REPORT ON RESULTS OF PHASE 2 SUBSURFACE ENVIRONMENTAL SITE ASSESSMENT 349 DAVIS RD. OAKVILLE, ONTARIO

Ref. No. G-04.0106 March 2004

Prepared for

Andrews Carpentry/Contracting
6 Thomas Street
Beeton, Ontario
LOG 1A0

Bistribution
2 Copies
1 Copy
- M. Edward Powell Insurance Brokers Ltd.
1 Copy
2 Copies
2 Copies
3 Copies
4 Copies
5 CARROS IN DAILLS Can uses Dulyt Daw within fallow

SCARROS IN DAILLS Can uses Dulyt Daw within fallow

CONTENTS

			Page No.
1.0	INTR	ODUCTION	1
2.0	INVE	ESTIGATION METHODOLOGY	2
3.0	SUM 3.1 3.2 3.3 3.4	MARIZED SUBSURFACE CONDITIONS Fill Silty Clay Residual Soil Georgian Bay Formation	5 5 6
4.0	GRO	UNDWATER	7
5.0	ASSE	ESSMENT OF ENVIRONMENTAL SOIL QUALITY	7
6.0	ASSE	ESSMENT OF GROUNDWATER ENVIRONMENTAL QUALITY	10
7.0	DISC	SUSSION OF RESULTS	11
8.0	RECO	OMMENDATIONS	12
CHEN	ИICAL	PLAN	Tables 1A & 1B
		<u>APPENDICES</u>	
RESU	ILTS O	E LOGS DF ENVIRONMENTAL CHEMICAL ANALYSIS ORD	Appendix B

March 2004 G-04.0106 **RESULTS OF PHASE 2 SUBSURFACE**

ENVIRONMENTAL SITE ASSESSMENT

349 DAVIS ROAD

OAKVILLE, ONTARIO

1.0 <u>INTRODUCTION</u>

Geo-Canada Ltd. (Geo-Canada) was retained by Andrews Carpentry / Contracting

(Andrews Carpentry), care of Widex Canada Ltd., to undertake a Phase II Environmental

Site Assessment (Phase II ESA) for the property located at 349 Davis Road, in Oakville,

Ontario.

This Phase II ESA was conducted in response to the findings of our Phase I

Environmental Site Assessment (Phase I ESA), which was issued on March 12, 2004.

Our Phase I ESA reached the following conclusions:

• An underground storage tank has been removed from the property to the

immediate east (359 Davis Road) of the subject property. Both the Technical

Safety and Standards Association (TSSA) and the Ministry of the Environment

(MOE) have no record of the tank removal, but anecdotal evidence suggests that

the underground storage tank (UST) was located within a few metres, or less, of

the eastern property line of 349 Davis Road and was used for gasoline storage.

The property to the immediate east of the subject property (359 Davis Road) has

historically been used as an auto body shop. A Fire Insurance Plan, dated 1967,

indicates that a spray painting booth was present near the eastern property limit of 349 Davis Road.

- The property located to the immediate south (354 Davis Road) of the subject property is classified by MOE as an unapproved landfill site. The site is currently considered a "brownfield" site and is undergoing environmental monitoring. The MOE has knowledge that concentrations of Cadmium, Copper, Boron, and Lead in groundwater samples are in excess guideline parameter concentrations. Detectable concentrations of Vinyl Chloride have also been reported by MOE.
- Previous usage of the subject property for "battery and tire storage" between 1932 and 1967 could be cause for environmental concern. The business conducted by ESSO at the subject site between 1970 and 1973 is not known and ESSO would not return our telephone calls in this respect.

2.0 INVESTIGATION METHODOLOGY

As indicated on the attached Figures No.1 and 2, a total of six (6) boreholes were distributed throughout the subject property, with two (2) boreholes near the southern property limit, two (2) boreholes along the eastern property limit, one borehole near the northern property limit, and a final borehole along the northern exterior wall of the existing structure. The boreholes along the eastern and southern property limits were placed in response to the findings of our Phase I ESA, which indicated that an underground storage tank had recently been removed from 359 Davis Road, and that an unapproved hazardous landfill site is present to the immediate south of the subject property (354 Davis Road, formerly occupied by Ferro Industrial Products). It should be

cautioned, however, that we do not know exactly where the former UST was located and,

as such, the location of Borehole 04-3 may not be optimal.

An assessment of the building area for asbestos-containing building materials was not

within the scope of this current investigation. Our borehole program was also limited to

the outside area of the building.

The boreholes were advanced to depths ranging from 1.6 to 4.6m below ground surface

by a track-mounted power auger on February 19, 2004, using conventional solid-stem

augers. Representative soil sampling was carried out by means of a standard split-spoon

sampler, driven by a hammer with a driving energy equal to the Standard Penetration

Test (SPT).

The soil samples were carefully logged on site and split longitudinally, with half being

placed in clean environmental clean glass jars and the other half being placed in plastic

bags for chemical analysis and headspace testing with a Trace-Tector calibrated to

Hexane. In order to minimize cross contamination between successive samples, the split

spoon sampler was washed between each sampling interval with a diluted mixture of

laboratory-grade detergent and then rinsed with distilled water.

The environmental samples were preserved in cold storage for one day prior to delivering

them to Entech's laboratory.

Upon completion of drilling operations, boreholes 04-1, 04-2, and 04-3 were fitted with

50mm diameter environmental monitoring wells, and all remaining holes were sealed

with bentonite in accordance with Ontario Regulation 903. In order to protect the

monitoring wells, boreholes 04-1 and 04-3 were fitted with standard flush-mounted well

covers and Borehole 04-2 was fitted with a 100mm x 100mm square steel housing, with

lockable cover. A copy of the MOE well registration record has been included in

Appendix C.

We returned to the site four days following the monitoring well installation to measure

the static groundwater level using an interface probe. The interface probe gave a

continuous reading in Boreholes 04-1 and 04-3, thereby suggesting that a very thin

hydrocarbon film might be present on the surface of the water table in the vicinity of

these wells. Groundwater sample were obtained from the monitoring wells after purging

the wells of three (3) well volumes of water using dedicated Watera foot valve sampling

tubes and placed in amber environmental glassware and VOC vials. Given the potential

presence of free (i.e. floating) hydrocarbon product, we again returned to the site on

March 1, 2004 and used dedicated disposable Teflon bailers to sample the upper surface

of the groundwater contained within the monitoring wells. There was no visible sign of a

hydrocarbon sheen and/or layering on any water samples, but samples from Boreholes

04-1 and 04-3 did have an obvious hydrocarbon odour.

The elevation of the ground surface at each borehole location was measured relative to

Borehole 04-1, which was provided with an assumed elevation of 100.0m.

Andrews Carpentry/Contracting

Screening of the bagged soil samples for hydrocarbon vapors was done using the

headspace method and a Trace-Tector calibrated to Hexane. The headspace readings are

recorded on the appended borehole logs (See Appendix A).

3.0 SUMMARIZED SUBSURFACE CONDITIONS

As indicated on the attached borehole logs (Refer to Appendix A), the local soil

stratification is as follows:

3.1 <u>Fill</u>

Fill materials, generally composed of brown silty clay with varying quantities of sand and

gravel, were observed in all boreholes to depths ranging from 0.7 to 1.4 m below grade.

SPT 'N' values indicate that the cohesionless (i.e. 'sandy') zones are in a 'compact' to

'dense' state, whereas the cohesive (i.e. 'clayey') zones are 'very stiff' to 'hard', although

a 'soft' pocket was noted in Borehole 04-3 due to the presence of decayed wood

fragments.

There were no unnatural odours associated with any of the fill samples, although some of

the wood fragments obtained from Borehole 04-3 had a red stain on their outer surface.

3.2 Silty Clay

Silty clay materials were present in Boreholes 04-2, 04-4, 04-5, and 04-6 to depths

ranging from 1.5 to 1.8m below ground. Visual observation indicates 'traces' of sand

Andrews Carpentry/Contracting

Pagults of Phase 2 Subsurface Environmental Site Assess

and rootlets, 'some' gravel, and occasional fine silty sand lenses and limestone

fragments. SPT 'N' values indicated that the consistency of these materials is 'hard'.

There were no unnatural odours and/or staining associated with any silty clay samples.

3.3 Residual Soil

Residual soils, i.e. completely weathered rock, resembling grey silt clay, were present in

all boreholes, with the exception of Borehole 04-4, at depths ranging from 1.4 to 1.8m

below ground surface. These soils contain numerous shale and limestone fragments, and

are derived from the break-down of the underlying Georgian Bay Formation. SPT 'N'

values indicate that the consistency of these soils is 'hard'.

There was no unnatural staining of the residual soil samples, but obvious hydrocarbon

odours were associated with those samples obtained from Borehole 04-3 between the 2.0

and 2.6m depths.

3.4 Georgian Bay Formation

Grey to greenish grey shale and limestone was encountered in Boreholes 04-1, 04-2, and

04-3 at depths ranging from 2.1 to 2.6m below ground surface. A more detailed analysis

of this bedrock stratum is not possible, given that rock coring was not part of this stage of

investigation.

Andrews Carpentry/Contracting
Results of Phase 2 Subsurface Environmental Site Assessment

There were no unnatural odours and/or staining associated with the auger spoils taken

from bedrock.

4.0 **GROUNDWATER**

Groundwater was encountered in Boreholes 04-1, 04-2, and 04-3 just below the bedrock

surface. Details of groundwater level measurements are included on the borehole logs

(See Appendix A).

The elevation of the groundwater surface, as measured on March 1, 2004, is plotted on

Figure No. 2. From this, we surmise that the general groundwater flow direction is south-

southeastward.

While no odours were noticed in the groundwater during the drilling operations,

hydrocarbon odours were clearly evident in groundwater samples later obtained from the

monitoring wells within Boreholes 04-1 and 04-3 on February 23, 2004 and, again, on

March 1, 2004.

5.0 ASSESSMENT OF ENVIRONMENTAL SOIL QUALITY

Selected soil samples from Boreholes 04-1, 04-2, and 04-3 were submitted for

environmental chemical analysis in order to determine the concentrations of volatile

organic compounds (VOC's), metals, and petroleum hydrocarbons (gas/diesel range).

Additional samples from Boreholes 04-1 and 04-2 were subjected to pH testing and a

surface soil sample from Borehole 04-6 was submitted for testing against the general and

Andrews Carpentry/Contracting Results of Phase 2 Subsurface Environmental Site Assessment inorganic MOE Decommissioning Guideline parameters and the inorganic leachate parameters of O-Reg. 558. A list of the tested soil sample locations and test parameters is as follows:

Location of Soil Samples Submitted for Chemical Analysis

			Env	viron	menta	l Test (Criteria	l			
Soil Sample Location	VOC's	Metals	Hď	Petroleum	Hydrocarbons	(gas/diesel range)	General and	Inorganic Parameters of GUCSO	Inorganic Parameters	O.Reg. 558	(Leachate)
BH 04-1, SA 4	Х	Х	Х		х						
BH 04-2, SA 4	Х	Х	Х								
BH 04-2 SA 5	Х	Х	Х								
BH 04-3, SA 3	х				Х						
BH 04-3, SA 4	х				Х						
BH 04-6, SA 1							х	X			

GUCSO - "Guideline for Use at Contaminated Sites in Ontario", MOE, Rev 1997

As indicated on the attached Tables 1A and 1B, and on the appended laboratory test results (See Appendix B), all of the soil sample test parameters were within the limits set out by MOE in Table 'B' of the "Guideline for Use at Contaminated Sites in Ontario (GUCSO)", Rev. Feb 1997. We have used the Commercial/Industrial Land Use column of Table 'B' "Surface Soil and Groundwater Criteria for a Non-Potable Groundwater Condition" since the subject area is serviced by municipal water and is not considered to be a 'sensitive' site. Additionally, we have used the parameter concentrations pertaining

to 'coarse-textured' soils due to the fact that gradation analysis was not performed on the

soil samples submitted for environmental chemical analysis.

Under strict interpretation of GUCSO, sites where bedrock is encountered at depths less

than 2.0m, use of the foregoing so-called Generic Soil Remediation Criteria may not be

permissible. For the sake of this preliminary investigation, and in consideration of the

fact that the upper bedrock is quite weathered and resembles hard soil, we have used the

MOE generic guidelines.

Despite having concentrations below GUCSO Table 'B' limitations, the soil samples

from Boreholes 04-1 and 04-3 tested positive for trace concentrations of Toluene, Ethyl

benzene, and Xylenes between the 2.3 and 2.7m depth interval. Samples from Borehole

04-3 also tested positive for trace concentrations of Benzene over the same depth interval.

The O. Reg. 558 Leachate Test results (for inorganic parameters) from the surface soil

sample obtained from Borehole 04-6 indicates test parameter concentrations below the

Schedule 4 criteria and, as such, this soil would be classified as "Non-Hazardous Waste".

Additional testing on this same soil sample, however, indicated that copper

concentrations were only slightly less than the GUCSO Table 'B' criteria. Additional

analysis on soil samples obtained from the same general area as Borehole 04-6 could

yield copper concentration in excess of GUCSO Table 'B' criteria.

Andrews Carpentry/Contracting
Results of Phase 2 Subsurface Environmental Site Assessment

6.0 ASSESSMENT OF GROUND WATER ENVIRONMENTAL QUALITY

Groundwater samples from Boreholes 04-1, 04-2, and 04-3 were submitted for chemical analysis in order to determine pH and the concentrations of VOC's, metals, and petroleum hydrocarbons (gas/diesel range). A listing of groundwater test parameters is as follows:

Location of Groundwater Samples Submitted for Chemical Analysis

		Environmenta	al Test Criteria	
Groundwater Sample Location	s.JOA	Metals	Petroleum Hydrocarbons (gas/diesel range)	Hd
BH 04-1	X	Х	X	X
BH 04-2	Х	Х		Х
BH 04-3	X		X ,	

As indicated on the attached Table 2, and on the appended laboratory test results (See Appendix B), the groundwater test samples had concentrations of the tested parameters below the limits set out by MOE in Table 'B' of GUCSO.

Detectable concentrations of gasoline constituents (i.e Benzene, Ethyl Benzene, and Xylenes were measured in the Borehole 04-1 and 04-3 wells and Benzene was noted in the Borehole 04-2 well. Methyl Ethyl Ketone (MEK) was detected in groundwater sample from all area wells and Acetone was detected in the groundwater samples from the Boreholes 04-2 and 04-3.

7.0 DISCUSSION OF RESULTS

From the available soil and groundwater test data, the following conclusions can be drawn:

- The recently removed UST from the neighboring property at 359 Davis Road (currently occupied by Oaktown Auto Collision) may have adversely impacted groundwater beneath the subject site. Given that we have assumed a "Non-Potable Water Condition", however, the currently measured concentrations of petroleum hydrocarbons within the groundwater do not necessarily require remediation under MOE guidelines. It is quite possible, however, that our monitoring well locations have simply not captured the highest concentration "hydrocarbon plume" from the UST source.
- The surface soil sample from Borehole 04-6 was found to contain copper concentrations very close to the MOE Table 'B' GUCSO criteria. While the MOE guidelines were not exceeded in this particular case, that is not to say that other samples from the same general area may not exceed the guidelines.
- The detection of Acetone in the Borehole 04-2 and 04-3 monitoring wells may suggest that (i) the former 'gasoline' UST may have been used as a waste solvent holding tank; or, (ii) there may be additional point sources (such as UST's or surface spills) of solvents in the vicinity of the subject property, which are presently unknown to us. The presence of Acetone within the groundwater samples could also be explained by the presence of a spray painting booth at 359 Davis Road.

• The groundwater flow direction inferred from measurements in the three

monitoring wells reveals a very flat hydraulic gradient to the south-southeast.

This somewhat lessens the potential concern over 354 Davis Road (Formerly

occupied by Ferro Industrial Products) causing cross-boundary impairment of the

subject site. Because this gradient is flat, however, it is not inconceivable that

northward groundwater flow could occur, for example, via a utility trench

connecting the two sites.

8.0 **RECOMMENDATIONS**

In light of the presence of trace concentrations of petroleum hydrocarbon constituents and

some volatile organic components in groundwater samples obtained from the three

monitoring wells at this site, Phase III subsurface investigation work is warranted in order

to better assess the environmental soil and groundwater quality and to determine if the

source of these compounds is still in the ground.

As a minimum, we would recommend that several test pits be excavated in the area

where the former UST is believed to have been located, as well as in the vicinity of the

former paint booth and near the rear doors of the subject building. Sampling and testing

of the existing structure for asbestos-containing materials and the examination of soil

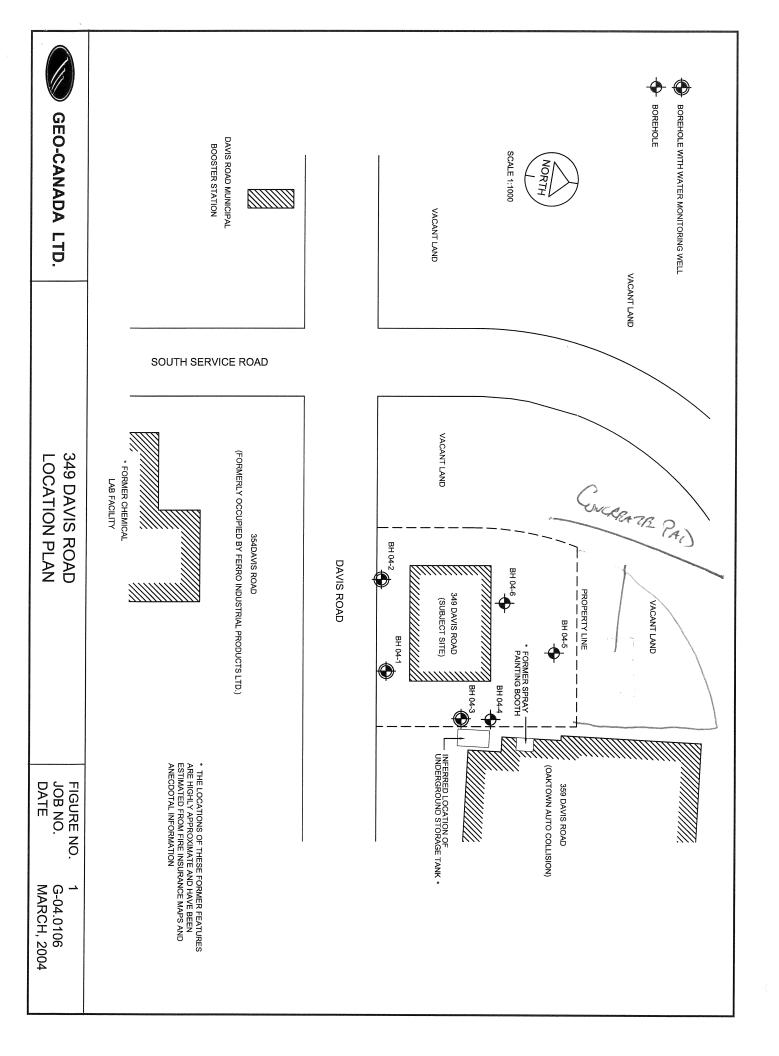
samples obtained from beneath the floor slab is also recommended, given the building's

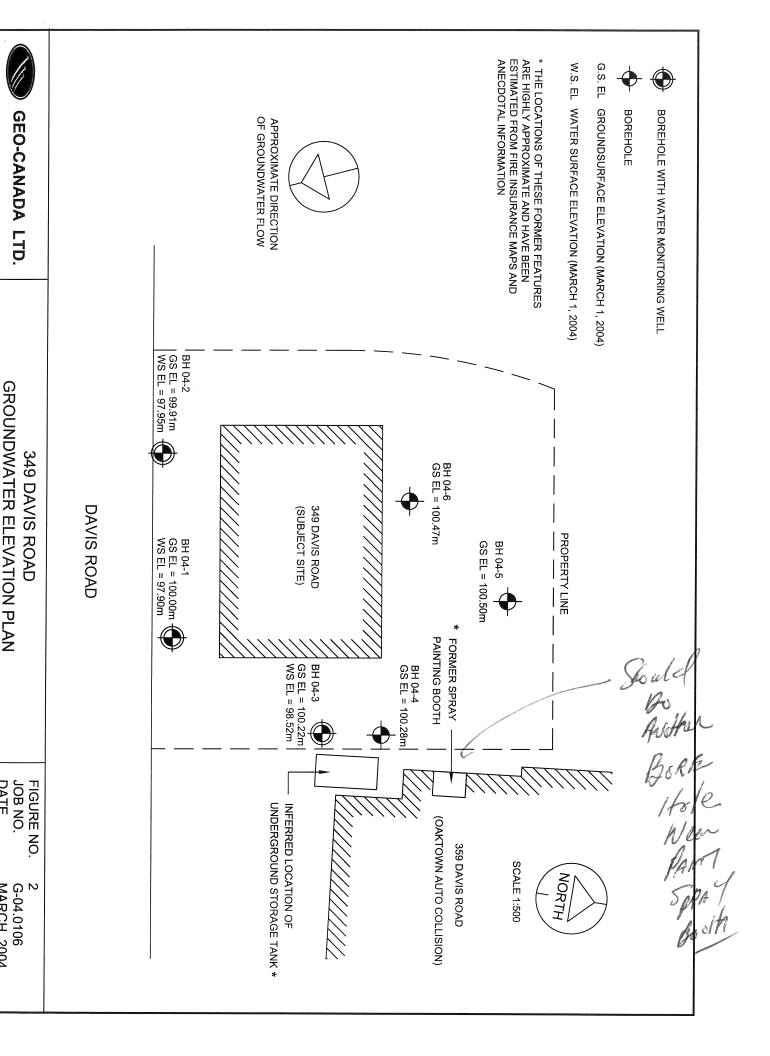
age and former use as a tire and battery storage facility.

Andrews Carpentry/Contracting
Results of Phase 2 Subsurface Environmental Site Assessment

The existing groundwater monitoring well installations should be periodically monitored for water level and the potential presence of free-petroleum product.

We also recommend that MOE files be obtained under the Freedom of Information Act pertaining to the neighboring Ferro Industrial Products Ltd. property.


GEO-CANADA LTD.


Jesse Schoor, B.A.Sc.

Scott Peaker, P. Eng.

JS/SMP:sf

DR32/G-04 0106 Phase 2

MARCH, 2004

TABLE 1A: CHEMICAL ANALYSIS RESULTS FOR SOIL SAMPLES

	T / 5	Soil Remediation	Γ	Samo	le Concentration	n (maa)	
Test	Test Parameter	Criteria (ug/g)*	BH 04-1, SA 4			BH 04-3, SA 3	BH 04-3, SA 4
	Barium	1500	48.4	46	50.6		
	Beryllium	1.2	<0.5	<0.5	0.7		
	Boron	2	0.33	0.27	0.6		
	Cadium	12	<1	<1	<1		
	Chromium	750	25.8	19.9	29.4		
	Cobalt	80	15.3	13.6	16.7		
Metals	Copper	225	162	184	173		
	Lead	1000	12.5	10.7	15.4		
	Molybdenum	40	<2	<2	<2		
	Nickel	151	27.6	23.2	30.6		
	Silver	40	<0.3	<0.3	<0.3		
	Vanadium	200	9.7	1.9	14.1		
	Zinc	600	66	59	75		
Gas/Diesel	Petroleum Hydrocarbons (gas/diesel)	1000	<			<	<
	Vinyl Chloride	0.003	<	<	<	<	<
	Bromomethane	0.061	<	<	<	<	<
	Acetone	3.8	<	<	<	<	<
	Methylene Chloride	140	<	<	<	<	<
	t-1,2-Dicholorethylene	4.1	<	<	<	<	<
	MTBE	120	<	<	<	<	<
	1.1-Dichloroethane	22	<	<	<	<	<
	MEK	38	<	<	<	<	<
	Chloroform	0.79	<	<	<	<	<
	1,1,1-Trichloroethane	26	<	<	<	<	<
	Carbon Tetrachloride	0.1	<	<	<	<	<
	Benzene	5.3	<	<	<	<	0.007
	1,2- Dichloroethane	0.022	<	<	<	<	<
	1,2-Dichloropropane	0.0019	<	<	<	<	<
	Bromodichloromethane	25	<	<	<	<	<
VOC's	Cis-1,3-Dichloropropene	0.0066	<	<	<	<	<
	MIBK	58	<	<	<	<	<
	Toluene	34	0.006	<	<	<	0.04
	1,1,2-Trichloroethane	3.1	<	<	<	<	<
	Ethylene Dibromide	0.0056	<	<	<	<	<
	Chlorobenzene	8	<	<	<	<	<
	1,1,1,2- Tetrachloroethane	0.019	<	<	<	<	<
	Ethylbenzene	290	0.007	<	<	<	0.2
	Xylenes	34	0.036	<	<	<	0.73
ļ	Styrene	1.2	<	<	<	<	< <
	Bromoform	2.3	<	<	<	<	<
	1,1,2,2-Tetrachloroethane	0.037	<	<	<	<	<
	1,3-Diclorobenzene	30	<	<	<	<	<
	1,4-Dichlorobenzene	30	<	< 1	<	<	<
	1,2-Dichlorobenzene	30	<	<	<	<	<
PH		N.V.	9.1	9.0	8.8		

Notes:

N.V. Denotes "No Value"

< Denotes that test parameter was below detection limits
Blank values denote that parameter was not tested for that particular sample

* Limits Established by Table B, from GUCSO

TABLE 1B: CHEMICAL ANALYSIS RESULTS FOR SOIL SAMPLES (CONTINUED)

Test	Test Parameter	Schedule 4	Soil Remediation	Samp	le Concentration	(ppm)
Test	rest ratatiletei	Criteria (mg/L)	Criteria (ug/g)*	BH 04-6, SA 1		
	Arsenic	2.5		< 0.001		
	Barium	100		0.24		
	Boron	500		0.09		
	Cadmium	0.5		<0.005		
O. Reg. 558	Chromium	5		<0.01		
O. Reg. 556	Lead	5		<0.02		
	Mercury	0.1		<0.0001		
	(Nitrate-Nitrite)-N	1000		0.84		
	Selenium	1		<0.001		-
	Silver	5		< 0.005		
	E. C (umhos.cm)		1400	277		
	SAR		12	5.1		
	Arsenic	1	40	4.3		
	Cadmium		12	<1		
	Chromium (VI)		8	<1		
	Chromium (Total)		750	21.7		
	Cobalt		80	11.5		
	Copper		225	214		
	Lead		1000	15.5		
Decom.	Mercury		10	<0.05		
Guidelines	Molybdenum		40	<2		
	Nickel		150	20.5		
	Boron (HWE)		2	0.66		
	Selenium		10	<1		
	Silver		40	<0.3		
	Zinc		600	52		
	Antimony		40	<1		
	Barium		1500	120		
	Beryllium		1.2	0.9		
	Vanadium		200	47.3		

Notes:

N.V. Denotes "No Value"

C Denotes that test parameter was below detection limits
Blank values denote that parameter was not tested for that particular sample
* Limits Established by Table B, from GUCSO

TABLE 2: CHEMICAL ANALYSIS RESULTS FOR GROUNDWATER SAMPLES

Test	Test Parameter	Non-Potable Ground		Samp	ole Concentratio	n (ppb)	
1681	rest Parameter	Water Criteria (ug/L)*	BH 04-1	BH 04-2	BH 04-3	1"''	
	Barium	23000	131	69			
	Beryllium	53	<0.2	<0.2			
	Boron	50000	318	478			
	Cadium	11	< 0.5	<0.5			
	Chromium	2000	<10	<10			
	Cobalt	100	<10	<10			
Metals	Copper	23	2.0	3.0		1	
	Lead	32	<4	<4			1
	Molybdenum	7300	<20	<20			
	Nickel	1600	<20	<20			
	Silver	1.2	<1	<1			į.
	Vanadium	200	<10	<10			
	Zinc	1000	<10	<10			
Gas/Diesel	Petroleum Hydrocarbons (gas/diesel)	N/V	4000		1500		
	Vinyl Chloride	0.5	<	<	<		
	Bromomethane	3.7	<	<	<		
	Acetone	3300	<	12	9.1		
	Methylene Chloride	50000	<	<	9.1		
	t-1,2-Dicholorethylene	100	<	<	<	į.	
	MTBE	50000	<	<	<		
	1,1-Dichoroethane	9000	<	<	<		
ĺ	MEK						
	Chloroform	50000	27 <	37	40	-	
		430		<	<		
	1,1,1-Trichloroethane	200	<	<	<		
	Carbon Tetrachloride	17	<	<	<		
	Benzene	1900	8.9	0.6	9.8		
	1,2- Dichloroethane	17	<	<	<		
	1,2-Dichloropropane	9.3	<	<	<		
VOC's	Bromodichloromethane	50000	<	<	<		
	Cis-1,3-Dichloropropene	3.8	<	<	<		
	MIBK	50000	<	<	<		
	Toluene	5900	1.7	<	3		
	1,1,2-Trichloroethane	16000	<	<	<		
1	Ethylene Dibromide	3.3	<	<	<		
	Chlorobenzene	500	<	<	<		
	1,1,1,2- Tetrachloroethane	6	<	<	<		
	Ethylbenzene	28000	1.6	<	6.7		
I	Xylenes	56000	6.3	<	13.3		
	Styrene	940	<	<	<		
1	Bromoform	840	<	<	<		
1	1,1,2,2-Tetrachloroethane	22	<	<	<		
1	1,3-Diclorobenzene	7600	<	<	<		
į	1,4-Dichlorobenzene	7600	<	<	<		
	1,2-Dichlorobenzene	7600	<	<	<		
PH		N.V.	7.7	7.6			:

Notes:

N.V. Denotes "No Value"

< Denotes that test parameter was below detection limits</p>
Blank values denote that parameter was not tested for that particular sample
* Limits Established by Table B, from GUCSO

LOG OF BOREHOLE 04-1

1 OF 1

CLIENT: Andrews Carpentry / Contracting

PROJECT: Phase I and II ESA

DATUM ELEVATION: Assumed

Method: Solid Stem Augering

REF. NO.: G-04.0106

LOCATION: 349 Davis Road, Oakville, Ontario

Diameter: 112mm Date: Feb 19, 2004

DRILLING DATA

	SOIL PROFILE		S	AMPL	ES			F	YNA RESIS	MIC CO TANCI	ONE PE E PLOT	NETR	ATION		DI AST	n NAT	URAL	LIQUID	BON N TEST)	REMARK
	Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	ELEVATION	9	SHEA	AR ST NCONF JICK T	RENG RENG RIAXIAI 10 6	TH (I + . ×	FIÉLI LAB) VANE	W _P ⊢— WA	TER CO	w O ONTEN	LIMIT W _L	TOTAL HYDROCARBON CONCENTRATION FROM HEADSPACE TEST)	AND GRAIN SI DISTRIBUT (%) GR SA SI
0.0	50mm Asphalt and 300mm Sand and Gravel with occ. cobbles over FILL silty clay and sand with frequent cobbles, brown, dense		1	SS	50											o			28	
00.0			2	SS .	⁶ 50/ 150mn		9	9-								0			24	
98.6 1.4	RESIDUAL SOIL from shale and limestone of Georgian Bay Formation, resembles silty clay, grey, hard	*********	3	SS	50/ 25mm											0			16	
97.9 2.1	GEORGIAN BAY FORMATION grey to greenish grey shale and limestone bedrock						W. L Marc	8 - . 97 :h 1	.9 m , 200	4										
	Exact nature of bedrock cannot be accurately determined by augering.		4	SS .	50/ 50mn		9	7							0				24	
95.4			5	AS			9	6								0				
4.6	END OF BOREHOLE Date W. S. El. (m) Upon Completion 97.0 Feb 23, 2004 97.9 Mar 1, 2004 97.9											Al-Province Control								

CLIENT: Andrews Carpentry / Contracting

PROJECT: Phase I and II ESA

LOCATION: 349 Davis Road, Oakville, Ontario

DATUM ELEVATION: Assumed

DRILLING DATA

Method: Solid Stem Augering

Diameter: 112mm

Date: Feb 19, 2004

REF. NO.: G-04.0106

ENCL NO.: 2

	SOIL PROFILE		S	SAMPI	_ES	١.			RESIS	MIC CO	ONE PE E PLOT	NETR/	ATION -			NAT	URAL		ON TON	REMARK
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	CONDITIONS	ELEVATION	SHE.	AR ST NCONF	RENG	60 8 GTH (k	Pa) FIELD LAB V	VANE	l	TER CO	w o DNTEN	LIQUID LIMIT W _L T (%)	TOTAL HYDROCARBON CONCENTRATION FROM HEADSPACE TEST)	AND GRAIN SI DISTRIBUT (%)
0.0			1	SS	12											0		0	18	
99.2	SILTY CLAY some gravel with occ. fine silty sand lenses, trace of rootlets, grey to brownish grey, very stiff		2	SS	23			99								C			12	
98.4	RESIDUAL SOIL from shale and limestone of Georgian Bay Formation, resembles silty clay, grey, hard		3	SS	50/ 100mr	∑	М	/. L. s arch 98	98.0 m 1, 200)))4						0			4	
97.8	GEORGIAN BAY FORMATION grey to greenish grey shale and limestone bedrock Exact nature of bedrock cannot be accurately determined by		4	SS .	50/ 100mn	0									0					
	augering.							97												
			5	SS ,	50/ 00mn												0			
								96												
95.3 4.6	END OF BOREHOLE Date W. S. El. (m) Upon Completion 97.0 Feb 23, 2004 98.0		6	AS													0			

GRAPH NOTES

+ ³, × ³: Numbers refer to Sensitivity

O 8=3% Strain at Failure

CLIENT: Andrews Carpentry / Contracting

PROJECT: Phase I and II ESA

LOCATION: 349 Davis Road, Oakville, Ontario

DRILLING DATA

Method: Solid Stem Augering

Diameter: 112mm

REF. NO.: G-04.0106

ENCL NO.: 3

	SOIL PROFILE		5	SAMPL	.ES			DYN/ RESI	MIC C STANC	ONE P	ENETR	ATION -		DIAGE	IC NAT	URAL	HOUSE	BON N rest)	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE o u	AR ST NCON	40 FINED	60 GTH (F + AL ×	Pa) FIELD	100 VANE /ANE	w _p ⊢— WA	CON TER C	TURAL STURE STENT W O		TOTAL HYDRO CONCENTR (FROM HEADSP)	AND GRAIN SI DISTRIBUT (%)
100.2 0.0	Ground Surface 150mm Sand and Gravel over	XX	ž	F	-	<u> </u>	ш	┼	20	40	60	B0 ·	100	<u> </u>	10 :	20	30	(ppm)	GR SA SI
	FILL silty clay and red-stained wood fragments, brown, soft to very stiff		1	SS	4		100										100	36	
			2	SS	22				To the state of th							0		30	
98.8	RESIDUAL SOIL from shale and limestone of Georgian Bay Formation,						99 W. L. !												
	resembles silty clay, grey, hard HYDROCARBON ODOURS NOTED BETWEEN 2.0 AND 2.6m	******	3	SS	50/ 25mm	⊻	March									•		50	
							98							0				500	
97.6 2.6	GEORGIAN BAY FORMATION grey to greenish grey shale and limestone bedrock		4	SS ,	50/ 00mn														
	Exact nature of bedrock cannot be accurately determined by augering.						97												
							96								-				
95.6 4.6	END OF BOREHOLE		5	AS											d)		35	
7.0	Date W. S. El. (m) Upon Completion 97.0 Feb 23, 2004 98.2 Mar 1, 2004 98.5																		

GRAPH NOTES

+ ³, × ³: Numbers refer to Sensitivity

O 8=3% Strain at Failure

PROJECT: Phase I and II ESA

DATUM ELEVATION: Assumed

DRILLING DATA

Method: Solid Stem Augering

REF. NO.: G-04.0106

LOCATION: 349 Davis Road, Oakville, Ontario

CLIENT: Andrews Carpentry / Contracting

Diameter: 112mm Date: Feb 19, 2004

BORE	EHOLE LOCATION: Refer to Figure N SOIL PROFILE	NO. 1	S	SAMPL	.ES			DYN/ RESI	MIC C	ONE PE E PLOT	NETR/	ATION	DI 40~	n NAT	URAL	HOUSE	SON SON	REMARKS
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST NCONI	RENC	50 E STH (k	Pa)	W _P ⊢ WA	TER CO	w o ONTEN	LIQUID LIMIT W _L T (%)	TOTAL HYDROCARBON CONCENTRATION FROM HEADSPACE TEST)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
0.0	150mm Sand and Gravel over FILL mixture of silty sand and silty clay, some gravel to gravelly, occ. cobbles, reddish brown, dense / hard		1	SS	51		100							0			26	
99.6 0.7	SILTY CLAY trace of rootlets, occ. limestone fragments, grey with green and white laminations, hard	********	2	SS	38												20	
98.7 1.6	END OF BOREHOLE	*****	3	NR	50/ 25mm		99	#200 (100 pt 200)				Marie Control of the						
	Augers grinding at 1.6m Borehole dry upon completion																-	
															7.75			

LOG OF BOREHOLE 04-5

1 OF 1

CLIENT: Andrews Carpentry / Contracting

PROJECT: Phase I and II ESA

LOCATION: 349 Davis Road, Oakville, Ontario

DATUM ELEVATION: Assumed

DRILLING DATA

Method: Solid Stem Augering

Diameter: 112mm Date: Feb 19, 2004 REF. NO.: G-04.0106

	SOIL PROFILE		S	SAMPL	ES	<u>_</u> ر		DYN/ RESI	MIC CO STANC	NE PE E PLOT	NETRA	ATION -		PLAST	IC NAT	URAL	LIQUID	BON N TEST)	REMARKS
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST NCONF IUICK T	RENG INED RIAXIA	TH (k + L ×	FIELD	VANE ANE	1	TER CO	w o DNTEN	LIQUID LIMIT WL T (%)	TOTAL HYDROCARBON CONCENTRATION FROM HEADSPACE TEST)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
0.0	150mm Sand and Gravel over FILL silty clay and sand, trace to some gravel, reddish brown, dense		1	ss	47		100								0			46	
99.7	RESIDUAL SOIL from shale and limestone of Georgian Bay Formation, resembles silty clay, grey, hard	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2	SS	50/ 150mn								The state of the s			0		10	
98.8	SILTY CLAY trace of sand, occ. limestone fragments, grey with red and green laminations, hard	*****	3	SS	88		99								0			8	
98.1 2.4	END OF BOREHOLE		4	AS			o de la companya de l							0	MINAGA SA				
	Augers grinding at 2.4m Borehole dry upon completion																		

LOG OF BOREHOLE 04-6

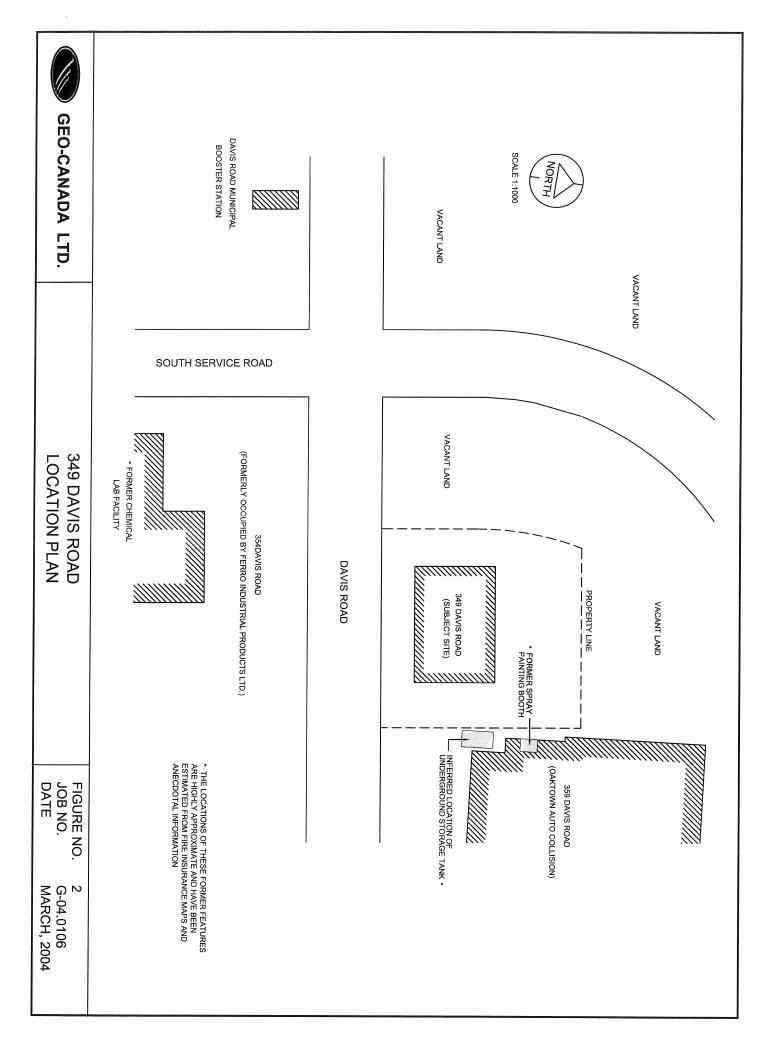
1 OF 1

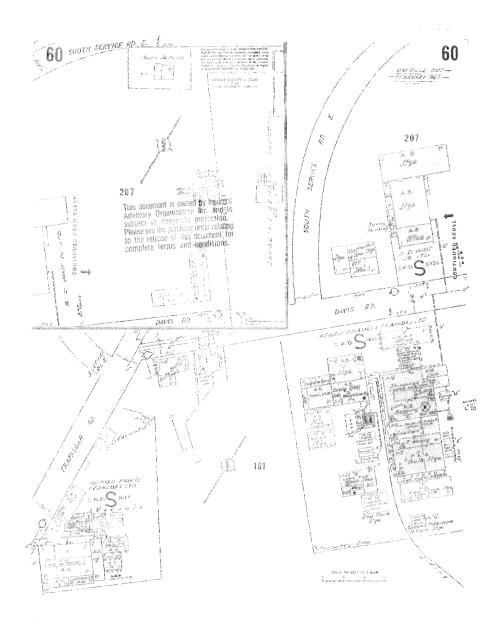
CLIENT: Andrews Carpentry / Contracting

LOCATION: 349 Davis Road, Oakville, Ontario

GEO-CANADA ENVIRONMENTAL LOG BH LOGS FOR G-03.0106.GPJ GEO-CANADA TEMPLATE.GDT 11/3/04

PROJECT: Phase I and II ESA


Method: Solid Stem Augering


Diameter: 112mm

DRILLING DATA

REF. NO.: G-04.0106

1	JM ELEVATION: Assumed	ano				19, 20								NOL IV	0 0				
BOR	EHOLE LOCATION: Refer to Figure N	lo. 1	Та	2000		ı		DYNA	MIC C	ONE PE	NETR	ATION		т—					T
(m) ELEV DEPTH	SOIL PROFILE DESCRIPTION	STRATA PLOT	NUMBER	IAPE TAPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE O U	AR ST	RENG	50 STH (F			W _p		URAL STURE ITENT W O	LIQUID LIMIT W _L ————————————————————————————————————	TOTAL HYDROCARBON CONCENTRATION FROM HEADSPACE TEST)	REMARKS AND GRAIN SIZE DISTRIBUTION (%)
100.5	Ground Surface 200mm Sand and Gravel over	TS X	₹	ξ.	ż	A C	ELE		20 4	10 6	30	80 1	00		10 :	20 3	30	(ppm)	GR SA SI CL
100.0	FILL silty sand and gravel, trace of organics, dark brown, dense		1	SS	61		100									o		18	
	trace of organics in upper 300mm, occ. cobbles, grey with green, white, and oxydized laminations, hard		2	SS	26										0			18	
98.7 1.8	RESIDUAL SOIL		3	ss ;	87/ 250mn	1	99								0			22	
98.1	from shale and limestone of Georgian Bay Formation, resembles silty clay, grey, hard		4	AS			in and a second and								o			20	
2.4	END OF BOREHOLE Augers grinding at 2.4m Borehole dry upon completion																		

NOT TO SCALE

349 DAVIS ROAD AERIAL PHOTOGRAPH FROM 1978

JOB NO. DATE G-04.0104 FEBRUARY, 2004

NOT TO SCALE

349 DAVIS ROAD AERIAL PHOTOGRAPH FROM 1954

JOB NO. DATE G-04.0106 FEBRUARY, 2004