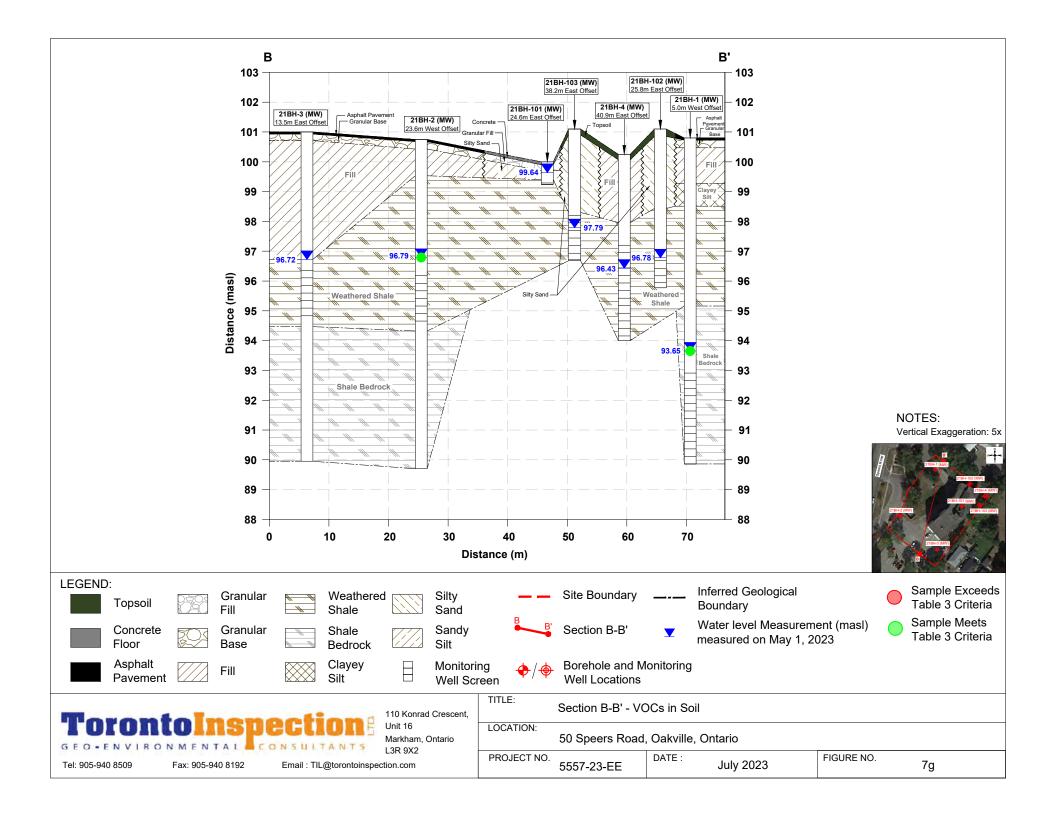


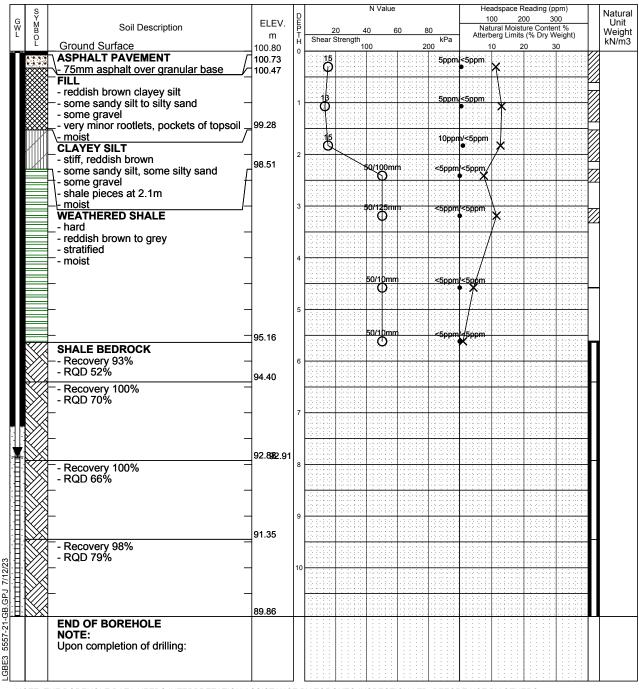










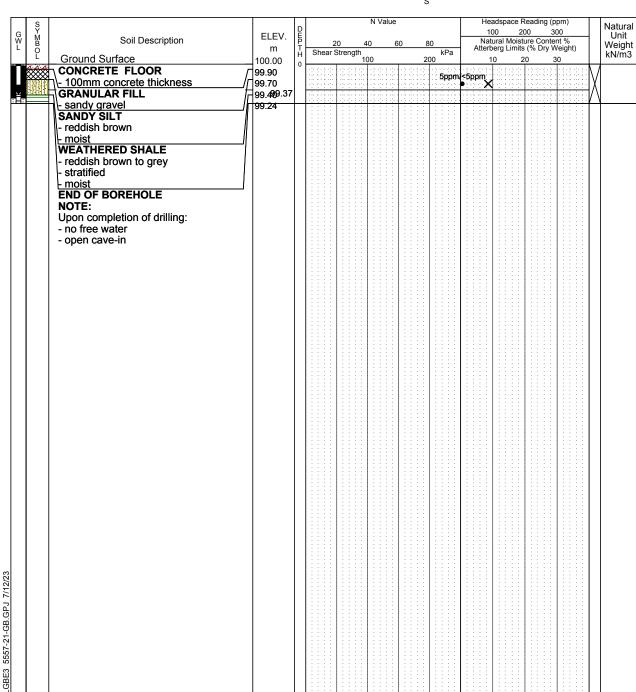


APPENDICES

5557-21-EB Project No.

Log of Borehole 21BH-1 (MW)

Dwg No. 2 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/11/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) N Value 100 200 300 ELEV. Soil Description

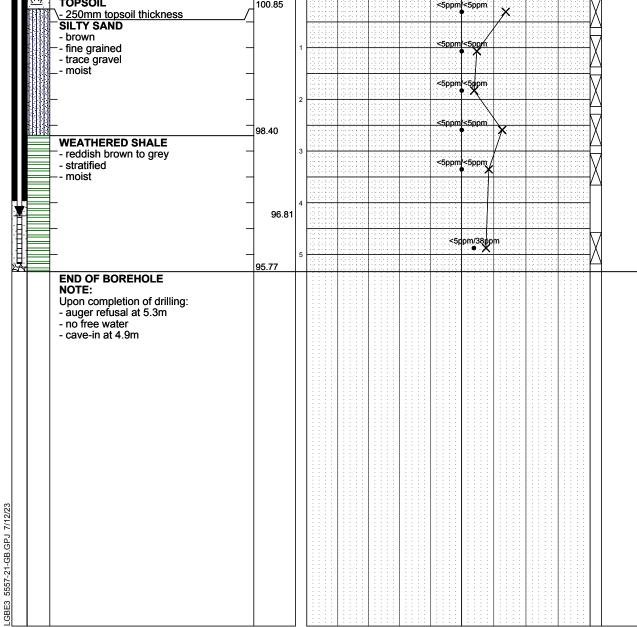


NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021 May 1, 2023	5.56m 7.89m 7.15m	, ,

Log of Borehole 21BH-101 (MW) Project No. 5557-21-EB Dwg No. 6 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 10/14/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Pionjar Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer



NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	0.63m	, ,
May 1, 2023	0.36m	

Log of Borehole 21BH-102 (MW) Project No. 5557-21-EB Dwg No. 7 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 10/15/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Pionjar Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength _____100 Weight kN/m3 kPa Ground Surface 101.10 TOPSOIL 100.85 <5ppm/<5ppm 250mm topsoil thickness SILTY SAND - brown <5ppm/<5ppm/ - fine grained - trace gravel - moist <5ppm <5ppm/<5ppm 98.40 **WEATHERED SHALE** - reddish brown to grey <5ppm/<5ppm - stratified moist

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	4.29m	, ,
May 1, 2023	4.32m	

Log of Borehole 21BH-103 (MW) 5557-21-EB

Project No. Dwg No. 8 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 10/15/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Pionjar Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength _____100 Weight kN/m3 kPa Ground Surface 101.10 TOPSOIL 100.90 <5ppm - 200mm topsoil thickness SILTY SAND - reddish brown to brown <5ppm/ - fine grained - trace gravel - moist <5ppm

98.30

96.68

97.65

END OF BOREHOLE NOTE:

spoon refusal at 2.8m

Upon completion of drilling:

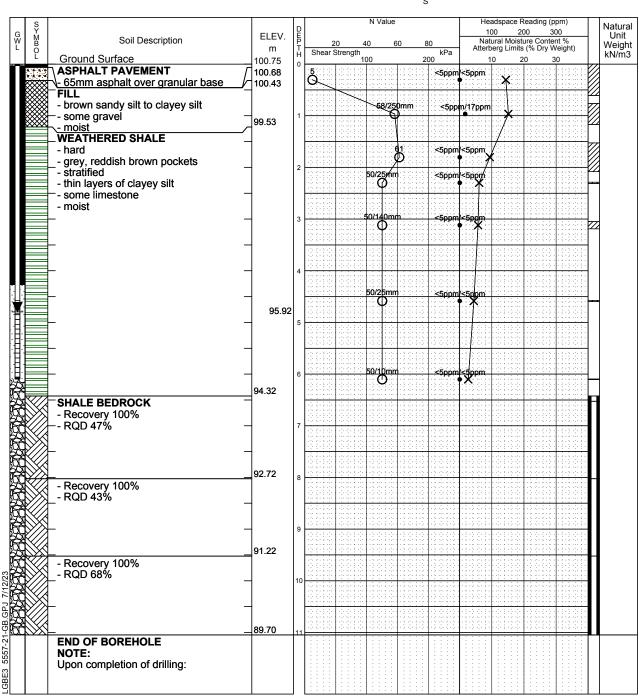
INFERRED WEATHERED SHALE

- auger refusal at 4.4m
- cave-in at 4.3m

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

5557-21-GB.GPJ 7/12/23


-GBE3

Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	3.46m	, ,
May 1, 2023	3.31m	

Project No. 5557-21-EB

Log of Borehole 21BH-2 (MW)

Dwg No. 3 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/13/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021 May 1, 2023	4.43m 4.83m 3.96m	

5557-21-EB Project No.

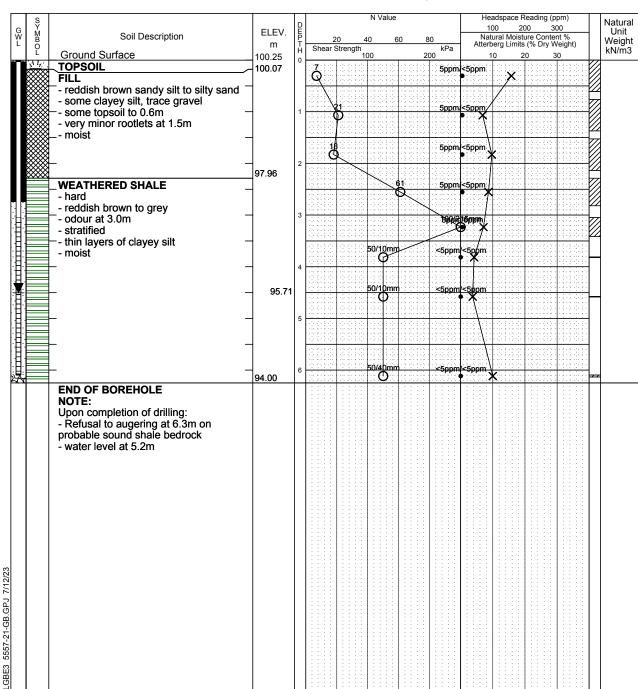
Log of Borehole 21BH-3 (MW)

Dwg No. 4 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/12/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength _____100 Weight kPa kN/m3 **Ground Surface** 101.00 **ASPHALT PAVEMENT** 100.93 <5ppm <5ppm ó 65mm asphalt over granular base 100.71 - reddish brown clayey silt <5ppm/<5ppm - mixed with sandy silt, silty sand - minor rootlets at 0.9m - trace shale pieces or limestone pieces <5ppm/<5ppm - a silty sand layer at 3.0m to 3.6m - moisť <5ppm/<5ppm 96.73 **WEATHERED SHALE** 0/40mr - hard, grey - stratified 96.11 moist 94.47 SHALE BEDROCK 94.29 - Recovery 95% - RQD 62% - Recovery 100% - RQD 72% 92.82 - Recovery 100% - RQD 70% 91.32 - Recovery 100% - RQD 74% 5557-21-GB.(**END OF BOREHOLE**

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

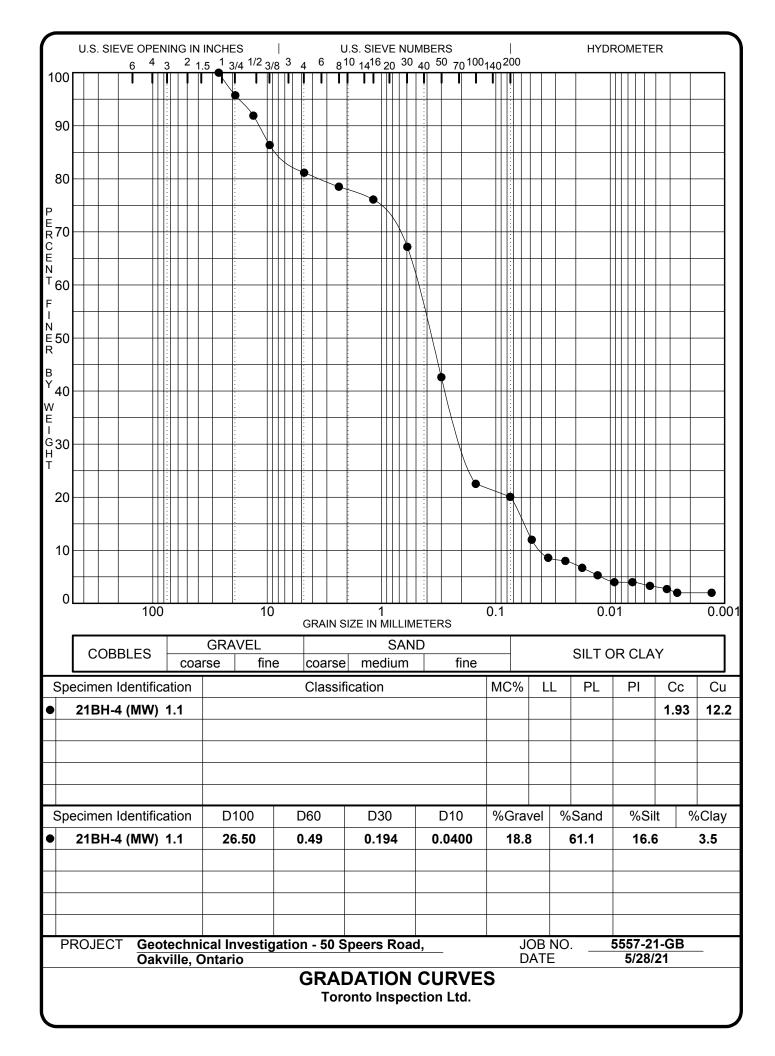
Upon completion of drilling:


GBE3

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021 May 1, 2023	4.57m 4.89m 4.28m	

Project No. <u>5557-21-EB</u>

Log of Borehole 21BH-4 (MW)


Dwg No. 5 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/10/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021 May 1, 2023	4.39m 4.54m 3.87m	, ,

CA14322-MAY21 R1

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	Toronto Inspection Ltd.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	2165
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	jill.campbell@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA14322-MAY21
Project	5557	Received	05/17/2021
Order Number		Approved	06/02/2021
Samples	Soil (4)	Report Number	CA14322-MAY21 R1
		Date Reported	06/03/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

Hydrocarbon results are expressed on a dry weight basis.

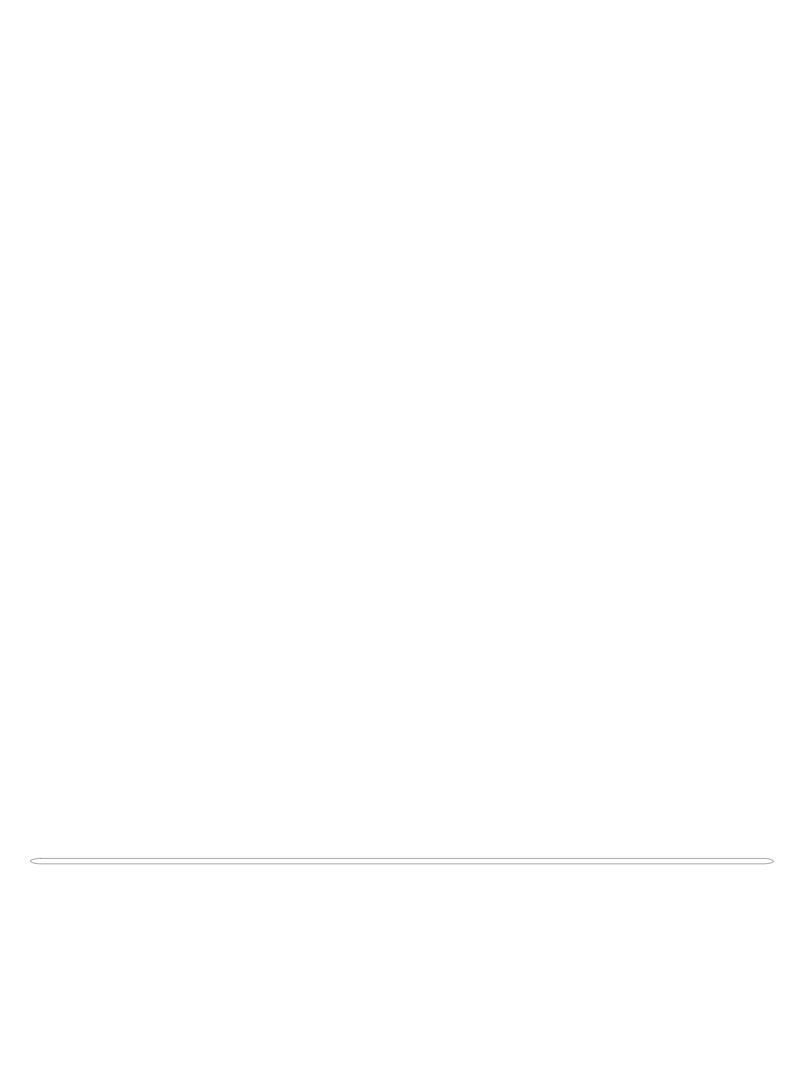
Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present:YES

Custody Seal Present:YES

Chain of Custody Number:019226


PHC F3 (C16-C34) Duplicate RPD for F3 is outside control limits. The average of the two duplicates is less than five times the RL, therefore a greater uncertainty is expected.

Trichlorofluoromethane matrix spike; recovery for this parameter is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable.

SIGNATORIES

Jill Campbell, B.Sc., GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-3
Index	4
Results	5-12
Exceedance Summary	13
QC Summary	14-22
Legend	23
Annexes	24

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

		Sa	mple Number	8	9	10
		8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
				SS1	SS1	
arkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
and - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Units	RL	L1	L2	Result	Result	Result
ua/a	0.02	0.21	0.17	< 0.02	< 0.02	< 0.02
				< 0.05	< 0.05	< 0.05
				< 0.05	< 0.05	< 0.05
						< 0.05
		3.1	23			< 0.05
						< 0.05
μg/g	0.05			< 0.05	< 0.05	< 0.05
L)		Sa	mple Number	8	9	10
		S	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
				SS1	SS1	
arkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
and - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Units	RL	L1	L2	Result	Result	Result
μg/g	0.8	7.5	7.5	< 0.8	< 0.8	< 0.8
μg/g	0.5	18	18	4.8	4.4	4.1
μg/g	0.7	2.4	2.4	< 0.7	< 0.7	< 0.7
	Units μg/g μg/g μg/g μg/g μg/g μg/g μg/g μg	руд 0.02 руд 0.05	Arkland - UNDEFINED Units RL L1 µg/g 0.02 0.21 µg/g 0.05 2 µg/g 0.05 2.3 µg/g 0.05 2.3 µg/g 0.05 3.1 µg/g 0.05 µg/g 0.05 µg/g 0.05 µg/g 0.5 µg/g 0.5 µg/g 0.5 L1 Sarkland - UNDEFINED Units RL L1 µg/g 0.8 7.5 µg/g 0.5 18	No. No.	Sample Name 21BH-2 (MW) SS1	Sample Name 21BH-2 (MW) SS1 SS1

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - Metals and Inor	rganics		Sar	nple Number	8	9	10	11
SOIL)								
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP	DUP B
					SS1	SS1		
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Pa	arkland - UNDEFINED		s	ample Matrix	Soil	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklar	nd - UNDEFINED		;	Sample Date	15/05/2021	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
letals and Inorganics								
Moisture Content	%	-			14.4	12.1	15.3	10.5
Barium	μg/g	0.1	390	390	130	97	130	
Beryllium	μg/g	0.02	4	5	0.75	0.58	0.71	
Boron	μg/g	1	120	120	11	9	10	
Cadmium	μg/g	0.02	1.2	1.2	0.07	0.19	0.09	
Chromium	μg/g	0.5	160	160	20	15	19	
Cobalt	μg/g	0.01	22	22	10	8.2	8.9	
Copper	μg/g	0.1	140	180	25	38	28	
Lead	μg/g	0.1	120	120	11	17	11	
Molybdenum	μg/g	0.1	6.9	6.9	0.8	0.8	0.6	
Nickel	μg/g	0.5	100	130	23	18	20	
Silver	μg/g	0.05	20	25	< 0.05	< 0.05	< 0.05	
Thallium	μg/g	0.02	1	1	0.11	0.11	0.10	
Uranium	μg/g	0.002	23	23	0.57	0.55	0.64	
Vanadium	μg/g	3	86	86	27	23	26	
Zinc	μg/g	0.7	340	340	54	56	49	
Water Soluble Boron	μg/g	0.5	1.5	1.5	< 0.5	< 0.5	< 0.5	

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - Other (ORP) ((SOIL)		Sar	nple Number	8	9	10
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/	Parkland - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
.2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park	REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFINED Sample Date		15/05/2021	15/05/2021	15/05/2021		
Parameter	Units	RL	L1	L2	Result	Result	Result
Other (ORP)							
Mercury	ug/g	0.05	0.27	1.8	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	5	22.5	3.3	19.1
SAR Calcium	mg/L	0.09			2.1	10.0	2.6
SAR Magnesium	mg/L	0.02			0.17	1.4	0.50
SAR Sodium	mg/L	0.15			126	41.8	128
Conductivity	mS/cm	0.002	0.7	0.7	0.58	0.24	0.53
pH	pH Units	0.05			7.86	7.78	7.70
Chromium VI	μg/g	0.2	8	10	< 0.2	< 0.2	< 0.2
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - PAHs (SOIL)			San	nple Number	8	9	11
(/			S	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP B
					SS1	SS1	
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	arkland - UNDEFINED		S	ample Matrix	Soil	Soil	Soil
= REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan	nd - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
AHs							
Acenaphthene	μg/g	0.05	7.9	29	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.05	0.15	0.17	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.05	0.67	0.74	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/g	0.05	0.5	0.63	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.05	0.3	0.3	< 0.05	< 0.05	< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	0.78	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6	7.8	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78	0.78	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	0.05	7	7.8	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	0.1	< 0.06	< 0.06	< 0.06
Fluoranthene	μg/g	0.05	0.69	0.69	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	0.05	62	69	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	0.48	< 0.1	< 0.1	< 0.1
1-Methylnaphthalene	μg/g	0.05			< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/g	0.05			< 0.05	< 0.05	< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	3.4	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	0.6	0.75	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	6.2	7.8	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	0.05	78	78	< 0.05	< 0.05	< 0.05

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - PHCs (SOIL)			Sa	ample Number	8	9	10
			;	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		;	Sample Matrix	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland	d - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
PHCs							
F1 (C6-C10)	μg/g	10	55	65	< 10	< 10	< 10
F1-BTEX (C6-C10)	μg/g	10			< 10	< 10	< 10
F2 (C10-C16)	μg/g	10	98	150	< 10	< 10	< 10
F3 (C16-C34)	μg/g	50	300	1300	< 50	< 50	< 50
F4 (C34-C50)	μg/g	50	2800	5600	< 50	< 50	< 50
Chromatogram returned to baseline at	Yes / No	-			YES	YES	YES
nC50							
	(2211)		٥.	ample Number	8	9	11
PACKAGE: REG153 - SVOC Surrogate	es (SOIL)			imple Number	0	9	11
							5.15.5
			;	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP B
				·	SS1	SS1	
			;	Sample Matrix	SS1 Soil	SS1 Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland	d - UNDEFINED			Sample Matrix	SS1 Soil 15/05/2021	SS1 Soil 15/05/2021	Soil 15/05/2021
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter		RL	;	Sample Matrix	SS1 Soil	SS1 Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter SVOC Surrogates	d - UNDEFINED Units	RL		Sample Matrix	SS1 Soil 15/05/2021 Result	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter	d - UNDEFINED	RL -		Sample Matrix	SS1 Soil 15/05/2021 Result	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result 86
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter SVOC Surrogates	d - UNDEFINED Units			Sample Matrix	SS1 Soil 15/05/2021 Result	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter SVOC Surrogates Surr Nitrobenzene-d5	d - UNDEFINED Units Surr Rec %	-		Sample Matrix	SS1 Soil 15/05/2021 Result	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result 86
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland Parameter SVOC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl	Units Surr Rec % Surr Rec %	-		Sample Matrix	SS1 Soil 15/05/2021 Result	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result 86 89
SVOC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl Surr 4-Terphenyl-d14	Surr Rec % Surr Rec % Surr Rec %			Sample Matrix	SS1 Soil 15/05/2021 Result 69 64 66	SS1 Soil 15/05/2021 Result	Soil 15/05/2021 Result 86 89 102

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - THMs (VOC)	(SOIL)		Sa	mple Number	8	9	10
			5	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/	Parkland - UNDEFINED		8	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park	kland - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
THMs (VOC)							
Bromodichloromethane	μg/g	0.05	13	1.9	< 0.05	< 0.05	< 0.05
Bromoform	μg/g	0.05	0.27	0.26	< 0.05	< 0.05	< 0.05
Dibromochloromethane	μg/g	0.05	9.4	2.9	< 0.05	< 0.05	< 0.05
PACKAGE: REG153 - VOC Surroga	tes (SOIL)		Sa	mple Number	8	9	10
			\$	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/	Parkland - UNDEFINED		\$	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park	kland - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOC Surrogates							
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			109	83	100
Surr 4-Bromofluorobenzene	Surr Rec %	-			101	97	93
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			91	92	70
			·				
PACKAGE: REG153 - VOCs (SOIL)			Sa	mple Number	8	9	10
				Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/	Parkland - UNDEFINED		5	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Park	kland - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs							
Acetone	μg/g	0.5	16	28	< 0.5	< 0.5	< 0.5
	100		1	I			

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

240/405 250 45 460 (250)			8	nple Number	8	9	10
PACKAGE: REG153 - VOCs (SOIL)				•			
			S	ample Name	21BH-2 (MW) SS1	21BH-3 (MW) SS1	DUP
DECASO (CON COADOS TABLES Decidental	Wheelstood LINDEFINED		S	ample Matrix	Soil	Soil	Soil
= REG153 / SOIL / COARSE - TABLE 3 - Residential/				Sample Date	15/05/2021	15/05/2021	15/05/2021
P = REG153 / SOIL / FINE - TABLE 2 - Residential/Park Parameter	Units	RL	L1	L2	Result	Result	Result
	Office	KL		LZ	Result	Kesuit	Result
OCs (continued)							
Bromomethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Carbon tetrachloride	μg/g	0.05	0.05	0.12	< 0.05	< 0.05	< 0.05
Chlorobenzene	µg/g	0.05	2.4	2.7	< 0.05	< 0.05	< 0.05
Chloroform	μg/g	0.05	0.05	0.18	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/g	0.05	3.4	1.7	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	0.05	4.8	6	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.083	0.097	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	0.05	16	25	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	μg/g	0.05	3.5	0.6	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	0.75	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	3.4	2.5	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	μg/g	0.05	0.05	0.085	< 0.05	< 0.05	< 0.05
cis-1,3-dichloropropene	μg/g	0.03			< 0.03	< 0.03	< 0.03
trans-1,3-dichloropropene	μg/g	0.03			< 0.03	< 0.03	< 0.03
1,3-dichloropropene (total)	µg/g	0.05	0.05	0.081	< 0.05	< 0.05	< 0.05
Ethylenedibromide	µg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	0.05	2.8	34	< 0.05	< 0.05	< 0.05
Methyl ethyl ketone	μg/g	0.5	16	44	< 0.5	< 0.5	< 0.5
Methyl isobutyl ketone	μg/g	0.5	1.7	4.3	< 0.5	< 0.5	< 0.5
					< 0.05	< 0.05	< 0.05
Methyl-t-butyl Ether	μg/g	0.05	0.75	1.4			
Methylene Chloride	μg/g	0.05	0.1	0.96	< 0.05	< 0.05	< 0.05

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

			_				
PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	8	9	10
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland	I - UNDEFINED		;	Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
/OCs (continued)							
Styrene	µg/g	0.05	0.7	2.2	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	μg/g	0.05	0.28	2.3	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	μg/g	0.05	0.38	3.4	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.061	0.52	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	0.05	4	5.8	< 0.05	< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	0.02	0.022	< 0.02	< 0.02	< 0.02

EXCEEDANCE SUMMARY

				REG153 / SOIL /	REG153 / SOIL /
				COARSE - TABLE	FINE - TABLE 2 -
				3 -	Residential/Parkla
				Residential/Parklan	nd - UNDEFINED
				d - UNDEFINED	
Parameter	Method	Units	Result	L1	L2
21BH-2 (MW) SS1					
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	No unit	22.5	5	5
DUP					
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	No unit	19.1	5	5

20210603 13 / 24

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	·
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0009-JUN21	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	CS/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5095-MAY21	μg/g	0.05	<0.05	ND	20	109	80	120	91	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank	3/Spike Blank		latrix Spike / Ref	:
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5108-MAY21	ug/g	0.2	<0.2	ND	20	90	80	120	93	75	125

20210603 14 / 24

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0003-JUN21	ug/g	0.05	<0.05	ND	20	104	80	120	94	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0002-JUN21	mg/L	0.09	<0.09	4	20	99	80	120	98	70	130
SAR Magnesium	ESG0002-JUN21	mg/L	0.02	<0.02	3	20	99	80	120	96	70	130
SAR Sodium	ESG0002-JUN21	mg/L	0.15	<0.15	14	20	101	80	120	100	70	130

20210603 15 / 24

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0003-JUN21	ug/g	0.05	<0.05	1	20	102	70	130	103	70	130
Arsenic	EMS0003-JUN21	μg/g	0.5	<0.5	16	20	99	70	130	96	70	130
Barium	EMS0003-JUN21	ug/g	0.1	<0.1	4	20	105	70	130	90	70	130
Beryllium	EMS0003-JUN21	μg/g	0.02	<0.02	8	20	101	70	130	96	70	130
Boron	EMS0003-JUN21	μg/g	1	<1	ND	20	107	70	130	97	70	130
Cadmium	EMS0003-JUN21	μg/g	0.02	<0.02	3	20	99	70	130	94	70	130
Cobalt	EMS0003-JUN21	μg/g	0.01	<0.01	6	20	100	70	130	99	70	130
Chromium	EMS0003-JUN21	μg/g	0.5	<0.5	4	20	102	70	130	99	70	130
Copper	EMS0003-JUN21	μg/g	0.1	<0.1	8	20	98	70	130	95	70	130
Molybdenum	EMS0003-JUN21	μg/g	0.1	<0.1	18	20	95	70	130	103	70	130
Nickel	EMS0003-JUN21	ug/g	0.5	<0.5	6	20	98	70	130	94	70	130
Lead	EMS0003-JUN21	μg/g	0.1	<0.1	ND	20	101	70	130	95	70	130
Antimony	EMS0003-JUN21	μg/g	0.8	<0.8	ND	20	100	70	130	82	70	130
Selenium	EMS0003-JUN21	μg/g	0.7	<0.7	ND	20	96	70	130	95	70	130
Thallium	EMS0003-JUN21	μg/g	0.02	<0.02	ND	20	101	70	130	91	70	130
Uranium	EMS0003-JUN21	μg/g	0.002	<0.002	3	20	105	70	130	95	70	130
Vanadium	EMS0003-JUN21	μg/g	3	<3	11	20	102	70	130	98	70	130
Zinc	EMS0003-JUN21	μg/g	0.7	<0.7	6	20	100	70	130	94	70	130

20210603 16 / 24

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank	S/Spike Blank		Matrix Spike / Ref.	
	Reference	Blank RPD AC Spike (%) (%)	Spike Recovery	Recover	ry Limits %)							
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0022-JUN21	μg/g	10	<10	ND	30	98	80	120	NV	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS			Ma	atrix Spike / Ref	L
	Reference			Blank	RPD	AC (%)	Spike	Spike Recovery Limits Recovery		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0436-MAY21	μg/g	10	<10	ND	30	108	80	120	103	60	140
F3 (C16-C34)	GCM0436-MAY21	μg/g	50	<50	114	30	108	80	120	103	60	140
F4 (C34-C50)	GCM0436-MAY21	μg/g	50	<50	ND	30	108	80	120	103	60	140

20210603 17 / 24

QC SUMMARY

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	S/Spike Blank		atrix Spike / Re	f.
	Reference			Blank	nk RPD	AC (00)	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0073-MAY21	pH Units	0.05		0	20	100	80	120			

20210603 18 / 24

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	•	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	95	50	140	98	50	140
2-Methylnaphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	91	50	140	94	50	140
Acenaphthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	98	50	140	103	50	140
Acenaphthylene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	100	50	140	105	50	140
Anthracene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	92	50	140	98	50	140
Benzo(a)anthracene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	96	50	140	105	50	140
Benzo(a)pyrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	89	50	140	98	50	140
Benzo(b+j)fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	89	50	140	96	50	140
Benzo(ghi)perylene	GCM0485-MAY21	μg/g	0.1	< 0.1	ND	40	89	50	140	102	50	140
Benzo(k)fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	95	50	140	99	50	140
Chrysene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	99	50	140
Dibenzo(a,h)anthracene	GCM0485-MAY21	μg/g	0.06	< 0.06	ND	40	86	50	140	95	50	140
Fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	104	50	140
Fluorene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	93	50	140	96	50	140
Indeno(1,2,3-cd)pyrene	GCM0485-MAY21	μg/g	0.1	< 0.1	ND	40	92	50	140	99	50	140
Naphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	96	50	140	100	50	140
Phenanthrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	100	50	140
Pyrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	105	50	140	110	50	140

20210603 19 / 24

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	101	60	130	120	50	140
1,1,1-Trichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	122	50	140
1,1,2,2-Tetrachloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	96	60	130	101	50	140
1,1,2-Trichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	121	50	140
1,1-Dichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	117	50	140
1,1-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	123	60	130	137	50	140
1,2-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	95	60	130	112	50	140
1,2-Dichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	112	50	140
1,2-Dichloropropane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	102	60	130	99	50	140
1,3-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	94	60	130	113	50	140
1,4-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	99	60	130	113	50	140
Acetone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	104	50	140	127	50	140
Benzene	GCM0021-JUN21	μg/g	0.02	< 0.02	ND	50	101	60	130	110	50	140
Bromodichloromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	114	50	140
Bromoform	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	97	60	130	112	50	140
Bromomethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	121	50	140	140	50	140
Carbon tetrachloride	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	108	60	130	123	50	140
Chlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	104	60	130	120	50	140
Chloroform	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	99	60	130	113	50	140
cis-1,2-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	100	60	130	115	50	140

20210603 20 / 24

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0021-JUN21	μg/g	0.03	< 0.03	ND	50	108	60	130	107	50	140
Dibromochloromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	103	60	130	115	50	140
Dichlorodifluoromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	131	50	140	98	50	140
Ethylbenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	138	50	140
Ethylenedibromide	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	109	60	130	131	50	140
n-Hexane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	119	60	130	51	50	140
m/p-xylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	NV	50	140
Methyl ethyl ketone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	85	50	140	118	50	140
Methyl isobutyl ketone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	100	50	140	128	50	140
Methyl-t-butyl Ether	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	109	60	130	126	50	140
Methylene Chloride	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	115	60	130	122	50	140
o-xylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	115	50	140
Styrene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	107	60	130	119	50	140
Tetrachloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	117	50	140
Toluene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	108	60	130	110	50	140
trans-1,2-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	117	60	130	132	50	140
trans-1,3-dichloropropene	GCM0021-JUN21	μg/g	0.03	< 0.03	ND	50	102	60	130	124	50	140
Trichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	83	60	130	125	50	140
Trichlorofluoromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	131	50	140	149	50	140
Vinyl Chloride	GCM0021-JUN21	μg/g	0.02	< 0.02	ND	50	123	50	140	127	50	140

20210603 21 / 24

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0001-JUN21	μg/g	0.5	<0.5	ND	20	107	80	120	94	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210603 22 / 24

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210603 23 / 24

CA15852-MAY21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	705-652-2143
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	brad.moore@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA15852-MAY21
Project	5557	Received	05/25/2021
Order Number		Approved	05/31/2021
Samples	Ground Water (3)	Report Number	CA15852-MAY21 R
		Date Reported	05/31/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present:YES

Custody Seal Present:YES

Chain of Custody Number:019231

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

1 / 19

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-8
Exceedance Summary	9
QC Summary	10-17
Legend	18
Annexes	19

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - BTEX (WATER))		Sample Number	7	8	9
			Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
= REG153 / GROUND WATER / COARSE - TABLE 3 - A	II Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	25/05/2021	25/05/2021	25/05/2021
Parameter	Units	RL	L1	Result	Result	Result
STEX						
Benzene	μg/L	0.5	44	0.5	< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	2300	< 0.5	< 0.5	< 0.5
Toluene	μg/L	0.5	18000	< 0.5	< 0.5	< 0.5
Xylene (total)	μg/L	0.5	4200	< 0.5	< 0.5	< 0.5
m/p-xylene	μg/L	0.5		< 0.5	< 0.5	< 0.5
o-xylene	μg/L	0.5		< 0.5	< 0.5	< 0.5
ACKAGE: REG153 - Hydrides (WATE	FR)		Sample Number	7	8	
7.010.02.11 20.00 11 ,0 11000 (17.1100	_, ,		Sample Name	21BH-1 (MW)	21BH-2 (MW)	
1 = REG153 / GROUND WATER / COARSE - TABLE 3 - A	II Types of Property Uses -	LINDEEINED	Sample Matrix	Ground Water	Ground Water	
- NEO 1337 GROUND WATER / GOARGE - TABLE 3 - A	iii Types of Floperty Oses -	ONDEFINED	Sample Date	25/05/2021	25/05/2021	
Parameter	Units	RL	L1	Result	Result	
lydrides						
Antimony	μg/L	0.9	20000	1.0	1.7	
Arsenic	μg/L	0.2	1900	2.1	11.6	
Selenium	μg/L	0.04	63	0.15	3.77	

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Cameron

PACKAGE: **REG153 - Metals and Inorganics** (WATER)

Sample Number

7

8

L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Property Uses - UNDEFINED

Sample Name 21BH-1 (MW) 21BH-2 (MW)
Sample Matrix Ground Water Ground Water

Sample Matrix Ground Water Ground Water
Sample Date 25/05/2021 25/05/2021

Parameter Units RL L1 Result Result

Metals and Inorganics

victais and morganios						
Barium	μg/L	0.02	29000	31.1	150	
Beryllium	μg/L	0.007	67	< 0.007	< 0.007	
Boron	μg/L	2	45000	2820	1930	
Cadmium	μg/L	0.003	2.7	0.075	0.150	
Chromium	μg/L	0.08	810	0.10	0.24	
Cobalt	μg/L	0.004	66	0.049	0.161	
Copper	μg/L	0.2	87	1.7	2.9	
Lead	μg/L	0.09	25	< 0.09	< 0.09	
Molybdenum	μg/L	0.04	9200	235	500	
Nickel	μg/L	0.1	490	0.4	0.9	
Silver	μg/L	0.05	1.5	< 0.05	< 0.05	
Thallium	μg/L	0.005	510	0.024	0.024	
Uranium	μg/L	0.002	420	1.47	4.15	
Vanadium	μg/L	0.01	250	2.08	1.33	
Zinc	μg/L	2	1100	5	3	

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - Na (WATER	R)		Sample Number	7	8		
			Sample Name	21BH-1 (MW)	21BH-2 (MW)		
1 = REG153 / GROUND WATER / COARSE - TABL	E 3 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water		
			Sample Date	25/05/2021	25/05/2021		
Parameter	Units	RL	L1	Result	Result		
Na							
Sodium	μg/L	10	2.3e+00	402000	212000		
			6				
PACKAGE: REG153 - Other (ORF	P) (WATER)		Sample Number	7	8		
			Sample Name	21BH-1 (MW)	21BH-2 (MW)		
.1 = REG153 / GROUND WATER / COARSE - TABL	E 3 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water		
			Sample Date	25/05/2021	25/05/2021		
Parameter	Units	RL	L1	Result	Result		
Other (ORP)							
Mercury (total)	μg/L	0.01	0.29	< 0.01	< 0.01		
рН	No unit	0.05		8.24	7.67		
Chloride	μg/L	1000	2.3e+00	240000	810000		
			6				
Chromium VI	μg/L	0.2	140	< 0.2	< 0.2		
Cyanide (free)	μg/L	2	66	< 2	< 2		
DAOKAGE, DEGASO, BUG . 2444	TED)		Sample Number	7	8	9	
PACKAGE: REG153 - PHCs (WA	IEK)		·				
			Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)	
.1 = REG153 / GROUND WATER / COARSE - TABL	LE 3 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water 25/05/2021	
D	***		Sample Date	25/05/2021	25/05/2021		
Parameter	Units	RL	L1	Result	Result	Result	
PHCs							
F1 (C6-C10)	μg/L	25	750	< 25	< 25	< 25	
F1-BTEX (C6-C10)	μg/L	25		< 25	< 25	< 25	

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

)		Sample Number	7	8	9
		Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
II Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
		Sample Date	25/05/2021	25/05/2021	25/05/2021
Units	RL	L1	Result	Result	Result
μg/L	100	150	< 100	< 100	< 100
μg/L	200	500	< 200	< 200	< 200
μg/L	200	500	< 200	< 200	< 200
Yes / No	-		YES	YES	YES
/ATER)		Sample Number	7	8	9
,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
II Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
		Sample Date	25/05/2021	25/05/2021	25/05/2021
Units	RL	L1	Result	Result	Result
μg/L	0.5	85000	< 0.5	< 0.5	< 0.5
μg/L	0.5	380	< 0.5	< 0.5	< 0.5
	0.5	82000	< 0.5	< 0.5	< 0.5
	Units Units µg/L µg/L µg/L Yes / No /ATER) Il Types of Property Uses - Units µg/L	Units RL µg/L 100 µg/L 200 µg/L 200 Yes / No - /ATER) Units RL Units RL µg/L 0.5 µg/L 0.5	Sample Name Sample Name Sample Matrix Sample Date Units RL L1	Sample Name 21BH-1 (MW) Sample Matrix Ground Water 25/05/2021 Units RL L1 Result	Sample Name 21BH-1 (MW) 21BH-2 (MW) Sample Matrix Sample Matrix Sample Matrix Sample Date 25/05/2021 Units RL L1 Result Result μg/L 100 150 < 100 < 100 μg/L 200 500 < 200 < 200 μg/L 200 500 < 200 < 200 γes / No - Sample Number 7 8 Sample Name 21BH-1 (MW) 21BH-2 (MW) ATER Sample Name 21BH-1 (MW) 21BH-2 (MW) Sample Name 21BH-1 (MW) 21BH-2 (MW) Sample Matrix Sample Matrix Ground Water Sample Date 25/05/2021 Units RL L1 Result Result μg/L 0.5 85000 < 0.5 < 0.5 μg/L 0.5 85000 < 0.5 < 0.5 μg/L 0.5 380 < 0.5 < 0

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - VOC Surroga	ites (WATER)		Sample Number	7	8	9
·	,		Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
I = REG153 / GROUND WATER / COARSE - TABLE 3	B - All Types of Property Uses - L	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	25/05/2021	25/05/2021	25/05/2021
Parameter	Units	RL	L1	Result	Result	Result
/OC Surrogates						
Surr 1,2-Dichloroethane-d4	Surr Rec %	-		106	107	106
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-		94	93	96
Surr 4-Bromofluorobenzene	Surr Rec %	-		88	90	89
				_	•	
PACKAGE: REG153 - VOCs (WATE	ER)		Sample Number	7	8	9
			Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
1 = REG153 / GROUND WATER / COARSE - TABLE 3	B - All Types of Property Uses - L	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	25/05/2021	25/05/2021	25/05/2021
Parameter	Units	RL	L1	Result	Result	Result
/OCs						
Acetone	μg/L	30	130000	< 30	54	< 30
Bromomethane	μg/L	0.5	5.6	< 0.5	< 0.5	< 0.5
Carbon tetrachloride	μg/L	0.2	0.79	< 0.2	< 0.2	< 0.2
Chlorobenzene	μg/L	0.5	630	< 0.5	< 0.5	< 0.5
Chloroform	μg/L	0.5	2.4	< 0.5	< 0.5	< 0.5
1,2-Dichlorobenzene	μg/L	0.5	4600	< 0.5	< 0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	9600	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	8	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	μg/L	2.0	4400	< 2	< 2	< 2
1,1-Dichloroethane	μg/L	0.5	320	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,1-Dichloroethylene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5

CA15852-MAY21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Cameron

ACKAGE: REG153 - VOCs (WATER)			Sample Number	7	8	9
WATER			Sample Name	21BH-1 (MW)	21BH-2 (MW)	21BH-3 (MW)
REG153 / GROUND WATER / COARSE - TABLE 3 - All 7	Types of Property Uses -	LINDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
NEG 150 / GROOMS WITER / GOMES - MADE O / MIT	Types of Floperty Oses	ONDEFINED	Sample Date	25/05/2021	25/05/2021	25/05/2021
Parameter	Units	RL	L1	Result	Result	Result
OCs (continued)						
cis-1,2-Dichloroethene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	μg/L	0.5	16	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5	< 0.5
1,3-dichloropropene (total)	μg/L	0.5	5.2	< 0.5	< 0.5	< 0.5
Ethylenedibromide	μg/L	0.2	0.25	< 0.2	< 0.2	< 0.2
n-Hexane	μg/L	1.0	51	< 1	< 1	< 1
Methyl ethyl ketone	μg/L	20	470000	< 20	< 20	< 20
Methyl Isobutyl Ketone	μg/L	20	140000	< 20	< 20	< 20
Methyl-t-butyl Ether	μg/L	2.0	190	< 2	< 2	< 2
Methylene Chloride	μg/L	0.5	610	< 0.5	< 0.5	< 0.5
Styrene	μg/L	0.5	1300	< 0.5	< 0.5	< 0.5
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	3.3	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	0.5	3.2	< 0.5	< 0.5	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	640	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	4.7	< 0.5	< 0.5	< 0.5
Trichloroethylene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	μg/L	5.0	2500	< 5	< 5	< 5
Vinyl Chloride	μg/L	0.2	0.5	< 0.2	< 0.2	< 0.2

SGS FINAL REPORT

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20210531 9 / 19

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5083-MAY21	ug/L	1000	<1000	ND	20	102	80	120	108	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (free)	SKA0260-MAY21	μg/L	2	<2	ND	10	99	90	110	100	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank			Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0261-MAY21	ug/L	0.2	<0.2	ND	20	102	80	120	97	75	125

20210531 10 / 19

QC SUMMARY

Mercury by CVAAS

Method: SM 3112/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		М	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (V)	Spike	Recovery Limits (%)		Spike Recovery	Recove	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0026-MAY21	ug/L	0.01	<0.01	11	20	109	80	120	118	70	130

20210531 11 / 19

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC:	S/Spike Blank		Ма	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0136-MAY21	ug/L	0.05	<0.05	ND	20	105	90	110	94	70	130
Arsenic	EMS0136-MAY21	μg/L	0.2	<0.2	2	20	106	90	110	104	70	130
Barium	EMS0136-MAY21	μg/L	0.02	<0.02	1	20	102	90	110	97	70	130
Beryllium	EMS0136-MAY21	μg/L	0.007	<0.07	0	20	92	90	110	81	70	130
Boron	EMS0136-MAY21	μg/L	2	<2	2	20	102	90	110	94	70	130
Cadmium	EMS0136-MAY21	μg/L	0.003	<0.003	ND	20	104	90	110	94	70	130
Cobalt	EMS0136-MAY21	μg/L	0.004	<0.004	3	20	105	90	110	102	70	130
Chromium	EMS0136-MAY21	ug/L	0.08	<0.08	2	20	104	90	110	109	70	130
Copper	EMS0136-MAY21	ug/L	0.2	<0.2	4	20	103	90	110	92	70	130
Molybdenum	EMS0136-MAY21	ug/L	0.04	<0.04	0	20	106	90	110	105	70	130
Sodium	EMS0136-MAY21	ug/L	10	<0.01	6	20	98	90	110	87	70	130
Nickel	EMS0136-MAY21	μg/L	0.1	<0.1	2	20	103	90	110	96	70	130
Lead	EMS0136-MAY21	ug/L	0.09	<0.01	9	20	109	90	110	97	70	130
Antimony	EMS0136-MAY21	ug/L	0.9	<0.9	ND	20	95	90	110	103	70	130
Selenium	EMS0136-MAY21	μg/L	0.04	<0.04	16	20	104	90	110	101	70	130
Thallium	EMS0136-MAY21	μg/L	0.005	<0.005	0	20	105	90	110	100	70	130
Uranium	EMS0136-MAY21	μg/L	0.002	<0.002	0	20	92	90	110	84	70	130
Vanadium	EMS0136-MAY21	μg/L	0.01	< 0.001	4	20	102	90	110	102	70	130
Zinc	EMS0136-MAY21	μg/L	2	<0.002	1	20	104	90	110	85	70	130

20210531 12 / 19

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		Matrix Spike /		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0460-MAY21	μg/L	25	<25	ND	30	90	60	140	92	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0446-MAY21	μg/L	100	<100	ND	30	87	60	140	86	60	140
F3 (C16-C34)	GCM0446-MAY21	μg/L	200	<200	ND	30	87	60	140	86	60	140
F4 (C34-C50)	GCM0446-MAY21	μg/L	200	<200	ND	30	87	60	140	86	60	140

20210531 13 / 19

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0490-MAY21	No unit	0.05	NA	0		100			NA		

20210531 14 / 19

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	100	60	130	108	50	140
1,1,1-Trichloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	112	50	140
1,1,2,2-Tetrachloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	104	50	140
1,1,2-Trichloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	108	50	140
1,1-Dichloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	111	50	140
1,1-Dichloroethylene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	100	60	130	114	50	140
1,2-Dichlorobenzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	111	50	140
1,2-Dichloroethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	109	50	140
1,2-Dichloropropane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	101	60	130	109	50	140
1,3-Dichlorobenzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	101	60	130	113	50	140
1,4-Dichlorobenzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	113	50	140
Acetone	GCM0434-MAY21	μg/L	30	<30	ND	30	99	60	130	101	50	140
Benzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	114	50	140
Bromodichloromethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	108	50	140
Bromoform	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	104	50	140
Bromomethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	96	50	140	104	50	140
Carbon tetrachloride	GCM0434-MAY21	μg/L	0.2	<0.2	ND	30	100	60	130	115	50	140
Chlorobenzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	101	60	130	112	50	140
Chloroform	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	109	50	140
cis-1,2-Dichloroethene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	112	50	140

20210531 15 / 19

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>l</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-Dichloropropene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	110	50	140
Dibromochloromethane	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	99	60	130	105	50	140
Dichlorodifluoromethane	GCM0434-MAY21	μg/L	2.0	<2	ND	30	69	50	140	79	50	140
Ethylbenzene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	115	50	140
Ethylenedibromide	GCM0434-MAY21	μg/L	0.2	<0.2	ND	30	105	60	130	111	50	140
n-Hexane	GCM0434-MAY21	μg/L	1.0	<1	ND	30	84	60	130	96	50	140
m/p-xylene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	114	50	140
Methyl ethyl ketone	GCM0434-MAY21	ug/L	20	<20	ND	30	100	60	130	100	50	140
Methyl Isobutyl Ketone	GCM0434-MAY21	μg/L	20	<20	ND	30	100	50	140	101	50	140
Methyl-t-butyl Ether	GCM0434-MAY21	μg/L	2.0	<2	ND	30	99	60	130	102	50	140
Methylene Chloride	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	111	50	140
o-xylene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	116	50	140
Styrene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	115	50	140
Tetrachloroethylene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	104	60	130	117	50	140
(perchloroethylene)												
Toluene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	102	60	130	115	50	140
trans-1,2-Dichloroethene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	115	50	140
trans-1,3-Dichloropropene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	100	60	130	107	50	140
Trichloroethylene	GCM0434-MAY21	μg/L	0.5	<0.5	ND	30	103	60	130	113	50	140
Trichlorofluoromethane	GCM0434-MAY21	μg/L	5.0	<5	ND	30	95	50	140	108	50	140
Vinyl Chloride	GCM0434-MAY21	μg/L	0.2	<0.2	ND	30	93	60	130	103	50	140

20210531 16 / 19

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210531 17 / 19

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210531 18 / 19

CA14826-JUN21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	705-652-2143
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	brad.moore@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA14826-JUN21
Project	5557	Received	06/08/2021
Order Number		Approved	06/14/2021
Samples	Ground Water (1)	Report Number	CA14826-JUN21 R
		Date Reported	06/14/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:021543

SIGNATORIES

Brad Moore Hon. B.Sc Brad Mo

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 13

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-11
Legend	12
Annexes	13

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

PACKAGE: REG153 - BTEX (WATER))		Sa	mple Number	7
			8	Sample Name	21BH-4(MW)
_1 = REG153 / GROUND WATER / COARSE - TABLE 3 - AI	II Types of Property Uses -	UNDEFINED	8	Sample Matrix	Ground Water
.2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Typ	pes of Property Uses - UNI	DEFINED		Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
втех					
Benzene	μg/L	0.5	44	430	1.0
					6.2
Ethylbenzene	μg/L	0.5	2300	2300	
Toluene	μg/L	0.5	18000	18000	< 0.5
Xylene (total)	μg/L	0.5	4200	4200	17.5
m/p-xylene	μg/L	0.5			14.7
o-xylene	μg/L	0.5			2.8
ACKAGE: REG153 - PHCs (WATER))			mple Number	7
				Sample Name	21BH-4(MW)
1 = REG153 / GROUND WATER / COARSE - TABLE 3 - AI	II Types of Property Uses -	UNDEFINED		Sample Matrix	
2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Typ	pes of Property Uses - UNI	DEFINED		Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
PHCs					
F1 (C6-C10)	μg/L	25	750	750	857
F1-BTEX (C6-C10)	μg/L	25			832
F2 (C10-C16)	μg/L	100	150	150	14200
F3 (C16-C34)	μg/L	200	500	500	8920
F4 (C34-C50)	μg/L	200	500	500	< 200
Chromatogram returned to baseline at	Yes / No	-		000	YES
nC50	165/110				0

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

DACKACE: DEC152 TUM: A/OC \ (4	MATED)		Sar	mple Number	7
PACKAGE: REG153 - THMs (VOC) (V	VAIEK)			Sample Name	21BH-4(MW)
14 - DEC452 / ODOUND WATER / COARCE TABLE 2	All Types of Dresents I !	LINDEFINED		Sample Matrix	Ground Water
.1 = REG153 / GROUND WATER / COARSE - TABLE 3 - A .2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Ty				Sample Date	08/06/2021
Parameter	pes of Property Uses - UND Units	RL	L1	L2	Result
	Units	RL.	LI	LZ	ræsuit
THMs (VOC)					
Bromodichloromethane	μg/L	0.5	85000	85000	< 0.5
Bromoform	μg/L	0.5	380	770	< 0.5
Dibromochloromethane	μg/L	0.5	82000	82000	< 0.5
			_		_
PACKAGE: REG153 - VOC Surrogate	s (WATER)		Sar	mple Number	7
			S	Sample Name	21BH-4(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - A	1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Property Uses - UNDEFINED		s	Sample Matrix	Ground Water
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Ty	pes of Property Uses - UND	DEFINED		Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
VOC Surrogates					
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			102
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			92
Surr 4-Bromofluorobenzene	Surr Rec %	_			97
Can i Diciniciaciosciizane	Cui 1100 /0				
PACKAGE: REG153 - VOCs (WATER	2)		Sar	mple Number	7
`	,		s	Sample Name	21BH-4(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - A	All Types of Property Uses - I	UNDEFINED	s	Sample Matrix	Ground Water
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Ty				Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
VOCs					7.555
					. 00
Acetone	μg/L	30	130000	130000	< 30
Bromomethane	μg/L	0.5	5.6	56	< 0.5
Carbon tetrachloride	μg/L	0.2	0.79	8.4	< 0.2
lau.		0.5	000	200	< 0.5
Chlorobenzene	μg/L	0.5	630	630	~ 0.5

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

PACKAGE: F	REG153 - VOCs ((WATER)
-------------------	-----------------	---------

Parameter

Sample Number

7

Sample Name 21BH-4(MW)

Sample Matrix

L1

Ground Water

Result

L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Property Uses - UNDEFINED

Sample Date L2

L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property Uses - UNDEFINED

Units

RL

Sample Date	08/06/2021

OCs (continued)						
Chloroform	μg/L	0.5	2.4	22	< 0.5	
,2-Dichlorobenzene	μg/L	0.5	4600	9600	< 0.5	
1,3-Dichlorobenzene	μg/L	0.5	9600	9600	< 0.5	
1,4-Dichlorobenzene	μg/L	0.5	8	67	< 0.5	
Dichlorodifluoromethane	μg/L	2.0	4400	4400	< 2	
1,1-Dichloroethane	μg/L	0.5	320	3100	< 0.5	
1,2-Dichloroethane	μg/L	0.5	1.6	12	< 0.5	
1,1-Dichloroethylene	μg/L	0.5	1.6	17	< 0.5	
trans-1,2-Dichloroethene	μg/L	0.5	1.6	17	< 0.5	
cis-1,2-Dichloroethene	μg/L	0.5	1.6	17	< 0.5	
1,2-Dichloropropane	μg/L	0.5	16	140	< 0.5	
cis-1,3-Dichloropropene	μg/L	0.5			< 0.5	
trans-1,3-Dichloropropene	μg/L	0.5			< 0.5	
1,3-dichloropropene (total)	μg/L	0.5	5.2	45	< 0.5	
Ethylenedibromide	μg/L	0.2	0.25	0.83	< 0.2	
n-Hexane	μg/L	1.0	51	520	< 1	
Methyl ethyl ketone	μg/L	20	470000	1.5e+00	< 20	
				6		
Methyl Isobutyl Ketone	μg/L	20	140000	580000	< 20	
Methyl-t-butyl Ether	μg/L	2.0	190	1400	< 2	
Methylene Chloride	μg/L	0.5	610	5500	< 0.5	
Styrene	μg/L	0.5	1300	9100	< 0.5	
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	1.6	17	< 0.5	
1,1,1,2-Tetrachloroethane	μg/L	0.5	3.3	28	< 0.5	

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

DACKACE: DEC152 VOC. (MATER	D)		Sar	mple Number	7
PACKAGE: REG153 - VOCs (WATER	Ν)			Sample Name	•
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 -	All Types of Property Liese	LINDEEINED		ample Matrix	` ,
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All T				Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
VOCs (continued)					
1,1,2,2-Tetrachloroethane	μg/L	0.5	3.2	15	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	640	6700	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	4.7	30	< 0.5
Trichloroethylene	μg/L	0.5	1.6	17	< 0.5
Trichlorofluoromethane	μg/L	5.0	2500	2500	< 5
Vinyl Chloride	μg/L	0.2	0.5	1.7	< 0.2

EXCEEDANCE SUMMARY

REG153 / GROUND WATER / FINE - TABLE 3 -
FINE - TABLE 3 -
All Tunes of
All Types of
Property Uses -
UNDEFINED
L2

21BH-4(MW)

F1 (C6 to C10)	CCME Tier 1	μg/L	857	750	750
F2 (C10 to C16)	CCME Tier 1	μg/L	14200	150	150
F3 (C16 to C34)	CCME Tier 1	μg/L	8920	500	500

20210614 7 / 13

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
F1 (C6-C10)	GCM0154-JUN21	μg/L	25	<25	ND	30	91	60	140	NV	60	140	

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	L Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				ank RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
F2 (C10-C16)	GCM0199-JUN21	μg/L	100	<100	ND	30	90	60	140	98	60	140
F3 (C16-C34)	GCM0199-JUN21	μg/L	200	<200	ND	30	90	60	140	98	60	140
F4 (C34-C50)	GCM0199-JUN21	μg/L	200	<200	ND	30	90	60	140	98	60	140

20210614 8 / 13

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Benzene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	84	60	130	91	50	140
Ethylbenzene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	93	60	130	90	50	140
m/p-xylene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	89	50	140
o-xylene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	94	50	140
Toluene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	88	60	130	92	50	140
1,1,1,2-Tetrachloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
1,1,1-Trichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	100	50	140
1,1,2,2-Tetrachloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
1,1,2-Trichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,1-Dichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,1-Dichloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,2-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	102	50	140
1,2-Dichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
1,2-Dichloropropane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,3-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	100	50	140
1,4-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	101	50	140
Acetone	GCM0161-JUN21	μg/L	30	<30	ND	30	92	60	130	92	50	140
Bromodichloromethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
Bromoform	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
Bromomethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	90	50	140	94	50	140

20210614

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Carbon tetrachloride	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	95	60	130	101	50	140
Chlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	99	50	140
Chloroform	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
cis-1,2-Dichloroethene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	99	50	140
cis-1,3-Dichloropropene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	97	50	140
Dibromochloromethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	96	50	140
Dichlorodifluoromethane	GCM0161-JUN21	μg/L	2.0	<2	ND	30	80	50	140	82	50	140
Ethylenedibromide	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	96	60	130	99	50	140
n-Hexane	GCM0161-JUN21	μg/L	1.0	<1	ND	30	90	60	130	94	50	140
Methyl ethyl ketone	GCM0161-JUN21	ug/L	20	<20	ND	30	90	60	130	94	50	140
Methyl Isobutyl Ketone	GCM0161-JUN21	μg/L	20	<20	ND	30	89	50	140	94	50	140
Methyl-t-butyl Ether	GCM0161-JUN21	μg/L	2.0	<2	ND	30	92	60	130	96	50	140
Methylene Chloride	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
Styrene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	102	50	140
Tetrachloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	101	50	140
(perchloroethylene)												
trans-1,2-Dichloroethene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	100	50	140
trans-1,3-Dichloropropene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
Trichloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	100	50	140
Trichlorofluoromethane	GCM0161-JUN21	μg/L	5.0	<5	ND	30	90	50	140	95	50	140
Vinyl Chloride	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	88	60	130	92	50	140

20210614 10 / 13

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210614 11 / 13

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210614 12 / 13

Your Project #: 5557

Your C.O.C. #: 924072-38-01

Attention: Reporting Group

Toronto Inspection Ltd 110 Konrad Cres Unit 16 Markham, ON CANADA L3R 9X2

Report Date: 2023/05/11

Report #: R7625145 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C6927 Received: 2023/05/04, 16:06

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	1	N/A	2023/05/10		EPA 8260C m
1,3-Dichloropropene Sum	5	N/A	2023/05/09		EPA 8260C m
Chloride by Automated Colourimetry	5	N/A	2023/05/10	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	5	N/A	2023/05/08	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	5	N/A	2023/05/08	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	4	2023/05/10	2023/05/10	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2023/05/10	2023/05/11	CAM SOP-00316	CCME PHC-CWS m
Mercury	5	2023/05/08	2023/05/08	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2023/05/10	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	4	N/A	2023/05/09	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds and F1 PHCs	5	N/A	2023/05/08	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water	1	N/A	2023/05/10	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: 5557

Your C.O.C. #: 924072-38-01

Attention: Reporting Group

Toronto Inspection Ltd 110 Konrad Cres Unit 16 Markham, ON CANADA L3R 9X2

Report Date: 2023/05/11

Report #: R7625145 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C6927

Received: 2023/05/04, 16:06

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager

Email: Ankita.Bhalla@bureauveritas.com

Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN541	VSN541	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03		
Sampling Date				10:30	10:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	RDL	QC Batch
Inorganics								
WAD Cyanide (Free)	ug/L	66	66	ND	N/A	ND	1	8651267
Dissolved Chloride (Cl-)	mg/L	2300	2300	310	N/A	870	5.0	8651019
Metals								
Chromium (VI)	ug/L	140	140	ND	ND	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	N/A	ND	0.10	8651744
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	N/A	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	6.7	N/A	12	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	100	N/A	430	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	N/A	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	4400	N/A	440	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	N/A	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	N/A	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	ND	N/A	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	ND	N/A	1.2	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	N/A	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	12	N/A	9.7	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	ND	N/A	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	N/A	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	N/A	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	140000	N/A	380000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	N/A	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	0.86	N/A	9.3	0.10	8650898
Dissolved Vanadium (V)	ug/L	250	250	ND	N/A	0.65	0.50	8650898
Dissolved Zinc (Zn)	ug/L	1100	1100	ND	N/A	ND	5.0	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN543			VSN544		
Sampling Date				2023/05/03			2023/05/03		
Sumpling Dute				12:00			11:00		
COC Number				924072-38-01			924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	RDL	QC Batch	21BH-103 (MW)	RDL	QC Batch
Inorganics									
WAD Cyanide (Free)	ug/L	66	66	ND	1	8651267	ND	1	8651267
Dissolved Chloride (Cl-)	mg/L	2300	2300	1300	10	8651023	420	5.0	8651023
Metals									
Chromium (VI)	ug/L	140	140	ND	1.0	8651598	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	0.10	8651408	ND	0.10	8651744
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	0.50	8650898	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	4.7	1.0	8650898	2.1	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	1400	2.0	8650898	240	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	0.40	8650898	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	190	10	8650898	3400	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	0.090	8650898	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	5.0	8650898	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	1.1	0.50	8650898	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	2.4	0.90	8650898	1.8	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	0.50	8650898	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	2.8	0.50	8650898	8.6	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	1.5	1.0	8650898	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	2.0	8650898	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	0.090	8650898	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	580000	500	8650898	91000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	0.050	8650898	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	2.8	0.10	8650898	1.8	0.10	8650898
Dissolved Vanadium (V)	ug/L	250	250	ND	0.50	8650898	ND	0.50	8650898
Dissolved Zinc (Zn)	ug/L	1100	1100	14	5.0	8650898	9.7	5.0	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN545		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	DUP	RDL	QC Batch
Inorganics						
WAD Cyanide (Free)	ug/L	66	66	ND	1	8651267
Dissolved Chloride (CI-)	mg/L	2300	2300	300	2.0	8651023
Metals						
Chromium (VI)	ug/L	140	140	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	0.10	8651408
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	7.2	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	97	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	4400	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	0.90	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	12	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	140000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	0.75	0.10	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927 Toronto Inspection Ltd
Report Date: 2023/05/11 Client Project #: 5557
Sampler Initials: DK

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN545		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	DUP	RDL	QC Batch
Dissolved Vanadium (V)	UNITS ug/L	Criteria 250	Criteria-2 250	DUP ND	RDL 0.50	QC Batch 8650898

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Report Date: 2023/05/11

Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03	2023/05/03		
Sumpring Butte				10:30	10:30	11:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	N/A	ND	N/A	0.50	8649346
Volatile Organics									
Acetone (2-Propanone)	ug/L	130000	130000	ND	ND	12	N/A	10	8650718
Benzene	ug/L	44	430	ND	ND	1.6	N/A	0.17	8650718
Bromodichloromethane	ug/L	85000	85000	ND	ND	ND	N/A	0.50	8650718
Bromoform	ug/L	380	770	ND	ND	ND	N/A	1.0	8650718
Bromomethane	ug/L	5.6	56	ND	ND	ND	N/A	0.50	8650718
Carbon Tetrachloride	ug/L	0.79	8.4	ND	ND	ND	N/A	0.20	8650718
Chlorobenzene	ug/L	630	630	ND	ND	ND	N/A	0.20	8650718
Chloroform	ug/L	2.4	22	ND	ND	ND	N/A	0.20	8650718
Dibromochloromethane	ug/L	82000	82000	ND	ND	ND	N/A	0.50	8650718
1,2-Dichlorobenzene	ug/L	4600	9600	ND	ND	ND	N/A	0.50	8650718
1,3-Dichlorobenzene	ug/L	9600	9600	ND	ND	ND	N/A	0.50	8650718
1,4-Dichlorobenzene	ug/L	8	67	ND	ND	ND	N/A	0.50	8650718
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	ND	ND	N/A	1.0	8650718
1,1-Dichloroethane	ug/L	320	3100	ND	ND	ND	N/A	0.20	8650718
1,2-Dichloroethane	ug/L	1.6	12	ND	ND	ND	N/A	0.50	8650718
1,1-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.50	8650718
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.50	8650718
1,2-Dichloropropane	ug/L	16	140	ND	ND	ND	N/A	0.20	8650718
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	ND	N/A	0.30	8650718
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	ND	N/A	0.40	8650718
Ethylbenzene	ug/L	2300	2300	ND	ND	11	N/A	0.20	8650718
Ethylene Dibromide	ug/L	0.25	0.83	ND	ND	ND	N/A	0.20	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927Toronto Inspection LtdReport Date: 2023/05/11Client Project #: 5557Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03	2023/05/03		
				10:30	10:30	11:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Hexane	ug/L	51	520	ND	ND	ND	N/A	1.0	8650718
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	ND	ND	N/A	2.0	8650718
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	ND	ND	N/A	10	8650718
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	ND	ND	N/A	5.0	8650718
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	ND	ND	N/A	0.50	8650718
Styrene	ug/L	1300	9100	ND	ND	ND	N/A	0.50	8650718
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	ND	ND	N/A	0.50	8650718
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	ND	ND	N/A	0.50	8650718
Tetrachloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
Toluene	ug/L	18000	18000	ND	ND	0.44	N/A	0.20	8650718
1,1,1-Trichloroethane	ug/L	640	6700	ND	ND	ND	N/A	0.20	8650718
1,1,2-Trichloroethane	ug/L	4.7	30	ND	ND	ND	N/A	0.50	8650718
Trichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	ND	ND	N/A	0.50	8650718
Vinyl Chloride	ug/L	0.5	1.7	ND	ND	ND	N/A	0.20	8650718
p+m-Xylene	ug/L	-	-	ND	ND	13	N/A	0.20	8650718
o-Xylene	ug/L	-	-	ND	ND	5.8	N/A	0.20	8650718
Total Xylenes	ug/L	4200	4200	ND	ND	19	N/A	0.20	8650718
F1 (C6-C10)	ug/L	750	750	ND	ND	670	N/A	25	8650718
F1 (C6-C10) - BTEX	ug/L	750	750	ND	ND	630	N/A	25	8650718
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	150	150	ND	N/A	47000	39000	100	8655806
F3 (C16-C34 Hydrocarbons)	ug/L	500	500	ND	N/A	23000	19000	200	8655806
F4 (C34-C50 Hydrocarbons)	ug/L	500	500	ND	N/A	ND	ND	200	8655806
Reached Baseline at C50	ug/L	-	-	Yes	N/A	Yes	Yes	N/A	8655806

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927 Report Date: 2023/05/11 Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03 10:30	2023/05/03 10:30	2023/05/03 11:30	2023/05/03 11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Surrogate Recovery (%)									
o-Terphenyl	%	-	-	99	N/A	87	100	N/A	8655806
4-Bromofluorobenzene	%	-	-	102	102	101	N/A	N/A	8650718
				101	105	105	NI/A	N/A	8650718
D4-1,2-Dichloroethane	%	-	-	104	105	105	N/A	IV/A	8030718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

Bureau Veritas Job #: C3C6927Toronto Inspection LtdReport Date: 2023/05/11Client Project #: 5557Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	ND	8649346	ND	0.50	8650002
Volatile Organics	•	•				•		•	
Acetone (2-Propanone)	ug/L	130000	130000	ND	ND	8650718	ND	10	8650718
Benzene	ug/L	44	430	15	ND	8650718	ND	0.17	8650718
Bromodichloromethane	ug/L	85000	85000	ND	ND	8650718	ND	0.50	8650718
Bromoform	ug/L	380	770	ND	ND	8650718	ND	1.0	8650718
Bromomethane	ug/L	5.6	56	ND	ND	8650718	ND	0.50	8650718
Carbon Tetrachloride	ug/L	0.79	8.4	ND	ND	8650718	ND	0.20	8650718
Chlorobenzene	ug/L	630	630	ND	ND	8650718	ND	0.20	8650718
Chloroform	ug/L	2.4	22	ND	ND	8650718	ND	0.20	8650718
Dibromochloromethane	ug/L	82000	82000	ND	ND	8650718	ND	0.50	8650718
1,2-Dichlorobenzene	ug/L	4600	9600	ND	ND	8650718	ND	0.50	8650718
1,3-Dichlorobenzene	ug/L	9600	9600	ND	ND	8650718	ND	0.50	8650718
1,4-Dichlorobenzene	ug/L	8	67	ND	ND	8650718	ND	0.50	8650718
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	ND	8650718	ND	1.0	8650718
1,1-Dichloroethane	ug/L	320	3100	ND	ND	8650718	ND	0.20	8650718
1,2-Dichloroethane	ug/L	1.6	12	ND	ND	8650718	ND	0.50	8650718
1,1-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.50	8650718
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.50	8650718
1,2-Dichloropropane	ug/L	16	140	ND	ND	8650718	ND	0.20	8650718
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	8650718	ND	0.30	8650718
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	8650718	ND	0.40	8650718
Ethylbenzene	ug/L	2300	2300	4.9	ND	8650718	ND	0.20	8650718
Ethylene Dibromide	ug/L	0.25	0.83	ND	ND	8650718	ND	0.20	8650718
Hexane	ug/L	51	520	ND	ND	8650718	ND	1.0	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	ND	8650718	ND	2.0	8650718
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	ND	8650718	ND	10	8650718
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	ND	8650718	ND	5.0	8650718
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	ND	8650718	ND	0.50	8650718
Styrene	ug/L	1300	9100	ND	ND	8650718	ND	0.50	8650718
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	ND	8650718	ND	0.50	8650718
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	ND	8650718	ND	0.50	8650718
Tetrachloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
Toluene	ug/L	18000	18000	ND	ND	8650718	ND	0.20	8650718
1,1,1-Trichloroethane	ug/L	640	6700	ND	ND	8650718	ND	0.20	8650718
1,1,2-Trichloroethane	ug/L	4.7	30	ND	ND	8650718	ND	0.50	8650718
Trichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	ND	8650718	ND	0.50	8650718
Vinyl Chloride	ug/L	0.5	1.7	ND	ND	8650718	ND	0.20	8650718
p+m-Xylene	ug/L	-	-	8.7	ND	8650718	ND	0.20	8650718
o-Xylene	ug/L	-	-	1.6	ND	8650718	ND	0.20	8650718
Total Xylenes	ug/L	4200	4200	10	ND	8650718	ND	0.20	8650718
F1 (C6-C10)	ug/L	750	750	320	ND	8650718	ND	25	8650718
F1 (C6-C10) - BTEX	ug/L	750	750	290	ND	8650718	ND	25	8650718
F2-F4 Hydrocarbons	•	-		•	•	•	•		
F2 (C10-C16 Hydrocarbons)	ug/L	150	150	5700	ND	8655806	ND	100	8655806
F3 (C16-C34 Hydrocarbons)	ug/L	500	500	2000	ND	8655806	ND	200	8655806
F4 (C34-C50 Hydrocarbons)	ug/L	500	500	ND	ND	8655806	ND	200	8655806
Reached Baseline at C50	ug/L	-	-	Yes	Yes	8655806	Yes	N/A	8655806
Surrogate Recovery (%)									
o-Terphenyl	%	-	-	98	98	8655806	98	N/A	8655806
4-Bromofluorobenzene	%	-	-	101	102	8650718	103	N/A	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
D4-1,2-Dichloroethane	UNITS %	Criteria -	Criteria-2	21BH-102 (MW) 104	21BH-103 (MW) 103	QC Batch 8650718	DUP 102		QC Batch 8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID				VSN546		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	TRIP BLANK	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	0.50	8650003
Volatile Organics						
Acetone (2-Propanone)	ug/L	130000	130000	ND	10	8650742
Benzene	ug/L	44	430	ND	0.20	8650742
Bromodichloromethane	ug/L	85000	85000	ND	0.50	8650742
Bromoform	ug/L	380	770	ND	1.0	8650742
Bromomethane	ug/L	5.6	56	ND	0.50	8650742
Carbon Tetrachloride	ug/L	0.79	8.4	ND	0.19	8650742
Chlorobenzene	ug/L	630	630	ND	0.20	8650742
Chloroform	ug/L	2.4	22	ND	0.20	8650742
Dibromochloromethane	ug/L	82000	82000	ND	0.50	8650742
1,2-Dichlorobenzene	ug/L	4600	9600	ND	0.40	8650742
1,3-Dichlorobenzene	ug/L	9600	9600	ND	0.40	8650742
1,4-Dichlorobenzene	ug/L	8	67	ND	0.40	8650742
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	1.0	8650742
1,1-Dichloroethane	ug/L	320	3100	ND	0.20	8650742
1,2-Dichloroethane	ug/L	1.6	12	ND	0.49	8650742
1,1-Dichloroethylene	ug/L	1.6	17	ND	0.20	8650742
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	0.50	8650742
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	0.50	8650742
1,2-Dichloropropane	ug/L	16	140	ND	0.20	8650742
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	0.30	8650742
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	0.40	8650742
Ethylbenzene	ug/L	2300	2300	ND	0.20	8650742
Ethylene Dibromide	ug/L	0.25	0.83	ND	0.19	8650742
Hexane	ug/L	51	520	ND	1.0	8650742

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID				VSN546		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	TRIP BLANK	RDL	QC Batch
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	2.0	8650742
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	10	8650742
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	5.0	8650742
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	0.50	8650742
Styrene	ug/L	1300	9100	ND	0.40	8650742
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	0.50	8650742
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	0.40	8650742
Tetrachloroethylene	ug/L	1.6	17	ND	0.20	8650742
Toluene	ug/L	18000	18000	ND	0.20	8650742
1,1,1-Trichloroethane	ug/L	640	6700	ND	0.20	8650742
1,1,2-Trichloroethane	ug/L	4.7	30	ND	0.40	8650742
Trichloroethylene	ug/L	1.6	17	ND	0.20	8650742
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	0.50	8650742
Vinyl Chloride	ug/L	0.5	1.7	ND	0.20	8650742
p+m-Xylene	ug/L	-	-	ND	0.20	8650742
o-Xylene	ug/L	-	-	ND	0.20	8650742
Total Xylenes	ug/L	4200	4200	ND	0.20	8650742
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	-	97	N/A	8650742
D4-1,2-Dichloroethane	%	-		103	N/A	8650742
D8-Toluene	%	-		95	N/A	8650742
		_				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Sample VSN543 [21BH-102 (MW)]: Hexavalent Chromium: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650718	4-Bromofluorobenzene	2023/05/08	102	70 - 130	104	70 - 130	101	%		
8650718	D4-1,2-Dichloroethane	2023/05/08	104	70 - 130	100	70 - 130	100	%		
8650718	D8-Toluene	2023/05/08	98	70 - 130	98	70 - 130	98	%		
8650742	4-Bromofluorobenzene	2023/05/09	98	70 - 130	100	70 - 130	99	%		
8650742	D4-1,2-Dichloroethane	2023/05/09	102	70 - 130	100	70 - 130	101	%		
8650742	D8-Toluene	2023/05/09	99	70 - 130	99	70 - 130	96	%		
8655806	o-Terphenyl	2023/05/10	99	60 - 130	95	60 - 130	99	%		
8650718	1,1,1,2-Tetrachloroethane	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1,1-Trichloroethane	2023/05/08	97	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,1,2,2-Tetrachloroethane	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1,2-Trichloroethane	2023/05/08	99	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1-Dichloroethane	2023/05/08	90	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,1-Dichloroethylene	2023/05/08	96	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,2-Dichlorobenzene	2023/05/08	96	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,2-Dichloroethane	2023/05/08	94	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,2-Dichloropropane	2023/05/08	95	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,3-Dichlorobenzene	2023/05/08	96	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,4-Dichlorobenzene	2023/05/08	108	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Acetone (2-Propanone)	2023/05/08	109	60 - 140	102	60 - 140	ND, RDL=10	ug/L	NC	30
8650718	Benzene	2023/05/08	88	70 - 130	89	70 - 130	ND, RDL=0.17	ug/L	NC	30
8650718	Bromodichloromethane	2023/05/08	98	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Bromoform	2023/05/08	94	70 - 130	92	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650718	Bromomethane	2023/05/08	97	60 - 140	97	60 - 140	ND, RDL=0.50	ug/L	NC	30
8650718	Carbon Tetrachloride	2023/05/08	96	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Chlorobenzene	2023/05/08	94	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Chloroform	2023/05/08	94	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	cis-1,2-Dichloroethylene	2023/05/08	97	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	cis-1,3-Dichloropropene	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.30	ug/L	NC	30
8650718	Dibromochloromethane	2023/05/08	95	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Dichlorodifluoromethane (FREON 12)	2023/05/08	75	60 - 140	86	60 - 140	ND, RDL=1.0	ug/L	NC	30
8650718	Ethylbenzene	2023/05/08	88	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30

QC Batch 8650718 8650718 8650718 8650718 8650718 8650718	Parameter Ethylene Dibromide F1 (C6-C10) - BTEX F1 (C6-C10) Hexane Methyl Ethyl Ketone (2-Butanone)	Date 2023/05/08 2023/05/08 2023/05/08 2023/05/08	% Recovery 91	QC Limits 70 - 130	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650718 8650718 8650718 8650718	F1 (C6-C10) - BTEX F1 (C6-C10) Hexane	2023/05/08 2023/05/08	91	70 - 130	0.7				• •	
8650718 8650718 8650718	F1 (C6-C10) Hexane	2023/05/08			87	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718 8650718	Hexane	· ' '					ND, RDL=25	ug/L	NC	30
8650718		2023/05/08	84	60 - 140	86	60 - 140	ND, RDL=25	ug/L	NC	30
	Methyl Ethyl Ketone (2-Butanone)	,,	93	70 - 130	96	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650718	, , ,	2023/05/08	97	60 - 140	93	60 - 140	ND, RDL=10	ug/L	NC	30
	Methyl Isobutyl Ketone	2023/05/08	102	70 - 130	100	70 - 130	ND, RDL=5.0	ug/L	NC	30
8650718	Methyl t-butyl ether (MTBE)	2023/05/08	90	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Methylene Chloride(Dichloromethane)	2023/05/08	92	70 - 130	91	70 - 130	ND, RDL=2.0	ug/L	NC	30
8650718	o-Xylene	2023/05/08	92	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	p+m-Xylene	2023/05/08	90	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Styrene	2023/05/08	100	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Tetrachloroethylene	2023/05/08	89	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Toluene	2023/05/08	86	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Total Xylenes	2023/05/08					ND, RDL=0.20	ug/L	NC	30
8650718	trans-1,2-Dichloroethylene	2023/05/08	95	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	trans-1,3-Dichloropropene	2023/05/08	101	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650718	Trichloroethylene	2023/05/08	101	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Trichlorofluoromethane (FREON 11)	2023/05/08	97	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Vinyl Chloride	2023/05/08	90	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1,1,2-Tetrachloroethane	2023/05/09	99	70 - 130	98	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	1,1,1-Trichloroethane	2023/05/09	94	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1,2,2-Tetrachloroethane	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,1,2-Trichloroethane	2023/05/09	99	70 - 130	98	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,1-Dichloroethane	2023/05/09	91	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1-Dichloroethylene	2023/05/09	92	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,2-Dichlorobenzene	2023/05/09	91	70 - 130	92	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,2-Dichloroethane	2023/05/09	94	70 - 130	92	70 - 130	ND, RDL=0.49	ug/L	NC	30
8650742	1,2-Dichloropropane	2023/05/09	95	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,3-Dichlorobenzene	2023/05/09	87	70 - 130	88	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,4-Dichlorobenzene	2023/05/09	100	70 - 130	101	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Acetone (2-Propanone)	2023/05/09	107	60 - 140	102	60 - 140	ND, RDL=10	ug/L	11	30

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650742	Benzene	2023/05/09	89	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	0.50	30
8650742	Bromodichloromethane	2023/05/09	95	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Bromoform	2023/05/09	102	70 - 130	100	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650742	Bromomethane	2023/05/09	103	60 - 140	96	60 - 140	ND, RDL=0.50	ug/L	NC	30
8650742	Carbon Tetrachloride	2023/05/09	98	70 - 130	97	70 - 130	ND, RDL=0.19	ug/L	NC	30
8650742	Chlorobenzene	2023/05/09	93	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Chloroform	2023/05/09	96	70 - 130	95	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	cis-1,2-Dichloroethylene	2023/05/09	98	70 - 130	96	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	cis-1,3-Dichloropropene	2023/05/09	93	70 - 130	87	70 - 130	ND, RDL=0.30	ug/L	NC	30
8650742	Dibromochloromethane	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Dichlorodifluoromethane (FREON 12)	2023/05/09	104	60 - 140	102	60 - 140	ND, RDL=1.0	ug/L	NC	30
8650742	Ethylbenzene	2023/05/09	84	70 - 130	84	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Ethylene Dibromide	2023/05/09	97	70 - 130	95	70 - 130	ND, RDL=0.19	ug/L	NC	30
8650742	Hexane	2023/05/09	93	70 - 130	91	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650742	Methyl Ethyl Ketone (2-Butanone)	2023/05/09	95	60 - 140	93	60 - 140	ND, RDL=10	ug/L	NC	30
8650742	Methyl Isobutyl Ketone	2023/05/09	96	70 - 130	96	70 - 130	ND, RDL=5.0	ug/L	NC	30
8650742	Methyl t-butyl ether (MTBE)	2023/05/09	86	70 - 130	88	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Methylene Chloride(Dichloromethane)	2023/05/09	95	70 - 130	92	70 - 130	ND, RDL=2.0	ug/L	NC	30
8650742	o-Xylene	2023/05/09	83	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	0.83	30
8650742	p+m-Xylene	2023/05/09	85	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	2.6	30
8650742	Styrene	2023/05/09	96	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Tetrachloroethylene	2023/05/09	83	70 - 130	84	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Toluene	2023/05/09	86	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	0.64	30
8650742	Total Xylenes	2023/05/09					ND, RDL=0.20	ug/L	1.3	30
8650742	trans-1,2-Dichloroethylene	2023/05/09	93	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	trans-1,3-Dichloropropene	2023/05/09	94	70 - 130	83	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Trichloroethylene	2023/05/09	98	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	0.34	30
8650742	Trichlorofluoromethane (FREON 11)	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Vinyl Chloride	2023/05/09	97	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650898	Dissolved Antimony (Sb)	2023/05/09	100	80 - 120	98	80 - 120	ND, RDL=0.50	ug/L	14	20
8650898	Dissolved Arsenic (As)	2023/05/09	101	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	NC	20

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650898	Dissolved Barium (Ba)	2023/05/09	95	80 - 120	94	80 - 120	ND, RDL=2.0	ug/L	0.75	20
8650898	Dissolved Beryllium (Be)	2023/05/09	100	80 - 120	96	80 - 120	ND, RDL=0.40	ug/L	NC	20
8650898	Dissolved Boron (B)	2023/05/09	99	80 - 120	95	80 - 120	ND, RDL=10	ug/L	NC	20
8650898	Dissolved Cadmium (Cd)	2023/05/09	98	80 - 120	97	80 - 120	ND, RDL=0.090	ug/L	NC	20
8650898	Dissolved Chromium (Cr)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20
8650898	Dissolved Cobalt (Co)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	7.3	20
8650898	Dissolved Copper (Cu)	2023/05/09	99	80 - 120	97	80 - 120	ND, RDL=0.90	ug/L	0.38	20
8650898	Dissolved Lead (Pb)	2023/05/09	101	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	3.2	20
8650898	Dissolved Molybdenum (Mo)	2023/05/09	102	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20
8650898	Dissolved Nickel (Ni)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=1.0	ug/L	2.4	20
8650898	Dissolved Selenium (Se)	2023/05/09	104	80 - 120	100	80 - 120	ND, RDL=2.0	ug/L	NC	20
8650898	Dissolved Silver (Ag)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=0.090	ug/L	NC	20
8650898	Dissolved Sodium (Na)	2023/05/09	103	80 - 120	103	80 - 120	ND, RDL=100	ug/L	1.7	20
8650898	Dissolved Thallium (TI)	2023/05/09	104	80 - 120	103	80 - 120	ND, RDL=0.050	ug/L	NC	20
8650898	Dissolved Uranium (U)	2023/05/09	104	80 - 120	103	80 - 120	ND, RDL=0.10	ug/L	4.8	20
8650898	Dissolved Vanadium (V)	2023/05/09	100	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	8.0	20
8650898	Dissolved Zinc (Zn)	2023/05/09	101	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20
8651019	Dissolved Chloride (Cl-)	2023/05/10	84	80 - 120	90	80 - 120	ND, RDL=1.0	mg/L	NC	20
8651023	Dissolved Chloride (Cl-)	2023/05/10	NC	80 - 120	89	80 - 120	ND, RDL=1.0	mg/L	0.13	20
8651267	WAD Cyanide (Free)	2023/05/08	101	80 - 120	100	80 - 120	ND,RDL=1	ug/L	NC	20
8651408	Mercury (Hg)	2023/05/08	96	75 - 125	104	80 - 120	ND, RDL=0.10	ug/L	NC	20
8651598	Chromium (VI)	2023/05/08	100	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L	NC	20
8651744	Mercury (Hg)	2023/05/08	88	75 - 125	101	80 - 120	ND, RDL=0.10	ug/L	NC	20
8655806	F2 (C10-C16 Hydrocarbons)	2023/05/11	97	60 - 130	93	60 - 130	ND, RDL=100	ug/L	18	30
8655806	F3 (C16-C34 Hydrocarbons)	2023/05/11	101	60 - 130	98	60 - 130	ND, RDL=200	ug/L	19	30

Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8655806	F4 (C34-C50 Hydrocarbons)	2023/05/11	101	60 - 130	97	60 - 130	ND, RDL=200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

reau Veritas Job #: C3C6927 Toronto Inspection Ltd
port Date: 2023/05/11 Client Project #: 5557
Sampler Initials: DK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistina	Caniere	
Cristina Carrie	re, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T3-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
21 BH-4 (MW)	VSN542-06-Lab Dup	F2 (C10-C16 Hydrocarbons)	150	39000	100	ug/L
21 BH-4 (MW)	VSN542-06	F2 (C10-C16 Hydrocarbons)	150	47000	100	ug/L
21 BH-4 (MW)	VSN542-06-Lab Dup	F3 (C16-C34 Hydrocarbons)	500	19000	200	ug/L
21 BH-4 (MW)	VSN542-06	F3 (C16-C34 Hydrocarbons)	500	23000	200	ug/L
21BH-102 (MW)	VSN543-06	F2 (C10-C16 Hydrocarbons)	150	5700	100	ug/L
21BH-102 (MW)	VSN543-06	F3 (C16-C34 Hydrocarbons)	500	2000	200	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Reg153/04 T3-GW-F/M Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
21 BH-4 (MW)	VSN542-06-Lab Dup	F2 (C10-C16 Hydrocarbons)	150	39000	100	ug/L
21 BH-4 (MW)	VSN542-06	F2 (C10-C16 Hydrocarbons)	150	47000	100	ug/L
21 BH-4 (MW)	VSN542-06-Lab Dup	F3 (C16-C34 Hydrocarbons)	500	19000	200	ug/L
21 BH-4 (MW)	VSN542-06	F3 (C16-C34 Hydrocarbons)	500	23000	200	ug/L
21BH-102 (MW)	VSN543-06	F2 (C10-C16 Hydrocarbons)	150	5700	100	ug/L
21BH-102 (MW)	VSN543-06	F3 (C16-C34 Hydrocarbons)	500	2000	200	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 5557

Your C.O.C. #: 924072-38-01

Attention: Reporting Group

Toronto Inspection Ltd 110 Konrad Cres Unit 16 Markham, ON CANADA L3R 9X2

Report Date: 2023/05/11

Report #: R7625145 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C6927 Received: 2023/05/04, 16:06

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	1	N/A	2023/05/10		EPA 8260C m
1,3-Dichloropropene Sum	5	N/A	2023/05/09		EPA 8260C m
Chloride by Automated Colourimetry	5	N/A	2023/05/10	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	5	N/A	2023/05/08	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	5	N/A	2023/05/08	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	4	2023/05/10	2023/05/10	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2023/05/10	2023/05/11	CAM SOP-00316	CCME PHC-CWS m
Mercury	5	2023/05/08	2023/05/08	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2023/05/10	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	4	N/A	2023/05/09	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds and F1 PHCs	5	N/A	2023/05/08	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water	1	N/A	2023/05/10	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: 5557

Your C.O.C. #: 924072-38-01

Attention: Reporting Group

Toronto Inspection Ltd 110 Konrad Cres Unit 16 Markham, ON CANADA L3R 9X2

Report Date: 2023/05/11

Report #: R7625145 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3C6927

Received: 2023/05/04, 16:06

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ankita Bhalla, Project Manager Email: Ankita.Bhalla@bureauveritas.com

Phone# (905) 817-5700

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN541	VSN541	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03		
Sampling Date				10:30	10:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	RDL	QC Batch
Inorganics								
WAD Cyanide (Free)	ug/L	66	66	ND	N/A	ND	1	8651267
Dissolved Chloride (Cl-)	mg/L	2300	2300	310	N/A	870	5.0	8651019
Metals								
Chromium (VI)	ug/L	140	140	ND	ND	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	N/A	ND	0.10	8651744
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	N/A	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	6.7	N/A	12	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	100	N/A	430	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	N/A	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	4400	N/A	440	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	N/A	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	N/A	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	ND	N/A	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	ND	N/A	1.2	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	N/A	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	12	N/A	9.7	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	ND	N/A	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	N/A	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	N/A	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	140000	N/A	380000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	N/A	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	0.86	N/A	9.3	0.10	8650898
Dissolved Vanadium (V)	ug/L	250	250	ND	N/A	0.65	0.50	8650898
Dissolved Zinc (Zn)	ug/L	1100	1100	ND	N/A	ND	5.0	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN543			VSN544		
Sampling Date				2023/05/03			2023/05/03		
Sumpling Dute				12:00			11:00		
COC Number				924072-38-01			924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	RDL	QC Batch	21BH-103 (MW)	RDL	QC Batch
Inorganics									
WAD Cyanide (Free)	ug/L	66	66	ND	1	8651267	ND	1	8651267
Dissolved Chloride (Cl-)	mg/L	2300	2300	1300	10	8651023	420	5.0	8651023
Metals									
Chromium (VI)	ug/L	140	140	ND	1.0	8651598	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	0.10	8651408	ND	0.10	8651744
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	0.50	8650898	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	4.7	1.0	8650898	2.1	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	1400	2.0	8650898	240	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	0.40	8650898	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	190	10	8650898	3400	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	0.090	8650898	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	5.0	8650898	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	1.1	0.50	8650898	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	2.4	0.90	8650898	1.8	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	0.50	8650898	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	2.8	0.50	8650898	8.6	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	1.5	1.0	8650898	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	2.0	8650898	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	0.090	8650898	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	580000	500	8650898	91000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	0.050	8650898	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	2.8	0.10	8650898	1.8	0.10	8650898
Dissolved Vanadium (V)	ug/L	250	250	ND	0.50	8650898	ND	0.50	8650898
Dissolved Zinc (Zn)	ug/L	1100	1100	14	5.0	8650898	9.7	5.0	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN545		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	DUP	RDL	QC Batch
Inorganics						
WAD Cyanide (Free)	ug/L	66	66	ND	1	8651267
Dissolved Chloride (CI-)	mg/L	2300	2300	300	2.0	8651023
Metals						
Chromium (VI)	ug/L	140	140	ND	0.50	8651598
Mercury (Hg)	ug/L	0.29	2.8	ND	0.10	8651408
Dissolved Antimony (Sb)	ug/L	20000	20000	ND	0.50	8650898
Dissolved Arsenic (As)	ug/L	1900	1900	7.2	1.0	8650898
Dissolved Barium (Ba)	ug/L	29000	29000	97	2.0	8650898
Dissolved Beryllium (Be)	ug/L	67	67	ND	0.40	8650898
Dissolved Boron (B)	ug/L	45000	45000	4400	10	8650898
Dissolved Cadmium (Cd)	ug/L	2.7	2.7	ND	0.090	8650898
Dissolved Chromium (Cr)	ug/L	810	810	ND	5.0	8650898
Dissolved Cobalt (Co)	ug/L	66	66	ND	0.50	8650898
Dissolved Copper (Cu)	ug/L	87	87	0.90	0.90	8650898
Dissolved Lead (Pb)	ug/L	25	25	ND	0.50	8650898
Dissolved Molybdenum (Mo)	ug/L	9200	9200	12	0.50	8650898
Dissolved Nickel (Ni)	ug/L	490	490	ND	1.0	8650898
Dissolved Selenium (Se)	ug/L	63	63	ND	2.0	8650898
Dissolved Silver (Ag)	ug/L	1.5	1.5	ND	0.090	8650898
Dissolved Sodium (Na)	ug/L	2300000	2300000	140000	100	8650898
Dissolved Thallium (TI)	ug/L	510	510	ND	0.050	8650898
Dissolved Uranium (U)	ug/L	420	420	0.75	0.10	8650898

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927 Toronto Inspection Ltd
Report Date: 2023/05/11 Client Project #: 5557
Sampler Initials: DK

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID				VSN545		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	DUP	RDL	QC Batch
Dissolved Vanadium (V)	UNITS ug/L	Criteria 250	Criteria-2 250	DUP ND	RDL 0.50	QC Batch 8650898

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Report Date: 2023/05/11

Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03	2023/05/03		
Sumpring Butte				10:30	10:30	11:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	N/A	ND	N/A	0.50	8649346
Volatile Organics									
Acetone (2-Propanone)	ug/L	130000	130000	ND	ND	12	N/A	10	8650718
Benzene	ug/L	44	430	ND	ND	1.6	N/A	0.17	8650718
Bromodichloromethane	ug/L	85000	85000	ND	ND	ND	N/A	0.50	8650718
Bromoform	ug/L	380	770	ND	ND	ND	N/A	1.0	8650718
Bromomethane	ug/L	5.6	56	ND	ND	ND	N/A	0.50	8650718
Carbon Tetrachloride	ug/L	0.79	8.4	ND	ND	ND	N/A	0.20	8650718
Chlorobenzene	ug/L	630	630	ND	ND	ND	N/A	0.20	8650718
Chloroform	ug/L	2.4	22	ND	ND	ND	N/A	0.20	8650718
Dibromochloromethane	ug/L	82000	82000	ND	ND	ND	N/A	0.50	8650718
1,2-Dichlorobenzene	ug/L	4600	9600	ND	ND	ND	N/A	0.50	8650718
1,3-Dichlorobenzene	ug/L	9600	9600	ND	ND	ND	N/A	0.50	8650718
1,4-Dichlorobenzene	ug/L	8	67	ND	ND	ND	N/A	0.50	8650718
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	ND	ND	N/A	1.0	8650718
1,1-Dichloroethane	ug/L	320	3100	ND	ND	ND	N/A	0.20	8650718
1,2-Dichloroethane	ug/L	1.6	12	ND	ND	ND	N/A	0.50	8650718
1,1-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.50	8650718
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.50	8650718
1,2-Dichloropropane	ug/L	16	140	ND	ND	ND	N/A	0.20	8650718
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	ND	N/A	0.30	8650718
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	ND	N/A	0.40	8650718
Ethylbenzene	ug/L	2300	2300	ND	ND	11	N/A	0.20	8650718
Ethylene Dibromide	ug/L	0.25	0.83	ND	ND	ND	N/A	0.20	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927Toronto Inspection LtdReport Date: 2023/05/11Client Project #: 5557Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03	2023/05/03	2023/05/03	2023/05/03		
				10:30	10:30	11:30	11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Hexane	ug/L	51	520	ND	ND	ND	N/A	1.0	8650718
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	ND	ND	N/A	2.0	8650718
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	ND	ND	N/A	10	8650718
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	ND	ND	N/A	5.0	8650718
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	ND	ND	N/A	0.50	8650718
Styrene	ug/L	1300	9100	ND	ND	ND	N/A	0.50	8650718
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	ND	ND	N/A	0.50	8650718
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	ND	ND	N/A	0.50	8650718
Tetrachloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
Toluene	ug/L	18000	18000	ND	ND	0.44	N/A	0.20	8650718
1,1,1-Trichloroethane	ug/L	640	6700	ND	ND	ND	N/A	0.20	8650718
1,1,2-Trichloroethane	ug/L	4.7	30	ND	ND	ND	N/A	0.50	8650718
Trichloroethylene	ug/L	1.6	17	ND	ND	ND	N/A	0.20	8650718
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	ND	ND	N/A	0.50	8650718
Vinyl Chloride	ug/L	0.5	1.7	ND	ND	ND	N/A	0.20	8650718
p+m-Xylene	ug/L	-	-	ND	ND	13	N/A	0.20	8650718
o-Xylene	ug/L	-	-	ND	ND	5.8	N/A	0.20	8650718
Total Xylenes	ug/L	4200	4200	ND	ND	19	N/A	0.20	8650718
F1 (C6-C10)	ug/L	750	750	ND	ND	670	N/A	25	8650718
F1 (C6-C10) - BTEX	ug/L	750	750	ND	ND	630	N/A	25	8650718
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	150	150	ND	N/A	47000	39000	100	8655806
F3 (C16-C34 Hydrocarbons)	ug/L	500	500	ND	N/A	23000	19000	200	8655806
F4 (C34-C50 Hydrocarbons)	ug/L	500	500	ND	N/A	ND	ND	200	8655806
Reached Baseline at C50	ug/L	-	-	Yes	N/A	Yes	Yes	N/A	8655806

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927 Report Date: 2023/05/11 Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN541	VSN541	VSN542	VSN542		
Sampling Date				2023/05/03 10:30	2023/05/03 10:30	2023/05/03 11:30	2023/05/03 11:30		
COC Number				924072-38-01	924072-38-01	924072-38-01	924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-3 (MW)	21BH-3 (MW) Lab-Dup	21 BH-4 (MW)	21 BH-4 (MW) Lab-Dup	RDL	QC Batch
Surrogate Recovery (%)									
o-Terphenyl	%	-	-	99	N/A	87	100	N/A	8655806
4-Bromofluorobenzene	%	-	-	102	102	101	N/A	N/A	8650718
				101	105	105	NI /A	N/A	8650718
D4-1,2-Dichloroethane	%	-	-	104	105	105	N/A	IV/A	8030718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

Bureau Veritas Job #: C3C6927Toronto Inspection LtdReport Date: 2023/05/11Client Project #: 5557Sampler Initials: DK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	ND	8649346	ND	0.50	8650002
Volatile Organics	•	•				•		•	
Acetone (2-Propanone)	ug/L	130000	130000	ND	ND	8650718	ND	10	8650718
Benzene	ug/L	44	430	15	ND	8650718	ND	0.17	8650718
Bromodichloromethane	ug/L	85000	85000	ND	ND	8650718	ND	0.50	8650718
Bromoform	ug/L	380	770	ND	ND	8650718	ND	1.0	8650718
Bromomethane	ug/L	5.6	56	ND	ND	8650718	ND	0.50	8650718
Carbon Tetrachloride	ug/L	0.79	8.4	ND	ND	8650718	ND	0.20	8650718
Chlorobenzene	ug/L	630	630	ND	ND	8650718	ND	0.20	8650718
Chloroform	ug/L	2.4	22	ND	ND	8650718	ND	0.20	8650718
Dibromochloromethane	ug/L	82000	82000	ND	ND	8650718	ND	0.50	8650718
1,2-Dichlorobenzene	ug/L	4600	9600	ND	ND	8650718	ND	0.50	8650718
1,3-Dichlorobenzene	ug/L	9600	9600	ND	ND	8650718	ND	0.50	8650718
1,4-Dichlorobenzene	ug/L	8	67	ND	ND	8650718	ND	0.50	8650718
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	ND	8650718	ND	1.0	8650718
1,1-Dichloroethane	ug/L	320	3100	ND	ND	8650718	ND	0.20	8650718
1,2-Dichloroethane	ug/L	1.6	12	ND	ND	8650718	ND	0.50	8650718
1,1-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.50	8650718
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.50	8650718
1,2-Dichloropropane	ug/L	16	140	ND	ND	8650718	ND	0.20	8650718
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	8650718	ND	0.30	8650718
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	ND	8650718	ND	0.40	8650718
Ethylbenzene	ug/L	2300	2300	4.9	ND	8650718	ND	0.20	8650718
Ethylene Dibromide	ug/L	0.25	0.83	ND	ND	8650718	ND	0.20	8650718
Hexane	ug/L	51	520	ND	ND	8650718	ND	1.0	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	ND	8650718	ND	2.0	8650718
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	ND	8650718	ND	10	8650718
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	ND	8650718	ND	5.0	8650718
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	ND	8650718	ND	0.50	8650718
Styrene	ug/L	1300	9100	ND	ND	8650718	ND	0.50	8650718
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	ND	8650718	ND	0.50	8650718
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	ND	8650718	ND	0.50	8650718
Tetrachloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
Toluene	ug/L	18000	18000	ND	ND	8650718	ND	0.20	8650718
1,1,1-Trichloroethane	ug/L	640	6700	ND	ND	8650718	ND	0.20	8650718
1,1,2-Trichloroethane	ug/L	4.7	30	ND	ND	8650718	ND	0.50	8650718
Trichloroethylene	ug/L	1.6	17	ND	ND	8650718	ND	0.20	8650718
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	ND	8650718	ND	0.50	8650718
Vinyl Chloride	ug/L	0.5	1.7	ND	ND	8650718	ND	0.20	8650718
p+m-Xylene	ug/L	-	-	8.7	ND	8650718	ND	0.20	8650718
o-Xylene	ug/L	-	-	1.6	ND	8650718	ND	0.20	8650718
Total Xylenes	ug/L	4200	4200	10	ND	8650718	ND	0.20	8650718
F1 (C6-C10)	ug/L	750	750	320	ND	8650718	ND	25	8650718
F1 (C6-C10) - BTEX	ug/L	750	750	290	ND	8650718	ND	25	8650718
F2-F4 Hydrocarbons	•	-		•	•	-	•	•	
F2 (C10-C16 Hydrocarbons)	ug/L	150	150	5700	ND	8655806	ND	100	8655806
F3 (C16-C34 Hydrocarbons)	ug/L	500	500	2000	ND	8655806	ND	200	8655806
F4 (C34-C50 Hydrocarbons)	ug/L	500	500	ND	ND	8655806	ND	200	8655806
Reached Baseline at C50	ug/L	-	-	Yes	Yes	8655806	Yes	N/A	8655806
Surrogate Recovery (%)									
o-Terphenyl	%	-	-	98	98	8655806	98	N/A	8655806
4-Bromofluorobenzene	%	-	-	101	102	8650718	103	N/A	8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID				VSN543	VSN544		VSN545		
Sampling Date				2023/05/03 12:00	2023/05/03 11:00		2023/05/03		
COC Number				924072-38-01	924072-38-01		924072-38-01		
	UNITS	Criteria	Criteria-2	21BH-102 (MW)	21BH-103 (MW)	QC Batch	DUP	RDL	QC Batch
D4-1,2-Dichloroethane	UNITS %	Criteria -	Criteria-2	21BH-102 (MW) 104	21BH-103 (MW) 103	QC Batch 8650718	DUP 102		QC Batch 8650718

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

O.REG 153 VOCS BY HS (WATER)

<u> </u>			1			
Bureau Veritas ID				VSN546		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	TRIP BLANK	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	5.2	45	ND	0.50	8650003
Volatile Organics	•	•	-		•	-
Acetone (2-Propanone)	ug/L	130000	130000	ND	10	8650742
Benzene	ug/L	44	430	ND	0.20	8650742
Bromodichloromethane	ug/L	85000	85000	ND	0.50	8650742
Bromoform	ug/L	380	770	ND	1.0	8650742
Bromomethane	ug/L	5.6	56	ND	0.50	8650742
Carbon Tetrachloride	ug/L	0.79	8.4	ND	0.19	8650742
Chlorobenzene	ug/L	630	630	ND	0.20	8650742
Chloroform	ug/L	2.4	22	ND	0.20	8650742
Dibromochloromethane	ug/L	82000	82000	ND	0.50	8650742
1,2-Dichlorobenzene	ug/L	4600	9600	ND	0.40	8650742
1,3-Dichlorobenzene	ug/L	9600	9600	ND	0.40	8650742
1,4-Dichlorobenzene	ug/L	8	67	ND	0.40	8650742
Dichlorodifluoromethane (FREON 12)	ug/L	4400	4400	ND	1.0	8650742
1,1-Dichloroethane	ug/L	320	3100	ND	0.20	8650742
1,2-Dichloroethane	ug/L	1.6	12	ND	0.49	8650742
1,1-Dichloroethylene	ug/L	1.6	17	ND	0.20	8650742
cis-1,2-Dichloroethylene	ug/L	1.6	17	ND	0.50	8650742
trans-1,2-Dichloroethylene	ug/L	1.6	17	ND	0.50	8650742
1,2-Dichloropropane	ug/L	16	140	ND	0.20	8650742
cis-1,3-Dichloropropene	ug/L	5.2	45	ND	0.30	8650742
trans-1,3-Dichloropropene	ug/L	5.2	45	ND	0.40	8650742
Ethylbenzene	ug/L	2300	2300	ND	0.20	8650742
Ethylene Dibromide	ug/L	0.25	0.83	ND	0.19	8650742
Hexane	ug/L	51	520	ND	1.0	8650742
	_					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID				VSN546		
Sampling Date				2023/05/03		
COC Number				924072-38-01		
	UNITS	Criteria	Criteria-2	TRIP BLANK	RDL	QC Batch
Methylene Chloride(Dichloromethane)	ug/L	610	5500	ND	2.0	8650742
Methyl Ethyl Ketone (2-Butanone)	ug/L	470000	1500000	ND	10	8650742
Methyl Isobutyl Ketone	ug/L	140000	580000	ND	5.0	8650742
Methyl t-butyl ether (MTBE)	ug/L	190	1400	ND	0.50	8650742
Styrene	ug/L	1300	9100	ND	0.40	8650742
1,1,1,2-Tetrachloroethane	ug/L	3.3	28	ND	0.50	8650742
1,1,2,2-Tetrachloroethane	ug/L	3.2	15	ND	0.40	8650742
Tetrachloroethylene	ug/L	1.6	17	ND	0.20	8650742
Toluene	ug/L	18000	18000	ND	0.20	8650742
1,1,1-Trichloroethane	ug/L	640	6700	ND	0.20	8650742
1,1,2-Trichloroethane	ug/L	4.7	30	ND	0.40	8650742
Trichloroethylene	ug/L	1.6	17	ND	0.20	8650742
Trichlorofluoromethane (FREON 11)	ug/L	2500	2500	ND	0.50	8650742
Vinyl Chloride	ug/L	0.5	1.7	ND	0.20	8650742
p+m-Xylene	ug/L	-	-	ND	0.20	8650742
o-Xylene	ug/L	-	-	ND	0.20	8650742
Total Xylenes	ug/L	4200	4200	ND	0.20	8650742
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	-	97	N/A	8650742
D4-1,2-Dichloroethane	%	-		103	N/A	8650742
D8-Toluene	%	-		95	N/A	8650742
		_				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soil

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3C6927 Toronto Inspection Ltd
Report Date: 2023/05/11 Client Project #: 5557
Sampler Initials: DK

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Sample VSN543 [21BH-102 (MW)]: Hexavalent Chromium: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix Spike SPIKED BLANK		Method Blank		RPI	D		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650718	4-Bromofluorobenzene	2023/05/08	102	70 - 130	104	70 - 130	101	%		
8650718	D4-1,2-Dichloroethane	2023/05/08	104	70 - 130	100	70 - 130	100	%		
8650718	D8-Toluene	2023/05/08	98	70 - 130	98	70 - 130	98	%		
8650742	4-Bromofluorobenzene	2023/05/09	98	70 - 130	100	70 - 130	99	%		
8650742	D4-1,2-Dichloroethane	2023/05/09	102	70 - 130	100	70 - 130	101	%		
8650742	D8-Toluene	2023/05/09	99	70 - 130	99	70 - 130	96	%		
8655806	o-Terphenyl	2023/05/10	99	60 - 130	95	60 - 130	99	%		
8650718	1,1,1,2-Tetrachloroethane	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1,1-Trichloroethane	2023/05/08	97	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,1,2,2-Tetrachloroethane	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1,2-Trichloroethane	2023/05/08	99	70 - 130	94	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,1-Dichloroethane	2023/05/08	90	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,1-Dichloroethylene	2023/05/08	96	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,2-Dichlorobenzene	2023/05/08	96	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,2-Dichloroethane	2023/05/08	94	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,2-Dichloropropane	2023/05/08	95	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	1,3-Dichlorobenzene	2023/05/08	96	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	1,4-Dichlorobenzene	2023/05/08	108	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Acetone (2-Propanone)	2023/05/08	109	60 - 140	102	60 - 140	ND, RDL=10	ug/L	NC	30
8650718	Benzene	2023/05/08	88	70 - 130	89	70 - 130	ND, RDL=0.17	ug/L	NC	30
8650718	Bromodichloromethane	2023/05/08	98	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Bromoform	2023/05/08	94	70 - 130	92	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650718	Bromomethane	2023/05/08	97	60 - 140	97	60 - 140	ND, RDL=0.50	ug/L	NC	30
8650718	Carbon Tetrachloride	2023/05/08	96	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Chlorobenzene	2023/05/08	94	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Chloroform	2023/05/08	94	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	cis-1,2-Dichloroethylene	2023/05/08	97	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	cis-1,3-Dichloropropene	2023/05/08	97	70 - 130	95	70 - 130	ND, RDL=0.30	ug/L	NC	30
8650718	Dibromochloromethane	2023/05/08	95	70 - 130	91	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Dichlorodifluoromethane (FREON 12)	2023/05/08	75	60 - 140	86	60 - 140	ND, RDL=1.0	ug/L	NC	30
8650718	Ethylbenzene	2023/05/08	88	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30

			Matrix Spike SPIKED BLANK		Method Blank		RPI	D		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650718	Ethylene Dibromide	2023/05/08	91	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	F1 (C6-C10) - BTEX	2023/05/08					ND, RDL=25	ug/L	NC	30
8650718	F1 (C6-C10)	2023/05/08	84	60 - 140	86	60 - 140	ND, RDL=25	ug/L	NC	30
8650718	Hexane	2023/05/08	93	70 - 130	96	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650718	Methyl Ethyl Ketone (2-Butanone)	2023/05/08	97	60 - 140	93	60 - 140	ND, RDL=10	ug/L	NC	30
8650718	Methyl Isobutyl Ketone	2023/05/08	102	70 - 130	100	70 - 130	ND, RDL=5.0	ug/L	NC	30
8650718	Methyl t-butyl ether (MTBE)	2023/05/08	90	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Methylene Chloride(Dichloromethane)	2023/05/08	92	70 - 130	91	70 - 130	ND, RDL=2.0	ug/L	NC	30
8650718	o-Xylene	2023/05/08	92	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	p+m-Xylene	2023/05/08	90	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Styrene	2023/05/08	100	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Tetrachloroethylene	2023/05/08	89	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Toluene	2023/05/08	86	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Total Xylenes	2023/05/08					ND, RDL=0.20	ug/L	NC	30
8650718	trans-1,2-Dichloroethylene	2023/05/08	95	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	trans-1,3-Dichloropropene	2023/05/08	101	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650718	Trichloroethylene	2023/05/08	101	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650718	Trichlorofluoromethane (FREON 11)	2023/05/08	97	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650718	Vinyl Chloride	2023/05/08	90	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1,1,2-Tetrachloroethane	2023/05/09	99	70 - 130	98	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	1,1,1-Trichloroethane	2023/05/09	94	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1,2,2-Tetrachloroethane	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,1,2-Trichloroethane	2023/05/09	99	70 - 130	98	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,1-Dichloroethane	2023/05/09	91	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,1-Dichloroethylene	2023/05/09	92	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,2-Dichlorobenzene	2023/05/09	91	70 - 130	92	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,2-Dichloroethane	2023/05/09	94	70 - 130	92	70 - 130	ND, RDL=0.49	ug/L	NC	30
8650742	1,2-Dichloropropane	2023/05/09	95	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	1,3-Dichlorobenzene	2023/05/09	87	70 - 130	88	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	1,4-Dichlorobenzene	2023/05/09	100	70 - 130	101	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Acetone (2-Propanone)	2023/05/09	107	60 - 140	102	60 - 140	ND, RDL=10	ug/L	11	30

			Matrix Spike SPIKED BLANK		Method B	lank	RPI	D		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650742	Benzene	2023/05/09	89	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	0.50	30
8650742	Bromodichloromethane	2023/05/09	95	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Bromoform	2023/05/09	102	70 - 130	100	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650742	Bromomethane	2023/05/09	103	60 - 140	96	60 - 140	ND, RDL=0.50	ug/L	NC	30
8650742	Carbon Tetrachloride	2023/05/09	98	70 - 130	97	70 - 130	ND, RDL=0.19	ug/L	NC	30
8650742	Chlorobenzene	2023/05/09	93	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Chloroform	2023/05/09	96	70 - 130	95	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	cis-1,2-Dichloroethylene	2023/05/09	98	70 - 130	96	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	cis-1,3-Dichloropropene	2023/05/09	93	70 - 130	87	70 - 130	ND, RDL=0.30	ug/L	NC	30
8650742	Dibromochloromethane	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Dichlorodifluoromethane (FREON 12)	2023/05/09	104	60 - 140	102	60 - 140	ND, RDL=1.0	ug/L	NC	30
8650742	Ethylbenzene	2023/05/09	84	70 - 130	84	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Ethylene Dibromide	2023/05/09	97	70 - 130	95	70 - 130	ND, RDL=0.19	ug/L	NC	30
8650742	Hexane	2023/05/09	93	70 - 130	91	70 - 130	ND, RDL=1.0	ug/L	NC	30
8650742	Methyl Ethyl Ketone (2-Butanone)	2023/05/09	95	60 - 140	93	60 - 140	ND, RDL=10	ug/L	NC	30
8650742	Methyl Isobutyl Ketone	2023/05/09	96	70 - 130	96	70 - 130	ND, RDL=5.0	ug/L	NC	30
8650742	Methyl t-butyl ether (MTBE)	2023/05/09	86	70 - 130	88	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Methylene Chloride(Dichloromethane)	2023/05/09	95	70 - 130	92	70 - 130	ND, RDL=2.0	ug/L	NC	30
8650742	o-Xylene	2023/05/09	83	70 - 130	85	70 - 130	ND, RDL=0.20	ug/L	0.83	30
8650742	p+m-Xylene	2023/05/09	85	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	2.6	30
8650742	Styrene	2023/05/09	96	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Tetrachloroethylene	2023/05/09	83	70 - 130	84	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650742	Toluene	2023/05/09	86	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	0.64	30
8650742	Total Xylenes	2023/05/09					ND, RDL=0.20	ug/L	1.3	30
8650742	trans-1,2-Dichloroethylene	2023/05/09	93	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	trans-1,3-Dichloropropene	2023/05/09	94	70 - 130	83	70 - 130	ND, RDL=0.40	ug/L	NC	30
8650742	Trichloroethylene	2023/05/09	98	70 - 130	98	70 - 130	ND, RDL=0.20	ug/L	0.34	30
8650742	Trichlorofluoromethane (FREON 11)	2023/05/09	99	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L	NC	30
8650742	Vinyl Chloride	2023/05/09	97	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30
8650898	Dissolved Antimony (Sb)	2023/05/09	100	80 - 120	98	80 - 120	ND, RDL=0.50	ug/L	14	20
8650898	Dissolved Arsenic (As)	2023/05/09	101	80 - 120	99	80 - 120	ND, RDL=1.0	ug/L	NC	20

			Matrix Spike S		SPIKED BLANK		Method Blank		RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8650898	Dissolved Barium (Ba)	2023/05/09	95	80 - 120	94	80 - 120	ND, RDL=2.0	ug/L	0.75	20
8650898	Dissolved Beryllium (Be)	2023/05/09	100	80 - 120	96	80 - 120	ND, RDL=0.40	ug/L	NC	20
8650898	Dissolved Boron (B)	2023/05/09	99	80 - 120	95	80 - 120	ND, RDL=10	ug/L	NC	20
8650898	Dissolved Cadmium (Cd)	2023/05/09	98	80 - 120	97	80 - 120	ND, RDL=0.090	ug/L	NC	20
8650898	Dissolved Chromium (Cr)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20
8650898	Dissolved Cobalt (Co)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	7.3	20
8650898	Dissolved Copper (Cu)	2023/05/09	99	80 - 120	97	80 - 120	ND, RDL=0.90	ug/L	0.38	20
8650898	Dissolved Lead (Pb)	2023/05/09	101	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L	3.2	20
8650898	Dissolved Molybdenum (Mo)	2023/05/09	102	80 - 120	101	80 - 120	ND, RDL=0.50	ug/L	NC	20
8650898	Dissolved Nickel (Ni)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=1.0	ug/L	2.4	20
8650898	Dissolved Selenium (Se)	2023/05/09	104	80 - 120	100	80 - 120	ND, RDL=2.0	ug/L	NC	20
8650898	Dissolved Silver (Ag)	2023/05/09	100	80 - 120	100	80 - 120	ND, RDL=0.090	ug/L	NC	20
8650898	Dissolved Sodium (Na)	2023/05/09	103	80 - 120	103	80 - 120	ND, RDL=100	ug/L	1.7	20
8650898	Dissolved Thallium (TI)	2023/05/09	104	80 - 120	103	80 - 120	ND, RDL=0.050	ug/L	NC	20
8650898	Dissolved Uranium (U)	2023/05/09	104	80 - 120	103	80 - 120	ND, RDL=0.10	ug/L	4.8	20
8650898	Dissolved Vanadium (V)	2023/05/09	100	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	8.0	20
8650898	Dissolved Zinc (Zn)	2023/05/09	101	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20
8651019	Dissolved Chloride (Cl-)	2023/05/10	84	80 - 120	90	80 - 120	ND, RDL=1.0	mg/L	NC	20
8651023	Dissolved Chloride (Cl-)	2023/05/10	NC	80 - 120	89	80 - 120	ND, RDL=1.0	mg/L	0.13	20
8651267	WAD Cyanide (Free)	2023/05/08	101	80 - 120	100	80 - 120	ND,RDL=1	ug/L	NC	20
8651408	Mercury (Hg)	2023/05/08	96	75 - 125	104	80 - 120	ND, RDL=0.10	ug/L	NC	20
8651598	Chromium (VI)	2023/05/08	100	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L	NC	20
8651744	Mercury (Hg)	2023/05/08	88	75 - 125	101	80 - 120	ND, RDL=0.10	ug/L	NC	20
8655806	F2 (C10-C16 Hydrocarbons)	2023/05/11	97	60 - 130	93	60 - 130	ND, RDL=100	ug/L	18	30
8655806	F3 (C16-C34 Hydrocarbons)	2023/05/11	101	60 - 130	98	60 - 130	ND, RDL=200	ug/L	19	30

Toronto Inspection Ltd Client Project #: 5557 Sampler Initials: DK

			Matrix Spike SPIKED E		SPIKED BLANK N		Method B	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8655806	F4 (C34-C50 Hydrocarbons)	2023/05/11	101	60 - 130	97	60 - 130	ND, RDL=200	ug/L	NC	30	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

reau Veritas Job #: C3C6927 Toronto Inspection Ltd
port Date: 2023/05/11 Client Project #: 5557
Sampler Initials: DK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistina	Caniere	
Cristina Carrie	re, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Exceedance Summary Table – Reg153/04 T3-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
21 BH-4 (MW)	VSN542-06-Lab Dup	F2 (C10-C16 Hydrocarbons)	150	39000	100	ug/L
21 BH-4 (MW)	VSN542-06	F2 (C10-C16 Hydrocarbons)	150	47000	100	ug/L
21 BH-4 (MW)	VSN542-06-Lab Dup	F3 (C16-C34 Hydrocarbons)	500	19000	200	ug/L
21 BH-4 (MW)	VSN542-06	F3 (C16-C34 Hydrocarbons)	500	23000	200	ug/L
21BH-102 (MW)	VSN543-06	F2 (C10-C16 Hydrocarbons)	150	5700	100	ug/L
21BH-102 (MW)	VSN543-06	F3 (C16-C34 Hydrocarbons)	500	2000	200	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Reg153/04 T3-GW-F/M Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
21 BH-4 (MW)	VSN542-06-Lab Dup	F2 (C10-C16 Hydrocarbons)	150	39000	100	ug/L
21 BH-4 (MW)	VSN542-06	F2 (C10-C16 Hydrocarbons)	150	47000	100	ug/L
21 BH-4 (MW)	VSN542-06-Lab Dup	F3 (C16-C34 Hydrocarbons)	500	19000	200	ug/L
21 BH-4 (MW)	VSN542-06	F3 (C16-C34 Hydrocarbons)	500	23000	200	ug/L
21BH-102 (MW)	VSN543-06	F2 (C10-C16 Hydrocarbons)	150	5700	100	ug/L
21BH-102 (MW)	VSN543-06	F3 (C16-C34 Hydrocarbons)	500	2000	200	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.