

Site Assessment

327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario

Client

The Town of Oakville 1225 Trafalgar Road Oakville, ON L6H 0H3

Attn: Ms. Nazia Tirmazi

Project Number BRM-00235695-B0

Prepared By exp Services Inc. 80 Bancroft Street Hamilton, ON L8E 2W5 Canada

Date Submitted December 2016

Executive Summary

Exp Services Inc. (**exp**) was retained by The Town of Oakville to complete a Phase Two Environmental Site Assessment (ESA) of the properties located at 327 & 291 Reynolds Street, 348 Allan Street in Oakville, Ontario, recognized as the Former Oakville Hospital Lands, hereinafter referred to as the 'Site'. Authorization to proceed with the Phase Two ESA was provided by Ms. Nazia Tirmazi of the Town of Oakville.

The Site is located on the east side of Reynolds Street and south side of Allan Street measuring approximately 5.7 hectares (14 acres). At the time of the Site visit, the Site was occupied by multiple buildings including the former Oakville Trafalgar Memorial Hospital, the Helen Lawson building, a multi-level parking garage and a vacant former school building.

The need for a Phase Two ESA on the property was identified in the Phase One ESA completed for the Site by **exp** in September 2016. The Phase One ESA identified the following potentially contaminating activities (PCAs) and Areas of Potential Environmental Concern (APECs):

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Presence of two (2) underground storage tanks on west side of building addressed as 327 Reynolds St.	Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 2: Two (2) former fuel oil USTs on west side of building addressed as 327 Reynolds St.	Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 3: Potential poor fill quality in area of former fuel oil USTs	Northwest corner of Site	30: Importation of Fill Material of Unknown Quality	On-Site	Metals	Soil
APEC 4: Presence of collection pit storage tank west of the building addressed as 327 Reynolds St.	West side of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	PHCs, BTEX, Metals	Soil and Groundwater

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 5: Former PCB storage site listing for 327 Reynolds St.	Northeast corner of Site	Not listed: PCB storage Site	On-Site	PCBs	Soil
APEC 6: Presence of underground storage tank / collection tank on east side of building addressed as 327 Reynolds St.	Mid-portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 7: Presence of diesel AST in the mechanical room.	West portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 8: Registered waste generator of various waste streams including halogenated solvents	Northwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs Metals and As, Se, Sb, Hg, EC, SAR	Soil and Groundwater
APEC 9: Potential presence of fuel tank at former high school (presence of fill pipe, east side- 291 Reynolds St)	Southwest portion of Site (east side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 10: Potential presence of fuel tank at former high school (presence of fill pipe, west side- 291 Reynolds St)	Southwest portion of Site (west side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 11: Registered waste generator of various waste streams including halogenated solvents (Oakville High School, 291 Reynolds St)	Southwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs Metals and As, Se, Sb, Hg, EC SAR	Soil and Groundwater
APEC 12: Potential presence of fill material in area of former building footprint (Oakville High School, 291 Reynolds St)	Southwest portion of Site	30: Importation of Fill Material of Unknown Quality	On-Site	Metals PAHs	Soil
APEC 13: Former shop class area associated with former Oakville High School	Southwest corner of Site	Not listed: Former shop class area	On-Site	PHCs, BTEX	Soil
APEC 14: Application of de- icing salts on asphalt covered surfaces on Site	Entire Site (only asphalt covered surfaces)	Not listed: Application of de- icing salts	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater
APEC 15: Potential presence of fill material	Entire Site (only asphalt covered surfaces)	30: Importation of Fill Material of Unknown Quality	On-Site	Metals PAHs	Soil
APEC 16: Presence of brine UST on west side of former Hospital building	West portion of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater
APEC 17: Presence of smoke stack / chimney on Site building	Landscaped areas of the Site	Not listed – presence of smoke stack / chimney	On-Site	PAHs Metals	Soil

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 18: Spill incident from off-Site UST (west of Site- 358 Reynolds)	Off-Site (west)	Not listed: Spill incident	Off-Site	PHCs, BTEX VOCs	Groundwater

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard as defined by O.Reg. 153, as amended, and in accordance with generally accepted professional practices.

For assessment purposes, **exp** selected the Ontario Ministry of the Environment and Climate Change (MOECC) Table 2 Site Condition Standards (SCS) of "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," for Residential Property Use in a potable groundwater situation with coarse-textured soil in accordance with Ontario Regulation 153/04 (made under the Environmental Protection Act), July 2011.

Based on the results of the subsurface investigation conducted at the Site, the following findings are presented:

- A Phase Two ESA was completed by WSP in 2016 which identified PAH impacts in soil and PHC impacts in groundwater. Exp was retained by the Town of Oakville to complete a Phase Two ESA to delineate the extent of known impacts and address any remaining APECs. The scope of work included the advancement of a total of twenty-four (24) boreholes, eighteen (18) of which were instrumented as groundwater monitoring wells, and eight (8) test pits.
- 2) The general stratigraphy at the Site, as observed in the boreholes, consisted of silty sand / sandy silt overlying silty clay. Fill material was encountered in several locations across the Site.
- 3) The groundwater depths ranged between approximately 0.96 m bgs (in the basement) to 4.22 m bgs within the overburden monitoring wells and 2.73 m bgs to 10 m bgs in bedrock monitoring wells. Based on the relative groundwater elevations, the inferred local groundwater flow direction is generally to the southwest (true south). However, **exp** notes that the direction of localized groundwater flow may be influenced by the presence of underground utilities.
- 4) To assess the quality of soil and groundwater quality at the Site, select soil samples were submitted for Metals, Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Polycyclic Aromatic Hydrocarbons (PAHs), Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) and Volatile Organic Compounds (VOCs) and select groundwater samples were submitted for laboratory analysis of metals, sodium, chloride, PAHs, PHCs and VOCs including BTEX.
- 5) A review of the analytical results for the soil and groundwater samples submitted indicated the following:

- a. The concentrations of PAHs in a number of the analyzed soil samples collected from within the footprint of the former school (south portion of the Site) were above the applicable Table 2 SCS. These concentrations are likely associated with poor fill material.
- b. The detected values of EC and SAR in the soil sample analyzed from borehole BH16-220-SS4 were above the applicable Table 2 SCS.
- c. Several groundwater samples were submitted for the analysis of PHCs in groundwater. The concentrations of PHC F3 and F4 from monitoring well BH/MW16-210 (south of the former hospital building) were above the applicable Table 2 SCS.
- d. Based on the analytical results from the Phase Two ESA completed by WSP in 2016 and the current program completed by **exp**, the extent of PAH impacted soil as well as the extent of EC/SAR impacts in soil has been delineated. Horizontal and vertical delineation of PHC impacts in groundwater on the west and south side of the hospital building has been achieved, with the exception of beneath the footprint of the building (due to cost and site access restrictions, additional work may be required upon demolition of the hospital building).
- e. Sodium and chloride exceedances are present in groundwater across the Site. Vertical delineation of Sodium and Chloride groundwater impacts at monitoring wells BH16-14/14A/14B has not been achieved. Additional work may be required if a Record of Site Condition is to be filed for the Site.
- f. A cobalt exceedance was noted in the groundwater sample collected from monitoring well BH16-14. The source of the cobalt exceedance is not known at this time.

Based on the results of the Phase Two ESA, a remediation program with a risk assessment is required prior to filing a Record of Site Condition. Details regarding possible remedial options / risk assessment measures are provided under a separate cover.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety. Limitation of liability, scope of report and third party reliance are outlined in Section 9 of this report.

Table of Contents

ecut	ive Summaryi
Int	roduction1
1.1 1.2 1.3 1.4	Site Description1Property Ownership1Current and Proposed Future Uses2Applicable Site Condition Standards2
Ba	ackground Information4
2.1 2.2	Physical Setting
Sc	ope of the Investigation7
3.1 3.2 3.3 3.4	Overview of Site Investigation7Media Investigated7Deviations from Sampling and Analysis Plan7Impediments7
In	vestigation Method
4.11 4.12	General8Borehole Drilling, Test Pitting and Soil Sampling9Test Pitting Program and Shallow Soil Sampling9Field Screening Measurements10Groundwater Monitoring Well Installation10Field Measurement of Water Quality Parameters11Groundwater Sampling11Sediment Sampling12Analytical Testing124.9.1Soil Analysis12Quality Assurance and Quality Control Measures13
	eview and Evaluation 14
5.1 5.2 5.3 5.4 5.5	Geology.14Ground Water Elevations and Flow Direction14Soil Texture15Soil Field Screening15Soil Quality155.5.1PHCs including BTEX5.5.2VOCs5.5.3PAHs16
	Int 1.1 1.2 1.3 1.4 Ba 2.1 2.2 3.1 3.2 3.3 3.4 Int 4.2 4.3 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.10 4.10 4.10 4.10 4.10 4.10 4.5 4.6 4.7 4.9 4.10 4.10 4.10 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

	56	5.5.4 Groun	<i>Metals and Inorganics</i> Idwater Quality	
	0.0	5.6.1	PHCs	
		5.6.2	VOCs	-
		5.6.3	Metals and Inorganics	
		5.6.4	PAHs	
	5.7	Sedim	ent Quality	
	5.8		y Assurance and Quality Control Results	
6.	Pl	hase Tv	vo Conceptual Site Model	19
	6.1		uction	
	6.2		of Potential Environmental Concern (APECs)	
		6.2.1	Areas of Potential Environmental Concern (APECs)	
		6.2.2	Underground Utilities	
	6.3	Physic	cal Site Description	
		6.3.1	Stratigraphy	24
		6.3.2	Hydrogeology	24
		6.3.3	Site Sensitivity	
		6.3.4	Land Use	
			minants of Concern	
	6.5	Conta	minant Fate and Transport	
		6.5.1	Soil Media	
		6.5.2	Groundwater Media	
		6.5.3	Preferential Pathways	
		6.5.4	Climatic Conditions	
	~ ~	6.5.5	Soil Vapour Migration	
	6.6		sure Pathways	
		6.6.1		
	~ 7	6.6.2	Ecological Receptors and Exposure Pathways	
			nary and Conclusion	
7.	Sı	ummar	y and Conclusions	35
8.	Re	eferenc	es	37
9.	G	eneral	Limitations	38

LIST OF APPENDICES:

FIGURES TABLES APPENDIX A: SAMPLING AND ANALYSIS PLAN APPENDIX B: PLAN OF SURVEY APPENDIX C: BOREHOLE LOGS APPENDIX D: ANALYTICAL TABLES- SOIL AND GROUNDWATER APPENDIX E: LABORATORY CERTIFICATES OF ANALYSIS APPENDIX F: GRAIN SIZE

LIST OF FIGURES:

Figure 1: Site Location Plan

Figure 2: Phase One Study Area, Surrounding Land Use and Potentially Contaminating Activities (PCAs)

Figure 3: Areas of Potential Environmental Concern (APECs)

Figure 4: Borehole / Monitoring Well Location Plan

Figure 5A: Concentrations of PHCs in soil

Figure 5B: Concentrations of VOCs in soil

Figure 5C: Concentrations of PAHs in soil

Figure 5D: Concentrations of Metals and Inorganics in soil

Figure 5E: Values of EC and SAR in soil

Figure 5F: Concentrations of PCBs in soil

Figure 6A: Concentrations of PHCs in groundwater

Figure 6B: Concentrations of VOCs in groundwater

Figure 6C: Concentrations of PAHs in groundwater

Figure 6D: Concentrations of Metals and Inorganics in groundwater

Figure 6E: Concentrations of Na and Cl in groundwater

Figure 6F: Concentrations of PCBs in groundwater

Figure 7: Human Health On-Site Conceptual Exposure Model

Figure 8: Ecological On-Site Conceptual Exposure Model

Figure 9: PHC Delineation area (Groundwater exceedances)

Figure 10: Site Overview

1. Introduction

Exp Services Inc. (**exp**) was retained by The Town of Oakville to complete a Phase Two Environmental Site Assessment (ESA) of the properties located at 327 & 291 Reynolds Street, 348 Allan Street in Oakville, Ontario, recognized as the Former Oakville Hospital Lands, hereinafter referred to as the 'Site'. Authorization to proceed with the Phase Two ESA was provided by Ms. Nazia Tirmazi of the Town of Oakville.

The objective of the investigation was to support the potential filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04, as amended by Ontario Regulations 511/09 and 179/11 (O.Reg.153, as amended).

At the time of the investigation, the Site was owned by The Town of Oakville. The property identification number (PIN) for the Site is 248080073. Refer to Appendix G for a copy of the Site survey.

The owner contact information is provided below:

Company Name	The Town of Oakville		
Company Address	1225 Trafalgar Road		
	Oakville, ON L6H 0H3		

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard as defined by O.Reg. 153, as amended, and in accordance with generally accepted professional practices. Subject to this standard of care, **exp** makes no express or implied warranties regarding its services and no third party beneficiaries are intended. Limitation of Liability, Scope of Report and third party reliance are outlined in Section 9 of this report.

1.1 Site Description

The Site is located on the east side of Reynolds Street and south side of Allan Street measuring approximately 5.7 hectares (14 acres). At the time of the Site visit, the Site was occupied by multiple buildings including the former Oakville Trafalgar Memorial Hospital, the Helen Lawson building, a multi-level parking garage and a vacant former school building. Based on information obtained from the Phase One ESA Site visit and a review of the historical records, the Site was first developed on the eastern portion for institutional use in the late 1900s. The western portion of the Site was developed in the 1940s for institutional use.

The approximate Universal Transverse Mercator (UTM) coordinates for the Site centroid is Zone 17, 607360E 4812027N. The UTM coordinates were based on measurements from Google Earth with an estimated accuracy of 5 metres (m).

A copy of the Site survey is provided in Appendix H.

1.2 Property Ownership

At the time of the investigation, the Site was owned by The Town of Oakville.

1.3 Current and Proposed Future Uses

The Site is currently zoned specifically as 'I' for Institutional and was most recently utilized as a hospital and school. Based on information provided by the client, the proposed land use is residential on the north portion of the Site and community and parkland on the south portion of the Site.

1.4 Applicable Site Condition Standards

The assessment criteria, Site Condition Standards (SCS), applicable to a given site in Ontario are established under subsection 168.4(1) of the Environmental Protection Act. Tabulated generic criteria are provided in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" ("the SGWS Standards"), MOE, May 2011. These criteria, which came into force on July 1, 2011, are based on site sensitivity (sensitive or non-sensitive), groundwater use (potable or non-potable), property use (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration). In addition, site specific criteria may be established on the basis of the findings of a Risk Assessment carried out in accordance with Part IX and Schedule C of O. Reg. 153/04, as amended.

The SGWS Standards specify SCS for soil, groundwater and sediment that are tabulated as follows:

- Table 1 Full Depth Background Site Condition Standards;
- Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition;
- Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.;
- Table 4 Stratified Site Condition Standards in a Potable Ground Water Condition;
- Table 5 Stratified Site Condition Standards in a Non-Potable Ground Water Condition;
- Table 6 Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;
- Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition
- Table 8 Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition;
- Table 9 Generic Site Condition Standards for Use within 30 m of a Water Body in a Non-Potable Groundwater Condition.

For assessment purposes, **exp** selected the MOECC Table 2 SCS for Residential Property Use in a potable groundwater situation with coarse-textured soil.

The selection of this category was based on the following factors:

- the Site is not considered a sensitive site;
- the Site is located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater;
- the intended land use of the Site is residential and community parkland;

- the predominant soil type on the Site is considered to be coarse-textured (refer to the 75 micron sieve analysis in the Certificates of Analysis Appendix D); and
- there is no intention to carry out a stratified restoration at the Site.

2. Background Information

2.1 Physical Setting

The surrounding properties within the Phase One ESA study area predominantly consist of residential properties and a number of professional and institutional buildings south and east of the Site with one commercial property situated southwest of the Site. Based on available soil and geology mapping, the Site is located in the physiographic region characterized by Shale Plain. The surficial geology of the Site and surrounding areas are expected to consist of lacustrine and outwash sand. South of the Site surrounding Sixteen Mile Creek is comprised of bedrock (shale and dolomite). Bedrock in the general area forms part of a group belonging to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member consisting of shale, limestone, dolostone and siltstone. A review of the previous environmental reports indicates that the depth to bedrock was encountered between 3.7 to 6.7 m below ground surface (bgs). Sixteen Mile Creek is located approximately 225 m west of the Site. Based on the information provided on the topographic map, regional groundwater is expected to flow to the south / southwest.

2.2 **Previous Investigations**

The need for a Phase Two ESA on the Site was identified in the Phase One ESA completed for the Site by **exp** in September 2016. The Phase One ESA identified eighteen (18) Potentially Contaminating Activities (PCAs) within the Phase One ESA Study Area (Figure 2) and corresponding Areas of Potential Environmental Concern (APECs) as shown on Figure 3 and presented in Table 2.2 (Appendix A):

Based on the findings and conclusions of the Phase One ESA, a Phase Two ESA was recommended to investigate the APECs.

The following previous assessments were completed for the Site:

WSP Canada Inc., *"Phase Two Environmental Site Assessment, 327 & 291 Reynolds Street & 348 Allan Street, Oakville, Ontario", April 29, 2016 (revised September 20, 2016).*

- In March and April 2016, twenty (20) boreholes were advanced to a maximum depth of 6.7 metres below ground surface (m bgs). An additional borehole was advanced on June 10, 2016 on the north central portion of the property to address an underground storage tank. Nine (9) of the twenty-one (21) boreholes were instrumented as monitoring wells.
- The general stratigraphy of the Site consists of asphalt overlying granular base, underlain by fill material (sand) and native sand / silty sand. A layer of silt to clayey silt / silty clay was observed below. Shale bedrock was encountered between 3.7 and 6.7 m bgs.
- The depth to groundwater in March 2016 ranged from 2.60 to 3.53 m bgs. Monitoring wells BH16-5 and BH16-20 were dry at this time. Based on the groundwater elevations, the groundwater flow direction appears to be southeasterly. Long term monitoring would be required to confirm flow direction.

- Soil samples were submitted for metals and inorganics including electrical conductivity (EC) and sodium adsorption ratio (SAR), petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The analytical results indicated exceedances for EC/SAR in the surface samples ranging from 0.3 to 3.1 m bgs and PAH exceedances at one borehole location (BH16-13).
- Groundwater samples were submitted for the analysis of metals and inorganics, PHCs, VOCs, PAHs and PCBs. The analytical results indicated exceedances for the PAH parameter benzo(a)pyrene at BH16-15, cobalt at two (2) monitoring well locations (BH16-14 and BH16-15), and exceedances for sodium and chloride at four (4) locations (BH16-5, BH16-9, BH16-14 and BH16-15).
- Based on the findings of the Phase Two ESA, soil and groundwater at the Site does not currently meet the MOECC Table 2 Residential/Parkland/Institutional SCS.

WSP Canada Inc., "Delienation Investigation Letter, 327 & 291 Reynolds Street & 348 Allan Street, Oakville, Ontario", September 16, 2016.

- The letter report details additional scope of work which includes: additional Phase Two delineation, potential additional PAH soil submissions, re-sampling monitoring wells for cobalt and benzo(a)pyrene (B(a)P) and additional analysis from a bedrock well for PHCs, cobalt and B(a)P.
- In June 2016, an additional investigation was conducted which included the advancement of thirteen (13) boreholes, one (1) shallow monitoring well (BH16-202), at 2.4 m bgs, four (4) deep monitoring wells in bedrock to depths between 10 and 12 m bgs (BH-165A, BH16-9A, BH16-14A and BH16-15A).
- For the delineation program, nine (9) soil samples (plus one field duplicate) were submitted for EC and SAR analysis. The analytical results indicated that soil samples submitted for analysis were below the applicable Table 2 SCS with exception of the soil sample submitted from BH16-103 which exibited an exceedance of EC and SAR.
- In addition, nine (9) soil samples were submitted for PAH analysis. Based on the analytical results, the extent of the PAH impacts were defined to the north, south and west. The eastern extent is still unknown.
- The groundwater sample submitted for VOCs analysis met the applicable Table 2 SCS.
- During the groundwater sampling of the deep monitoring well installed at BH16-5A, visible free product and petroleum hydrocarbon odours were noted. A groundwater sample was collected from the monitoring well and analyzed for PHCs. Based on the analytical results, PHC Fractions F2, F3 and F4 were above the applicable Table 2 SCS. The depth of the contaminants was located between 8 and 10 m bgs. A chromatograph of the results indicated that the product most resembled motor oil.
- The monitoring well indicating an exceedance of B(a)P (BH16-15) was resampled. The resampled analytical result confirmed an exceedance of benzo(a)pyrene at this location. A vertical delineation well (BH16-15A) was installed at a depth of 10.7 to 12.2 m bgs. The

analytical results for B(a)P from the groundwater sample indicated the concentration was below the applicable Table 2 SCS at this depth.

- The two (2) monitoring wells (BH16-15, BH16-14) that exhibited an exceedance of cobalt and sodium respectively were re-sampled The analytical results once again indicated an exceedance for cobalt and sodium respectively. Four (4) vertical delineation monitoring wells were installed in the bedrock. Two (2) groundwater samples were submitted for metals and inorganics and two (2) samples were submitted for sodium and chloride analysis. An exceedance was noted for sodium and chloride in BH16-14A.
- Based on the analytical results, WSP concluded the following:
 - The delineation program determined the horizontal and vertical extents of EC and SAR impacts in soil across the Site.
 - The delineation program determined the north, south and west horizontal and vertical extents of the PAH impacts, however, the extent of PAH impacts to the east is still unknown.
 - The investigation determined the cobalt impacts identified in the shallow monitoring wells BH16-5 and BH16-14 did not extend to the deep monitoring wells installed adjacent to these wells at BH16-5A and BH16-14A.
 - The investigation found the sodium and chloride impacts identified in the shallow monitoring wells BH16-5, BH16-9 and BH16-15 did not extend to the deep monitoring wells installed adjacent to these wells BH16-5A, BH16-9A and BH16-5A.
 - Sodium and chloride impacts were found in the shallow monitoring well BH16-14 and in the deep well BH16-1 4A. These wells are in the vicinity of the former salt storage and these exceedances are likely attributed to this. The vertical extents of sodium and chloride impacts in groundwater are unknown at this time.

3. Scope of the Investigation

3.1 Overview of Site Investigation

The purpose of the Phase Two ESA was to investigate the soil and groundwater quality on-Site to address the identified APECs.

3.2 Media Investigated

The Phase Two ESA included the investigation of the Site soil and groundwater. As there were no surface water bodies on the Site, sediment sampling was not required.

3.3 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (Appendix A). No significant deviations from the Sampling and Analysis Plan were reported, that could affect the sampling and data quality objectives for the Site.

3.4 Impediments

Interior drilling within the footprint of the hospital was limited due to site access, time constraints, and associated costs.

Two (2) test pits (TP1 and TP3) from the northeast corner of the Site were eliminated from the program due to site access (exterior staircase and road access) and driveway heating systems.

Note that the former school building was not included as part of the scope of work for the Phase One and Two ESA.

No other physical impediments were encountered during the field investigation; and the entire property was accessible at the time of the investigation.

4. Investigation Method

4.1 General

The scope of work for the Phase Two ESA was as follows:

- Request local utility locating companies (cable, telephone, gas, hydro) to mark any underground utilities present at the Site;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the test pit/borehole locations and to clear the individual test pit/borehole locations;
- Retain a geophysical surveying contractor to complete a geophysical survey of the Site to identify any subsurface anomalies that could indicate the presence of USTs or disturbed soil indicating excavation activity, and to mark any underground utilities present in the vicinity of the borehole locations located in the interior of the Site buildings;
- Advance twenty-four (24) boreholes; eighteen (18) of which were instrumented as groundwater monitoring wells including four (4) overburden monitoring wells, four (4) interior monitoring wells, eight (8) shallow bedrock monitoring wells, and two (2) vertical delineation monitoring wells;
- Advance eight (8) test pits using a rubber-tired backhoe;
- Collect representative soil samples from the boreholes for laboratory analysis of Metals, Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Polycyclic Aromatic Hydrocarbons (PAHs), Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) and Volatile Organic Compounds (VOCs), pH and 75 micron (µm) sieve;
- Collect representative groundwater samples from the installed groundwater monitoring wells for laboratory analysis of dissolved metals, sodium, chloride, PAHs, PHCs and VOCs including BTEX;
- Prepare a report of the findings.

Exp personnel who conducted assessment work for this project included:

- Mr. Jon Charles, P.Geo. (Limited) (Qualifed Person);
- Ms. Stephanie Hsia, B.Sc. (Project Manager);
- Ms. Katie McIsaac (Field Technician); and
- Ms. Jaclyn Hart, B.ES. (Field Technician).

4.2 Borehole Drilling, Test Pitting and Soil Sampling

Prior to the commencement of excavation activities, the locations of underground public utilities including telephone, natural gas and electrical lines were determined and marked, where necessary, at the Site by locating companies. A private utility locating contractor was also retained to clear the individual test pit locations.

In September 2016, **exp** was retained by the Town of Oakville to complete a delineation program to address PHC impacts in groundwater (west side of the hospital) and PAH impacts in soil. The scope of work also included addressing any remaining APECs identified in **exp**'s draft Phase One ESA report.

Twenty-four (24) boreholes (BH/MW16-201 to BH/MW16-221 [including BH/MW16-203A], and BH/MW16-5B, BH/MW16-14B) were advanced between September and November 2016 by various drilling companies (Landshark. Landtech, and Pontil) using a Geoprobe 7822DT, CME 55 drill rig, CME 75 drill rig and a hand-held Pionjar for internal boreholes under the full-time supervision of **exp** field staff. The boreholes were advanced to delineate previous impacts identified in the Phase Two ESA report completed by WSP and additional APECs identified in the Phase One ESA completed by **exp** in October 2016.

The boreholes were advanced to completion depths between approximately 1.6 and 15.2 metres below ground surface (bgs). Petroleum-based greases or solvents were not used during drilling activities.

The approximate locations of the above-mentioned boreholes advanced on the Site are shown on Figure 4.

The soil sampling and handling was consistent with the procedures outlined in Section 4.2 and the Sampling and Analysis Plan presented in Appendix A. Field observations are summarized on the borehole logs provided in Appendix C.

Selected soil samples were submitted to Maxxam under transported/submitted under Chain of Custody documentation. A list of soil samples analyzed and corresponding rationale is provided in Table 2.

4.3 Test Pitting Program and Shallow Soil Sampling

In November 2016, eight (8) test pits were advanced across to Site to delineate and characterize the extent of fill material observed in the borehole / monitoring well program. In addition, one (1) test pit was completed to address the former machine shop located at the former school (TP9 - south portion of the Site). The test pits were advanced to completion depths ranging between approximately 3.0 and 5.5 m bgs. Petroleum-based greases or solvents were not used during test pitting activities.

In addition, three (3) surface soil samples (below landscaped areas) were collected using stainless steel hand-held tools to address possible particulate matter associated with a former incinerator on-Site.

The approximate locations of the test pits (TP2, TP4, TP5 to TP10) and surface soil samples (INC SS1 to SS3) advanced on the Site are shown on Figure 4.

The soil sampling during the completion of this Phase Two ESA was undertaken in accordance with the Sampling and Analysis Plan presented in Appendix A.

Exp continuously monitored the test pit excavation activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of each test pit. Field observations of each test pit are provided in the test pit logs in Appendix B. Representative soil samples were recovered in the overburden of the test pits at regular intervals.

Soil sampling activities were conducted in accordance to **exp**'s Standard Operating Procedures (SOPs). Dedicated nitrile gloves were used during sample handling. Soil samples were placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. The soil samples were placed in clean ice-packed coolers prior to and during transportation to the subcontract laboratory, Maxxam Analytics Inc. (Maxxam) of Mississauga, Ontario and were transported/submitted under Chain of Custody documentation. A list of soil samples analyzed and corresponding rationale is provided in Table 4.10.1.

Soil samples were subsequently delivered to **exp's** laboratory for visual, textural and olfactory classification.

4.4 Field Screening Measurements

A portion of each soil sample collected from the test pits and boreholes was placed in a sealed "ziplock" plastic bag and allowed to reach ambient temperature prior to field screening using a Minirae 3000 Photoionization Gas Detector (PID), calibrated with isobutylene. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapors encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis.

4.5 Groundwater Monitoring Well Installation

Eighteen (18) groundwater monitoring wells were installed at the Site between September and November 2016 (refer to Figure 4).

MW ID	Location on Site (Reynolds is situated west of the Site)	Rationale
BH16-5B	West side of former hospital	Vertical delineation of PHC impacts in groundwater
BH16-201 to 16-203, 203A	West and south side of former hospital	Horizontal and vertical delineation of PHC impacts in groundwater
BH16-210, BH16-211		

The rationale and locations of the monitoring wells are detailed in the table below:

MW ID	Location on Site (Reynolds is situated west of the Site)	Rationale
BH16-214 to BH16-217		
BH16-213 and 214; BH16- 218 and 219	Southwest corner of former hospital	Interior horizontal delineation of PHC impacts in groundwater (overburden wells only)
BH16-14B	Southeast corner of Site (south side of parking garage)	Vertical delineation of Na / CI impacts in groundwater
MW16-220	West side of former hospital (northwest corner)	Former UST location (overburden monitoring well)
MW16-221, MW16-222	Mid-portion of Site	To address hospital as a registered waste generator

The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended to O. Reg. 128/03 and were installed by various licensed well contractors (Landshark, Landtech and Pontil) using a a Geoprobe 7822DT, CME 55 drill rig, CME 75 drill rig and a hand-held Pionjar for the internal boreholes. Petroleum-based greases or solvents were not used during well installation activities.

The monitoring wells consisted of a 3 m length of 50 mm diameter PVC screen and an appropriate length of PVC riser pipe. The annular space around the wells were backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with aboveground protective well casings.

The current property owners are considered to be the owners of the wells installed in the specific areas of the Site ("well owner", Section 1.0, Regulation 903). When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended to O. Reg. 128/03.

4.6 Field Measurement of Water Quality Parameters

Prior to and during groundwater sampling activities, field parameters (temperature, pH, and electrical conductivity) were measured in the purged water from the groundwater monitoring wells using a Horiba water quality meter. The meter was calibrated by Pine Environmental Limited prior to the fieldwork using standard pH and conductivity solution.

4.7 Groundwater Sampling

Groundwater samples were collected from the newly installed monitoring wells and several existing monitoring wells between September and November 2016. Groundwater samples were submitted to Maxxam for chemical analysis (see Table 4). Groundwater samples that were analyzed for metals

were field filtered using 0.45 micron inline filters prior to filling the laboratory supplied bottle. Preservatives were provided in the laboratory supplied bottles, where required. Dedicated nitrile gloves were utilized during sample handling.

The groundwater sampling during the completion of this Phase Two ESA was undertaken in accordance with the Sampling and Analysis Plan presented in Appendix A.

4.8 Sediment Sampling

As there were no surface water bodies on the Site, sediment sampling was not required.

4.9 Analytical Testing

The contracted laboratory selected to perform chemical analysis on select soil and water samples was Maxxam Analytics. Maxxam is an accredited laboratory under the Standards Council of Canada/Canadian Association of Laboratory Accreditation (CALA) (Accredited Laboratory No. 97) in accordance with ISO/IEC 17025:1999- "General Requirements for the Competence of Testing and Calibration Laboratories".

4.9.1 Soil Analysis

Soil samples, including QA/QC field duplicate samples, were analyzed from the boreholes and test pits during the analytical program. The analytical testing conducted on the soil samples and corresponding submission rationale is summarized in Table 2.

4.9.2 Groundwater Analysis

Groundwater samples, including QA/QC field duplicate samples were analyzed during the initial analytical program. The analytical testing conducted on the representative groundwater samples and corresponding submission rationale is summarized in Table 4.

4.10 Residue Management Procedures

The drill cuttings from the monitoring well installation and purged water from groundwater sampling were stored on-Site in labeled drums.

4.11 Elevation Survey

Exp staff surveyed the test pit, borehole and monitoring well locations with respect to an arbitrary temporary bench marks (TBM) described as the north corner of the manhole located west of BH16-5A, assigned an elevation of 100 m.

The elevations of the test pits and boreholes and presented on the test pit and borehole logs. The installation details of the installed monitoring wells are summarized in Table 3.

4.12 Quality Assurance and Quality Control Measures

Quality Assurance/Quality Control (QA/QC) measures were integral components of the field sampling and laboratory analytical programs undertaken for this project. The field QA/QC measures consisted of the use of dedicated sampling equipment, the implementation of decontamination procedures, the use of laboratory supplied analytical test group specific sampling containers and preservatives as required, the collection of duplicate samples, Chain of Custody protocols and sample preservation following analytical test group temperature and holding time requirements.

Details regarding quality assurance measures taken in the field, including instrument calibration, decontamination procedures, use of dedicated equipment, sample storage and Chain of Custody documentation are provided in Section 4 above.

Maxxam's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

Field duplicate soil samples, and field duplicate groundwater samples, as well as laboratory trip blanks were analyzed as part of this investigation. Details regarding the results of the QA/QC program are presented in Section 5.10.

5. Review and Evaluation

5.1 Geology

The detailed soil profiles encountered during this investigation are provided on the attached test pit logs and borehole logs (Appendix B). Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in the boreholes, consisted of silty sand / sandy silt overlying silty clay. Fill material was encountered in several locations across the Site. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

Fill - Fill material was encountered west of the former Oakville Hospital building and in the footprint of the former school (south portion of Site) and consisted of sand and gravel. The fill stratum extended to a maximum depth of approximately 3.8 m below existing ground surface in the south portion of the Site.

Silty sand - Native or reworked silty sand was encountered from surface (or below a thin layer of asphalt) in the majority of the site, and below the footprint of the fill material described above. This deposit was generally reddish brown in colour and moist.

Silty clay - A silty clay deposit was encountered at most locations across the Site. This deposit was brown to grey in colour until bedrock was encountered.

Weathered shale - Grey weathered shale was encountered across the Site. The bedrock appears to undulate between 4.0 to 5.0 m bgs, although in some areas the bedrock is not encountered at these depths.

5.2 Ground Water Elevations and Flow Direction

Groundwater was measured in the monitoring wells at least 24 hours following development and sampling. The depth to groundwater ranged between approximately 0.9 and 10 m bgs. Groundwater elevations relative to ground surface are summarized below in Table 5A and 5B.

Based on the groundwater data collected on November 22, 2016, the inferred local groundwater flow direction is generally to the southwest (true south). However, it is noted that the direction of localized groundwater flow may be influenced by the presence of utilities. The measured groundwater flow direction may not be representative of the regional groundwater flow.

5.3 Soil Texture

A review of the Phase Two ESA completed by WSP in 2016 indicated that Table 2 SCS for coarsetextured soil was selected as the appropriate standard. WSP did not complete a grain sized analysis as part of their Phase Two ESA.

Two soil samples submitted from BH16-5B were analysed for grain size (surface and subsurface). The results of the analysis indicate coarse-textrued soil for the surface sample and fine-textured soil for the subsurface. For consistency purposes and utilizing the most stringent standards, **exp** selected Table 2 SCS for Residential/Parkland/Institutional property use with coarse-textured soil. A copy of the analysis is included in Appendix F.

5.4 Soil Field Screening

The soil vapour measurements in the recovered soil samples ranged between 0 and 3.1 parts per million (ppm). The vapour readings are presented on the borehole logs and test pit logs in Appendix B.

5.5 Soil Quality

In accordance with the authorized scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes and test pits. The selection of representative "worst case" soil samples from each borehole and test pit was based on visual evidence of impacts or highest potential for impacts based on historic Site use. The summarized analytical data are presented in Appendix D. Copies of the laboratory Certificates of Analysis for the tested soil samples are provided in Appendix E.

The Table 2 SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The scope of work did not include pH analysis.

5.5.1 PHCs including BTEX

Twenty-two (22) soils samples, including four (4) QA/QC field duplicate, were analyzed for PHCs including BTEX. The results of the analysis together with the applicable Table 2 SCS are presented in Table D1 in Appendix D.

The detected concentrations of PHCs in the soil samples analyzed were below the applicable Table 2 SCS. The laboratory Reportable Detection Limits (RDLs) were below the Table 2 SCS.

5.5.2 VOCs

Two (2) soils samples were analyzed for VOCs. The results of the analysis together with the applicable Table 3 SCS are presented in Table D2 in Appendix D.

VOCs were not detected above the laboratory RDLs in the soil samples analyzed. The laboratory RDLs were below the Table 2 SCS.

5.5.3 PAHs

Thirty (30) soil samples, including three (3) QA/QC field duplicates, were analyzed for PAHs. The results of the analysis together with the applicable Table 2 SCS are presented in Table D3 in Appendix D.

The concentrations of PAHs in a number of the analyzed soil samples collected from within the footprint of the former school (south portion of the Site) were above the applicable Table 2 SCS. PAHs in the remaining samples were either detected below the Table 2 SCS or were not detected above the laboratory RDLs. The laboratory RDLs were below the Table 2 SCS.

5.5.4 Metals and Inorganics

Nineteen (19) soil samples, including two (2) QA/QC field duplicates, were analyzed for metals and inorganics. The results of the analysis together with the applicable Table 2 SCS are presented in Table D4 in Appendix D.

The values for EC and SAR were found to be above the Table 2 SCS in the soil sample submitted from borehole BH16-220 located on the west side of the hospital building. The metals and inorganic parameters in the remaining analyzed soil samples were either detected below the Table 2 SCS or were not detected above the laboratory RDLs. The laboratory RDLs were below the Table 2 SCS.

5.6 Groundwater Quality

The summarized analytical data are presented in Appendix D. Copies of the laboratory Certificates of Analysis for the groundwater samples are provided in Appendix E.

A sheen was observed in the purge water from BH16-210. A review of the analytical results indicated an exceedance for PHCs.

No other evidence of free product (i.e. visible film or sheen), or odour was observed during well purging and groundwater sampling.

5.6.1 PHCs

Twenty-two (22) water samples, including four (4) QA/QC field duplicate and one (1) QA/QC laboratory trip blank, were analyzed for PHCs. The results of the analysis together with the applicable Table 2 SCS are presented in Table D6 in Appendix D.

The concentrations of PHC F3 and F4 from BH/MW16-210 (south of the former hospital building) were above the applicable Table 2 SCS. PHCs in the remaining groundwater samples analyzed were either

below the Table 2 SCS or were not detected above RDLs. The laboratory RDLs were below the Table 2 SCS.

5.6.2 VOCs

One (1) groundwater sample was analyzed for VOCs. The results of the analysis together with the applicable Table 2 SCS are presented in Table D7 in Appendix D.

VOCs within the groundwater sample analyzed were not detected above the laboratory RDLs. The laboratory RDLs were below the Table 2 SCS.

5.6.3 Metals and Inorganics

Eighteen (18) groundwater samples, including two (2) QA/QC field duplicates, were analyzed for metals and inorganics. The groundwater samples included re-sampling two (2) existing monitoring wells (BH16-14, BH16-14A). The results of the analysis together with the applicable Table 2 SCS are presented in Table D8 in Appendix D.

The detected concentrations of cobalt in BH16-14 and BH 16-144 (duplicate of MW16-14), sodium and chloride in BH16-14A, MW16-14B, MW16-144B (duplicate of MW16-14B), and MW16-220, and sodium in MW16-221, were above the Table 2 SCS. Metals and inorganics parameters in the remaining samples analyzed were either detected below the Table 2 SCS or were not detected above the laboratory RDLs. The laboratory RDLs were below the Table 2 SCS.

5.6.4 PAHs

One (1) groundwater sample was analyzed for PAHs. The results of the analysis together with the applicable Table 2 SCS are presented in Table D10 in Appendix D.

PAHs were not detected above the laboratory RDLs. The laboratory RDLs were below the Table 2 SCS.

5.7 Sediment Quality

As there were no surface water bodies on the Site, sediment sampling was not conducted.

5.8 Quality Assurance and Quality Control Results

As part of this Phase Two ESA, the following field duplicate soil samples were submitted for analysis:

- two (2) for metals and inorganics
- three (3) for PAHs, and
- four (4) for PHCs.

As part of this Phase Two ESA, the following field duplicate groundwater samples were submitted for analysis:

- two (2) for metals; and
- four (4) for PHCs.

The laboratory quality assurance program included the analysis of laboratory duplicate (replicate) samples, method blanks, spiked blanks, spiked samples and samples of reference materials in accordance with the Analytical Protocol. These analytical results comprise portions of the Certificates of Analysis in Appendix D.

One (1) laboratory-prepared trip blank was transported in the field during the groundwater sampling and re-analyzed for PCHs. PHCs were not detected in the blank indicating that the field sampling procedures did not contribute to the addition of PHCs.

The results of all QA/QC analysis provide confidence in the laboratory results obtained during this investigation.

6. Phase Two Conceptual Site Model

This section presents the Phase Two Conceptual Site Model (P2CSM), as it relates to the Site designated as 327 Reynolds Street, 291 Reynolds Street and 348 Allan Street providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. The P2CSM was completed in accordance with Ontario Regulation 153/04, as amended (O.Reg.153/04), as defined by the Ontario Ministry of the Environment and Climate Change (MOECC).

6.1 Introduction

The Site, known as 327 Reynolds Street, 291 Reynolds Street and 348 Allan Street, and recognized as the Former Oakville Hospital Lands, is situated on the east side of Reynolds Street and the west side of Allan Street, in Oakville, Ontario (Figures 1 and 2). The Site measures approximately 5.7 hectares (14 acres). At the time of the Site visit, the Site was occupied multiple buildings including the former Oakville Trafalgar Memorial Hospital, the Helen Lawson building, a multi-level parking garage and a vacant former school building.

The surrounding properties within the Phase One Environmental Site Assessment (ESA) study area predominantly consists of residential dwellings, a retirement home, and several commercial establishments. The Phase One ESA study area and a Surrounding Land Use Plan are shown on Figure 2.

Refer to Table 1 for the Site identification information.

Civic Address	327 and 291 Reynolds Street, 348 Allan Street, Oakville, Ontario
Current Land Use	Institutional (former hospital and school)
Proposed Land Use	Residential
Legal Description	Part Of Park Lots H, P, Q, R, S, T, U & V, Plan 1, And Part Of Lawson Street, Plan 1, Closed By By-law 642592 Designated As Parts 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 & 28, 20r-20164 And Parts 11, 12 & 13, 20r-14568; S/t 650174; S/t 685689 Together With An Easement Over Parts 3 & 6, 20r-20164 As In Hr1287336 Subject To An Easement Over Parts 9, 14, 21, 22, 20r- 20164 In Favour Of Parts 2 To 7, 20r-20164 As In Hr1287336 Subject To An Easement Over Part 28, 20r-20164 In Favour Of Parts 2 To 7, 20r-20164 As In Hr1287336 Subject To An Easement Over Parts 12, 14, 15, 18, 24, 20r-20164 In Favour Of Parts 2 To 7, 20r-20164 As In Hr1287336 Subject To An Easement Over Parts 9, 10, 26, 20r-20164 In Favour Of Parts 2 To 7, 20r-20164 As In Hr1287336 Subject To An Easement Over Parts 9, 17, 18, 19, 20r-20164 In Favour Of Parts 2 To 7, 20r-20164 As In Hr1287336 Subject To An Easement In Gross Over Parts 9, 10, 26 20r-20164 As In Hr1285154 Subject To An Easement In Gross Over Parts 12, 14, 15, 18, 24, 20r-20164 As In Hr1285778 Town Of Oakville

 Table 1: Site Identification Information

Property Identification Number (PIN)	248080-073 (LT)		
Assessment Roll Number (ARN)	South side: 240104005005400 North side: 240104005006300		
Universal Transverse Mercator (UTM) coordinates	NAD83 17T 607360E 4812027N		
Site Area	5.7 hectares (14 acres)		
Property Owners, Owner Contact and Address	The Town of Oakville 1225 Trafalgar Road Oakville, ON L6H 0H3		

6.2 Areas of Potential Environmental Concern (APECs)

6.2.1 Areas of Potential Environmental Concern (APECs)

Based on the evaluation of the PCAs located within the Phase One Study Area, eighteen (18) areas of potential environmental concern (APECs) were identified, as presented in Table 2.

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Presence of two (2) underground storage tanks on west side of building addressed as 327 Reynolds St.	Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 2: Two (2) former fuel oil USTs on west side of building addressed as 327 Reynolds St.	Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 3: Potential poor fill quality in area of former fuel oil USTs	Northwest corner of Site	30: Importation of Fill Material of Unknown Quality	On-Site	Metals	Soil
APEC 4: Presence of collection pit storage tank west of the building	West side of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	PHCs, BTEX, Metals	Soil and Groundwater

Table 2: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
addressed as 327 Reynolds St.					
APEC 5: Former PCB storage site listing for 327 Reynolds St.	Northeast corner of Site	Not listed: PCB storage Site	On-Site	PCBs	Soil
APEC 6: Presence of underground storage tank / collection tank on east side of building addressed as 327 Reynolds St.	Mid-portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 7: Presence of diesel AST in the mechanical room.	West portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 8: Registered waste generator of various waste streams including halogenated solvents	Northwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs Metals and As, Se, Sb, Hg, EC, SAR	Soil and Groundwater
APEC 9: Potential presence of fuel tank at former high school (presence of fill pipe, east side- 291 Reynolds St)	Southwest portion of Site (east side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
APEC 10: Potential presence of fuel tank at former high school (presence of fill	Southwest portion of Site (west side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
pipe, west side- 291 Reynolds St)					
APEC 11: Registered waste generator of various waste streams including halogenated solvents (Oakville High School, 291 Reynolds St)	Southwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs Metals and As, Se, Sb, Hg, EC SAR	Soil and Groundwater
APEC 12: Potential presence of fill material in area of former building footprint (Oakville High School, 291 Reynolds St)	Southwest portion of Site	30: Importation of Fill Material of Unknown Quality	On-Site	Metals PAHs	Soil
APEC 13: Former shop class area associated with former Oakville High School	Southwest corner of Site	Not listed: Former shop class area	On-Site	PHCs, BTEX	Soil
APEC 14: Application of de-icing salts on asphalt covered surfaces on Site	Entire Site (only asphalt covered surfaces)	Not listed: Application of de- icing salts	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater
APEC 15: Potential presence of fill material	Entire Site (only asphalt covered surfaces)	30: Importation of Fill Material of Unknown Quality	On-Site	Metals PAHs	Soil
APEC 16: Presence of brine UST on west side of former Hospital building	West portion of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 17: Presence of smoke stack / chimney on Site building	Landscaped areas of the Site	Not listed – presence of smoke stack / chimney	On-Site	PAHs Metals	Soil
APEC 18: Spill incident from off-Site UST (west of Site- 358 Reynolds)	Off-Site (west)	Not listed: Spill incident	Off-Site	PHCs, BTEX VOCs	Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg.153/04, as amended) that is occurring or has occurred in a Phase One Study area.

Refer to Figure 4 for the location of the APECs.

6.2.2 Underground Utilities

Potable water is provided to the hospital building and Helen Lawson building through the municipal water distribution system and sanitary wastewater is discharged to the municipal sewer system. Electrical services to the hospital building and Helen Lawson building is supplied by local Hydro.

The former school building was not accessible at the time of the Site reconnaissance; it is likely the services have been disconnected.

A natural gas line is situated at the northwest corner of the Site building (former hospital), along the west side of the building.

Cable and bell lines are situated within the asphalt parking south of the former hospital building and west of the parking garage. Bell lines are also situated in the asphalt parking areas south of the parking garage and east of the former school.

Overhead hydro was also observed along Reynolds Street (west side of Site).

A review of the historical information and previous reports indicated that an underground steam distribution piping tunnel connects the former hospital building and Lawson Building.

Given that underground utilities are located on the Site, there is the potential for the distribution and transport of contaminants via the underground utilities.

6.3 Physical Site Description

6.3.1 Stratigraphy

The Site is located in the physiographic region characterized by Shale Plain. The surficial geology of the Site and surrounding areas are comprised of lacustrine and outwash sand. South of the Site surrounding Sixteen Mile Creek is comprised of bedrock (shale and dolomite). The bedrock in the general area was part of a group belonging to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member consisting of shale, limestone, dolostone and siltstone. According to previous environmental reports, the depth to bedrock for the Site was encountered between 3.7 to 6.7 m below ground surface (bgs).

The general stratigraphy at the Site, as observed in the boreholes, consisted of silty sand / sandy silt overlying silty clay. Fill material was encountered in several locations across the Site. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

Fill - Fill material was encountered west of the former Oakville Hospital building and in the footprint of the former school (south portion of Site) and consisted of sand and gravel. The fill stratum extended to a maximum depth of approximately 3.8 m below existing ground surface in the south portion of the Site.

Silty sand - Native or reworked silty sand was encountered from surface (or below a thin layer of asphalt) in the majority of the site, and below the footprint of the fill material described above. This deposit was generally reddish brown in colour and moist.

Silty clay - A silty clay deposit was encountered at most locations across the Site. This deposit was brown to grey in colour until bedrock was encountered. 4.0 m

Weathered shale - Grey weathered shale was encountered across the Site. The bedrock appears to undulate between 4.0 to 5.0 m bgs, although in some areas the bedrock is not encountered at these depths.

6.3.2 Hydrogeology

The Site is relatively flat with no discernible slopes. Sixteen Mile Creek is located approximately 225 m west of the Site. Based on the information provided on the topographic map, regional groundwater is expected to flow to the south / southwest. Based on the groundwater data collected from across the Site, the inferred local groundwater flow direction is generally to the southwest (true south). However, **exp** notes that the direction of localized groundwater flow may be influenced by the presence of underground utilities.

Refer to Table 4 for the Site hydrogeology characteristics based on groundwater monitoring observations.

Table 4: Site Hydrogeology Characteristics

Parameter	Observations
Depth to Groundwater	0.96 m bgs (basement) to 4.22 m bgs (overburden) 2.73 m bgs (basement) to 10 m bgs (bedrock)
Groundwater Elevation	88.59 m AMSL to 88.17 m AMSL 89.08 m AMSL to 82.48 m AMSL
Direction of Groundwater Flow	Southwest (true south)

6.3.3 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in Table 5.

 Table 5: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
Section 41 applies if	(i) property is within an area of natural significance	No
	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
	(iv) soil at property has a pH value for surface soil less than 5 or greater than 9	No
	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section 43.1 applies if	(i) property is a shallow soil property	No
	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

6.3.4 Land Use

A review of the historical records indicated that 327 Reynolds Street, the hospital building, has occupied the Site since the late 1940s with additions constructed between 1950 and early 2000s. The multi-level parking garage located at 327 Reynolds Street was constructed in the late 1970s on the central portion of the Site. The former school building located at 291 Reynolds Street, has occupied the Site as Oakville Trafalgar High School since 1908 with additions constructed in the 1950s. Additions were demolished in the late 1990s and only the original building remains on-Site. The Helen Lawson building, located at 348 Allan Street, was constructed in the 1960s and the building footprint remains unchanged.

Asphalt parking lots surround the Site buildings with landscaped areas throughout the Site.

This RSC will be used to support a future residential development, community centre and Parkland area on the Site.

6.4 Contaminants of Concern

The Table 2: Full Depth Generic SCS in a Potable Groundwater Condition for Residential Property Use and coarse-textured soil were considered applicable for determining contaminants of concern (COCs), based on the reasons presented in Table 6.

Descriptor	Site-Specific Condition
Section 41 Site Sensitivity	 Not applicable The soil at the Site has pH values between 5 and 9 for surficial soil; and, between 5 and 11 for subsurface soil. The Site is not located within, or adjacent to, an area of natural significance, or part of such an area; and, the Site does not include land that is within 30 m of an area of natural significance, or part of such an area.
Section 43.1 Site Sensitivity	 Not applicable The Site is not considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m; and, The Site is not located within 30 m of a surface water body; the nearest surface water body, Sixteen Mile Creek, is located approximately 225 m west of the RSC property boundary.
Ground Water	Non-Potable o The Site is supplied by the Town of Oakville water system.
Land Use	Residential o The future use of the Site will be residential / community land use
Soil Texture	Coarse • The predominant texture of soils at the Site is considered to be coarse, as per grain size analysis results

Table 6: Site Condition Standards

Based on the reported analytical results, the following parameters were detected at concentrations above the applicable Table 3 SCS:

- Soil:
 - o Select PAHs
 - \circ EC and SAR
- Groundwater
 - o PHCs
 - o Cobalt
 - o Sodium and Chloride

As noted previously, a remediation program in accordance with O.Reg.153/04 has been undertaken and the impacts identified in soil have been removed from the Site.

6.5 Contaminant Fate and Transport

6.5.1 Soil Media

The soil COCs found at the Site comprised of select PAHs (anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b/j]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, fluoranthene and indeno[1,2,3-cd]pyrene), EC and SAR.

Based on the former activities on and within the vicinity of the Site, the PAH impacts in soil are likely associated with the footprint fo the former school (south portion of Site) and the EC/SAR impacts are likely associated with the de-icing operations on the asphalt surfaces of the Site.

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

Concentrations of the COCs in soil will be reduced by the effects of molecular diffusion and the creation of concentration gradients. As volatile chemical constituents (i.e. moderately high Henry's Law Constant and saturated vapour pressure), anthracene, benz(a)anthracene and fluoranthene can volatilize into soil gas and be transported through soil gas under the influence of pressure (e.g. water table fluctuations) and partial pressure gradients in the unsaturated zone. The transport of volatile COCs can also be retarded by sorption on to organic material that may be associated with the soil mineral particles through the overburden material. As non-volatile chemical constituents, PHC F3 and F4 may undergo abiotic or biotic chemical reactions associated with the soil mineral particles and the micro-organisms present in the overburden material. It is possible for EC and SAR to desorb from soil particles, particularly in the vadose zone, and dissolve in groundwater to form sodium and chloride ions.

As a result of the various natural attenuation mechanisms in the soil environment, the concentrations of COCs in soil are expected to reduce at the Site in the long-term.

There are no known preferential pathways for contaminants present in soil media.

6.5.2 Groundwater Media

The groundwater COCs found at the Site comprised of PHCs, cobalt, sodium and chloride.

Based on the former activities on and within the vicinity of the Site, the PHC impacts in groundwater may be associated with former heating oil or lubricants utilized in the hospital mechanical rooms and the sodium / chloride exceedances are likely associated with de-icing operations at the Site (and possible historic salt storage area in vicinity of BH16-14B). The source for the exceedance in cobalt is not known.

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in groundwater, the contribution of which is dependent on the groundwater conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are advection, dispersion, molecule diffusion, phase partitioning (including adsorption and ion exchange), as well as chemical and biochemical reaction. The relevant physical properties are water solubility, saturated vapour pressure, Henry's Law Constants (as a measure of the potential for partitioning into the vapour phase) and, the sorption partition coefficient (as a measure of the potential for surface interactions or solid phase).

Concentrations of the groundwater COCs are reduced and mass velocities retarded while being transported along the groundwater flow paths by the combined effects of mechanical dispersion and molecular diffusion. Molecular diffusion is mixing arising from concentration gradients and differences in molecule thermal energies and velocities. Mechanical dispersion is mixing arising from differences in fluid velocities both within pores as a result of frictional effects and along flow paths due to differences in pore geometry and orientation. The greater contribution is provided by mechanical dispersion by as much as four (4) orders of magnitude as compared to molecular diffusion. Concentrations of the COCs are also reduced by bulk mixing of groundwater up-gradient of the source zone with the source zone groundwater.

While migrating along groundwater flow paths, COC groundwater concentrations can be reduced by the volatilization into the air-filled pore spaces of the unsaturated overburden and fill materials. This mechanism is most relevant to the aliphatic fractions of PHC F2, which are characterized by moderate vapour pressures/Henry's Law constants and therefore greater tendency for vapour phase partitioning. As a result, and under optimal conditions, these compounds may partition from soil or groundwater into soil gas in the soil unsaturated zone and potentially be transported through soil gas under the influence of pressure and partial pressure gradients to outdoor air or the indoor air of an overlying building. The heavier aromatic PHC fractions F3 and F4 has almost negligible vapour pressures and therefore limited tendency for vapour phase partitioning.

The movement of COCs can be retarded by sorption on to organic carbon associated with soil mineral particles. The degree of retardation is dependent on the organic carbon content of the soil mineral particles and the magnitude of the organic carbon partition coefficient of the chemical. In the case of sand, this mechanism may not be significant due to the limited organic material that may be present. However, the lithology of the Site is heterogeneous, with varying instances of silt and silty clay; where these materials are encountered within the aquifer unit, the movement of chemicals with moderate to high organic carbon partition coefficients may be retarded. Given that PHCs have high organic carbon partition coefficients, the movement of these COCs may be retarded as groundwater passes through high organic content materials.

For metals, the movement of COCs in groundwater can also be retarded by sorption and ion exchange mechanisms depending on the surface characteristics of the soil mineral particles and the exchangeable cations present. At slightly alkaline soil pH metal ions may be removed from solution by exchange reactions at cationic exchange sites on the soil mineral particle surfaces. Metal ions can also be removed from the solution through ionic and non-ionic binding interactions with iron and

aluminum oxyhydroxide precipitates. These species can also be immobilized through binding interactions with complexing agents and precipitate formation. As a result, due to retardation effects by sorption/ion exchange and other mechanisms, a significantly lower contaminant velocity than the linear groundwater velocity can be expected at the Site.

The constituents can potentially be degraded by chemical and biochemical reactions in the groundwater environment.

As a result of the physical and chemical processes affecting the fate and transport of COCs at the Site, the mass velocities of these chemical constituents can be expected to be much less than the linear groundwater velocity. Furthermore, the concentrations of COCs in groundwater are expected to reduce at the Site in the long-term.

The preferential pathways for contaminants present in groundwater media include various underground utilities, building footings and surface features.

6.5.3 Preferential Pathways

The preferential pathways for contaminants present in soil and groundwater media include various underground utilities, building footings and subsurface features.

Underground utilities were identified across the Site, as described in Section 6.2.2. As such, there is a potential for underground utilities to affect the distribution and transport of groundwater and soil vapour contaminants located on the Site.

Details on the preferential pathways for the impacts are summarized in Table 9.

Table 9: Preferential Pathways

G. anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable site condition standard away from any area of potential environmental concern, including the identification of any preferential pathways,	Potable water is provided to the hospital building and Helen Lawson building through the municipal water distribution system and sanitary wastewater is discharged to the municipal sewer system. Electrical services to the hospital building and Helen Lawson building is supplied by local Hydro.
	A natural gas line is situated at the northwest corner of the Site building (former hospital), along the west side of the building.
	Cable and bell lines are situated within the asphalt parking south of the former hospital building and west of the parking garage. Bell lines are also situated in the asphalt parking areas south of the parking garage and east of the former school.
	The former school building was not accessible; and it is likely the services have been disconnected.

6.5.4 Climatic Conditions

It is noted that climatic or meteorological conditions may influence the distribution and migration of COCs at the Site. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge. Groundwater levels may be elevated in the spring and

fall due to snow melt and/or increases in precipitation; and, groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations can increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates. However, based on the conditions observed at the Site and the observed depth of groundwater, it is not anticipated that the climatic or meteorological changes will result in significant alterations in the distribution of contaminants.

Details on the climatic or meteorological conditions are summarized in Table 10.

Table 10: Climatic or Meteorological Conditions

H. climatic or meteorological conditions that may have influenced distribution and migration of the contaminants, such as temporal fluctuations in ground water levels, and	Some groundwater fluctuations are expected at the Site, but not significant variation
--	---

6.5.5 Soil Vapour Migration

Given the presence of volatile COCs in soil and groundwater, soil vapour intrusion is a potential contaminant transport mechanism for volatile COCs in soil and groundwater. Intrusion of vapour-phase contaminants into the indoor air occurs from volatilization of chemicals from the dissolved or non-aqueous phases in the subsurface.

The relevant mechanisms for soil vapour intrusion are soil gas advection and vapour migration from diffusion through the building foundation. Soil gas advection is the dominant mechanism when the pressure gradient is greater than 1 Pascal (MOECC 2011b), as is the case in many commercial buildings. Soil gas advection can occur through any unsealed entry points, cracks or openings present in the building foundation.

Soil vapour flow is greatest within 1 m to 2 m below the building foundation (MOECC 2011b); as such, the soil permeability of backfill beneath the building foundation will affect the soil vapour flow rate. Furthermore, pressure gradients (i.e. depressurization of the indoor airspace of the building) created by temperature differences between indoor and outdoor air may affect soil gas flow rate by creating a "stack effect" where, as warm air rises, it is replaced by air infiltrating through doors and windows, and soil gas migrating through the foundation.

As such, in the event that the vapour intrusion pathway is present there may be potential for unacceptable health risks to building occupants via inhalation of indoor air

Details on soil vapour migration are summarized in Table 11.

1. if applicable, information concerning soil vapour intrusion of the contaminants into buildings including,	There is a potential for soil vapours to be present within the subsurface (sourced from soil and groundwater); to migrate along preferential pathways such as building footings and underground utility services; and, eventually to migrate into an overlying building or the atmosphere.
2. relevant construction features of a building, such	Unknown.

Table 11: Soil Vapour Migration

as a basement or crawl space,	
3. building heating, ventilating and air conditioning design and operation, and	Unknown
4. subsurface utilities,	Underground utilities could affect soil vapour migration, given that utility lines are connected to the current buildings and will be connected to the future buildings.

6.6 Exposure Pathways

6.6.1 Human Health Receptors and Exposure Pathways

The Site was most recently used as a hospital and school. The proposed land use is residential on the north portion of the Site and community and parkland on the south portion of the Site. The potential human receptors on the Site consist of residents (adult, teen, child, toddler and infant), students (teen, child), long-term workers, short-term workers, construction workers, and property visitors (adult, teen, child, toddler and infant).

The COCs present at the Site are were observed in soil and groundwater media. There is a potential for select on-Site receptors to come into direct contact with contaminated soil and groundwater media. It is noted that the Site is currently serviced with potable groundwater from a municipal supply; however, the Site is located within area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater. Therefore, it has been assumed that the potable groundwater ingestion pathway is considered complete. well Furthermore, given that select COCs are considered to be volatile, there is a potential for select on-Site receptors to come into indirect contact with COCs, through the volatilization of parameters into soil gas followed by the migration of vapours to outdoor air or intrusion into an overlying building.

The potential exposure pathways for the human receptors at the Phase Two Property include:

- Resident, student and property visitor
 - Inadvertent soil ingestion;
 - Soil dermal contact;
 - Soil particulate inhalation;
 - Potable groundwater ingestion;
 - Indoor air inhalation;
 - Vapour skin contact; and,
 - Outdoor air inhalation.
- Long-term worker
 - Potable groundwater ingestion;
 - Indoor air inhalation;
 - Vapour skin contact; and,
 - Outdoor air inhalation.
- Construction worker

- o Inadvertent soil ingestion;
- Soil dermal contact;
- Soil particulate inhalation;
- Incidental groundwater ingestion;
- o Incidental groundwater dermal contact;
- Outdoor air inhalation (trench scenario); and,
- Vapour skin contact.
- Short-term (outdoor) worker:
 - Soil particulate inhalation;
 - Soil dermal contact;
 - Inadvertent soil ingestion;
 - Outdoor air inhalation; and,
 - Vapour skin contact.

Refer to Figure 7 for the human health conceptual exposure model.

6.6.2 Ecological Receptors and Exposure Pathways

The Site was most recently used as a hospital and school. The proposed land use is residential on the north portion of the Site and community and parkland on the south portion of the Site. Therefore, the potential ecological receptors that may be present on the Site include: terrestrial vegetation such as trees, grasses and shrubs; soil invertebrates such as earthworms, millipedes and beetles; terrestrial birds such as pigeons, sparrows and robins; and, terrestrial mammals such as moles, voles and mice.

The COCs present at the Site were observed in soil media and groundwater. The COCs present at the Site were observed in soil and groundwater media. There is a potential for select on-Site receptors to come into direct contact with contaminated soil and groundwater media. Furthermore, given that select COCs are considered to be volatile, there is a potential for select on-Site receptors to come into indirect contact with COCs, through the volatilization of parameters into soil gas followed by the migration of vapours to outdoor air.

Given that the shallowest depth to groundwater at the Site is approximately 1.0 m bgs in June 2016 (WSP, 2016), the exposure pathways relevant to groundwater are considered complete.

The MOECC evaluates exposure to aquatic receptors at properties within 5 km of a surface water body. Sixteen Mile Creek is located approximately 225 m west of the Site. Given that the nearest surface water body to the Site are located within 5 km of the Site, aquatic receptors, such as aquatic vegetation, benthic and pelagic invertebrates, birds, mammals and fish are also considered. Thus, there is a potential for select aquatic receptors off the Phase Two Property to come into indirect contact with contaminated groundwater, through the leaching of contaminants into groundwater media, and eventually discharging to the downgradient water body.

The potential ecological receptors and exposure pathways include the following:

• Terrestrial Vegetation

- o root uptake of soil;
- o route uptake of groundwater; and,
- o stem and foliar uptake of vapour.
- Soil Organisms
 - o dermal contact with soil;
 - o ingestion of soil;
 - o soil particulate inhalation;
 - o dermal contact with groundwater;
 - o ingestion of groundwater; and,
 - o inhalation of vapour.
- Terrestrial Mammals and Birds
 - o soil dermal contact;
 - ingestion of soil;
 - soil particulate inhalation;
 - o dermal contact with groundwater;
 - ingestion of groundwater;
 - o inhalation of vapour; and,
 - tissue residue ingestion.
- Aquatic Receptors in Downgradient Surface Water Bodies
 - o surface water dermal contact;
 - surface water ingestion;
 - o ingestion of plant and animal tissue; and,
 - o gill uptake.

Refer to Figure 8 for the ecological conceptual exposure model.

6.7 Summary and Conclusion

Based on the results of the Phase Two ESA, a remediation program with a risk assessment is required prior to filing a Record of Site Condition. Details regarding possible remedial options / risk assessment measures are provided under a separate cover.

7. Summary and Conclusions

Based on the results of the subsurface investigation conducted at the Site, the following findings are presented:

- 6) A Phase Two ESA was completed by WSP in 2016 which identified PAH impacts in soil and PHC impacts in groundwater. **Exp** was retained by the Town of Oakville to complete a Phase Two ESA to delineate the extent of known impacts and address any remaining APECs. The scope of work included the advancement of a total of twenty-four (24) boreholes, eighteen (18) of which were instrumented as groundwater monitoring wells, and eight (8) test pits.
- 7) The general stratigraphy at the Site, as observed in the boreholes, consisted of silty sand / sandy silt overlying silty clay. Fill material was encountered in several locations across the Site.
- 8) The groundwater depths ranged between approximately 0.96 m bgs (in the basement) to 4.22 m bgs within the overburden monitoring wells and 2.73 m bgs to 10 m bgs in bedrock monitoring wells. Based on the relative groundwater elevations, the inferred local groundwater flow direction is generally to the southwest (true south). However, **exp** notes that the direction of localized groundwater flow may be influenced by the presence of underground utilities.
- 9) To assess the quality of soil and groundwater quality at the Site, select soil samples were submitted for Metals, Electrical Conductivity (EC), Sodium Adsorption Ratio (SAR), Polycyclic Aromatic Hydrocarbons (PAHs), Petroleum Hydrocarbons (PHCs) including Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) and Volatile Organic Compounds (VOCs) and select groundwater samples were submitted for laboratory analysis of metals, sodium, chloride, PAHs, PHCs and VOCs including BTEX.
- 10) A review of the analytical results for the soil and groundwater samples submitted indicated the following:
 - a. The concentrations of PAHs in a number of the analyzed soil samples collected from within the footprint of the former school (south portion of the Site) were above the applicable Table 2 SCS. These concentrations are likely associated with poor fill material.
 - b. The detected values of EC and SAR in the soil sample analyzed from borehole BH16-220-SS4 were above the applicable Table 2 SCS.
 - c. Several groundwater samples were submitted for the analysis of PHCs in groundwater. The concentration of PHC F3 and F4 from BH/MW16-210 (south of the former hospital building) were above the applicable Table 2 SCS.
 - d. Based on the analytical results from the Phase Two ESA completed by WSP in 2016 and the current program completed by **exp**, the extent of PAH impacted soil as well as extent of EC/SAR impacts in soil has been delineated. Horizontal and vertical delineation of PHC impacts in groundwater on the west and south side of the hospital

building has been delineated, with the exception of below the footprint of the building (due to cost and site access restrictions, additional work may be required upon demolition of the hospital building).

- e. Sodium and chloride exceedances are present in groundwater across the Site. Vertical delineation of Sodium and Chloride groundwater impacts at BH16-14/14A/14B has not been achieved. Additional work may be required if a Record of Site Condition is to be filed for the Site.
- f. A cobalt exceedance was noted in the groundwater sample collected from BH16-14. The source of the cobalt exceedance is not known at this time.

Based on the results of the Phase Two ESA, a remediation program with a risk assessment is required prior to filing a Record of Site Condition. Details regarding possible remedial options / risk assessment measures are provided under a separate cover.

8. References

This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment and Climate Change. Specific reference is made to the following:

- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario," Ministry of the Environment of Ontario, December 1996;
- The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended to O. Reg. 128/03, August 2003;
- "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," 2011;
- *"Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act,"* March 2004 (amended as of July 1, 2011);
- Ontario Regulation 153/04 (made under the Environmental Protection Act), May 2004 (as amended by O. Reg. 511/09 and O. Reg. 179/11;
- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004;
- "DRAFT Phase One Environmental Site Assessment, 327 and 291 Reynolds Street, 348 Allan Street, Oakville, Ontario," **exp** Services Inc., September 30, 2016.

9. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation (October, November 2016).

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, **exp** should be contacted to assess the situation, and the need for additional testing and reporting. **Exp** has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

The environmental investigation was completed to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of Environment and Climate Change. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and in the formulation of the conclusions. Like all professional persons rendering advice we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at **exp**, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of the **Town of Oakville** and may not be reproduced in whole or in part, without the prior written consent of **exp**, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

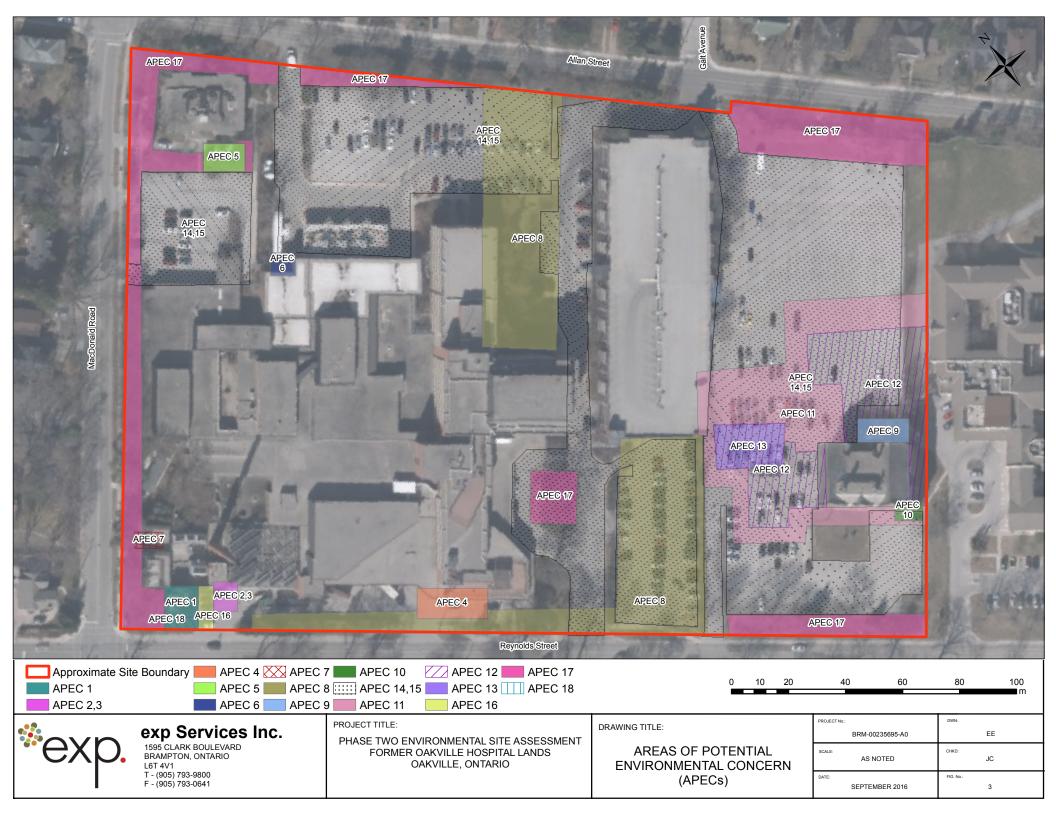
Yours truly,

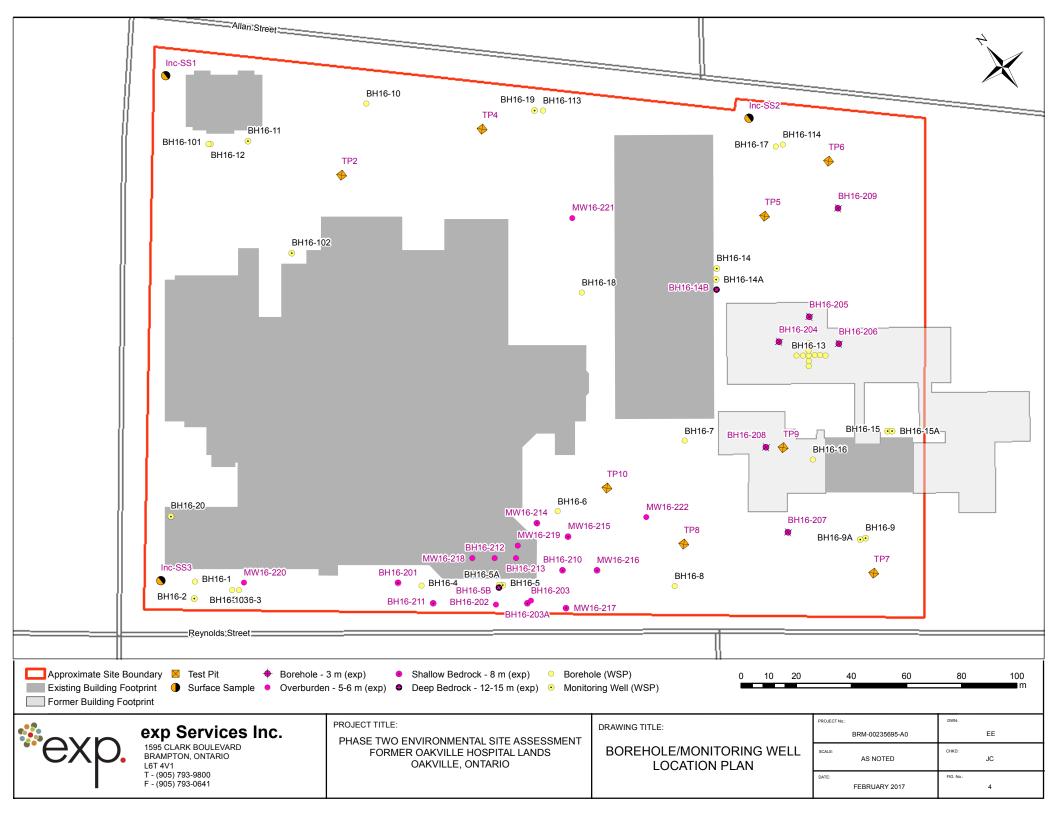
exp Services Inc.

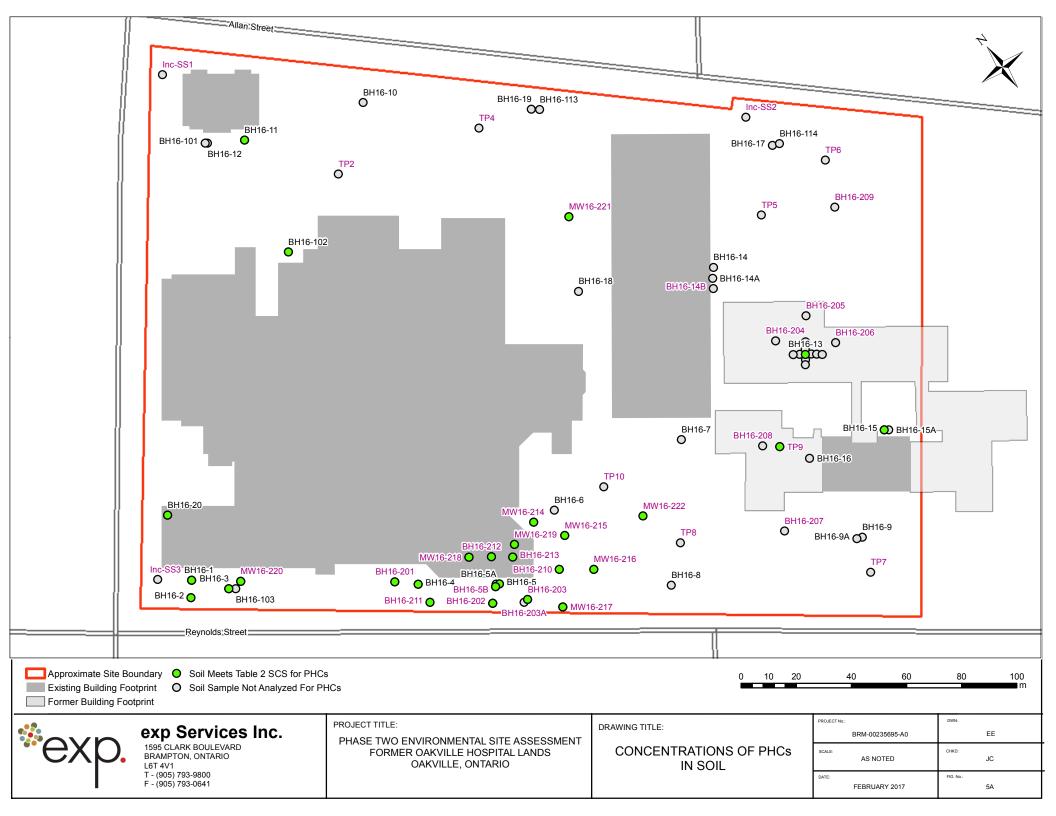
Stephanie Hsia, B.Sc. Environmental Scientist Earth and Environment

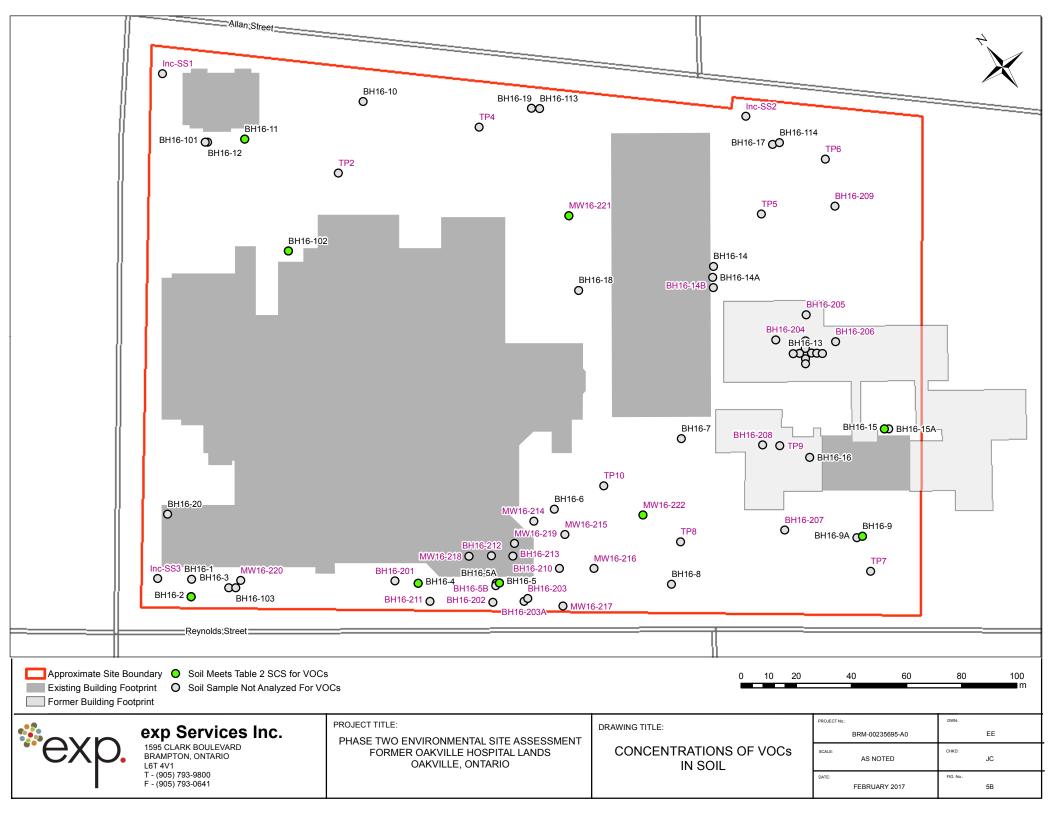
forcharles

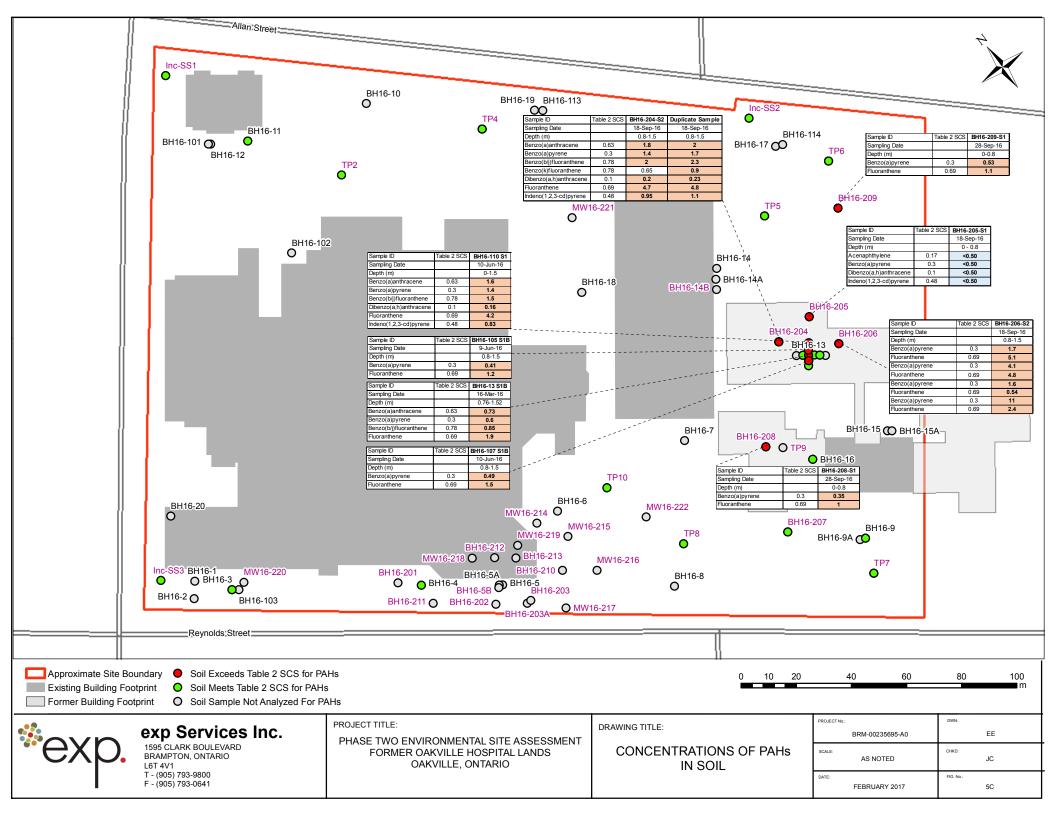
Jon Charles, P.Geo. (Limited) QP_{ESA} Senior Environmental Scientist Earth and Environment

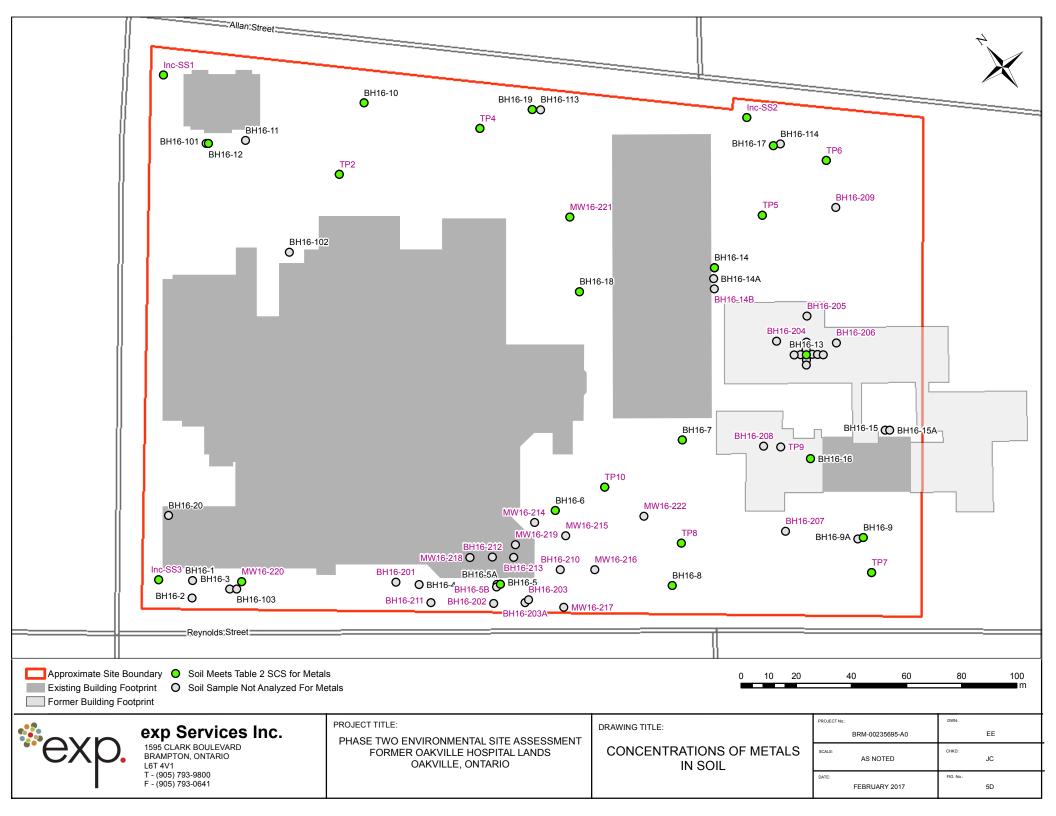


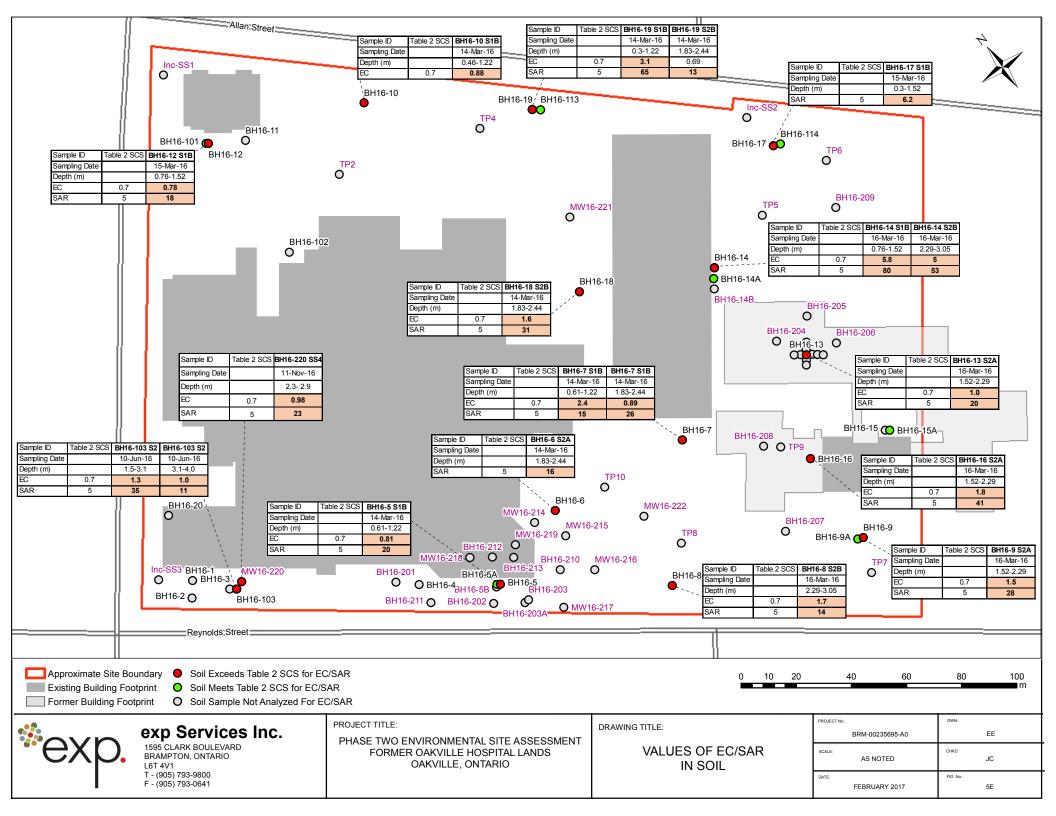

Figures

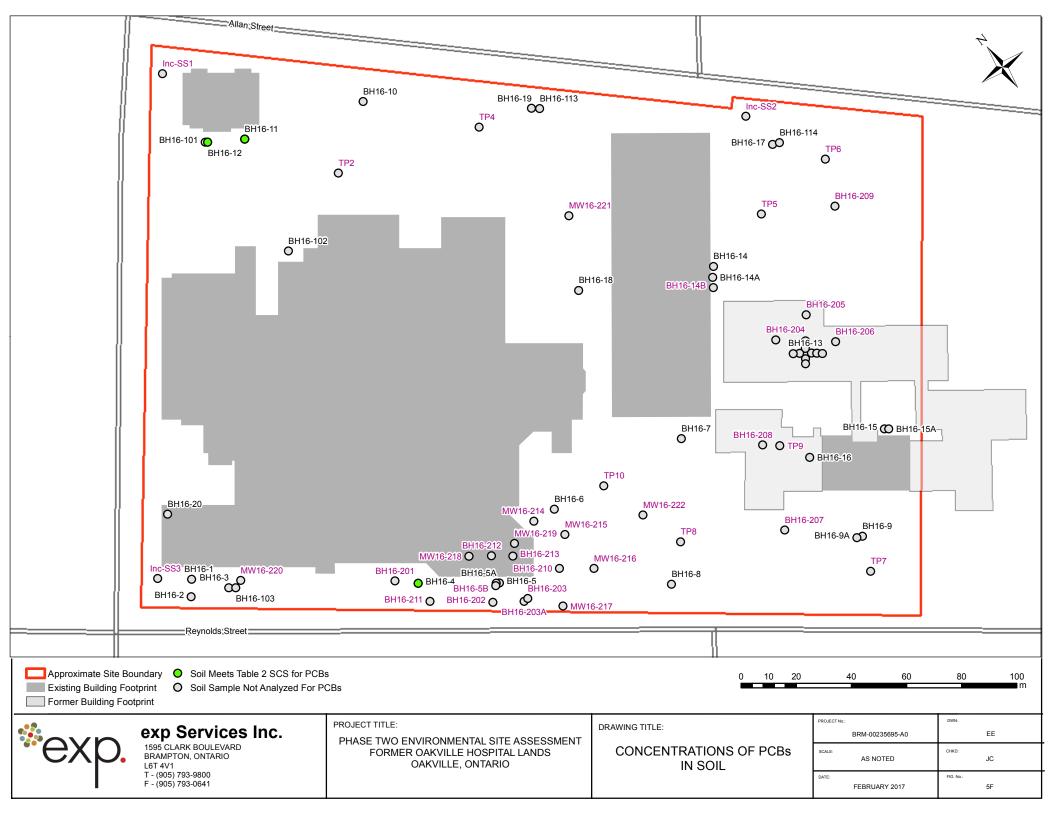


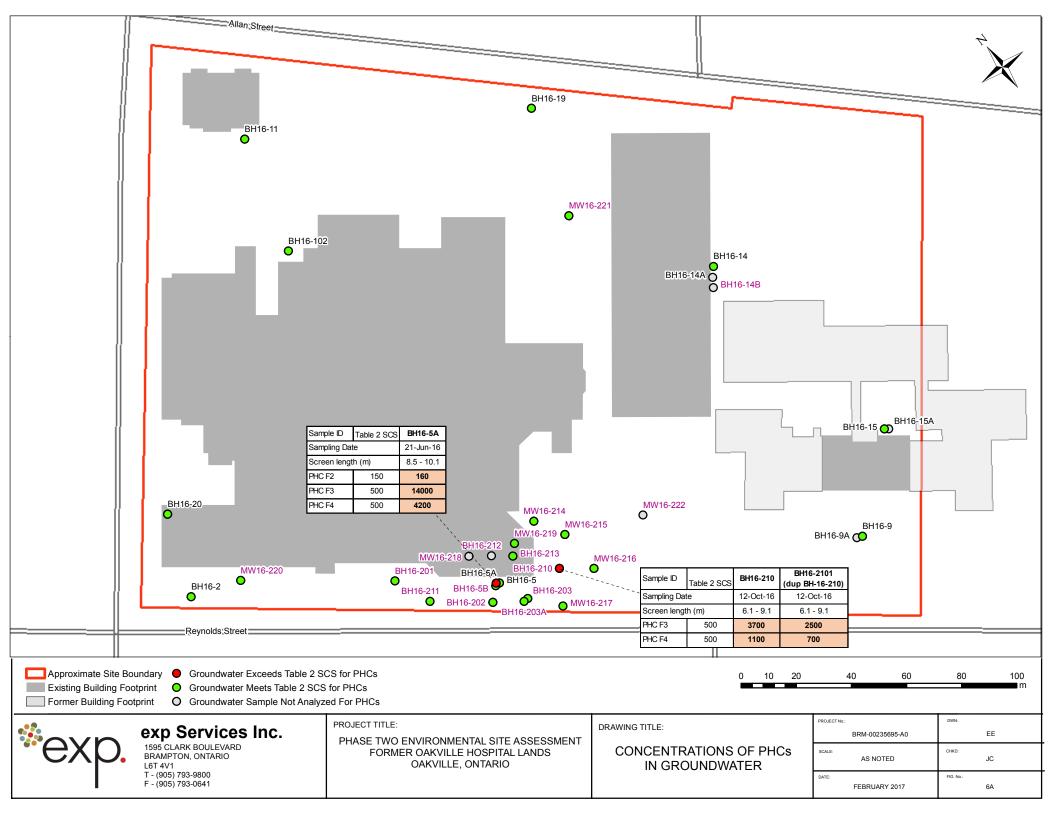

Alter Craney Street East 1300 Alter Craney Alter Craney A	Industrial Dimension Dimen	Entiscare Frik Dom Barnal Rational Rati	Network Cra	
Approximate Site Boundary		0 155 310	620 930	1,240 1,550
EXP Services Inc. 1595 CLARK BOULEVARD BRAMPTON, ONTARIO L6T 4V1 T - (905) 793-9800 F - (905) 793-0641	PROJECT TITLE: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT FORMER OAKVILLE HOSPITAL LANDS OAKVILLE, ON	DRAWING TITLE:	PROJECT NG: BRM-00235695-A0 SCALE: AS NOTED DATE: SEPTEMBER 2016	DWN: MS CHKD: JC FIG. No. 1

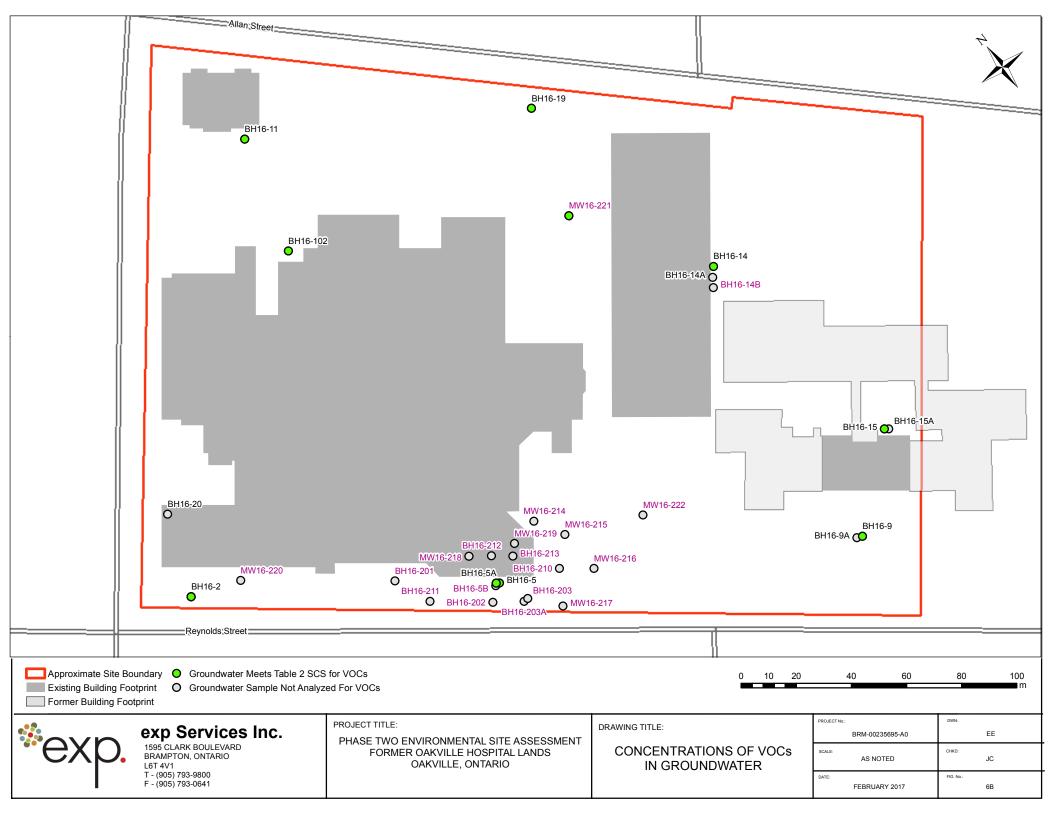


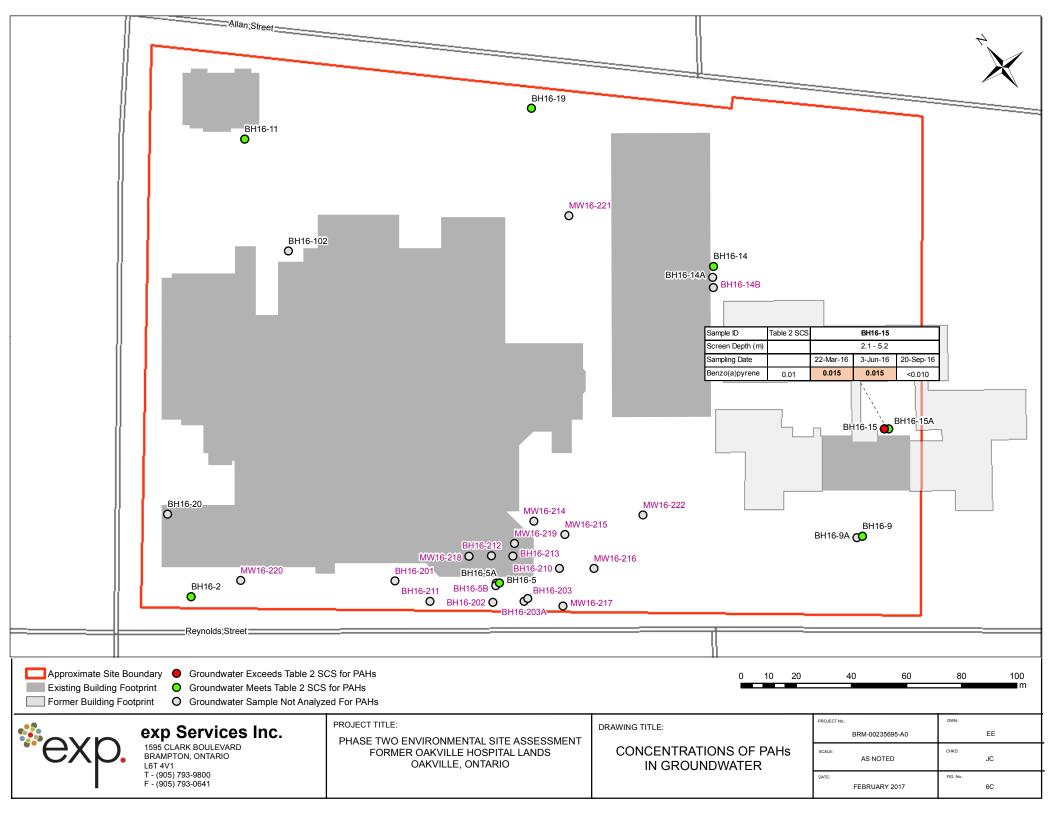


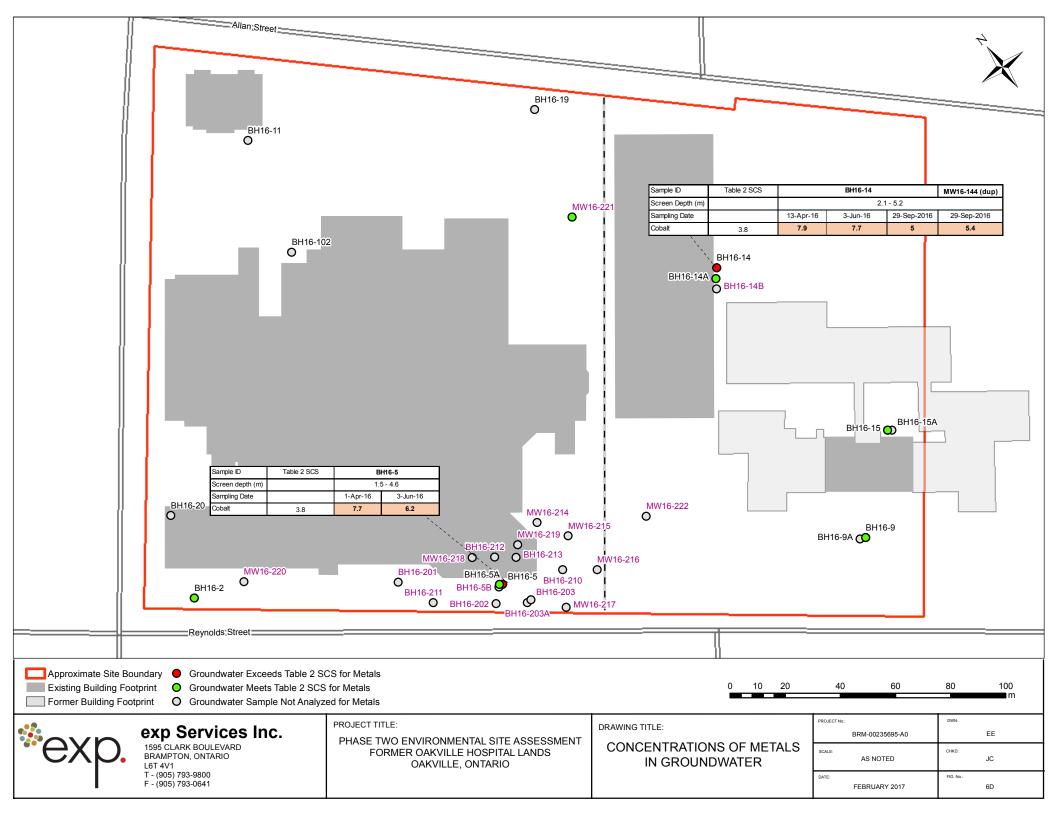


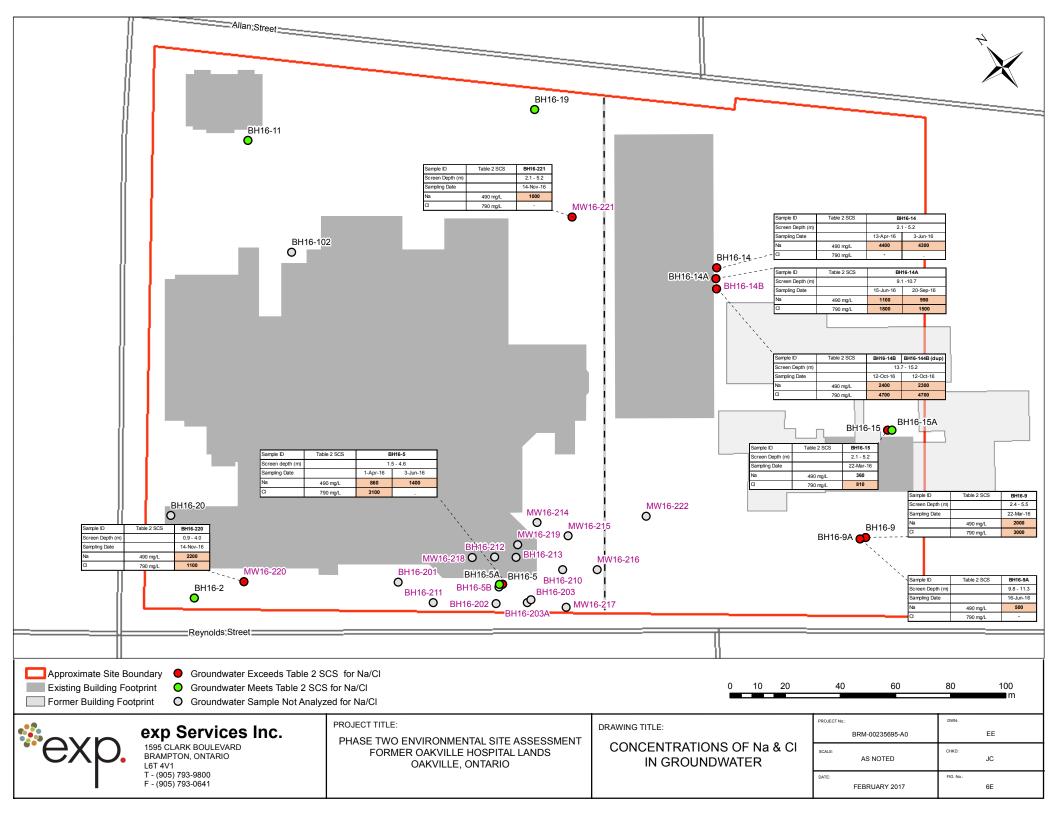


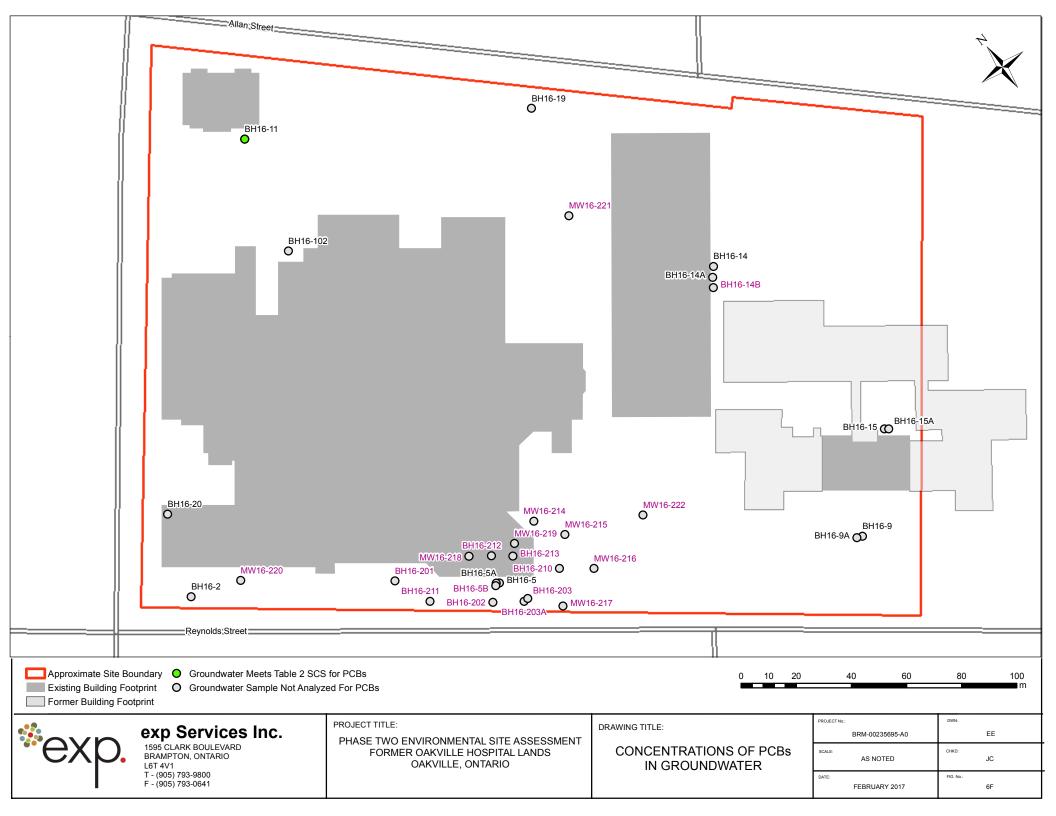


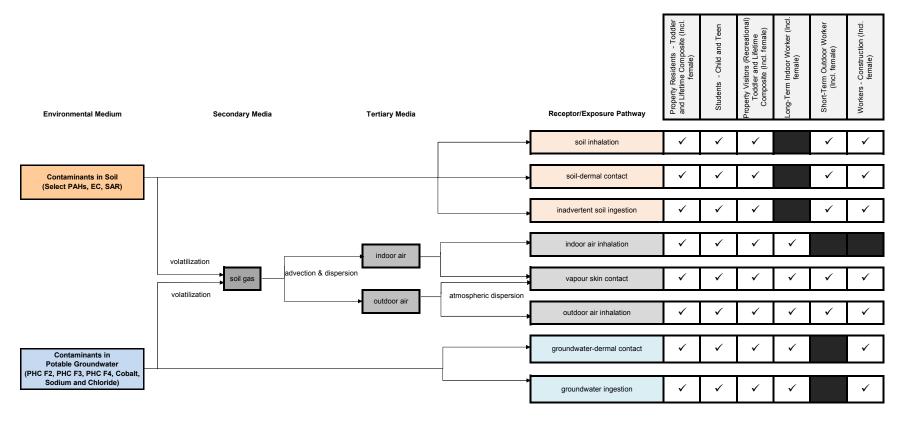


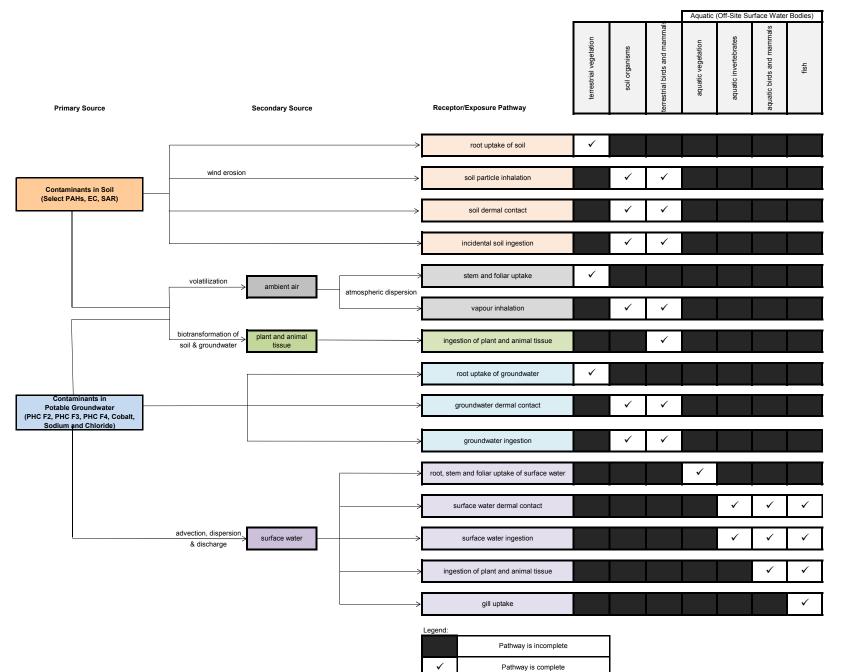


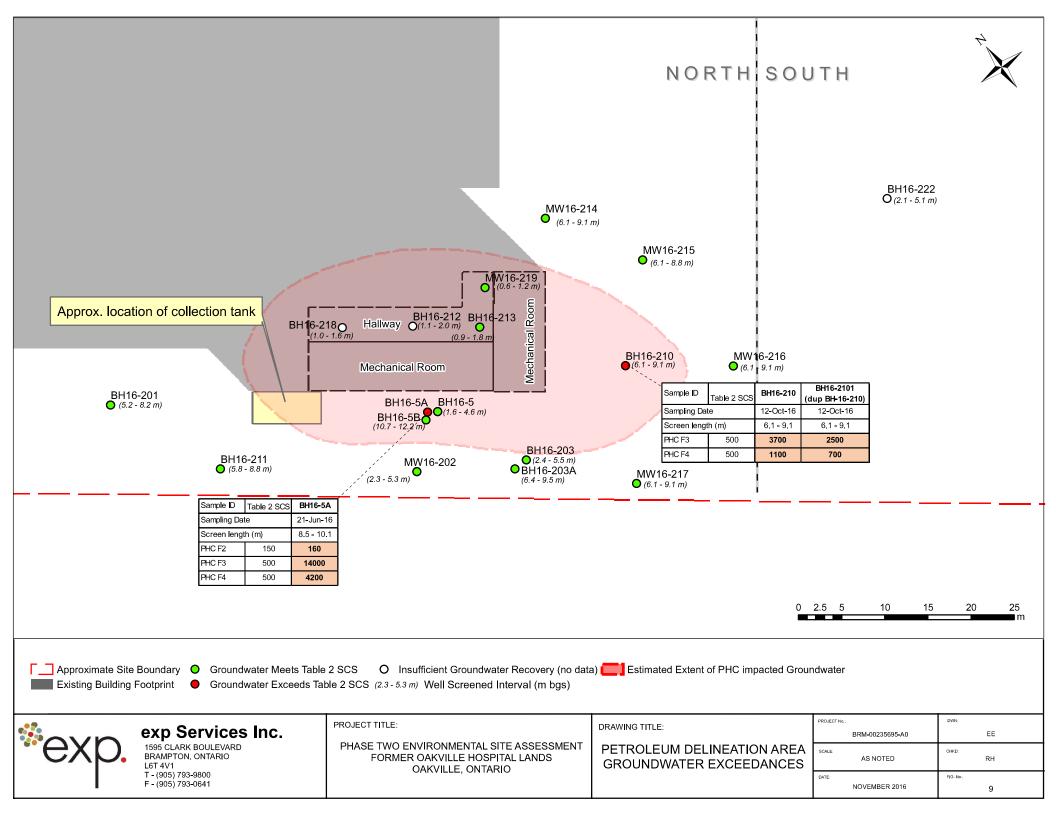


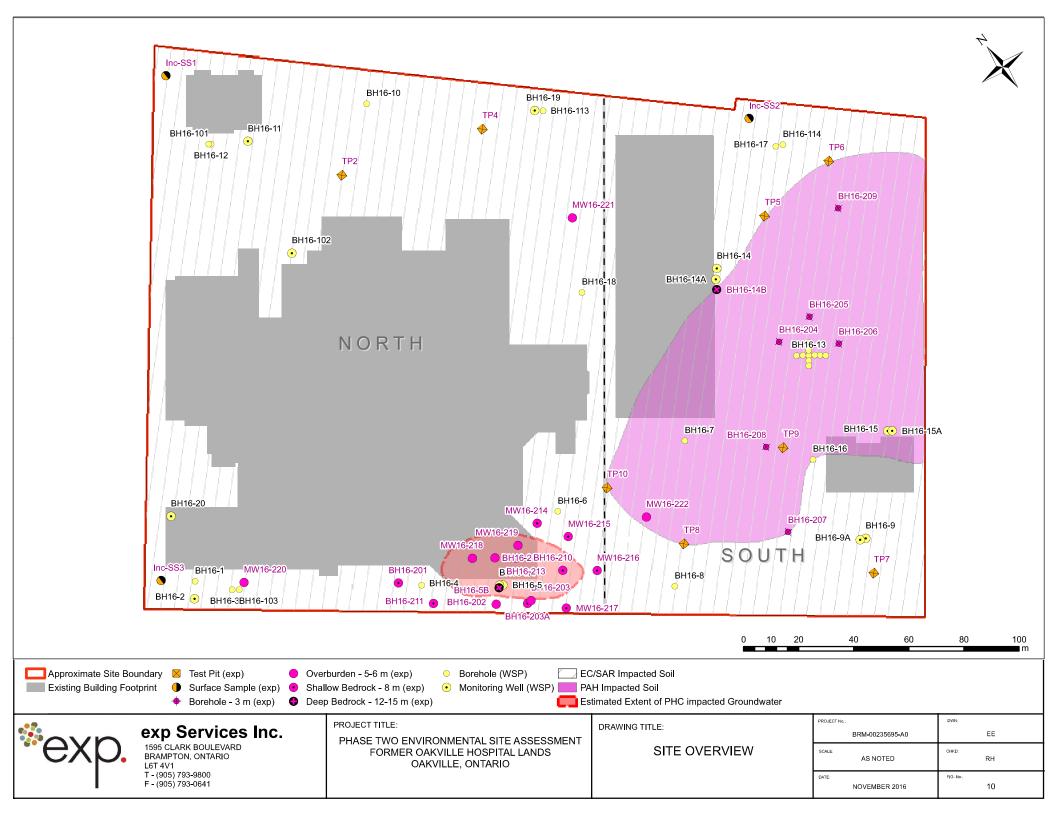











Le	gend:	
		Pathway is incomplete
	~	Pathway is complete

*ехр.

Tables

TABLE 1 - Identified Areas of Potential Environmental Concern (APECs) BRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

	, , -			
Location of APEC on Phase Two Property	Potentially Contaminating Activity (PCA) ²⁾	Location of PCA (on- Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
Northwest corner of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
Northwest corner of Site	30: Importation of Fill Material of Unknown Quality	On-Site	Metals	Soil
West side of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	PHCs, BTEX, Metals	Soil and Groundwater
Northeast corner of Site	Not listed: PCB storage Site	On-Site	PCBs	Soil
Mid-portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
West portion of Site	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
Northwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs MET & ING	Soil and Groundwater
Southwest portion of Site (east side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
Southwest portion of Site (west side of building)	28: Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX	Soil and Groundwater
Southwest portion of Site	58: Waste Disposal and Waste Management, including thermal treatment, landfilling, and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PHCs, BTEX VOCs MET & ING	Soil and Groundwater
Southwest portion of Site	30: Importation of Fill Material of Unknown Quality	On-Site	MET PAHs	Soil
	Location of APEC on Phase Two Property Northwest corner of Site Northwest corner of Site Northwest corner of Site West side of Site Northeast corner of Site Mid-portion of Site West portion of Site Southwest portion of Site (east side of building) Southwest portion of Site (west side of building)	Location of APEC on Phase Two PropertyPotentially Contaminating Activity (PCA) ²³ Northwest corner of Site28: Gasoline and Associated Products Storage in Fixed TanksNorthwest corner of Site28: Gasoline and Associated Products Storage in Fixed TanksNorthwest corner of Site30: Importation of Fill Material of Unknown QualityWest side of Site8: Chemical Manufacturing, Processing and Bulk StorageNortheast corner of SiteNot listed: PCB storage SiteMid-portion of Site28: Gasoline and Associated Products Storage in Fixed TanksWest portion of Site28: Gasoline and Associated Products Storage in Fixed TanksWest portion of Site28: Gasoline and Associated Products Storage in Fixed TanksNorthwest portion of Site28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site (east side of building)28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site (west side of building)28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site (west side of building)28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site (west side of building)28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site (west side of building)28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site28: Gasoline and Associated Products Storage in Fixed TanksSouthwest portion of Site28: Gasoline and Associated Products S	Location of APEC on Phase Two PropertyPotentially Contaminating Activity (PCA) ^{C)} Location of PCA (on- Site or off-Site)Northwest corner of Site28: Gasoline and Associated Products Storage in Fixed TanksOn-SiteNorthwest corner of Site30: Importation of Fill Material of Unknown QualityOn-SiteNorthwest corner of Site30: Importation of Fill 	Location of APEC on Phase Two Property Potentiality Contaminating Activity (PCA) ^{III} Location of PCA (on- site or off-Site) Contaminants of Potential Concern ^{III} Northwest corner of Site 28: Gasoline and Associated Tanks on-Site PHCs, BTEX Northwest corner of Site 28: Gasoline and Associated Tanks on-Site PHCs, BTEX Northwest corner of Site 30: Importation of Fill Material of Unknown Quality on-Site Metals West side of Site 8: Chemical Manufacturing, Processing and Burk Storage on-Site PHCs, BTEX, Metals Md-portion of Site 8: Chemical Manufacturing, Processing and Burk Storage on-Site PHCs, BTEX, Metals Md-portion of Site 28: Gasoline and Associated Products Storage in Fixed Tanks on-Site PHCs, BTEX Md-portion of Site 28: Gasoline and Associated Products Storage in Fixed Tanks on-Site PHCs, BTEX Msteportion of Site 28: Gasoline and Associated Products Storage in Fixed Tanks on-Site PHCs, BTEX Msteportion of Site 28: Gasoline and Associated Products Storage in Fixed Tanks on-Site PHCs, BTEX Southwest portion of Site (seal alse of building) 28: Gasoline and Associated Products Storage in Fixed Tanks on

TABLE 1 - Identified Areas of Potential Environmental Concern (APECs) BRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase Two Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 13: Former shop class area associated with former Oakville High School	Southwest corner of Site	Not listed: Former shop class area	On-Site	PHCs, BTEX	Soil
APEC 14: Application of de-icing salts on asphalt covered surfaces on Site	Entire Site (only asphalt covered surfaces)	Not listed: Application of de- icing salts	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater
APEC 15: Potential presence of fill material	Entire Site (only asphalt covered surfaces)	30: Importation of Fill Material of Unknown Quality	On-Site	MET PAHs	Soil
APEC 16: Presence of brine UST on west side of former Hospital building	West portion of Site	8: Chemical Manufacturing, Processing and Bulk Storage	On-Site	EC, SAR (Soil) Na, Cl (Groundwater)	Soil and Groundwater
APEC 17: Presence of smoke stack / chimney on Site building	Landscaped areas of the Site	Not listed – presence of smoke stack / chimney	On-Site	PAHs Metals	Soil
APEC 18: Spill incident from off-Site UST (west of Site- 358 Reynolds)	Off-Site (west)	Not listed: Spill incident	Off-Site	PHCs, BTEX VOCs	Groundwater
exp Services Inc.					BRM-00235695-A0
or more contaminants are p (a) identification of post or p (b) identification of potential 2. Potentially contaminating	mental Concern means the area otentially present, as determined resent uses on, in or under the p ly contaminating activities activity means a use or activity rred in a phase one study area	I through the PI ESA, including hase one property, an	through		
	umn, identify all contaminants of r in the Assessment of Propertie:				

p

March 9, 2004, amended as of July 1, 2011, as	specified below			
ABNs	PCBs	Metals	Electrical Conductivity	SAR
CPs	PAHs	As, Sb, Se	Cr (VI)	
1,4- Dioxane	THMs	Na	Hg	
Dioxins/Furans, PCDDs/PCDFs	VOCs	B-HWS	Methyl Mercury	
OCs	BTEX	CI-	high pH	
PHCs	Ca, Mg	CN-	low pH	

4. When submitting a record of site condition for filing, a copy of this table must be attache **Cette publication hautement spécialisée n'est disponible qu'en anglais en vertu du règlement 671/92, qui en exempte l'application de la Loi sur les services en français. Pour obtenir de l'aide en francais, veuillez communiquer avec le ministère de l'Environnement au 1-800-461-6290

TABLE 2 - Summary of Soil Samples Submitted for Chemical AnalysisBRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Soil Sample Number	Sample Depth Interval (m)	Rationale	Analysis	Consultant	
BH16-5B-S5	3.1-3.7	PHC Delienation of BH16-5A (Vertical delineation)		exp Services Inc.	
BH16-201-5	3.1-3.7		PHCs including BTEX	exp Services Inc.	
BH16-202-5	3.1-3.8	PHC Delineation		exp Services Inc.	
BH16-203-5	3.1-3.8			exp Services Inc.	
BH16-204-S2	0.8-1.5			exp Services Inc.	
BH16-204-S5	3.1-3.8			exp Services Inc.	
BH16-204-S6	3.8-4.6			exp Services Inc.	
BH16-205-S1	0-0.8			exp Services Inc.	
BH16-205-S3	1.5-2.3			exp Services Inc.	
BH16-206-S2	0.8-1.5			exp Services Inc.	
BH16-206-S4	2.3-3.05	PAH Delineation	PAHs	exp Services Inc.	
BH16-207-S2	0.8-1.5			exp Services Inc.	
BH16-207-S5	3.1-3.8	0-0.8		exp Services Inc.	
BH16-208-S1	0-0.8			exp Services Inc.	
BH16-208-S4	2.3-3.1			exp Services Inc.	
BH16-209-S1	0-0.8			exp Services Inc.	
BH16-209-S3	1.5-2.3			exp Services Inc.	
BH16-210-S5	3.1-3.7			exp Services Inc.	
BH16-211-S5	3.1-3.7			exp Services Inc.	
BH16-212-S3	1.2-1.8			exp Services Inc.	
BH16-213-S3	1.2-1.8			exp Services Inc.	
BH16-214-SS6	3.8 - 4.4	PHC Delineation	PHCs including BTEX	exp Services Inc.	
BH16-215-SS5	3.1 - 3.7			exp Services Inc.	
BH16-216-SS5	3.1 - 3.7			exp Services Inc.	
BH16-217-SS5	3.1 - 3.7			exp Services Inc.	
BH16-218-SS3	1.2 - 1.7			exp Services Inc.	
BH16-219-SS3	1.2 - 1.8			exp Services Inc.	
BH16-220-SS2	0.8 - 1.4	Fill material characterization	Metals	exp Services Inc.	
BH16-220-SS4	2.3 - 2.9	EC / SAR delineation	EC/ SAR	exp Services Inc.	
BH16-221-SS1	0 - 0.6	Fill material characterization	Metals	exp Services Inc.	

TABLE 2 - Summary of Soil Samples Submitted for Chemical AnalysisBRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Soil Sample Number	Sample Depth Interval (m)	Rationale	Analysis	Consultant
BH16-221-SS5	3.1 - 3.7		PHCs	exp Services Inc.
BH16-221-SS6	3.8 - 4.4	Former registered waste generator	VOCs	exp Services Inc.
BH16-222-SS4	2.3 - 2.9	Former registered waste generator	PHCs	exp Services Inc.
BH16-222-SS6	4.6 - 5.2		VOCs	exp Services Inc.
TP2-SS1	0 - 0.8			exp Services Inc.
TP4-SS2	0.8 - 1.5			exp Services Inc.
TP4-SS6	3.8 - 4.6			exp Services Inc.
TP5-SS1	0 - 0.8			exp Services Inc.
TP6-SS2	0.8 - 1.5	Delinection of fill motorial	DALLa Matala	exp Services Inc.
TP6-SS6	3.8 - 4.6	Delineation of fill material	PAHs, Metals	exp Services Inc.
TP7-SS2	0.8 - 1.5			exp Services Inc.
TP7-SS5	3.1 - 3.8			exp Services Inc.
TP8-SS2	0.8 - 1.5			exp Services Inc.
TP9-SS1	0 - 0.8	Former machine shop	PHCs including BTEX	exp Services Inc.
TP10-SS2	0.8 - 1.5	Delineation of fill material	PAHs, Metals	exp Services Inc.
TP10-SS5	3.1 - 3.8		FARS, Medals	exp Services Inc.
INC-SS1	0 - 0.3			exp Services Inc.
INC-SS2	0 - 0.3	Surface soil sample- potential particulates associated with former incinerator	PAHs, Metals	exp Services Inc.
INC-SS3	0 - 0.3			exp Services Inc.
		QA/QC Samples:		
BH16-55B-S5 (duplicate of BH16-5B-S5)	3.1-3.7	QA/QC	PHCs including BTEX	exp Services Inc.
BH16-2022-5 (duplicate of BH16-202-5)	3.1-3.8	QA/QC	PHCs including BTEX	exp Services Inc.
BH16-2044-S2 (Dup of BH16-204 S2)	0.8-1.5	QA/QC	PAHs	exp Services Inc.
BH16-257-SS5 (Dup of BH16-217-SS5)	3.1 - 3.7	QA/QC	PHCs including BTEX	exp Services Inc.
BH16-250-SS4 (Dup of BH16-220-SS4)	2.3 - 2.9	QA/QC	PHCs including BTEX	exp Services Inc.
TP44-SS22 (Dup TP4-SS2)	0.8 - 1.5	QA/QC	PAHs, Metals	exp Services Inc.
TP55-SS11 (Dup TP5-SS1)	0 - 0.8	QA/QC	PAHs, Metals	exp Services Inc.

TABLE 3 - Monitoring Well Completion Details

BRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Monitoring Well ID	Ground Elevation (mAMSL)	Stickdown (m)	Top of Pipe Elevation (mAMSL)	Length of Well (m)	Screen Length (m)	Water Level (m)	Riser Length (m)	Top of Screen (mAMSL)	Bottom of Screen (mAMSL)	Geologic Units Intercepted by Well Screen
MW16-201	91.91	0.10	91.81	8.20	3.00	2.70	5.20	86.71	83.71	
MW16-5B	92.61	0.13	92.48	12.10	1.50	10.00	10.60	82.01	80.51	Shale Bedrock
MW16-14B	92.26	0.14	92.112	15.20	1.50	8.60	13.70	78.56	77.06	Shale Bedrock
MW16-201	91.91	0.08	91.83	8.20	3.00	2.70	5.20	86.71	83.71	Shale Bedrock
MW16-202	92.51	0.14	92.37	5.30	3.00	4.10	2.30	90.21	87.21	Silty clay / silty sand
MW16-203	92.50	0.11	92.39	5.40	3.00	4.00	2.40	90.10	87.10	Silty clay / silty sand
MW16-203A	92.48	0.16	92.32	9.40	3.00	4.20	6.40	86.08	83.08	Shale Bedrock
MW16-210*	92.49	0.12	92.37	9.10	3.00	6.40	6.10	86.39	83.39	Shale Bedrock
MW16-211	92.51	0.17	92.34	8.80	3.00	6.30	5.80	86.71	83.71	Shale Bedrock
MW16-212	89.62	0.04	89.58	1.90	0.90	1.90	1.00	88.62	87.72	Silty clay
MW16-213	89.62	0.07	89.55	1.80	0.90	1.50	0.90	88.72	87.82	Silty clay / silty sand
MW16-214	92.75	0.11	92.64	9.10	3.00	7.70	6.10	86.65	83.65	Shale Bedrock
MW16-215	92.12	0.12	92	8.80	2.70	6.60	6.10	86.02	83.32	Shale Bedrock
MW16-216	92.03	0.09	91.94	9.10	3.00	6.70	6.10	85.93	82.93	Shale Bedrock
MW16-217	92.03	0.13	91.9	9.10	3.00	7.40	6.10	85.93	82.93	Shale Bedrock
MW16-218	89.64	0.08	89.56	1.60	0.90	Dry	0.70	88.94	88.04	Clay / silty sand
MW16-219	89.61	0.05	89.56	2.00	1.08	0.90	0.92	88.69	87.61	Clay / silty sand
MW16-220	93.51	0.90	92.61	4.00	3.00	2.70	1.00	92.51	89.51	Silty sand / sand
MW16-221	93.69	0.10	93.59	5.10	3.00	3.40	2.10	91.59	88.59	Clayey silt / sand
MW16-222	91.97	0.12	91.85	5.10	3.00	Dry	2.10	89.87	86.87	Silty clay / silty sand

mAMSL - meters above mean sea level (Water level from November 22, 2016, *- water level from October 12, 2016) mbgs - meters below ground surface

TABLE 4 - Summary of Groundwater Samples Submitted for Chemical AnalysisBRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Sample Identification	Sampling Date	Rationale	Analysis	Consultant
MW16-5B	13-Oct-16	Vertical delineation of PHC impacts	PHCs	exp Services Inc.
BH16-14A	20-Sep-16	Vertical delineation well for Na/Cl installed by WSP, Re sampling for confirmation of Na/Cl impacts in groundwater	Sodium, Chloride	exp Services Inc.
MW16-14B	12-Oct-16	Vertical delineation of Na/Cl impacts in groundwater	Sodium, Chloride	exp Services Inc.
MW16-201	29-Sep-16			exp Services Inc.
MW16-202	29-Sep-16			exp Services Inc.
MW16-203	29-Sep-16	Horizontal and vertical delineation of PHC impacts in		exp Services Inc.
MW16-203A	12-Oct-16	groundwater		exp Services Inc.
MW16-210	12-Oct-16			exp Services Inc.
MW16-211	12-Oct-16	PHCs including BTEX		exp Services Inc.
MW16-213	13-Oct-16	Horizontal delineaiton of PHC impacts in groundwater (interior)		exp Services Inc.
MW16-214	10-Nov-16			exp Services Inc.
MW16-215	10-Nov-16	Horizontal and vertical delineation of PHC impacts in		exp Services Inc.
MW16-216	11-Nov-16	groundwater		exp Services Inc.
MW16-217	11-Nov-16			exp Services Inc.
MW16-219	10-Nov-16	Horizontal delineaiton of PHC impacts in groundwater (interior)		exp Services Inc.
MW16-220	14-Nov-16	Former UST location	PHCs including BTEX, Na, Cl	exp Services Inc.
MW16-221	14-Nov-16	Former Oakville Hospital- registered waste generator	PHCs, VOCs, Metals and Inorganics	exp Services Inc.
		QA/QC Samples:		
MW16-2101 (dup of MW16-210)	12-Oct-16			exp Services Inc.
MW16-2022 (Dup of MW16-202)	29-Sep-16			exp Services Inc.
MW16-255 (Dup of MW16-215)	10-Nov-16	Sampling for QA/QC Purposes	PHCs including BTEX	exp Services Inc.
MW16-255 (Dup of MW16-215)	11-Nov-16	-		exp Services Inc.
MW16-256 (Dup of MW16-216)	11-Nov-16			exp Services Inc.

TABLE 5A - Summary of Groundwater Levels and Elevations in Bedrock

BRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

Monitoring Well ID	Ground Elevation (mAMSL)	Stickdown (m)	Top of Pipe Elevation (mAMSL)	Water Level Depth (m btop)	Water Level Depth (mAMSL)	Date
MW16-5B	92.61	0.18	92.43	10.00	82.43	13-Oct-16
WW 10-5B	92.61	0.18	92.43	10.00	82.43	22-Nov-16
MW16-14B	92.26	0.14	92.12	8.73	83.39	12-Oct-16
WW 10-14B	92.26	0.14	92.12	8.622	83.50	22-Nov-16
MW16-201	91.91	0.11	91.80	3.143	88.66	29-Sep-16
1010010-201	91.91	0.11	91.80	2.734	89.07	22-Nov-16
MW16-203A	92.49	0.19	92.30	6.616	85.68	12-Oct-16
WW 10-203A	92.49	0.19	92.30	7.235	85.06	22-Nov-16
MW16-210	92.49	0.12	92.37	6.38	85.99	12-Oct-16
MW16-211	92.50	0.16	92.34	6.199	86.14	12-Oct-16
1010010-211	92.50	0.16	92.34	6.324	86.02	22-Nov-16
MW16-214	92.75	0.11	92.64	6.955	85.69	10-Nov-16
1010010-214	92.75	0.11	92.64	7.745	84.90	22-Nov-16
MW16-215	92.12	0.12	92.00	6.375	85.63	10-Nov-16
1010010-215	92.12	0.12	92.00	6.604	85.40	22-Nov-16
MW16-216	92.03	0.08	91.95	5.36	86.59	11-Nov-16
1010010-210	92.03	0.08	91.95	6.759	85.19	22-Nov-16
MW16-217	92.03	0.13	91.90	5.9	86.00	11-Nov-16
1010010-217	92.03	0.13	91.90	7.452	84.45	22-Nov-16

TABLE 5B - Summary of Groundwater Levels and Elevations in Overburden

Monitoring Well ID	Ground Elevation (mAMSL)	Stickdown (m)	Top of Pipe Elevation (mAMSL)	Water Level Depth (m btop)	Water Level Depth (mAMSL)	Date
MW16-203	92.50	0.11	92.39	4.201	88.19	29-Sep-16
1010010-203	92.50	0.11	92.39	4.222	88.17	22-Nov-16
MW16-202	92.50	0.14	92.36	4.17	88.19	29-Sep-16
1010010-202	92.50	0.14	92.36	4.189	88.17	22-Nov-16
MW16-212	89.62	0.04	89.58	1.909	87.67	13-Oct-16
10-212	89.62	0.04	89.58	1.915	87.67	22-Nov-16
MW16-213	89.62	0.07	89.55	1.501	88.05	13-Oct-16
1010010-213	89.62	0.07	89.55	1.551	88.00	22-Nov-16
MW16-218	89.64	0.08	89.56	DRY		13-Oct-16
MW16-219	89.60	0.05	89.55	0.964	88.59	10-Nov-16
1010010-219	89.60	0.05	89.55	0.965	88.59	22-Nov-16
MW16-220	93.51	0.09	93.42	3.09	90.33	14-Nov-16
10-220	93.51	0.09	93.42	2.771	90.65	22-Nov-16
MW16-221	93.69	0.10	93.59	4.137	89.45	14-Nov-16
10-221	93.69	0.10	93.59	3.46	90.13	22-Nov-16
MW16-222	91.97	0.12	91.85	DRY		14-Nov-16

BRM-00235695-A0 Former Oakville Hospital Lands, Oakville, ON

The Town of Oakville Phase Two Environmental Site Assessment 327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario BRM-00235695-B0 December 2016

Appendix A: Sampling and Analysis Plan

1. Introduction

This Appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA) for the property located at 327, 291 Reynolds Street and 348 Allan Street, in Oakville, Ontario (hereinafter referred to as the 'Site'). The Phase Two ESA will be conducted to provide further characterization of the Site subsurface conditions and define the extent of soil and groundwater impacts identified in previous investigations to support the Site Remediation and the subsequent filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment (MOE) Brownfields Environmental Site Registry. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/quality control measures that will be undertaken to provide for the collection of accurate, reproducible and representative data. These components are described in further detail below. This SAAP was prepared prior to the completion of the Phase Two ESA and does not incorporate the additional delineation program.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (collectively known as 'BTEX'), volatile organic compounds (VOCs), metals, inorganics, and polycyclic aromatic hydrocarbons (PAHs) in soil and for the analysis of PHCs, BTEX, VOCs, PAHs, metals and inorganics in groundwater. The soil sampling media is to consist of the surface soils and upper overburden materials (depths up to 6.1 m below grade). The soil sampling will be location-specific to assess for the potential presence of PHCs, BTEX, VOCs, metals and inorganic parameters based on the identification of areas of potential environmental concern (APECs). Vapour readings will also be collected in the field to determine samples to be submitted for BTEX and PHC F1-F2 analysis. The soil sample intervals will extend from the surface up to a maximum depth of approximately 6.1 m below grade.

The groundwater sampling will be location-specific to assess for the potential presence of PHCs, BTEX, VOCs, metals and inorganics based on the identification of APECs and for delineation purposes (extent of PHC impacts). The monitoring well network is to comprise of a series of overburden, shallow bedrock and deep bedrock monitoring, as well as existing wells installed in previous investigations (WSP).

Vertical control of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a local structure with a known geodetic elevation. Groundwater flow and direction in the water table aquifer will also be determined through groundwater level measurements and the elevations established from the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;
- Monitoring Well Installation;
- Monitoring Well Development;

- Groundwater Level Measurements;
- Elevation Survey; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in **exp's** standard operating procedures and are outlined below:

3.1 Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of groundwater monitoring wells. Several boreholes are proposed to be advanced in the area of BH16-5A for horizontal and vertical delineation of the PHC impacts in groundwater and several boreholes in the vicinity of BH16-13 for horizontal and vertical delineation of PAH impacts in soil. The boreholes will be completed to provide for the collection of samples of the surficial and overburden materials beneath the Site.

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered, hand augering or digging will be performed beforehand to confirm the location of the utility.

Where there is overlying asphalt or concrete, the overlying material will be mechanically cored to provide access to the underlying soil materials. The borehole drilling program will be conducted by a licensed driller under the oversight of **exp** field staff. Auger flights will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geologic property characterization.

For drilling activities, the soil samples will be collected from the boreholes using 5 cm diameter, 150 cm long, PVC dual core sampling device. The dual-core sampling device will be attached to drill rods and advanced into the soil by means of a mechanically or manually driven 63.6 kg hammer dropped from a height of approximately 0.76 m, in accordance with ASTM method D-1586.

Upon retrieval from the boreholes, the dual-core and split-spoon samplers will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Samples for chemical analysis will be selected on the basis of visual and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of known impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for analysis of VOCs, BTEX and PHC F1-F2 will be collected into jars provided with Teflon seals, and filled to minimize head-space volume. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field note book. The samples will be submitted to the contractual laboratory within analytical test group holding times under Chain of Custody protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Monitoring Well Installation

Several boreholes will be instrumented as groundwater monitoring wells installed with 10 foot (3.05 m) long screens intercepting the native overburden material, where the water table aquifer is expected. The monitoring wells will be constructed using 51 mm diameter, Schedule 40, PVC riser pipe and number 10

slot size (0.25 mm) well screens. The base of the well screens will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screens will be backfilled with silica sand, to an average height of 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells will be completed with flush mounted protective steel casings cemented into place.

3.4 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using a dedicated inertial pump and sample tubing to scrub the well screen or dedicated 1 L bailers dropped from a sufficient height to disturb the water column.

Monitoring well development will be monitored by visual observations of turbidity, and by taking field measurements of pH, specific conductance and temperature for every standing well (i.e. wetted casing) volume removed. Standing water volumes will be determined by means of an electronic water level meter. Water quality parameter measurements will be recorded using a multi meter instrument. The instrument probes will be calibrated prior to use following manufacturer's procedures using analytical grade reagents, or if obtained from a field equipment supplier, the calibration will be checked. Approximately 3 to 5 wetted well volumes will be removed and well development will continue until the purged water has chemically stabilized as indicated by visual observations and field parameter measurements. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.5 **Groundwater Level Measurements**

Groundwater level measurements will be recorded for newly installed and existing monitoring wells to determine groundwater flow and direction in the water table aquifer beneath the Site. Water levels will be measured with respect to the top of the casing by means of an electronic water level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

3.6 Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations and select previously installed monitoring wells. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a structure with a known geodetic elevation. Readings measured against a structure with a known geodetic elevation will be recorded as meters above mean sea level (m AMSL). The elevation survey will be accurate to within ± 0.3 cm.

3.7 Groundwater Sampling

Groundwater samples will be collected from newly installed and select existing monitoring wells for chemical analysis. The monitoring wells will be purged of three (3) to five (5) wetted well volumes of water to remove standing water and draw in fresh formation water. Wetted well volumes will be determined by measuring water levels with an electronic water level meter. A low-flow peristaltic pump and dedicated sample tubing, or dedicated bailers, will be used for well purging and sample collection. Wells, which are purged dry, are to recover to approximately 75% of static levels before sampling.

Recommended groundwater sample volumes will be collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Samples for VOC analysis will be collected in triplicate vials prepared with concentrated hydrochloric acid or an acceptable substitute as a preservative. Each VOC vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure

that no head-space is present. Groundwater samples to be submitted for analysis of metals and inorganic parameters will be collected with a 45 micron disposable filter to remove fine sediment.

All groundwater samples will be assigned unique identification numbers, and the date, time, project number, company name, location and requested analyses for each sample will be documented in a bound hard cover notebook. The samples will be submitted to the contractual laboratory within analytical test group holding times under chain of custody protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 **Decontamination Protocols**

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split soil sampling devices and dual core samplers will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations in according with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, and purging activities. For hydraulic conductivity tests, the electronic water level meters will be decontaminated between sampling locations. All decontamination fluids will be collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration will be calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments will be checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration will be checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

4.3 Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

4.4 **Sample Documentation**

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

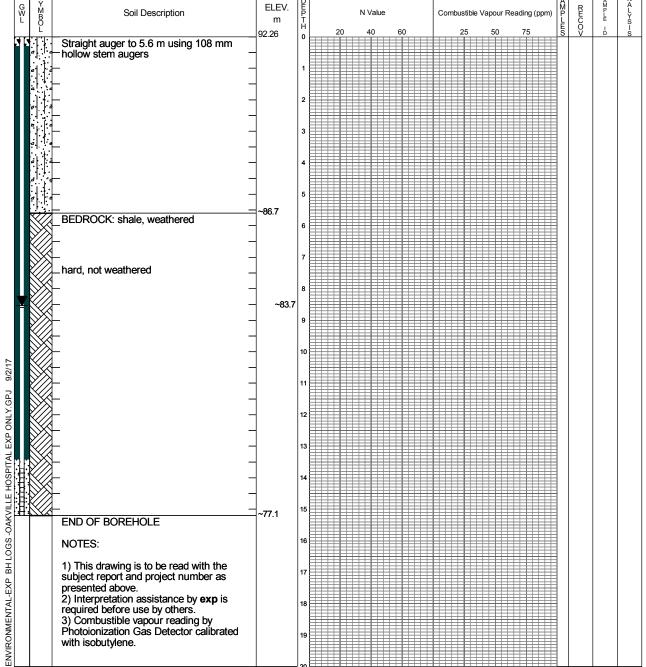
4.5 Field Quality Control

Field quality control samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. For groundwater sampling, one (1) field duplicate is to be collected for every ten (10) samples submitted for chemical analysis. For multiple day sampling events, at least one (1) field duplicate soil and groundwater sample will be submitted for chemical analysis. The field duplicate samples will be assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.

For groundwater samples submitted for the analysis of VOCs or PHCs, one (1) trip blank prepared by the contractual laboratory will be submitted for chemical analysis to evaluate the potential for sample cross-contamination. The recommended alert criterion is the detection of any test group analyte at a concentration in excess of laboratory detection limits.

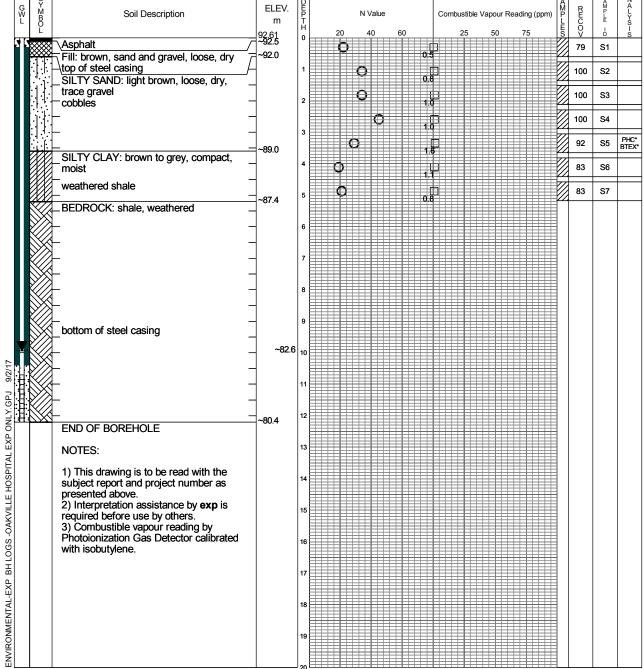
The Town of Oakville Phase Two Environmental Site Assessment 327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario BRM-00235695-B0 December 2016

Appendix B: Plan of Survey

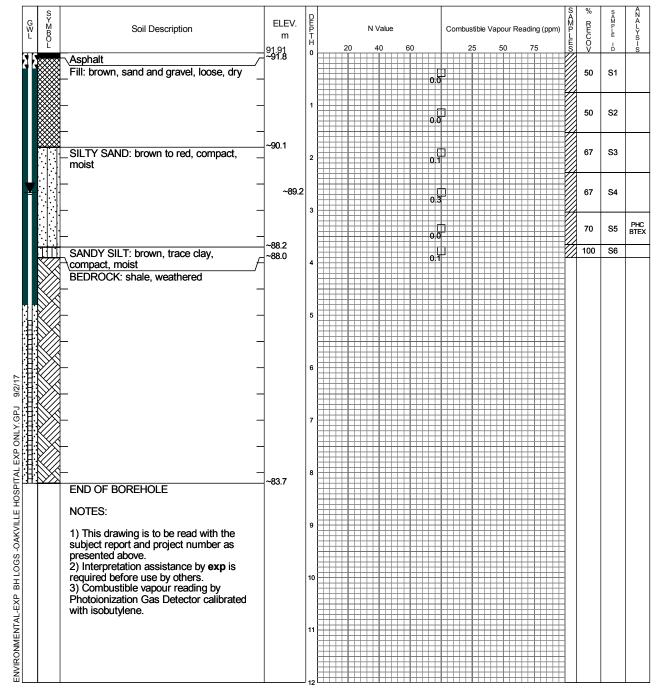


The Town of Oakville Phase Two Environmental Site Assessment 327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario BRM-00235695-B0 December 2016

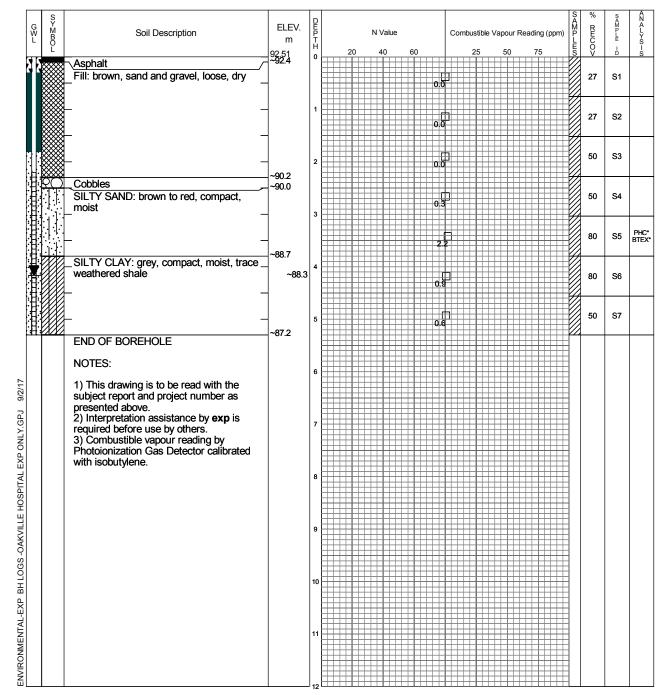
Appendix C: Borehole Logs



Project No.	<u>BRM-00235695-A</u> O			[Drawing No.	B	2
Project:	Phase II ESA				Sheet No.	<u>1</u> o	f <u>1</u>
Location:	Former Oakville Hospital, 327	Reynolds S	t. Oakville, ON				
	Please refer to Borehole Locati	ion Plan					
Date Drilled:	October 4, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplie	ate Samp	le
Drill Type:	Truckmount CME 55	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	•	
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	,	` '
ş		D			SA	% s	A Ņ

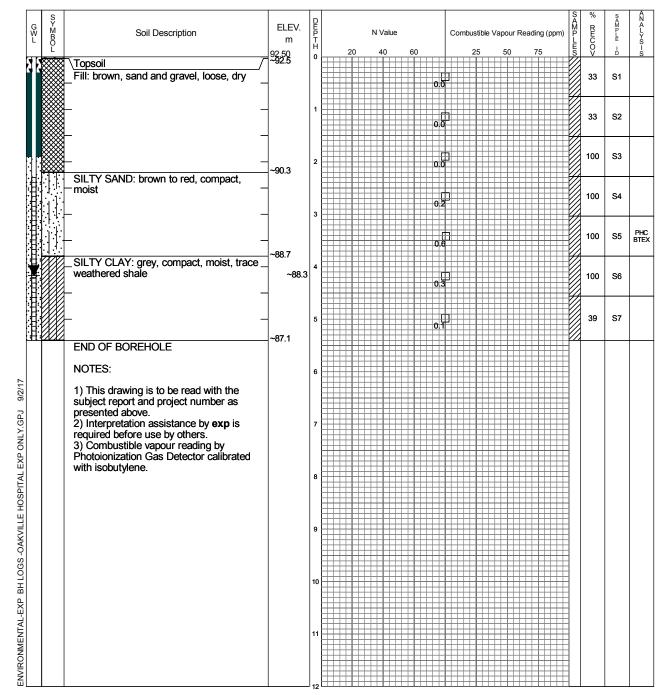

Time	Water Level (m)	Depth to Cave (m)
October 12, 2016 November 22, 2016	8.7 8.6 m	

Project No.	<u>BRM-00235695-A</u> O			[Drawing No.	B [·]	1
Project:	Phase II ESA				Sheet No.	_1_ of	_1_
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON				
	Please refer to Borehole Loca	ation Plan					
Date Drilled:	October 6, 2016	Chemica BTEX	Il Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sampl	е
Drill Type:	Truckmount CME 55	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	• •	
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	,	` '
s					Ş	% s	A


Time	Water Level (m)	Depth to Cave (m)
October 13, 2016 November 22, 2016	10.0 m 10.0 m	

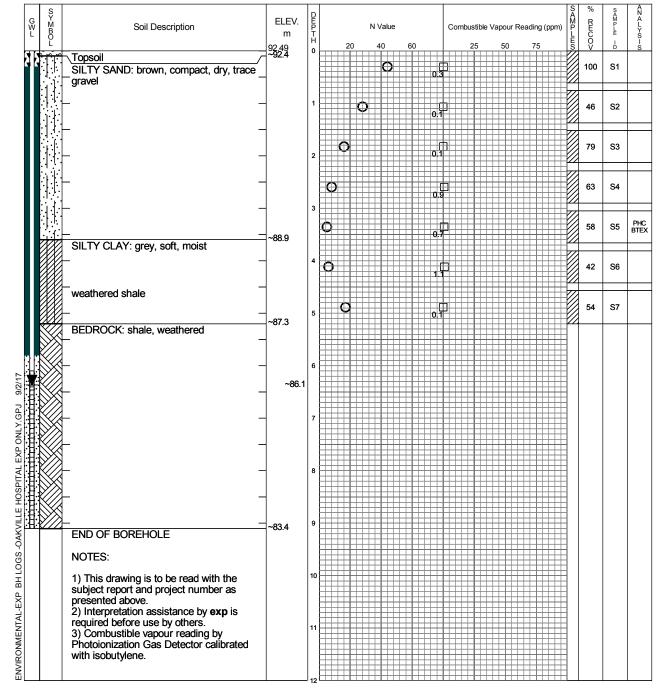
Project No.	BRM-00235695-AO			0	Drawing No.		В3	
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loc	ation Plan						
Date Drilled:	September 26, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xvlenes	* Duplie	ate Sa	ample	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H			
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga			` '

Time	Water Level (m)	Depth to Cave (m)
September 29, 2016 November 22, 2016	3.1 m 2.7 m	


Project No.	BRM-00235695-AO	Drawing No.	B4					
Project:	Phase II ESA		Sheet No.	1	of	1		
Location:	Former Oakville Hospital, 32							
	Please refer to Borehole Loc	ation Plan						
Date Drilled:	September 27, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 7822DT	PCB PHC	B Polychlorinated E					
Datum:	Relative	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	, ,		` '

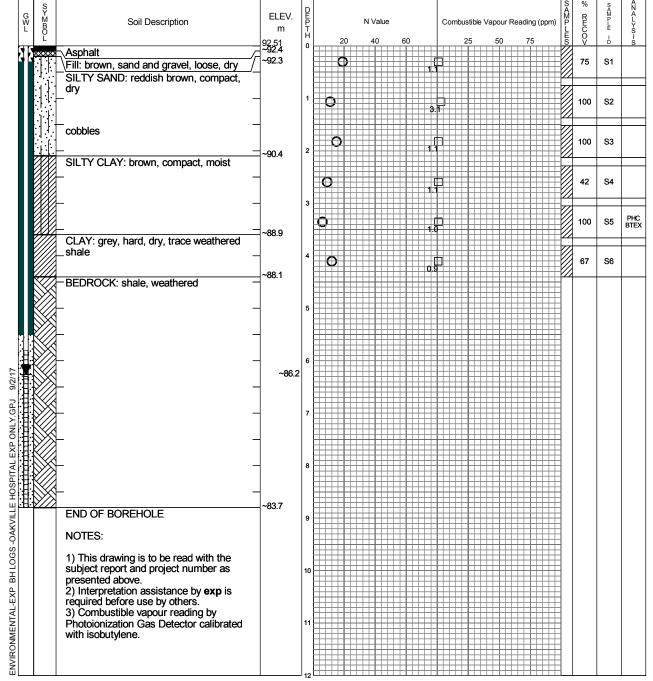
Time	Water Level (m)	Depth to Cave (m)
September 29, 2016 November 22, 2016	4.2 m 4.2 m	

Project No.	BRM-00235695-AO	Drawing No.						
Project:	Phase II ESA		Sheet No.	_1	of	1		
Location:	Former Oakville Hospital, 327 Reyn							
	Please refer to Borehole Location Pl	an						
Date Drilled:	September 27, 2016	Chemica BTEX	I Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Sa	ample	
Drill Type:	Geoprobe 7822DT							s (F1-F4)
Datum:	Relative	VOC	Volatile Orga	nic Co	mpou	nds		


Time	Water Level (m)	Depth to Cave (m)
September 29, 2016 November 22, 2016	4.2 m 4.2 m	

Project No.	BRM-00235695-AO			D	rawing No.		B6	
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 327	Reynolds S	St. Oakville, ON					
	Please refer to Borehole Locati	ion Plan						
Date Drilled:	October 5, 2016	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	cate Sa	ample	
Drill Type:	Truckmount CME 55	ING	Metals and Inorganics	PCB	Polychlorina	•		
Datum:	Relative	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum H Volatile Orga	,		` '
ş		D			SA	%	S A	A N

U V	G V	SY MBOL	Soil Description	ELEV.	DEP TH					1	N Va	alue				0	Com	bust	ible	Vapo	our I	Read	ding ((ppm)	S A M P L	% RECO>	SAMPLE	AN ALYS-S
		Ľ		92.48	H 0				20		40)	6	60				25	5	5	0		75		Ē S	0 V	L D	Ĩ S
			Straight auger to 5.5 m using 108 mm		ľ	ĺ			\ddagger																			
	ľ	1	_hollow stem augers			E																						
						E			\square							Ħ												
					1	ıЕ																						
		.i: -				F		#	Ħ	#			#	#		Ħ	#		+	++-								
	ľ	"].[]				E		\square								\square												
						F																						
		.[.].			2	, È			\square		\square	+		+		\square												
		1.1			12	Ē																						
	ŀ	1.14				E		#	Ħ	++	Ħ	#	##	Ħ		Ħ	++	Ħ	+									
						E			Η																			
		1.L				E		#	\ddagger	++			++	\ddagger		\ddagger	++		\pm									
		1.1		1	3	Ϋ́⊧	Ħ	#	Ħ	#		#	#	Ħ		Ħ	#				Ħ		Ħ					
						E	\square	\square	\square	\square		\square			\square	H			\square				Ħ					
				1		F	Ħ	++	\ddagger	++		++	#	#		Ħ	++		+				Ħ					
		i i i				E			Ħ		H	Ħ		H		H		Ħ										
		, i · i ·		-	4	۱E																						
						Þ		#	\ddagger	#	Ħ	+	#	Ħ		Ħ	#		\mp	++-	H							
	i i	' i i		-		E			\mathbb{H}					\square		H												
		,				E		++	\pm	++		++		Ħ		Ħ	++		#									
		1.1		-	5	;		#	Ħ	#	Ħ	#	##	#		Ħ	#	Ħ	\mp	#	Ħ							
		1				E			\square																			
				~87.0		þ			\ddagger					##		Ħ												
		\mathbb{X}	BEDROCK: shale, weathered			E			\square							H												
		Y/X		_	6	; F		#		++		#		Ħ		Ħ	++		#									
1		X				E			\square					\square		H												
9/2/1	łł	\gg				E																						
_ ! 1	11	$\langle \rangle \rangle$				E			Ħ	++	Ħ	+	++	Ħ		Ħ		Ħ			Ħ							
d i	Ŀ	X			7	,E			\square							\square												
Σ	₽Ì	//		~85.3	ľ	F		#	\ddagger	++		#		Ħ			#		\pm									
NO.	łł	\otimes				E			\square							H												
₹	₹ŧ	1//	_			E																						
<u> </u>	łł	\leq			8	Ę		#	\ddagger	#	Ħ	#	#	Ħ		Ħ	#		\mp	#	Ħ							
₹.	ŧÌ	YN			l°	ΥĒ										\square												
SP.	1:E	$\langle \! / \! \rangle$				þ			\ddagger		Ħ			##					\pm									
Ξŀ.	₽₽	\gg		1		E			П			\square		\square		H			\square									
끡	ŧľ	VA				E								Ħ		Ħ												
≦.	łł	\otimes		1	9	'F			Ħ		Ħ	Ħ		Ħ		Ħ							Ħ					
<u></u>				~83.1		E		\square	\square	\square		\square	\square			H			\square		H							
ŝ			END OF BOREHOLE			F		++	\ddagger			#	#	#		Ħ	++		+		Ħ		Ħ					
0			NOTEO			E		\blacksquare	H	Ħ	H	Ħ	Ħ	H		H			Ħ	\blacksquare								
Ţ			NOTES:		10	٥Ē	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ		Ħ	+T	Ħ	Ħ	Ħ	Ħ		HŦ					
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY GP.			1) This drawing is to be read with the			F		++	Ħ	+			++	Ħ		Ħ					Ħ		Ħ					
ЦХ			1) This drawing is to be read with the subject report and project number as			E		+	H	\square		\square	\square		\square	Ħ					\square							
AL-			presented above			F	Ħ	#	\ddagger	Ħ		Ħ		Ħ	Ħ	Ħ		Ħ					Ħ					
T.			2) Interpretation assistance by exp is required before use by others.		11	۱Ė		#	Ħ			Ħ	\pm	Ħ		Ħ				Ħ	Ħ		Ħ					
IME			required before use by others.			E		\square	\square	Ŧ	H	Ħ	T	H		Ħ	Ŧ	Π	Ħ				Ħ					
ő			3) Combustible vapour reading by Photoionization Gas Detector calibrated			F		\mp	\ddagger	#	\ddagger	#	#	#		Ħ	++				Ħ		Ħ					
IZIR			Protoionization Gas Detector calibrated			E			Ħ			Ħ		H		Ħ												
Ц			with isobutylene.		1 ₁₂	2Ē	H	H	Η		Π			Π		Π					H		H					
					12	-																						


Time	Water Level (m)	Depth to Cave (m)
October 12, 2016 November 22, 2016	6.6 m 7.2 m	

	0										
Project No.	<u>BRM-00235695-A</u> O	Drawing No.	B13	3							
Project:	Phase II ESA	Sheet No.	_1_ of	_1_							
Location:	Former Oakville Hospital, 327 Reynolds St. Oakville, ON										
	Please refer to Borehole Locat										
Date Drilled:	October 7, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Dupli	cate Sample	9				
Drill Type:	Truckmount CME 55	PCB PHC	B Polychlorinated Biphenyl								
Datum:	Relative	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	anic Compou	` '					

Time	Water Level (m)	Depth to Cave (m)
October 12, 2016	6.4 m	

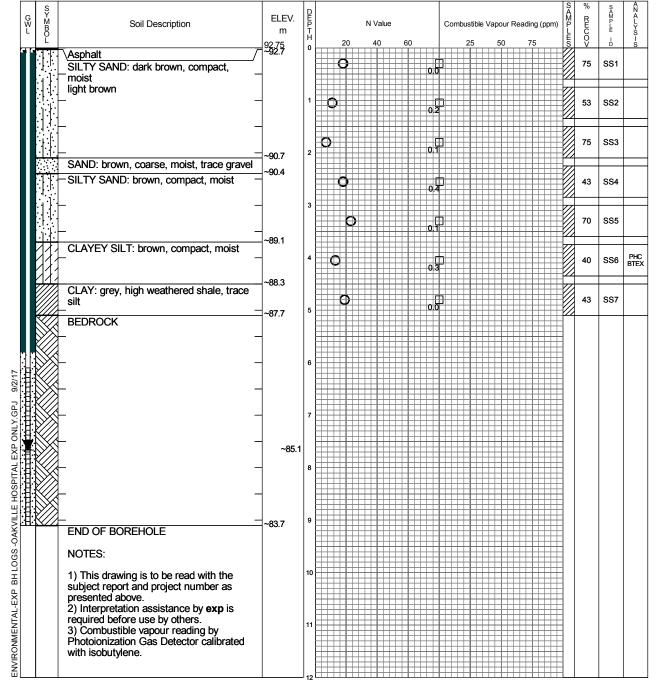
Project No.	<u>BRM-00235695-A</u> O	Drawing No.	E					
Project:	Phase II ESA	Sheet No.	1	of	1			
Location:	Former Oakville Hospital, 327 R							
	Please refer to Borehole Locatio	n Plan						
Date Drilled:	October 6, 2016	Chemica BTEX	Il Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sar		
Drill Type:	Truckmount CME 55	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H			
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	•		` '

Time	Water Level (m)	Depth to Cave (m)
October 12, 2016 November 22, 2016	6.2 m 6.3 m	

Project No.	<u>BRM-00235695-A</u> O					Drawing No.	B1	5
Project:	Phase II ESA					Sheet No.	_1_ of	<u>1</u>
Location:	Former Oakville Hospital, 32	7 Reyr	nolds S	t. Oakville, ON				
	Please refer to Borehole Loca	ation F	lan					
Date Drilled:	October 11, 2016		Chemic BTEX	al Analysis Benzene, Toluene, Eth	vibenzene and Xylene	es * Duplic	ate Samp	е
Drill Type:	Pionjar		ING MET	Metals and Inorganics Metals	PCB	.,	•	, ,
Datum:	Relative	PHC drocarbons VOC des		,	` '			
G Y W B	Soil Description	ELEV.	DEP	N Value	Combustible Vapour	Reading (ppm)	% SAMPL	A N A L Y

C V I	GV	SY M B O L	Soil Description	ELEV. m	DEPTH				N Valu	е		Cor	mbus	tible	Vapo	our Re	adin	g (ppm)	Â M P L	REUCON	5AMP-LE	NALYS-C
		Ĺ		89.62 ~ 89.5	0		20		40	(60		2	5	5	0	75	5	Ē	V	b	S
	×	***	Concrete	~89.5 ~89.4											Ħ				10	75	04	
		XXX	Fill: brown, sand and gravel, loose, dry	~09.4				H			0	.d	H		Ħ					75	S1	
		XX	SILTY CLAY: grey, compact, moist																H			
		XX										di i							-12	100	S2	
	łł	XX		1	1						1	1	Ħ		Ħ							
	Ŧł	XX																				DUC
	Ξł	XX		1								₽ –							-1//	100	S3	PHC BTEX
		XXX		~87.787.7				#			1	÷h i			Ħ				K	33	S4	
			weathered shale	07.7 0	2						0	0										
			END OF BOREHOLE																			
			NOTEO																			
			NOTES:					#			$\left\{ \right\}$		Ħ		Ħ							
			1) This drawing is to be read with the		3																	
			 This drawing is to be read with the subject report and project number as 			H	Ŧ	Ħ	+17	HŦ			Ħ	HŦ	Ħ		H		11			
			presented above									1	Ħ	H‡					1			
			 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated 																3			
			required before use by others.					F					H		Ħ]			
			3) Combustible vapour reading by		4	H				Ħ				Ħ					11			
			Photoionization Gas Detector calibrated																			
			with isobutylene.																			
																			3			
					5																	
					-																	
															Ħ				-			
								H		H			H		Ħ							
																			3			
					6																	
9/2/17																			- 1			
9/2																						
GР					7																	
7								#							Ħ							
NO																						
ЧX																						
ш						H#													1			
TAI					8			Ħ			$\left\{ \right\}$		Ħ		Ħ							
SPI																						
오																						
Щ								#							Ħ				-			
					9					H			H		H							
AK																						
Ŷ																						
GS															Ħ				-			
2					10								H						3			
BH					10																	
e l																			11			
Ψ́.						HH+		\square						Ħ	Ħ				1			
IAL								H					H		H				3			
E.					11					H					Ħ		H		11			
AME						HH+													1			
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ								\square						Ħ	Ħ				11			
NZIE													Ħ		Ħ				3			
N U					12			F					F		F				-			
					12																	

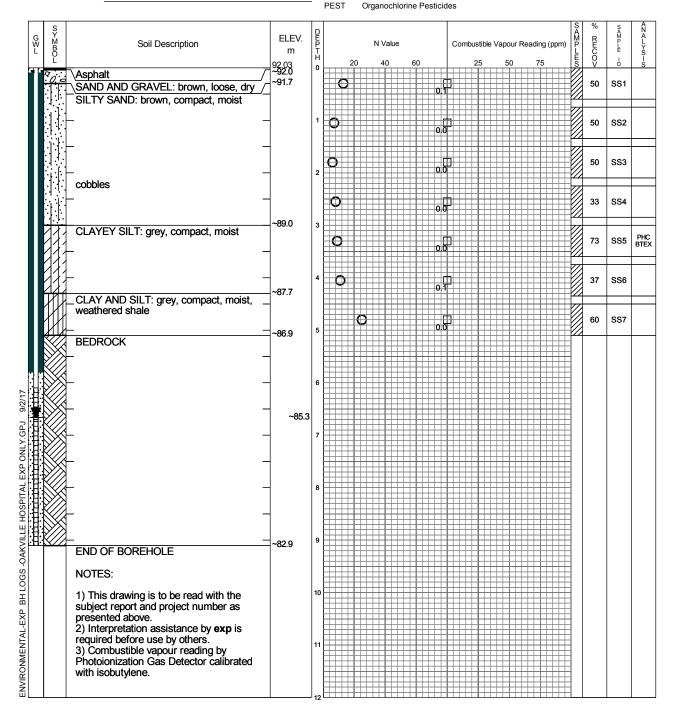
Time	Water Level (m)	Depth to Cave (m)
October 13, 2016 November 22, 2016	1.9 m 1.9 m	


Project No.	<u>BRM-00235695-A</u> O					Drawing No.	B16	;
Project:	Phase II ESA					Sheet No.	_1_ of	1
Location:	Former Oakville Hospital, 327	7 Reyr	nolds S	t. Oakville, ON				
	Please refer to Borehole Loca	ation P	lan					
Date Drilled:	October 11, 2016		Chemic BTEX	al Analysis Benzene, Toluene, Eth	ylbenzene and Xyler	nes * Duplio	cate Sample	
Drill Type:	Pionjar		ING MET	Metals and Inorganics Metals	PC	- ,		
Datum:	Relative		PAH PEST	Polycyclic Aromatic Hy Organochlorine Pestici	drocarbons VO			` '
G Y W M	Soil Description	ELEV.	DEP	N Value	Compustible Vapour	Reading (ppm)	% s A R E	A N A L

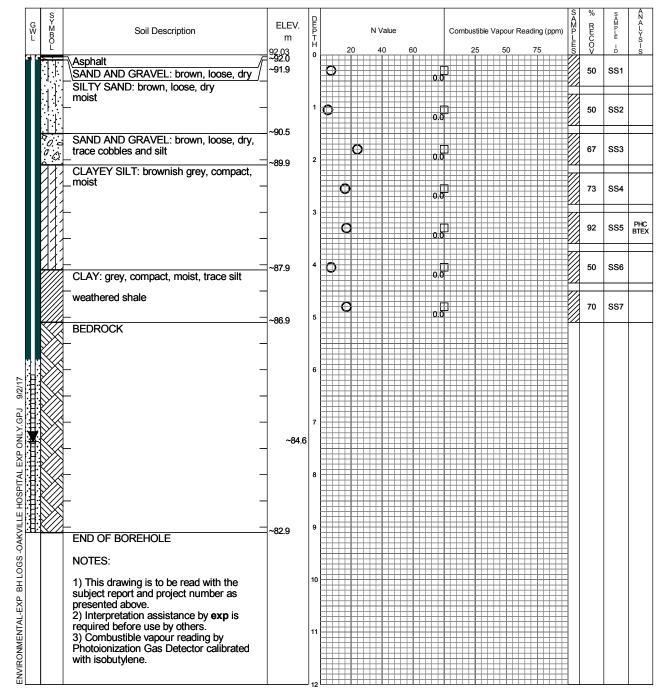
G W L	SY MBOL	Soil Description	ELEV. m	DEPTH				N١	/alue				Co	mbus	tible	Vapo	our Re	eadir	ng (pp	om)	AMPLES	RECOV	5AMP-LE	N A L Y S
9.6	Ĺ	¬Concrete /	89.62 ~ 89 .5	н 0		2	20	4	0	6	50			2	5	5	0	7	5		5	V	D	S
		Fill: brown, sand and gravel, compact,	~89.0									1.2										67	S1	
		SILTY SAND: brown, moist	~88.4	1								1.1										29	S2	
		SILTY CLAY: grey, compact, moist, trace - sand and gravel	~88.1									1.4										100	S3	PHC BTEX
		weathered shale	~07.0	2	Ħ																			
		NOTES:																						
		1) This drawing is to be read with the subject report and project number as		3																				
		presented above. 2) Interpretation assistance by exp is required before use by others.																						
		 Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene. 		4																				
				_																				
				5																				
				6																				
9/2/17																								
				7																				
ONLY																								
TAL EXI				8																				
HOSPI																								
KVILLE				9																				
GS -OA																								
BH LO(10																				
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ																								
MENTA				11																				
VIRON																								
N U				12	Ħ																			

Time	Water Level (m)	Depth to Cave (m)
October 13, 2016 November 22, 2016	1.5 m 1.5 m	

Project No.	<u>BRM-00235695-A</u> O	D	rawing No.	B17				
Project:	Phase II ESA			_	Sheet No.	<u> 1 </u> c	of	1
Location:	Former Oakville Hospital, 327 Reynd	olds St	. Oakville, ON					
	Please refer to Borehole Location Pl	an						
Date Drilled:	November 8, 2016	Chemical BTEX	Analysis Benzene, Toluene, Ethylbenzene and X	Kylenes	* Duplic	ate Sam	ole	
Drill Type:	Truckmount CME 75 ING Metals and Inorganics MET Metals				Polychlorinat Petroleum Hy	•		1-F4)
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	,		


Time	Water Level (m)	Depth to Cave (m)
November 10, 2016 November 22, 2016	6.9 m 7.7 m	

Project No.	<u>BRM-00235695-A</u> O	D	rawing No.	B18			
Project:	Phase II ESA				Sheet No.	_1_ of	_1_
Location:	Former Oakville Hospital, 327	' Reynolds S	t. Oakville, ON				
	Please refer to Borehole Loca	tion Plan					
Date Drilled:	November 9, 2016	Xylenes	* Duplic	ate Sample			
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics	PCB PHC	Polychlorinat Petroleum Hy		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	·	` '
	1		-				


Time	Water Level (m)	Depth to Cave (m)
November 10, 2016 November 22, 2016	6.3 m 6.6 m	

Project No.	<u>BRM-00235695-A</u> O	<u>BRM-00235695-A</u> O					B19		
Project:	Phase II ESA				Sheet No.	1	of	1	
Location:	Former Oakville Hospital, 327	7 Reynolds S	t. Oakville, ON						
	Please refer to Borehole Location Plan								
Date Drilled:	November 10, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate San	nple		
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinated Bipl Petroleum Hydrocar				
Datum:	Relative	PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Orga	·		` '	

Time	Water Level (m)	Depth to Cave (m)
November 11, 2016 November 22, 2016	5.3 m 6.7 m	

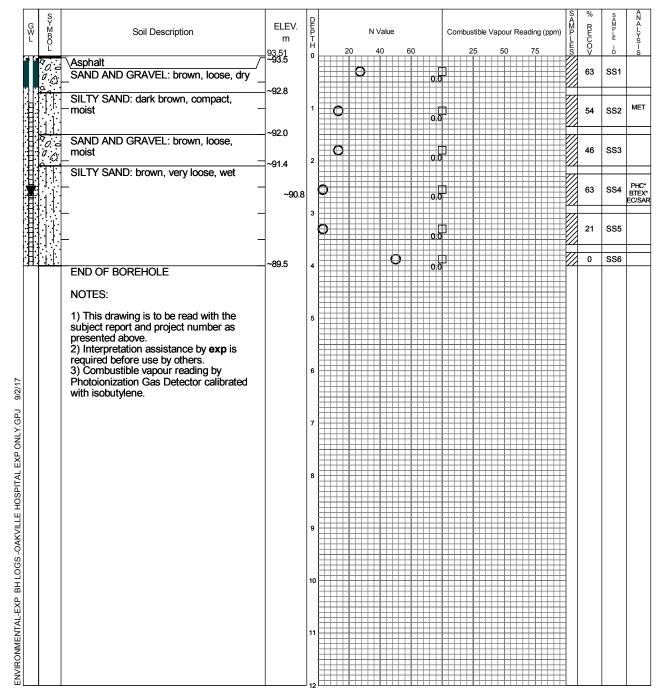
Project No.	<u>BRM-00235695-A</u> O	BRM-00235695-AO)
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 327 Re	eynolds S	t. Oakville, ON					
	Please refer to Borehole Location	n Plan						
Date Drilled:	November 10, 2016	Chemica	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplie	icate Sample		
Drill Type:	Truckmount CME 75				,	ted Biphenyls vdrocarbons (F1-I		
Datum: Relative		PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	Volatile Orga		` '		

Time	Water Level (m)	Depth to Cave (m)
November 11, 2016 November 22, 2016	5.9 m 7.4 m	

Project No.	<u>BRM-00235695-A</u> O			0	Drawing No.		B21	
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 327	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	November 8, 2016	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	, inic Co	mpou	nds
S		D			S	%	S A	A N

	G W L	SY M B O	Soil Description	ELEV. m	DEP TH	N Value				Combustible Vapour Reading (ppm)						n)	SAMPLES	% RECOV	SAMPLE	NALYS		
		Ĩ xxxx		89.64 ~ 89.5	н 0	20	4	0	60			25		50	- 	7!	5		S	V	ŀ	l S
				~89.3						h								₽		63	SS1	
			SILTY SAND: brown, compact, dry / CLAY: grey, soft, moist, trace pebbles	-					0	0.5												
		$//\lambda$	CLAT. grey, son, moist, trace peoples															Ħ		100		
ŀ	H	//h		{	1				0	3								\pm		100	SS2	
Ŀ	H									i.								÷	\mathcal{T}	63	SS3	PHC BTEX
ŀ	H		_ coarse sand stream _	~88.0					0).5								Ŧ	4	03	333	BTEX
			END OF BOREHOLE															+				
			NOTES:		2																	
			Noteo.															\pm				
			 This drawing is to be read with the 															\pm				
			subject report and project number as															\pm				
			presented above.		3								++-					\mp				
			required before use by others															\pm				
			 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated 															\ddagger				
			Photoionization Gas Detector calibrated																			
			with isobutylene.		4		+++						++-					Ħ				
																		+				
					5																	
																		\pm				
															H			\pm				
					6													\mp				
~					0																	
9/2/17																						
Ъ					7																	
Σ					ľ													\pm				
NO																		\pm				
ЧX																		Ħ				
Ϋ́́Ε					8																	
Ë																		+				
OS																		\pm				
щ													++					H				
JLL					9													Ħ				
AK																						
Q																		\mp				
ğ																						
ЦЦ					10													\pm				
B							Ħ			Ħ			+ +	Ħ	Ħ	Ħ		Ħ				
EXF																		Ħ				
-JL-																		\ddagger				
T					11													\mp				
ME										Ħ					Ħ	Ħ		\ddagger				
ROI															H			\blacksquare				
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ																		\pm				
ш				I	12		\square					T				T		Π				

Time	Water Level (m)	Depth to Cave (m)


Project No.	<u>BRM-00235695-A</u> O	[Drawing No.	B22				
Project:	Phase II ESA				Sheet No.	_1_	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	November 8, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	cate Sar	nple	
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga		```	· · ·
						0/	-	A

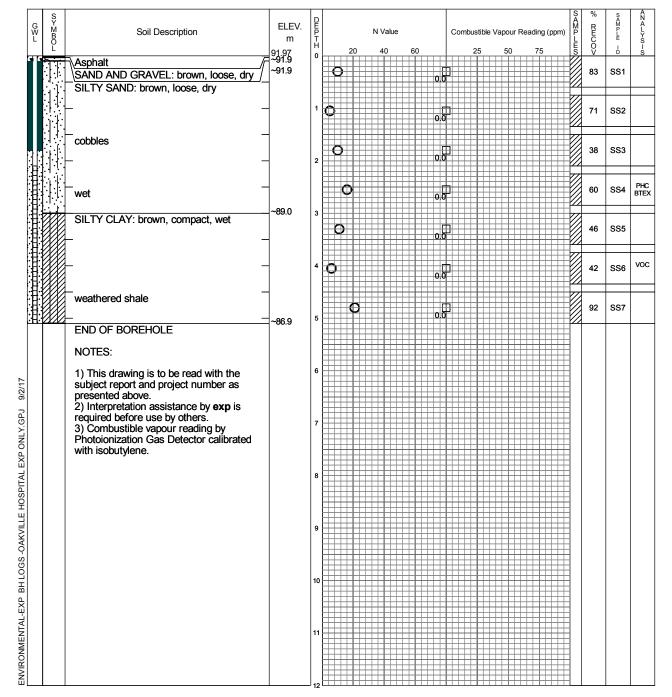
G W L		SY MBOL	Soil Description	ELEV. m	DEPTH							Combustible Vapour Reading (ppm) 25 50 75							SAMPLES	% RECOV	SAMPLE -D	0-0-1722	
जा	×		Concrete Fill: sandy gravel, compact, dry SILTY SAND: brown, comact, dry, trace	89.61 ~89.5 ~89.4 ~89.2	0							0.5								Å	63	SS1	
			gravel SAND: brown, damp, trace silt SILTY SAND: brown, compact, moist	~88.7*88.7 ~88.4	1							0.7									100	SS2	
			SILTY CLAY: brown, soft, moist, trace – pebbles weathered shale	~87.6	2	2						0.4									100 0	SS3 SS4	PHC BTEX
			END OF BOREHOLE NOTES:																				
			 This drawing is to be read with the subject report and project number as presented above. 		3	3																	
			2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by		4	¥																	
			Photoionization Gas Detector calibrated with isobutylene.																				
					5	,																	
9/2/17					6	;																	
					7	,																	
XP ONLY.																							
SPITAL E					8	3																	
VILLE HO					9	₽ ₽																	
BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ																							
					10	0																	
ENVIRONMENTAL-EXP					11	1																	
IVIRONM																							
Ξ					12	2世		111			1			H									

Time	Water Level (m)	Depth to Cave (m)
November 10, 2016 November 22, 2016	0.9 m 0.9 m	

Project No.	<u>BRM-00235695-A</u> O				Drawing No.		B23	3
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	November 11, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	ample	
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	nic Co	mpou	nds

Time	Water Level (m)	Depth to Cave (m)
November 14, 2016 November 22, 2016	3.1 m 2.7 m	

Project No.	<u>BRM-00235695-A</u> O	D	rawing No.	B24				
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 327 Reyr	olds S	t. Oakville, ON					
	Please refer to Borehole Location P	lan						
Date Drilled:	November 11, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Sar	nple	
Drill Type:	Truckmount CME 75	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H	•		
Datum:	Relative	PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Orga			` '


PEST Organochlorine Pesticides

G Y W B L O L	Soil Description					Combustible Vapour Reading (ppm) 25 50 75							% RECOV	SAMPLE -D	ANALYS-9	
	Asphalt // SILTY SAND: dark brown, compact, dry	= ~93.69 ~93.6	0	0		0.0	3							38	SS1	MET
	light brown	-	1	0		0.0]							54	SS2	
	greyish brown _sand and gravel stream		2	0		0.0								92	SS3	
		-	3	•	>	0.0]							77	SS4	
	CLAYEY SILT: grey, compact, moist	~90.4_90.3		0		0.1	3							71	SS5	PH BTE
	_ CLAY: grey, compact, dry, trace silt and _ gravel	_~89.9 	4	0		0.0]							67	SS6	vo
	weathered shale	~88.6	5	С		0.0	3							54	SS7	
	END OF BOREHOLE NOTES:															
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by exp is required before use by others. Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene. 		7													
			8													
			9 10													
			11													

Time	Water Level (m)	Depth to Cave (m)
November 14, 2016 November 22, 2016	4.1 m 3.4 m	

Project No.	<u>BRM-00235695-A</u> O			0	Drawing No.		B25	j
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 327	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	November 11, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	1 Xvlenes	* Duplic	ate Sa	mnle	
Drill Type:	Truckmount CME 75	ING	Metals and Inorganics	PCB	Polychlorinal	ted Bipl	henyls	
Datum:	Relative	MET PAH	Metals Polycyclic Aromatic Hydrocarbons	PHC VOC	Petroleum H Volatile Orga			` '
		PEST	Organochlorine Pesticides					

Time	Water Level (m)	Depth to Cave (m)

	0							
Project No.	<u>BRM-00235695-A</u> O			0	Drawing No.		B7	
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 327	Reynolds S	t. Oakville, ON					
	Please refer to Borehole Locati	on Plan						
Date Drilled:	September 28, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplie	cate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	-		` '

G N W L	Soil Description	ELEV. m	DEPTH		N	Value			Com	oustib	le Vap	our Re	eading	(ppm)	SAMPLES	% RECOV	SAMPLE	AN ALYS-
	Asphalt // Fill: brown, sand and gravel, loose, dry	92.19 ~ 92 .1	0	2	0	40	60		1	25		50	75		IS	<u> </u>	sı	Ś
		~90.7	1					0.0 0.1								43	S2	PAH
	SILTY SAND: light brown, compact, dry	-~90.7	2					0.0								80	S3	
		~89.2	3					0.0]							80	S4	
	SAND AND GRAVEL: brown, loose, wet	~88.4						0.1	3							67	S5	PAł
	SILTY CLAY: brown to grey, compact, wet 	~87.6	4					0.0	3							67	S6	PA
	NOTES: 1) This drawing is to be read with the subject report and project number as presented above. 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene.		5 6 7 8 9															
			11															

Time	Water Level (m)	Depth to Cave (m)

Project No.	<u>BRM-00235695-A</u> O			0	Drawing No.		B8	
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 327 Reyr	olds S	t. Oakville, ON					
	Please refer to Borehole Location P	lan						
Date Drilled:	September 28, 2016	Chemica BTEX	Il Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplio	cate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorina Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	inic Co	mpou	nds

G Y M B O L O L	Soil Description	ELEV. m	DUPTH	20 40 60		Combus 2	Va	pour Re	ading (p 75	opm)	SAMPLES	% RECO	SAMPLE -D	AZALYS-C
	Asphalt //	92.21 ~92.1 ~91.5	0		1.1							33	S1	PAH
	SILTY SAND: light brown, compact, dry	-	1		2.2	2						33	S2	
	 Fill: brown, sand and gravel, loose, moist	~90.1 ~89.9	2		2.4	3						50	S3	PAH
о 	SILTY SAND: light brown, compact, dry	~89.5	3		2.1							50	S4	
0.0		~88.4			1.6							50	S5	
	_SILTY CLAY: grey, compact, wet _	~87.6	4		1.5							50	S6	
ENVIRONMENTAL-EXP. BH LUGS - UAKVILLE HUSPITAL EXP. UNLY.GPJ 9/2/17	END OF BOREHOLE NOTES: 1) This drawing is to be read with the subject report and project number as presented above. 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene.		5 6 7 8 9 10											

Time	Water Level (m)	Depth to Cave (m)
	, ,	

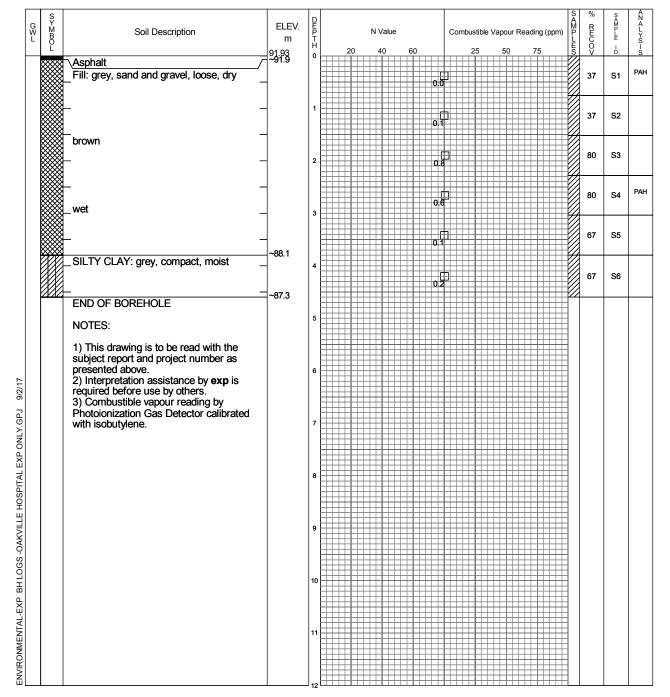
	Ŭ							
Project No.	BRM-00235695-AO			[Drawing No.		B9	
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	September 28, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H			
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga			•


S Y M B O L Soil Description	ELEV. m	DUPTH	N Value	Combustible Vapour Reading (ppm)	SAMPLES	% RECON	SADPIE	
L Asphalt /	92.08 ~ 92.0	0		25 50 75	S	V	D	5
Fill: brown, sand and gravel, loose, dry	_		0.2			13	S1	
· · ·		1	1.2			13	S2	PA
SILTY SAND: light brown, compact, dry		2	0.6			40	S3	
SAND AND GRAVEL: brown, loose, dry	~89.3	3	0.0			40	S4	P/
	_	4	0.0	p		7	S5	
SILTY CLAY: grey, compact, wet	~87.6 	5				46	S6	
 END OF BOREHOLE NOTES: 1) This drawing is to be read with the subject report and project number as presented above. 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene. 		6 7 8 9						

Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH16-207

	0							
Project No.	BRM-00235695-AO			0	Drawing No.		B10)
Project:	Phase II ESA				Sheet No.	_1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	September 28, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H			
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	, ,		•



Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH16-208

	0							
Project No.	BRM-00235695-AO			D	rawing No.		B11	
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	t. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	September 28, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H			
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	•		•

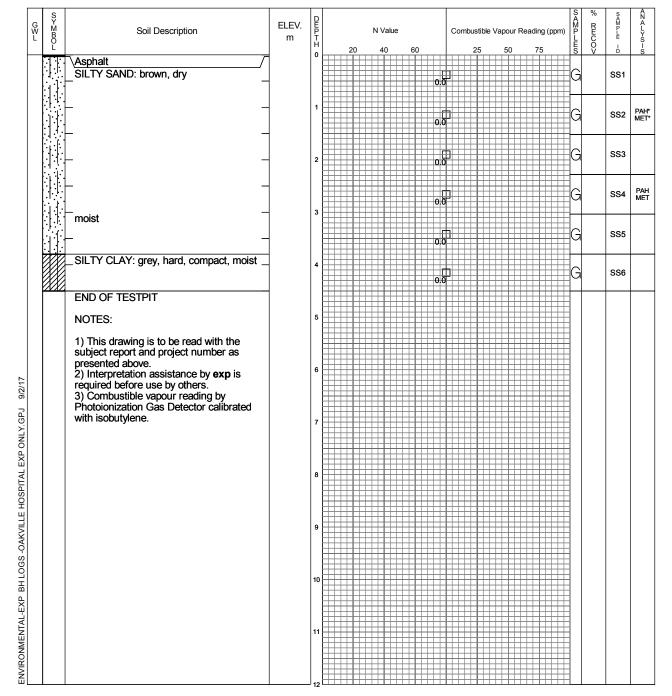
Time	Water Level (m)	Depth to Cave (m)

Log of Borehole BH16-209

	0							
Project No.	BRM-00235695-AO			0	Drawing No.		B12	2
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 32	7 Reynolds S	st. Oakville, ON					
	Please refer to Borehole Loca	ation Plan						
Date Drilled:	September 28, 2016	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene an	d Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 7822DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	nic Co	mpour	nds

GNNL SYMBOL	Soil Description	ELEV. m	DEPTH			Valu	e			Сс			Rea		g (pp	m)	SAMPLES	% RECOV	SAMPLE -	AN ALYS-
	Asphalt / Fill: brown, sand and gravel, loose, dry	92.57 ~92.5 ~91.9	0		20	40		60	0.0]	25	50		75			S	27	S1	PA
	SILT: dark brown, compact, moist / SILTY SAND: light brown, compact, dry	~91.8	1						1.3	1								27	S2	
		-	2						0.6	3								77	S3	P/
		-	3						1.7									77	S4	
		-~88.8							1.7									80	S5	
	SILTY CLAY: brown to grey, compact, wet	~88.0	4						1.4	3								80	S6	
	END OF BOREHOLE NOTES:		5																	
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by exp is required before use by others. Combustible vapour reading by 		6																	
	Photoionization Gas Detector calibrated with isobutylene.		7																	
			8																	
			9																	
			10																	
			11																	
			12																	

Time	Water Level (m)	Depth to Cave (m)

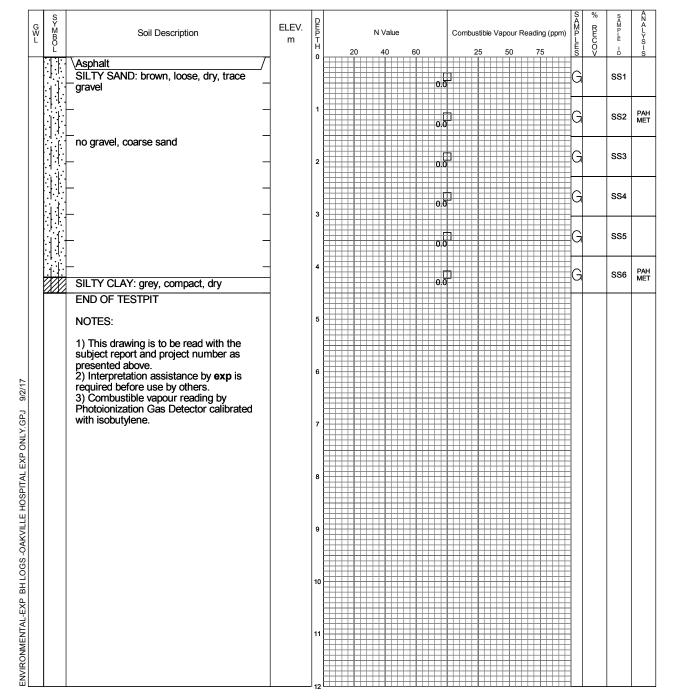

	U						
Project No.	<u>BRM-00235695-A</u> O			[Drawing No.	B	26
Project:	Phase II ESA				Sheet No.	<u>1</u> c	f <u>1</u>
Location:	Former Oakville Hospital, 327	Reynolds S	t. Oakville, ON				
	Please refer to Test Pit Location	on Plan					
Date Drilled:	November 4, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	1 Vulanaa	* Dupli	ate Sam	
Drill Type:	C328 Excavator	ING	Metals and Inorganics	PCB	Polychlorina		
2		MET	Metals	PHC	Petroleum H	ydrocarbo	ns (F1-F4)
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	nic Comp	ounds

G M W B L O L	Soil Description	ELEV. m	DUP TH		20	I	N V 4	alue	9	60				Co	mb	ust 25	e Va	apo 5(ur R	ling 75	(pp	m)	SAMPLES	% RECOV	SAMPLE -D	ANALYS-
0.0.0 0.0.0 0.0	Asphalt SAND AND GRAVEL: brown, silty, loose, dry		0		20		4				, 	0	.0]						/5			G	V	SS1	PAH MET
0.0			1									0	.0]									G		SS2	
	SILTY SAND: brown, wet		2									0	0]									G		SS3	
			3									0	0]									G		SS4	
	END OF TESTPIT NOTES:																									
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by exp is required before use by others. Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene. 		4 5 7 8 9 10 11																							

Time	Water Level (m)	Depth to Cave (m)

		<i>,</i>						
Project No.	<u>BRM-00235695-A</u> O			0	Prawing No.		B27	
Project:	Phase II ESA				Sheet No.	1	of	1
Location:	Former Oakville Hospital, 32	27 Reynolds S	t. Oakville, ON					
	Please refer to Test Pit Loca	ation Plan						
Date Drilled:	November 3, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate Sa	mple	
Drill Type:	C328 Excavator	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H	•		
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	•		` '

Time	Water Level (m)	Depth to Cave (m)


0						
<u>BRM-00235695-A</u> O			0	Drawing No.	B	28
Phase II ESA				Sheet No.	<u> 1 o</u>	f <u>1</u>
Former Oakville Hospital, 327 Reyn	olds St	t. Oakville, ON				
Please refer to Test Pit Location Pla	n					
November 3, 2016			l Xvlenes	* Duplic	ate Samr	le
C328 Excavator	ING	Metals and Inorganics	PCB	Polychlorinat	ed Bipher	iyls
Relative	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC			` '
	Phase II ESA Former Oakville Hospital, 327 Reyn Please refer to Test Pit Location Pla November 3, 2016 C328 Excavator	Phase II ESA Former Oakville Hospital, 327 Reynolds St Please refer to Test Pit Location Plan November 3, 2016 C328 Excavator ING MET Relative	Phase II ESA Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and C328 Excavator ING Metals and Inorganics Relative PAH Polycyclic Aromatic Hydrocarbons	Phase II ESA Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis C328 Excavator BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC Relative PAH Polycyclic Aromatic Hydrocarbons VOC	Phase II ESA Sheet No. Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan Chemical Analysis November 3, 2016 Chemical Analysis 0328 Excavator ING Metals and Inorganics PCB Polychlorinate Relative PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Orga	Phase II ESA Sheet No. 1 0 Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan * Duplicate Samp November 3, 2016 Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes * Duplicate Samp C328 Excavator ING Metals and Inorganics PCB Polychlorinated Bipher Relative PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Comp

G W L	SY MBO L	Soil Description	ELEV. m	DHPTH 0	N Value 20 40 60	Combustible Vapour Reading (ppm) 25 50 75	SAMPLES	% RECOV	SAMPLE -D	ANALYS-S
		Asphalt SILTY SAND: brown, loose, dry, large pieces of concrete, trace gravel no concrete	-		0.0		G		SS1	Pah* Met*
				1	0.0		G		SS2	
		no gravel, coarse sand	_	2	0.0		G		SS3	
		↓ ↓	-		0.0	D	G		SS4	
			_	3			G		SS5	
			=	4			G		SS6	
		END OF TESTPIT								
		NOTES:1) This drawing is to be read with the subject report and project number as		5						
9/2/17		subject report and project number as presented above. 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated		6						
EXP ONLY.GP.		with isobutylene.		7						
LLE HOSPITAL				8						
LOGS -OAKVI				9						
AL-EXP BH I				10						
ENVIRONMENTAL-EXP BH LOGS-OAKVILLE HOSPITAL EXP ONLY.GPJ				11						

Time	Water Level (m)	Depth to Cave (m)

Project No.	BRM-00235695-AO						B29				
Project:	Phase II ESA				Sheet No.	1	of	1			
Location: Former Oakville Hospital, 327 Reynolds St. Oakville, ON											
	Please refer to Test Pit Location Plan										
Date Drilled:	November 3, 2016	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	d Xylenes	* Duplic	ate Sa	ample				
Drill Type:	C328 Excavator	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat Petroleum H						
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga			•			

Time	Water Level (m)	Depth to Cave (m)

<u>BRM-00235695-A</u> O			0	Drawing No.	B	30		
Phase II ESA				Sheet No. <u>1</u> of				
Former Oakville Hospital, 327 Reyn								
Please refer to Test Pit Location Plan								
November 3, 2016		•						
	BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplio	cate Sam	ple		
C328 Excavator	ING	Metals and Inorganics	PCB	Polychlorina	ed Biphe	nyls		
	MET	Metals	PHC	Petroleum H	ydrocarbo	ons (F1-F4)		
Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides						
	Phase II ESA Former Oakville Hospital, 327 Reyn Please refer to Test Pit Location Pla November 3, 2016 C328 Excavator	Phase II ESA Former Oakville Hospital, 327 Reynolds S Please refer to Test Pit Location Plan November 3, 2016 C328 Excavator ING MET Relative	Phase II ESA Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and C328 Excavator ING Metals and Inorganics Relative PAH Polycyclic Aromatic Hydrocarbons	Phase II ESA Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis C328 Excavator BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC Relative PAH Polycyclic Aromatic Hydrocarbons VOC	Phase II ESA Sheet No. Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis C328 Excavator BTEX NG Metals and Inorganics PCB Polychlorinad MET Metals PHC Petroleum H PAH Polycyclic Aromatic Hydrocarbons VOC	Phase II ESA Sheet No. 1 Phase II ESA Former Oakville Hospital, 327 Reynolds St. Oakville, ON Please refer to Test Pit Location Plan November 3, 2016 Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes * Duplicate Samp C328 Excavator ING Metals and Inorganics PCB Polychlorinated Biphe Relative PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Comp		

G W L	SY MBOL	Soil Description	ELEV. m	DHPTH 0	N Value 20 40 60	Combustible Vapour Reading (ppm) 25 50 75	SAMPLES	% RECOV	SAMPLE -D	AZALYS-S
		Asphalt / Fill: light brown, gravel, loose, dry, trace sand			0.0		G		SS1	
				1	0.0]	G		SS2	PAH MET
		pieces of rebar		2	0.0		G		SS3	
		SILTY SAND AND GRAVEL: brown, - compact, moist -			0.0		G		SS4	
	0 0			3	0.0		G		SS5	PAH MET
	<u></u> 41	END OF TESTPIT		4			1			
		 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by exp is required before use by others. Combustible vapour reading by Photoionization Gas Detector calibrated with instructions. 		5						
2/2/17 Co		 3) Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene. 		6						
BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ				7 8						
DAKVILLE HOSPI				9						
EXP BH LOGS -				10						
ENVIRONMENTAL-EXP				11						
ENV				12						

Time	Water Level (m)	Depth to Cave (m)
	. , ,	

Project No.	<u>BRM-00235695-A</u> O			C	Drawing No.	В	31
Project:	Phase II ESA				Sheet No.	<u> </u>	f <u>1</u>
Location:	Former Oakville Hospital, 327 Reyn						
	Please refer to Test Pit Location Pla						
Date Drilled:	November 3, 2016	Chemica	l Analysis				
Date Drilleu.		BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes	* Dupli	cate Samp	ole
Drill Type:	C328 Excavator	ING	Metals and Inorganics	PCB	Polychlorina	ted Bipher	nyls
Drin Type.		MET	Metals	PHC	Petroleum H	ydrocarbo	ns (F1-F4)
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	anic Comp	ounds

G W L	SY MBO L	Soil Description	ELEV. m	DHPTH 0			20)	Vali 40	Je	60)		Comb	oust 25	Vapo 5		ing (75	ppm)	SAMPLES	% RECOV	SAMPLE -D	ANALYS-S
		Asphalt / SILTY SAND: brown, moist, trace gravel											0.							G		SS1	
	0.0	SILTY SAND AND GRAVEL: brown, loose, moist		1									0.							G		SS2	PAH MET
	0.0			2	2								0.							G		SS3	
	<i>.</i>	· 											0.							G		SS4	
	0			3	3								0.							G		SS5	
		_SILTY CLAY: grey, compact, hard, dry, _ trace gravel		4	4								0.							G		SS6	
		END OF TESTPIT NOTES:		5	5																		
		1) This drawing is to be read with the subject report and project number as presented above		-																			
J 9/2/17		 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated 		6																			
(P ONLY.GF		with isobutylene.		7	7																		
ENVIRONMENTAL-EXP_BH LOGS -OAKVILLE HOSPITAL EXP_ONLY.GPJ				8	B																		
JAKVILLE H				9	9																		
3H LOGS -C				10	10																		
FAL-EXP E																							
RONMENT				11	1																		
ENV				12	2																		

Time	Water Level (m)	Depth to Cave (m)

	0						
Project No.	<u>BRM-00235695-A</u> O			[Drawing No.	B3	32
Project:	Phase II ESA				Sheet No.	_ <u>1</u> o	f <u>1</u>
Location:	Former Oakville Hospital, 32						
Date Drilled:	November 3, 2016		al Analysis				
Date Drineu.		BTEX	Benzene, Toluene, Ethylbenzene and	I Xylenes	* Duplie	cate Samp	le
Drill Type:	C328 Excavator	ING	Metals and Inorganics	PCB	Polychlorina	led Bipher	yls
Brin Type.	0020 20001000	MET	Metals	PHC	Petroleum H	ydrocarbo	ns (F1-F4)
Datum:	Relative	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga	inic Comp	ounds


GWL	i /	S Y B O L	Soil Description	ELEV. m	DEPTH 0	1	20	N Va 40			stible Va	apour Read	ding (ppm)	SAMPLES	% RECON	SAMPLE -D	ANALYS-S
	•		Asphalt GRAVEL: light brown, loose, dry, trace sand						0.0					G		SS1	Pah Met
			SILTY SAND: brown, loose, dry, trace		1				0.0					G		SS2	
			SAND AND GRAVEL: brown, loose, dry, trace concrete		2	:								G		SS3	
			SANDY SILT: brown, compact, dry		3				0.0					G		SS4	
			SILTY SAND: grey, compact, wet, coarse 											G		SS5	
					4				0.0					G		SS6	
			SILTY CLAY: grey, compact, wet 		5	;			0.0	3				G		SS7	
	ĺ		END OF TESTPIT														
OSPITAL EXP ONLY.GPJ 9/2/17			NOTES: 1) This drawing is to be read with the subject report and project number as presented above. 2) Interpretation assistance by exp is required before use by others. 3) Combustible vapour reading by Photoionization Gas Detector calibrated with isobutylene.		6 7 8												
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY.GPJ					9 10 11												

Time	Water Level (m)	Depth to Cave (m)

Drawing No.	<u> </u>	33
Sheet No.	1 ~	
	<u> </u>	f <u>1</u>
* Duplica	ate Samp	le
3		
	` '	
	Polychlorinate Petroleum Hy	* Duplicate Samp Polychlorinated Biphen Petroleum Hydrocarbor Volatile Organic Comp

G Y W B L O L	Soil Description	ELEV. m	N Value Combustible Vapour Reading (ppm) S N P E E L C S C M R P E E L C S C N C N R P E E L C S C N C N R P E E L C S C N C <	SAMPLE -
	Asphalt / SILTY SAND: brown, compact, moist, Trace gravel /	-		SS1
		-	0.0 ⁰ G	SS2 PAH MET
		-	<u>o</u> ,p	SS3
		-	0.0 G	SS4
		-	G G	SS5 PAH
	END OF TESTPIT NOTES:			
ENVIRONMENTAL-EXP BH LOGS -OAKVILLE HOSPITAL EXP ONLY GPJ 9/2/17	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by exp is required before use by others. Combustible vapour reading by Photoinization Gas Detector calibrated with isobutylene. 			

Time	Water Level (m)	Depth to Cave (m)

The Town of Oakville Phase Two Environmental Site Assessment 327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario BRM-00235695-B0 December 2016

Appendix D: Analytical tables- Soil and Groundwater

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable		BH16-1 S3	BH16-1 S4A	BH16-2 S3B	BH16-3 S3B
Lab ID	Groundwater Condition	Reporting	CAT997	CAT998	CAU000	CAU006
Sampling Date	Residential/Parkland/Institutional	Detection Limit (RDL)*	15-Mar-16	15-Mar-16	15-Mar-16	16-Mar-16
Sample Depth (m)	Land Use		3.1-4.6	4.6-5.2	3.8-4.6	3.8-4.6
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	0.020	<0.020	<0.020	<0.020	<0.020
Toluene	6	0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	1.6	0.020	<0.020	<0.020	<0.020	<0.020
m/p xylenes	NV	0.040	<0.040	<0.040	<0.040	<0.040
o xylene	NV	0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	0.040	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	65	10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	10	<10	<10	<10	<10
F2 (C10-C16)	150	10	<10	36	<10	<10
F3 (C16-C34)	1300	50	<50	<50	<50	<50
F4 (C34-C50)	5600	50	<50	<50	<50	<50
Reached Baseline at C50	NV		Yes	Yes	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600	-	-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value Bold Concent

Concentration exceeds MOE (2011) Table 2 SCS (coarse).

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-4 S3B	BH16-5 S3B	BH16-5B-S5	BH16-55B-S5 (duplicate of BH16- 5B-S5)	BH16-11 S3A	BH16-13 S3A
Lab ID	Groundwater Condition	CAT994	CAT992	DFE693	DFE694	CAU002	CAU017
Sampling Date	Residential/Parkland/Institutional	14-Mar-16	14-Mar-16	4-Oct-16	4-Oct-16	15-Mar-16	16-Mar-16
Sample Depth (m)	Land Use	3.1-3.7	3.1-3.7	3.1-3.7	3.1-3.7	3.1-3.8	3.1-3.8
Consultant	(coarse textured soil)	WSP	WSP	exp	exp	WSP	WSP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	-	-	<0.020	<0.020	-	<0.020
Toluene	6	-	-	<0.020	<0.020	-	<0.020
Ethylbenzene	1.6	-	-	<0.020	<0.020	-	<0.020
m/p xylenes	NV	-	-	<0.040	<0.040	-	<0.040
o xylene	NV	-	-	<0.020	<0.020	-	<0.020
Total Xylenes	25	-	-	<0.040	<0.040	-	<0.040
F1 (C6-C10)	65	<10	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	<10	<10	<10	<10	<10	<10
F2 (C10-C16)	150	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	1300	<50	<50	<50	<50	<50	<50
F4 (C34-C50)	5600	<50	<50	<50	<50	<50	<50
Reached Baseline at C50	NV	Yes	Yes	Yes	Yes	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600	-	-	-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold

Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-15 S2A	BH16-20 S1A	BH16-201-5	BH16-202-5	BH16-2022-5 (duplicate of BH16- 202-5)	BH16-203-5
Lab ID	Groundwater Condition	CAU018	CCV037	DDS245	DDS246	DDS247	DDS248
Sampling Date	Residential/Parkland/Institutional	16-Mar-16	1-Apr-16	26-Sep-16	26-Sep-16	26-Sep-16	26-Sep-16
Sample Depth (m)	Land Use	1.5-2.3	0.3-0.6	3.1-3.7	3.1-3.8	3.1-3.8	3.1-3.8
Consultant	(coarse textured soil)	WSP	WSP	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	6	0.035	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	1.6	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m/p xylenes	NV	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
o xylene	NV	0.028	<0.040	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.040	<10	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	65	<10	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	<10		<10	<10	<10	<10
F2 (C10-C16)	150	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	1300	<50	<50	120	110	<50	<50
F4 (C34-C50)	5600	<50	<50	350	260	<50	<50
Reached Baseline at C50	NV	Yes	Yes	No	No	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600	-	-	750	890	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-210-S5	BH16-211-S5	BH16-212-S3	BH16-213-S3	BH16-214-SS6	BH16-215-SS5
Lab ID	Groundwater Condition	DFE691	DFE692	DFW775	DFW776	DKU852	DKU855
Sampling Date	Residential/Parkland/Institutional	6-Oct-16	6-Oct-16	11-Oct-16	11-Oct-16	08-Nov-16	08-Nov-16
Sample Depth (m)	Land Use	3.1-3.7	3.1-3.7	1.2-1.8	1.2-1.8	3.8 - 4.4	3.1 - 3.7
Consultant	(coarse textured soil)	exp	exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	6	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	1.6	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m/p xylenes	NV	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
o xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	65	<10	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	<10	<10	<10	<10	<10	<10
F2 (C10-C16)	150	<10	<10	17	13	<10	<10
F3 (C16-C34)	1300	<50	<50	<50	81	<50	<50
F4 (C34-C50)	5600	<50	<50	<50	<50	<50	<50
Reached Baseline at C50	NV	Yes	Yes	Yes	Yes	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600			-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold

Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-216-SS5	BH16-217-SS5	BH16-257-SS5 (Dup of BH16-217- SS5)	BH16-218-SS3	BH16-219-SS3
Lab ID	Groundwater Condition	DKU856	DKU857	DKU858	DKU853	DKU854
Sampling Date	Residential/Parkland/Institutional	08-Nov-16	08-Nov-16	08-Nov-16	08-Nov-16	08-Nov-16
Sample Depth (m)	Land Use (coarse textured soil)	3.1 - 3.7	3.1 - 3.7	3.1 - 3.7	1.2 - 1.7	1.2 - 1.8
Consultant		exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	6	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	1.6	<0.020	<0.020	<0.020	<0.020	<0.020
m/p xylenes	NV	<0.040	<0.040	<0.040	<0.040	<0.040
o xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.040	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	65	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	<10	<10	<10	<10	<10
F2 (C10-C16)	150	<10	<10	<10	<10	<10
F3 (C16-C34)	1300	<50	<50	<50	<50	<50
F4 (C34-C50)	5600	<50	<50	<50	<50	<50
Reached Baseline at C50	NV	Yes	Yes	Yes	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600	-	-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-220-SS4	BH16-250-SS4 (Dup of BH16-220- SS4)	BH16-221-SS5	BH16-222-SS4	TP9-SS1
Lab ID	Groundwater Condition	DLA169	DLA170	DLA165	DLA167	DJU094
Sampling Date	Residential/Parkland/Institutional	11-Nov-16	11-Nov-16	11-Nov-16	11-Nov-16	03-Nov-16
Sample Depth (m)	Land Use	2.3 - 2.9	2.3 - 2.9	3.1 - 3.7	2.3 - 2.9	0 - 0.8
Consultant	(coarse textured soil)	exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	0.17	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	6	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	1.6	<0.020	<0.020	<0.020	<0.020	<0.020
m/p xylenes	NV	<0.040	<0.040	<0.040	<0.040	<0.040
o xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	25	<0.040	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	65	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	65	<10	<10	<10	<10	<10
F2 (C10-C16)	150	<10	<10	<10	<10	<10
F3 (C16-C34)	1300	88	110	<50	<50	<50
F4 (C34-C50)	5600	160	340	<50	<50	<50
Reached Baseline at C50	NV	No	No	Yes	Yes	Yes
Gravimetric Heavy Hydrocarbons	5600	1100	1000	-	-	

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coa

Table D.2 - SOIL ANALYTICAL RESULTS- Volatile Organic Compounds (VOCs)

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable Groundwater Condition	Denedian	BH16-2 S3A	QA/QC#2 (dup of BH16-2 S3A)	BH16-4 S3B	BH16-5 S3B	QA/QC#1 (dup of BH16-5 S3B)	BH16-9 S3A
Lab ID	Groundwater Condition	Reporting	CAT999	CAU021	CAT994	CAT992	CAU020	CAU012
Sampling Date	Residential/Parkland/Institutional	Detection Limit	15-Mar-16	15-Mar-2016	14-Mar-16	14-Mar-16	14-Mar-2016	16-Mar-16
Sample Depth (m)	Land Use	(RDL)*	3.1-3.8	3.1-3.8	3.0-3.7	3.1-3.7	3.1-3.7	3.1-3.8
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acetone	28	0.5	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50
Benzene	0.17	0.02	<0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020
Bromodichloromethane	1.9	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Bromoform	0.26	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Bromomethane	0.05	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	0.12	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Chlorobenzene	2.7	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Chloroform	0.17	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	2.9	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1.2-Dichlorobenzene	1.7	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1.3-Dichlorobenzene	6	0.05	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
1.4-Dichlorobenzene	0.097	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dichlorodifluoromethane	25	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethane	0.6	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	0.05	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	0.05	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
cis-1,2-Dichloroethylene	2.5	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	0.75	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.085	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
	0.065 NV	0.03	<0.030		<0.030	<0.030	<0.030	<0.030
cis-1,3-Dichloropropene	NV NV	0.03	<0.030	<0.030 <0.040	<0.030	<0.030	<0.030	<0.030
trans-1,3-Dichloropropene								
Ethylbenzene	1.6	0.02	< 0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Hexane (n)	34 0.96	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Methylene chloride (Dichloromethane)		0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Methyl ethyl ketone (2-Butanone)	44	0.5	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50
Methyl Isobutyl Ketone	4.3	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl t-butyl ether (MTBE)	1.4	0.05	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
Styrene	2.2	0.05	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050
1,1,1,2-Tetrachloroethane	0.05	0.05	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethylene	2.3	0.05	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050
Toluene	6	0.02	< 0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	3.4	0.05	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.05	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Trichloroethylene	0.52	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	5.8	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Vinyl Chloride	0.022	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene + p-Xylene	NV	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	25	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,3-Dichloropropene (cis + trans)	0.05	0.05						

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse).

Table D.2 - SOIL ANALYTICAL RESULTS- Volatile Organic Compound

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-11 S3A	BH16-15 S3A	BH16-102 S2B	QA/QC 16-3 (dup of BH16-102 S2B)	BH16-221-SS6	BH16-222-SS6
Lab ID	Groundwater Condition	0.4110.00	0.0110.40	0110000	0110001	51.4.400	51.4.400
Lab ID	Residential/Parkland/Institutional	CAU002	CAU019	CNS289	CNS291	DLA166	DLA168
Sampling Date	Land Use	15-Mar-16	16-Mar-16	10-Jun-16	10-Jun-16	11-Nov-16	11-Nov-16
Sample Depth (m)	(coarse textured soil)	3.1-3.8	3.1-3.8	2.1-2.4	2.1-2.4	3.8 - 4.4	4.6 - 5.2
Consultant	(,	WSP	WSP	WSP	WSP	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acetone	28	<0.50	<0.50	<0.020	<0.020	<0.50	<0.50
Benzene	0.17	<0.020	<0.020	<0.050	<0.050	<0.020	<0.020
Bromodichloromethane	1.9	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Bromoform	0.26	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Bromomethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	0.12	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	2.7	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chloroform	0.17	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	2.9	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	1.7	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,3-Dichlorobenzene	6	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,4-Dichlorobenzene	0.097	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dichlorodifluoromethane	25	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethane	0.6	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
cis-1,2-Dichloroethylene	2.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	0.75	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.085	<0.050	<0.050	<0.030	<0.030	<0.050	<0.050
cis-1,3-Dichloropropene	NV	<0.030	< 0.030	<0.040	<0.040	< 0.030	<0.030
trans-1,3-Dichloropropene	NV	<0.040	<0.040	<0.020	<0.020	<0.040	<0.040
Ethylbenzene	1.6	<0.020	<0.020	<0.050	<0.050	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Hexane (n)	34	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Methylene chloride (Dichloromethane)	0.96	<0.050	<0.050	<0.50	<0.50	<0.050	<0.050
Methyl ethyl ketone (2-Butanone)	44	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	4.3	<0.50	<0.50	< 0.050	< 0.050	<0.50	<0.50
Methyl t-butyl ether (MTBE)	1.4	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Styrene	2.2	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
1,1,1,2-Tetrachloroethane	0.05	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Tetrachloroethylene	2.3	<0.050	< 0.050	<0.020	<0.020	<0.050	<0.050
Toluene	6	<0.020	<0.020	<0.050	< 0.050	<0.020	<0.020
1,1,1-Trichloroethane	3.4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.52	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	5.8	<0.050	<0.050	<0.020	<0.020	<0.050	<0.050
Vinyl Chloride	0.022	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene + p-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,3-Dichloropropene (cis + trans)	0.05	~0.020	~0.020	~0.020	~0.020	<0.020	<0.020

All soil concentrations reported in µg/g.

* Maximum RDL below MOE (2011) SCS '<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coars

Table D.3 - SOIL ANALYTICAL RESULTS- Polycyclic Aromatic Hydrocarbons (PAHs)

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable Groundwater Condition	Reporting	BH16-3 S2B	BH16-4 S2	BH16-9 S2B	BH16-11 S1B	BH16-13 S1B	BH16-16 S2B	BH16-104 S4A	BH16-105 S1B
Lab ID	Residential/Parkland/Institutional	Detection	CAU005	CAT993	CAU011	CAU001	CAU015	CAU014	CNS284	CNS285
Sampling Date	Land Use	Limit (RDL)*	16-Mar-16	14-Mar-16	16-Mar-16	15-Mar-16	16-Mar-16	16-Mar-16	9-Jun-16	9-Jun-16
Sample Depth (m)	(coarse textured soil)		2.3-3.1	1.2-2.4	2.3-3.1	0.3-1.5	0.7-1.5	2.3-3.1	4.6-5.2	0.8-1.5
Consultant			WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acenaphthene	29	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.15	<0.0050	<0.0050	0.062
Acenaphthylene	0.17	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050
Anthracene	0.74	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.34	<0.0050	<0.0050	0.16
Benzo(a)anthracene	0.63	0.005	0.0056	<0.0050	<0.0050	0.006	0.73	<0.0050	<0.0050	0.5
Benzo(a)pyrene	0.3	0.005	0.0066	<0.0050	<0.0050	0.0073	0.6	<0.0050	<0.0050	0.41
Benzo(b/j)fluoranthene	0.78	0.005	0.0091	<0.0050	<0.0050	0.0097	0.85	<0.0050	<0.0050	0.58
Benzo(ghi)perylene	7.8	0.005	0.0054	<0.0050	<0.0050	0.006	0.35	<0.0050	<0.0050	0.23
Benzo(k)fluoranthene	0.78	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.32	<0.0050	<0.0050	0.18
Chrysene	7.8	0.005	0.0064	<0.0050	<0.0050	0.0086	0.63	<0.0050	<0.0050	0.41
Dibenzo(a,h)anthracene	0.1	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.097	<0.0050	<0.0050	0.062
Fluoranthene	0.69	0.005	0.013	<0.0050	<0.0050	0.014	1.9	<0.0050	<0.0050	1.2
Fluorene	69	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.13	<0.0050	<0.0050	0.058
Indeno(1,2,3-cd)pyrene	0.48	0.005	0.0052	<0.0050	<0.0050	0.0059	0.41	<0.0050	<0.0050	0.28
1-Methylnaphthalene	3.4	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.0057
2-Methylnaphthalene	3.4	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.0051
Naphthalene	0.75	0.005	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.0084
Phenanthrene	7.8	0.005	0.0057	<0.0050	<0.0050	0.01	1.1	<0.0050	<0.0050	0.67
Pyrene	78	0.005	0.011	<0.0050	<0.0050	0.012	1.4	<0.0050	<0.0050	0.87
Methylnaphthalene, 2-(1-)	0.99	0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.071	<0.0071	<0.0071	0.011

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS '<' = Parameter below detection limit, as indicated

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (coarse).

Bold

Table D.3 - SOIL ANALYTICAL RESULTS- Polycyclic Aromatic Hydrc

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable Groundwater Condition	BH16-105 S2B	BH16-106 S1	BH16-107 S1	BH16-107 S2B	BH16-108 S1B	BH16-110 S1	BH16-112 S1	BH16-204-S2	BH16-2044- S2 (Dup of BH16- 204 S2)
Lab ID	Residential/Parkland/Institutional	CPA347	CNS286	CNS287	CPA348	CNS288	CPA349	CPA350	DDX054	DDX055
Sampling Date	Land Use	9-Jun-16	10-Jun-16	10-Jun-16	10-Jun-16	9-Jun-16	10-Jun-16	10-Jun-16	18-Sep-16	18-Sep-16
Sample Depth (m)	(coarse textured soil)	2.3-3.1	0-1.5	0-1.5	2.1-3.1	0.9-1.5	0-1.5	0-1.5	0.8-1.5	0.8-1.5
Consultant	(,	WSP	WSP	WSP	WSP	WSP	WSP	WSP	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acenaphthene	29	<0.0050	0.0095	0.065	<0.0050	<0.0050	0.19	0.018	0.41	0.31
Acenaphthylene	0.17	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0057	<0.0050	0.0051	0.03
Anthracene	0.74	<0.0050	0.025	0.2	<0.0050	<0.0050	0.47	0.052	0.54	0.59
Benzo(a)anthracene	0.63	<0.0050	0.11	0.6	<0.0050	<0.0050	1.6	0.2	1.8	2
Benzo(a)pyrene	0.3	<0.0050	0.1	0.49	<0.0050	<0.0050	1.4	0.12	1.4	1.7
Benzo(b/j)fluoranthene	0.78	<0.0050	0.15	0.69	<0.0050	<0.0050	1.5	0.15	2	2.3
Benzo(ghi)perylene	7.8	<0.0050	0.061	0.27	<0.0050	<0.0050	0.61	0.056	0.75	0.92
Benzo(k)fluoranthene	0.78	<0.0050	0.045	0.21	<0.0050	<0.0050	0.59	0.052	0.65	0.9
Chrysene	7.8	<0.0050	0.1	0.52	<0.0050	<0.0050	1.3	0.16	1.6	1.8
Dibenzo(a,h)anthracene	0.1	<0.0050	0.016	0.074	<0.0050	<0.0050	0.16	0.016	0.2	0.23
Fluoranthene	0.69	<0.0050	0.26	1.5	<0.0050	0.0071	4.2	0.41	4.7	4.8
Fluorene	69	<0.0050	0.0083	0.055	<0.0050	<0.0050	0.18	0.017	0.39	0.37
Indeno(1,2,3-cd)pyrene	0.48	<0.0050	0.072	0.33	<0.0050	<0.0050	0.83	0.049	0.95	1.1
1-Methylnaphthalene	3.4	<0.0050	<0.0050	0.0058	<0.0050	<0.0050	0.014	<0.0050	<0.0050	0.046
2-Methylnaphthalene	3.4	<0.0050	<0.0050	0.0066	<0.0050	<0.0050	0.014	<0.0050	<0.0050	0.074
Naphthalene	0.75	<0.0050	<0.0050	0.018	<0.0050	<0.0050	0.022	<0.0050	<0.0050	0.089
Phenanthrene	7.8	<0.0050	0.11	0.77	<0.0050	<0.0050	2.1	0.21	3.7	3.2
Pyrene	78	<0.0050	0.19	1.1	<0.0050	0.0052	3.1	0.31	3.1	3.3
Methylnaphthalene, 2-(1-)	0.99	<0.0071	<0.0071	0.012	<0.0071	<0.0071	0.028	<0.0071	<0.0071	0.12

All soil concentrations reported in µg/g.

* Maximum RDL below MOE (2011) SCS '<' = Parameter below detection limit, as indicated

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (coal

Bold

Table D.3 - SOIL ANALYTICAL RESULTS- Polycyclic Aromatic Hydrc

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable Groundwater Condition	BH16-204-S5	BH16-204-S6	BH16-205-S1	BH16-205-S3	BH16-206-S2	BH16-206-S4	BH16-207-S2	BH16-207-S5	BH16-208-S1
Lab ID	Residential/Parkland/Institutional	DDX056	DDX057	DDX058	DDX059	DDX061	DDX062	DDX067	DDX068	DDX064
Sampling Date	Land Use	18-Sep-16	18-Sep-16	18-Sep-16	18-Sep-16	18-Sep-16	18-Sep-16	28-Sep-16	28-Sep-16	28-Sep-16
Sample Depth (m)	(coarse textured soil)	3.1-3.8	3.8-4.6	0-0.8	1.5-2.3	0.8-1.5	2.3-3.05	0.8-1.5	3.1-3.8	0-0.8
Consultant	(,	exp								
Laboratory		Maxxam								
Acenaphthene	29	<0.0050	<0.0050	<0.50	<0.050	0.5	<0.0050	<0.0050	<0.0050	0.039
Acenaphthylene	0.17	<0.0050	<0.0050	<0.50	0.075	0.055	<0.0050	<0.0050	<0.0050	0.013
Anthracene	0.74	<0.0050	<0.0050	<0.50	<0.050	1.7	<0.0050	<0.0050	<0.0050	0.11
Benzo(a)anthracene	0.63	<0.0050	<0.0050	<0.50	<0.050	5.1	<0.0050	<0.0050	<0.0050	0.5
Benzo(a)pyrene	0.3	<0.0050	<0.0050	<0.50	<0.050	4.1	<0.0050	<0.0050	<0.0050	0.35
Benzo(b/j)fluoranthene	0.78	<0.0050	<0.0050	<0.50	<0.050	4.8	<0.0050	<0.0050	<0.0050	0.41
Benzo(ghi)perylene	7.8	<0.0050	<0.0050	<0.50	<0.050	2	<0.0050	<0.0050	<0.0050	0.21
Benzo(k)fluoranthene	0.78	<0.0050	<0.0050	<0.50	<0.050	1.6	<0.0050	<0.0050	<0.0050	0.14
Chrysene	7.8	<0.0050	<0.0050	<0.50	<0.050	4.1	<0.0050	<0.0050	<0.0050	0.33
Dibenzo(a,h)anthracene	0.1	<0.0050	<0.0050	<0.50	<0.050	0.54	<0.0050	<0.0050	<0.0050	0.047
Fluoranthene	0.69	<0.0050	<0.0050	<0.50	<0.050	11	<0.0050	<0.0050	<0.0050	1
Fluorene	69	<0.0050	<0.0050	<0.50	0.1	0.45	<0.0050	<0.0050	<0.0050	0.029
Indeno(1,2,3-cd)pyrene	0.48	<0.0050	<0.0050	<0.50	<0.050	2.4	<0.0050	<0.0050	<0.0050	0.26
1-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.50	0.082	0.08	<0.0050	<0.0050	<0.0050	0.0065
2-Methylnaphthalene	3.4	<0.0050	<0.0050	<0.50	0.17	0.1	<0.0050	<0.0050	<0.0050	0.0079
Naphthalene	0.75	<0.0050	<0.0050	<0.50	0.17	0.14	<0.0050	<0.0050	<0.0050	0.018
Phenanthrene	7.8	<0.0050	<0.0050	<0.50	<0.050	5.4	<0.0050	<0.0050	<0.0050	0.37
Pyrene	78	<0.0050	<0.0050	<0.50	<0.050	8	<0.0050	<0.0050	<0.0050	0.81
Methylnaphthalene, 2-(1-)	0.99	<0.0071	<0.0071	<0.71	0.25	0.18	<0.0071	<0.0071	<0.0071	0.014

All soil concentrations reported in µg/g.

* Maximum RDL below MOE (2011) SCS '<' = Parameter below detection limit, as indicated

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (coal

Bold

Table D.3 - SOIL ANALYTICAL RESULTS- Polycyclic Aromatic Hydrc

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable Groundwater Condition		BH16-209-S1	
Lab ID	Residential/Parkland/Institutional	DDX064	DDX069	DDX070
Sampling Date	Land Use	28-Sep-16	28-Sep-16	28-Sep-16
Sample Depth (m)	(coarse textured soil)	2.3-3.1	0-0.8	1.5-2.3
Consultant		exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam
Acenaphthene	29	<0.0050	<0.50	<0.0050
Acenaphthylene	0.17	<0.0050	<0.50	<0.0050
Anthracene	0.74	<0.0050	<0.50	<0.0050
Benzo(a)anthracene	0.63	<0.0050	<0.50	<0.0050
Benzo(a)pyrene	0.3	<0.0050	0.53	<0.0050
Benzo(b/j)fluoranthene	0.78	<0.0050	0.66	<0.0050
Benzo(ghi)perylene	7.8	<0.0050	<0.50	<0.0050
Benzo(k)fluoranthene	0.78	<0.0050	<0.50	<0.0050
Chrysene	7.8	<0.0050	0.5	<0.0050
Dibenzo(a,h)anthracene	0.1	<0.0050	<0.50	<0.0050
Fluoranthene	0.69	<0.0050	1.1	<0.0050
Fluorene	69	<0.0050	<0.50	<0.0050
Indeno(1,2,3-cd)pyrene	0.48	<0.0050	<0.50	<0.0050
1-Methylnaphthalene	3.4	<0.0050	<0.50	<0.0050
2-Methylnaphthalene	3.4	<0.0050	<0.50	<0.0050
Naphthalene	0.75	<0.0050	<0.50	<0.0050
Phenanthrene	7.8	<0.0050	0.55	<0.0050
Pyrene	78	<0.0050	0.9	<0.0050
Methylnaphthalene, 2-(1-)	0.99	<0.71	<0.71	<0.0071

All soil concentrations reported in µg/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coal

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	Reporting	BH16-5 S1B	BH16-5A S4A	BH16-6 S2A	BH16-7 S1B	BH16-7 S2B	BH16-8 S2B	BH16-9 S2A	BH16-9A S4A
Lab ID	Groundwater Condition	Detection	CAT991	CNS275	CAT989	CAT995	CAT996	CAU007	CAU010	CNS276
Sampling Date	Residential/Parkland/Institutional	Limit (RDL)*	14-Mar-16	8-Jun-2016	14-Mar-16	14-Mar-16	14-Mar-16	16-Mar-16	16-Mar-16	8-Jun-2016
Sample Depth (m)	Land Use	(, ,	0.6-122	4.6-5.2	1.2-1.8	0.6-1.2	1.8-2.4	2.3 - 3.1	1.5-2.3	4.6-5.3
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	0.05	0.18	-	<0.050	0.18	<0.050	0.11	0.073	-
Antimony (Sb)	7.5	0.2	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	-
Arsenic (As)	18	1	1.9	-	<1.0	1.6	1.3	3.6	<1.0	-
Barium (Ba)	390	0.5	29	-	10	18	7.1	60	11	-
Beryllium (Be)	4	0.2	<0.20	-	<0.20	0.2	<0.20	0.46	<0.20	-
Boron (B)	120	5	<5.0	-	<5.0	<5.0	<5.0	8.6	<5.0	-
Cadmium (Cd)	1.2	0.1	<0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10	-
Chromium (Cr)	160	1	6.3	-	4.9	7.5	3.6	16	4.6	-
Cobalt (Co)	22	0.1	3	-	2.2	2.2	1.4	9.3	2	-
Copper (Cu)	140	0.5	13	-	6.2	5.8	6.9	21	8.4	-
Lead (Pb)	120	1	4.8	-	2	4.5	2.4	7.5	3.1	-
Molybdenum (Mo)	6.9	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	-
Nickel (Ni)	100	0.5	6.1	-	4	4.4	3.1	19	4.3	-
Selenium (Se)	2.4	0.5	<0.50	-	<0.50	<0.50	<0.50	<0.50	<0.50	-
Silver (Ag)	20	0.2	<0.20	-	<0.20	<0.20	<0.20	<0.20	<0.20	-
Sodium (Na)	NV	50	430	-	380	900	520	1000	630	-
Thallium (TI)	1	0.05	<0.050	-	<0.050	<0.050	<0.050	0.076	<0.050	-
Uranium (U)	23	0.05	0.28	-	0.19	0.25	0.2	0.57	0.21	-
Vanadium (V)	86	5	13	-	12	17	7.6	23	9.7	-
Zinc (Zn)	340	5	17	-	8.5	16	8.7	44	13	-
Mercury (Hg)	0.27	0.05	<0.050	-	<0.050	<0.050	<0.050	<0.050	<0.050	-
Conductivity (ms/cm)	0.7	0.002	0.81	0.6	0.48	2.4	0.89	1.7	1.5	0.24
Sodium Adsorption Ratio	5		20	0.83	16	15	26	14	28	0.49
Cyanide, Free	0.051	0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	-
pH (pH Units)	NV	-	7.87	-	7.84	7.58	8.12	7.86	8.09	-
Chromium VI	8	-	-	-	-	-	-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse).

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-10 S1B	BH16-12 S1B	BH16-13 S2A	BH16-14 S1B	QA/QC#6 (duplicate of 16- 14 S1B)	BH16-14 S2B	BH16-14A S4B	BH16-15A S4A	BH16-16 S2A
Lab ID	Groundwater Condition	CAT986	CAU003	CAU016	CAU008	CAU023	CAU009	CNS277	CNS278	CAU013
Sampling Date	Residential/Parkland/Institutional	14-Mar-16	15-Mar-16	16-Mar-16	16-Mar-16	16-Mar-2016	16-Mar-16	9-Jun-2016	8-Jun-2016	16-Mar-16
Sample Depth (m)	Land Use	0.5-1.2	0.7-1.5	1.5-2.3	0.7-1.5	0.7-1.5	2.3 -3.1	5.2-5.8	4.6-5.3	1.5-2.3
Consultant	(coarse textured soil)	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	<0.050	0.067	0.1	0.093	0.068	0.095	-	-	0.13
Antimony (Sb)	7.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-	<0.20
Arsenic (As)	18	1.6	<1.0	<1.0	1.9	2	5.1	-	-	<1.0
Barium (Ba)	390	7.1	7.1	8.7	25	14	55	-	-	9
Beryllium (Be)	4	<0.20	<0.20	<0.20	<0.20	<0.20	0.32	-	-	<0.20
Boron (B)	120	<5.0	<5.0	<5.0	<5.0	<5.0	5.7	-	-	<5.0
Cadmium (Cd)	1.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-	<0.10
Chromium (Cr)	160	6	5.3	5.3	7.1	6.2	9.7	-	-	4.8
Cobalt (Co)	22	1.9	1.9	1.5	2.3	1.9	5.8	-	-	1.5
Copper (Cu)	140	8	8.1	6.2	8.1	7.8	17	-	-	11
Lead (Pb)	120	2.8	2.8	2.1	2.5	2.6	5.5	-	-	2.3
Molybdenum (Mo)	6.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	-	<0.50
Nickel (Ni)	100	4.1	3.8	3.8	5.1	4.4	12	-	-	3.3
Selenium (Se)	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	-	<0.50
Silver (Ag)	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-	<0.20
Sodium (Na)	NV	330	410	540	1800	1900	2200	-	-	520
Thallium (TI)	1	<0.050	<0.050	<0.050	<0.050	<0.050	0.061	-	-	<0.050
Uranium (U)	23	0.26	0.22	0.28	0.3	0.24	0.31	-	-	0.25
Vanadium (V)	86	15	11	13	16	15	15	-	-	11
Zinc (Zn)	340	11	9.9	8.3	9.7	9.5	29	-	-	8.9
Mercury (Hg)	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	<0.050
Conductivity (ms/cm)	0.7	0.88	0.78	1	5.8	4.9	5	0.33	0.3	1.8
Sodium Adsorption Ratio	5	4.7	18	20	80	73	53	0.64	1.3	41
Cyanide, Free	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	<0.01
pH (pH Units)	NV	7.55	7.67	8.19	7.84	7.92	7.97	-	-	8.6
Chromium VI	8	-	-	-	-	-	-	-	-	-

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-17 S1B	BH16-18 S2B	BH16-19 S1B	BH16-19 S2B	BH16-101 S3B	BH16-103 S2	BH16-103 S3	BH16-113 S3B
Lab ID	Groundwater Condition	CAU004	CAT990	CAT987	CAT988	CNS279	CNS280	CNS281	CNS282
Sampling Date	Residential/Parkland/Institutional	15-Mar-16	14-Mar-16	14-Mar-16	14-Mar-16	10-Jun-2016	10-Jun-2016	10-Jun-2016	9-Jun-2016
Sample Depth (m)	Land Use	0.3-1.5	1.8-2.4	0.3-1.2	1.8-2.4	4-4.3	1.5-3.1	3.1-4	4-4.6
Consultant	(coarse textured soil)	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	<0.050	<0.050	<0.050	<0.050	-	-	-	-
Antimony (Sb)	7.5	<0.20	<0.20	<0.20	<0.20	-	-	-	-
Arsenic (As)	18	1.2	1.5	1.4	<1.0	-	-	-	-
Barium (Ba)	390	5.6	11	9.8	6.9	-	-	-	-
Beryllium (Be)	4	<0.20	<0.20	<0.20	<0.20	-	-	-	-
Boron (B)	120	<5.0	<5.0	<5.0	<5.0	-	-	-	-
Cadmium (Cd)	1.2	<0.10	<0.10	<0.10	<0.10	-	-	-	-
Chromium (Cr)	160	8.1	5.7	7.9	5	-	-	-	-
Cobalt (Co)	22	2	2	1.8	1.8	-	-	-	-
Copper (Cu)	140	7.4	7.5	7.4	6.9	-	-	-	-
Lead (Pb)	120	2.6	2.7	2.8	2.5	-	-	-	-
Molybdenum (Mo)	6.9	<0.50	<0.50	<0.50	<0.50	-	-	-	-
Nickel (Ni)	100	3.6	3.5	4.3	3.3	-	-	-	-
Selenium (Se)	2.4	<0.50	<0.50	<0.50	<0.50	-	-	-	-
Silver (Ag)	20	<0.20	<0.20	<0.20	<0.20	-	-	-	-
Sodium (Na)	NV	230	580	1300	350	-	-	-	-
Thallium (TI)	1	<0.050	<0.050	<0.050	<0.050	-	-	-	-
Uranium (U)	23	0.34	0.34	0.28	0.3	-	-	-	-
Vanadium (V)	86	27	16	20	13	-	-	-	-
Zinc (Zn)	340	10	11	11	10	-	-	-	-
Mercury (Hg)	0.27	<0.050	<0.050	<0.050	<0.050	-	-	-	-
Conductivity (ms/cm)	0.7	0.34	1.6	3.1	0.69	0.68	1.3	0.99	0.27
Sodium Adsorption Ratio	5	6.2	31	65	13	3.4	35	11	0.54
Cyanide, Free	0.051	<0.01	<0.01	<0.01	<0.01	-	-	-	-
pH (pH Units)	NV	8.01	7.88	7.83	8.05	-	-	-	-
Chromium VI	8	-	-	-	-	-	-	-	-

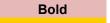
All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold


Concentration exceeds MOE (2011) Table 2 SCS (coa Non-detect but detection limit exceeds the MOE (2011

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	BH16-114 S3B	BH16-220-SS2	BH16-220-SS4	BH16-221-SS1	TP2-SS1	TP4-SS2	TP44-SS22 (Dup of TP4-SS2)
Lab ID	Groundwater Condition	CNS283	DLA171	DLA169	DLA164	DJU098	DJU084	DJU085
Sampling Date	Residential/Parkland/Institutional	10-Jun-2016	11-Nov-16	11-Nov-16	11-Nov-16	4-Nov-16	3-Nov-16	3-Nov-16
Sample Depth (m)	Land Use	3.7-4.6	0.8 - 1.4	2.3 - 2.9	0 - 0.6	0 - 0.8	0.8 - 1.5	0.8 - 1.5
Consultant	(coarse textured soil)	WSP	exp	exp	exp	exp	ехр	ехр
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	-	0.2	-	0.2	0.11	<0.050	<0.050
Antimony (Sb)	7.5	-	<0.20	-	<0.20	<0.20	<0.20	<0.20
Arsenic (As)	18	-	2.5	-	1.8	1.7	1.2	1.1
Barium (Ba)	390	-	30	-	16	11	7.2	5.5
Beryllium (Be)	4	-	0.27	-	0.22	<0.20	<0.20	<0.20
Boron (B)	120	-	<5.0	-	<5.0	<5.0	<5.0	<5.0
Cadmium (Cd)	1.2	-	0.11	-	<0.10	<0.10	<0.10	<0.10
Chromium (Cr)	160	-	10	-	7.8	7.1	7.5	5.6
Cobalt (Co)	22	-	4.3	-	2.4	2.5	2.2	2
Copper (Cu)	140	-	15	-	5.4	8.8	7.8	6.9
Lead (Pb)	120	-	46	-	7.9	4.2	2.9	2.6
Molybdenum (Mo)	6.9	-	<0.50	-	<0.50	<0.50	<0.50	<0.50
Nickel (Ni)	100	-	9.1	-	3.9	4.9	3.9	3.3
Selenium (Se)	2.4	-	<0.50	-	<0.50	<0.50	<0.50	<0.50
Silver (Ag)	20	-	<0.20	-	<0.20	<0.20	<0.20	<0.20
Sodium (Na)	NV	-	-	-	-	-	-	-
Thallium (TI)	1	-	0.072	-	<0.050	<0.050	<0.050	<0.050
Uranium (U)	23	-	0.31	-	0.22	0.32	0.36	0.32
Vanadium (V)	86	-	23	-	17	18	21	17
Zinc (Zn)	340	-	35	-	17	14	11	9.8
Mercury (Hg)	0.27	-	<0.050	-	<0.050	<0.050	<0.050	<0.050
Conductivity (ms/cm)	0.7	0.36	-	0.98	-	-	-	-
Sodium Adsorption Ratio	5	0.38	-	23	-	-	-	-
Cyanide, Free	0.051	-	-	-	-	-	-	-
pH (pH Units)	NV	-	-	-	-	-	-	-
Chromium VI	8	-	<0.2	-	<0.2	<0.2	<0.2	<0.2

All soil concentrations reported in μ g/g.

- * Maximum RDL below MOE (2011) SCS
- '<' = Parameter below detection limit, as indicated</pre>
- 'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (cor

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	TP4-SS6	TP5-SS1	TP55-SS11 (Dup of TP5-SS1)	TP6-SS2	TP6-SS6	TP7-SS2	TP7-SS5
Lab ID	Groundwater Condition	DJU086	DJU082	DJU083	DJU088	DJU087	DJU090	DJU089
Sampling Date	Residential/Parkland/Institutional	3-Nov-16	3-Nov-16	3-Nov-16	3-Nov-16	3-Nov-16	3-Nov-16	3-Nov-16
Sample Depth (m)	Land Use	3.8 - 4.6	0 - 0.8	0 - 0.8	0.8 - 1.5	3.8 - 4.6	0.8 - 1.5	3.1 - 3.8
Consultant	(coarse textured soil)	exp	ехр	ехр	exp	exp	exp	ехр
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	0.19	0.086	0.12	<0.050	0.099	0.17	0.059
Antimony (Sb)	7.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic (As)	18	4.5	1.5	1.7	2	2.3	2.1	<1.0
Barium (Ba)	390	39	14	12	9.6	43	14	7.9
Beryllium (Be)	4	0.69	<0.20	0.24	<0.20	0.39	0.33	<0.20
Boron (B)	120	11	<5.0	<5.0	<5.0	7.8	<5.0	<5.0
Cadmium (Cd)	1.2	<0.10	<0.10	<0.10	<0.10	0.11	0.12	<0.10
Chromium (Cr)	160	20	6.6	9.3	4.7	14	8.2	4.9
Cobalt (Co)	22	12	2.3	2.4	2.6	7	3.3	2
Copper (Cu)	140	28	8.7	7.9	7.5	22	15	10
Lead (Pb)	120	9.2	3.5	4	2.7	7.6	9	2.9
Molybdenum (Mo)	6.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Nickel (Ni)	100	27	4.7	4.9	4.4	15	6.9	4.4
Selenium (Se)	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver (Ag)	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Sodium (Na)	NV	-	-	-	-	-	-	-
Thallium (TI)	1	0.12	<0.050	<0.050	<0.050	0.081	0.068	<0.050
Uranium (U)	23	0.57	0.29	0.29	0.22	0.57	0.36	0.26
Vanadium (V)	86	27	15	19	9.7	21	17	11
Zinc (Zn)	340	64	13	12	10	45	38	12
Mercury (Hg)	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Conductivity (ms/cm)	0.7	-	-	-	-	-	-	-
Sodium Adsorption Ratio	5	-	-	-	-	-	-	-
Cyanide, Free	0.051	-	-	-	-	-	-	-
pH (pH Units)	NV	-	-	-	-	-	-	-
Chromium VI	8	<0.2	0.2	0.3	<0.2	<0.2	<0.2	<0.2

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold

Concentration exceeds MOE (2011) Table 2 SCS (coa

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a Potable	TP8-SS2	TP10-SS2	TP10-SS5	INC-SS1	INC-SS2	INC-SS3
Lab ID	Groundwater Condition	DJU091	DJU092	DJU093	DJU095	DJU096	DJU097
Sampling Date	Residential/Parkland/Institutional	3-Nov-16	3-Nov-16	3-Nov-16	4-Nov-16	4-Nov-16	4-Nov-16
Sample Depth (m)	Land Use	0.8 - 1.5	0.8 - 1.5	3.1 - 3.8	0 - 0.3	0 - 0.3	0 - 0.3
Consultant	(coarse textured soil)	exp	exp	exp	exp	ехр	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Hot Water Ext. Boron (B)	1.5	0.11	0.14	0.14	0.29	0.24	0.59
Antimony (Sb)	7.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic (As)	18	<1.0	1.6	2.8	2.4	2.4	2.6
Barium (Ba)	390	21	17	65	31	35	28
Beryllium (Be)	4	0.23	<0.20	0.5	0.24	0.25	0.28
Boron (B)	120	<5.0	<5.0	11	<5.0	<5.0	<5.0
Cadmium (Cd)	1.2	<0.10	<0.10	<0.10	0.15	<0.10	0.2
Chromium (Cr)	160	8.5	7.7	18	9.4	11	11
Cobalt (Co)	22	3.2	3.2	10	2.9	4	4.1
Copper (Cu)	140	12	10	22	11	13	18
Lead (Pb)	120	4.8	4.9	8.1	18	10	23
Molybdenum (Mo)	6.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Nickel (Ni)	100	6.7	5.9	22	6.1	8.1	9.5
Selenium (Se)	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver (Ag)	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Sodium (Na)	NV	-	-	-	-	-	-
Thallium (TI)	1	<0.050	<0.050	0.096	0.063	0.054	0.072
Uranium (U)	23	0.34	0.33	0.71	0.47	0.33	0.4
Vanadium (V)	86	17	16	25	21	18	18
Zinc (Zn)	340	18	17	51	37	31	52
Mercury (Hg)	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Conductivity (ms/cm)	0.7	-	-	-	-	-	-
Sodium Adsorption Ratio	5	-	-	-	-	-	-
Cyanide, Free	0.051	-	-	-	-	-	-
pH (pH Units)	NV	-	-	-	-	-	-
Chromium VI	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (cos

Table D.5- SOIL ANALYTICAL RESULTS- PCBs	
--	--

BRM-00235695-A0, Former Oa	MOE (2011) Table 2: Full Depth Background SCS in a Potable	Reporting	BH16-4 S2	BH16-11 S1B	QA/QC#4 (duplicate of BH16-11 S1B)	BH16-12 S1B			
Lab ID	Groundwater Condition Residential/Parkland/Institutional	Detection	CAT993	CAU001	CAU022	CAU003			
Sampling Date		Limit (RDL)*	14-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16			
Sample Depth (m)	(fine textured soil)		1.2-2.4	0.3-1.5	0.3-1.5	0.7-1.5			
Consultant			WSP	WSP	WSP	WSP			
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam			
PCBs	0.35	0.01	<0.010	<0.010	<0.010	<0.010			
All soil concentrations reported in μg/g. * Maximum RDL below MOE (2011) SCS '<' = Parameter below detection limit, as indicated 'NV'= No value Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse). Non-detect but detection limit exceeds the MOE (2011) SCS.									

Table D.6 - GROUNDWATER ANALYTICAL RESULTS - Petroleum Hydrocarbons (PHCs)

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth		BH 16-2	BH16-5	QA-QC#2 (Dup of BH16-5)	BH16-5A	MW16-5B	BH 16-9
Lab ID	Background SCS in a Potable	Reporting Detection	CBJ330	CEL037	CEL040	COP143	DFW814	CBJ331
Sampling Date	Groundwater Condition All Types of Land Use	Limit (RDL)*	22-Mar-16	13-Apr-16	13-Apr-16	21-Jun-16	13-October-2016	22-Mar-16
Well screen interval (m)	(coarse textured soil)		1.2 - 4.3	1.5 - 4.6	1.5 - 4.6	8.5 - 10.1	10.7 - 12.2	2.4 - 5.5
Consultant	(coarse textured soll)		WSP	WSP	WSP	WSP	exp	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	5	<0.20	-	<0.20	<0.20	-	<0.20	-
Toluene	24	<0.20	-	<0.20	<0.20	-	<0.20	-
Ethylbenzene	2.4	<0.20	-	<0.20	<0.20	-	<0.20	-
m/p xylenes	NV	<0.40	-	<0.40	<0.40	-	<0.40	-
o xylene	NV	<0.20	-	<0.20	<0.20	-	<0.20	-
Total Xylenes	300	<0.40	-	<0.40	<0.40	-	<0.40	-
F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	<25
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	150	<100	<100	<100		160	<100	<100
F3 (C16-C34)	500	<200	<200	<200		14000	210	<200
F4 (C34-C50)	500	<200	<200	<200		4200	<200	<200
Reached Baseline at C50	NV		Yes	Yes		Yes	YES	Yes

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse).

Table D.6 - GROUNDWATER ANALYTICAL RESULTS - Petroleum H

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	BH 16-11	BH 16-14	BH 16-15	BH 16-19	BH16-20	BH16-20	MW16-201
Lab ID	Background SCS in a Potable	CBJ326	CBJ328	CBJ332	CBJ327	CEL039 / CFI477	CNY605	DED124
Sampling Date	Groundwater Condition	21-Mar-16	21-Mar-16	22-Mar-16	21-Mar-16	13-Apr-16	16-Jun-16	29-Sep-16
Well screen interval (m)	All Types of Land Use (coarse textured soil)	1.8 - 4.9	2.1 - 5.2	2.1 - 5.2	1.8 - 3.4	0.3 - 0.6	0.3 - 0.6	5.2 - 8.2
Consultant	(coarse textured soll)	WSP	WSP	WSP	WSP	WSP	WSP	exp
Laboratory	1	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	5	-	-	-	-	<0.20	-	0.29
Toluene	24	-	-	-	-	<0.20	-	<0.20
Ethylbenzene	2.4	-	-	-	-	<0.20	-	<0.20
m/p xylenes	NV	-	-	-	-	<0.40	-	<0.40
o xylene	NV	-	-	-	-	<0.20	-	<0.20
Total Xylenes	300	-	-	-	-	<0.40	-	<0.40
F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	<25
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	500	<200	<200	<200	<200	<200	<200	240
F4 (C34-C50)	500	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C50	NV	Yes	Yes	Yes	Yes	Yes	Yes	YES

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (c

Table D.6 - GROUNDWATER ANALYTICAL RESULTS - Petroleum H

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	MW16-202	MW16-2022 (Dup of MW16-202)	MW16-203	MW16-203A	MW16-210	MW16-2101	MW16-211
Lab ID	Background SCS in a Potable	DEB892	DED126	DEB893	DFW811	DFW809	DFW810	DFW808
Sampling Date	Groundwater Condition	29-Sep-16	29-Sep-16	29-Sep-16	12-October-2016	12-October-2016	12-October-2016	12-October-2016
Well screen interval (m)	All Types of Land Use (coarse textured soil)	2.3 - 5.3	2.3 - 5.3	2.4 - 5.5	6.4 - 9.5	6.1 - 9.1	6.1 - 9.1	5.8 - 8.8
Consultant		exp	exp	exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m/p xylenes	NV	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
o xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total Xylenes	300	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	<25
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	500	<200	<200	<200	<200	3700	2500	<200
F4 (C34-C50)	500	<200	<200	<200	<200	1100	700	<200
Reached Baseline at C50	NV	YES	YES	YES	YES	YES	YES	YES

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (c

Table D.6 - GROUNDWATER ANALYTICAL RESULTS - Petroleum H

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	MW16-213	TRIP BLANK	MW16-214	MW16-215	MW16-215	MW16-255 (Dup of MW16-215)	MW16-255 (Dup of MW16-215)	MW16-216
Lab ID	Background SCS in a Potable	DFW815	DFW816	DKU559	DKU560	DLA390	DKU561	DLA336	DLA332
Sampling Date	Groundwater Condition	13-October-2016	13-October-2016	10-Nov-16	10-Nov-16	11-Nov-16	10-Nov-16	11-Nov-16	11-Nov-16
Well screen interval (m)	All Types of Land Use (coarse textured soil)	0.9 - 1.8	-	6.1 - 9.1	6.1 - 8.8	6.1 - 8.8	6.1 - 8.8	6.1 - 8.8	6.1 - 9.1
Consultant		exp	exp	exp	exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	5	<0.20	<0.20	<0.20	<0.20	-	<0.20	-	<0.20
Toluene	24	<0.20	<0.20	<0.20	<0.20	-	<0.20	-	<0.20
Ethylbenzene	2.4	<0.20	<0.20	<0.20	<0.20	-	<0.20	-	<0.20
m/p xylenes	NV	<0.40	<0.40	<0.40	<0.40	-	<0.40	-	<0.40
o xylene	NV	<0.20	<0.20	<0.20	<0.20	-	<0.20	-	<0.20
Total Xylenes	300	<0.40	<0.40	<0.40	<0.40	-	<0.40	-	<0.40
F1 (C6-C10)	750	<25	<25	<25	<25	-	<25	-	<25
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	-	<25	-	<25
F2 (C10-C16)	150	<100	-	<100	-	<100	-	<100	<100
F3 (C16-C34)	500	<200	-	<200	-	<200	-	<200	<200
F4 (C34-C50)	500	<200	-	<200	-	<200	-	<200	<200
Reached Baseline at C50	NV	YES	-	YES	-	YES	-	YES	YES

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (c

Bold C

Table D.6 - GROUNDWATER ANALYTICAL RESULTS - Petroleum F

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	MW16-256 (Dup of MW16-216)	MW16-217	MW16-219	MW16-220	MW16-221
Lab ID	Background SCS in a Potable	DLA334	DLA333	DKU562	DLG425	DLG424
Sampling Date	Groundwater Condition All Types of Land Use	11-Nov-16	11-Nov-16	10-Nov-16	14-Nov-16	14-Nov-16
Well screen interval (m)	(coarse textured soil)	6.1 - 9.1	6.1 - 9.1	0.6 - 1.2	0.9 - 3.9	2.1 - 5.2
Consultant	(coarse textured soll)	exp	exp	exp	exp	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Benzene	5	<0.20	<0.20	<0.20	<0.20	-
Toluene	24	<0.20	<0.20	<0.20	<0.20	-
Ethylbenzene	2.4	<0.20	<0.20	<0.20	<0.20	-
m/p xylenes	NV	<0.40	<0.40	<0.40	<0.40	-
o xylene	NV	<0.20	<0.20	<0.20	<0.20	-
Total Xylenes	300	<0.40	<0.40	<0.40	<0.40	-
F1 (C6-C10)	750	<25	<25	<25	<25	<25
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25
F2 (C10-C16)	150	<100	<100	<100	<100	<100
F3 (C16-C34)	500	<200	<200	<200	<200	<200
F4 (C34-C50)	500	<200	<200	<200	<200	<200
Reached Baseline at C50	NV	YES	YES	YES	YES	YES

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (c

Table D.7 - GROUNDWATER ANALYTICAL RESULTS - Volatile Organic Compounds (VOCs)

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth		BH 16-2	QA/QC (Dup of BH16-2)	BH16-5	BH16-5A	QA/QC 16-2 (Dup of BH16-5A)	BH 16-9	BH 16-11
Lab ID	Background SCS in a Potable		CBJ330/CHH326	CBJ333/CHH329	CCV068/CHH331	COP143	COP144	CBJ331/CHH327	CBJ326/CHH323
Sampling Date	Groundwater Condition	Reporting Detection	22-Mar-16	22-Mar-16	1-Apr-16	21-Jun-16	21-Jun-16	22-Mar-16	21-Mar-16
Well screen interval (m)	All Types of Land Use	Limit (RDL)*	1.2 - 4.3	1.5 - 4.6	1.5 - 4.6	9.8 - 11.3	10.7 - 12.2	2.4 - 5.5	1.8 - 4.9
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory	(,		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acetone	2700	1	<10	<10	<10	<10	<10	<10	<10
Benzene	5	0.1	<0.20	<0.20	<0.20	0.42	0.41	<0.20	<0.20
Bromodichloromethane	16	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromoform	25	0.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	0.89	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	0.79	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	2.4	0.1	0.47	0.5	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	25	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichlorobenzene	3	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	59	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	1	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	590	0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	5	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	1.6	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	1.6	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,2-Dichloroethylene	1.6	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
trans-1,2-Dichloroethylene	1.6	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichloropropane	5	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene	NV	0.2	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans-1,3-Dichloropropene	NV	0.2	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Ethylbenzene	2.4	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylene Dibromide (1,2-Dibromoethane)	0.2	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane (n)	51	0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene chloride (Dichloromethane)	50	0.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl ethyl ketone (2-Butanone)	1800	1	<10	<10	<10	<10	<10	<10	<10
Methyl Isobutyl Ketone	640	1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	15	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	5.4	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	1.1	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	1	0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	1.6	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	24	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	200	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	4.7	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	1.6	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	150	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Vinyl Chloride	0.5	0.17	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	NV	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (total)	300	0.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichloropropene (cis + trans)	0.5	0.3	-	-	-	-	-	-	-

All groundwater concentrations reported in µg/L. * Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (coarse)

Non-detect but detection limit exceeds the MOE (2011) SCS.

Bold

Table D.7 - GROUNDWATER ANALYTICAL RESULTS - Volatile Organic

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	BH 16-14	BH 16-15	BH 16-19	BH16-102	MW16-221
Lab ID	Background SCS in a Potable	CBJ328/CHH325	CBJ332/CHH328	CBJ327/CHH324	CNY605	DLG424
Sampling Date	Groundwater Condition	21-Mar-16	22-Mar-16	21-Mar-16	16-Jun-16	14-Nov-16
Well screen interval (m)	All Types of Land Use	2.1 - 5.2	2.1 - 5.2	1.8 - 3.4	1.2 - 2.4	2.1 - 5.2
Consultant	(coarse textured soil)	WSP	WSP	WSP	WSP	exp
Laboratory	(*** ** ** ** ** ** *	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Acetone	2700	<10	<10	15	<10	<10
Benzene	5	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	16	<0.50	<0.50	<0.50	<0.50	<0.50
Bromoform	25	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	0.89	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	0.79	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	2.4	<0.20	<0.20	0.49	<0.20	<0.20
Dibromochloromethane	25	<0.50	<0.50	<0.50	<0.50	<0.50
1.2-Dichlorobenzene	3	<0.50	<0.50	<0.50	<0.50	<0.50
1.3-Dichlorobenzene	59	<0.50	<0.50	<0.50	<0.50	<0.50
1.4-Dichlorobenzene	1	<0.50	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	590	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	5	<0.20	<0.20	<0.20	<0.20	<0.20
1.2-Dichloroethane	1.6	<0.20	<0.20	<0.50	<0.50	<0.20
1,1-Dichloroethylene	1.6	<0.30	<0.30	<0.20	<0.20	<0.20
cis-1,2-Dichloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,2-Dichloroethylene	1.6	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichloropropane	5	<0.20	<0.20	<0.20	<0.20	<0.30
	NV	<0.20	<0.20	<0.30	<0.30	<0.20
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	NV	<0.40	<0.30	<0.40	<0.40	<0.30
Ethylbenzene	2.4	<0.40	<0.40	<0.40	<0.40	<0.40
Ethylene Dibromide (1,2-Dibromoethane)	0.2	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane (n)	51	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene chloride (Dichloromethane)	50	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl ethyl ketone (2-Butanone)	1800	<10	<10	<10	<10	<10
Methyl Isobutyl Ketone	640	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	15	<0.50	<0.50	<0.50	<0.50	<0.50
Styrene	5.4	<0.50	<0.50	<0.50	<0.50	<0.50
1.1.1.2-Tetrachloroethane	1.1	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	1	<0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethylene	1.6	<0.30	<0.30	<0.20	<0.20	<0.30
Toluene	24	0.34	<0.20	<0.20	<0.20	<0.20
1.1.1-Trichloroethane	24 200	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	4.7	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	4.7	<0.20	<0.20	<0.20	<0.20	<0.50
Trichlorofluoromethane	1.6	<0.20	<0.20	<0.20	<0.20	
l richlorofluoromethane Vinyl Chloride	0.5	<0.50	<0.50	<0.50	<0.50	<0.50 <0.20
,	0.5 NV					
m-Xylene + p-Xylene		0.26	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (total)	300	0.26	<0.20	<0.20	<0.20	< 0.20
1,3-Dichloropropene (cis + trans)	0.5	-	-	-	-	<0.50

All groundwater concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Concentration exceeds MOE (2011) Table 2 SCS (coars

Non-detect but detection limit exceeds the MOE (2011) {

Bold

Table D.8- GROUNDWATER ANALYTICAL RESULTS- Metals & Inorganics

BRM-00235695-A0, Former Oakville Hospital

		1	1		1			1	1		
Sample ID	MOE (2011) Table 2: Full Depth		BH 16-2	BH16-5	BH16-5	BH16-5	BH16-5A	BH 16-9	BH16-9A	BH16-14	BH16-14
Lab ID	Background SCS in a Potable	Reporting	CBJ330	CCV068	CEL037	CLW961	CNY601	CBJ331	CNY602	CEL038	CLW962
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	Detection Limit (RDL)*	22-Mar-16	1-Apr-16	13-Apr-16	3-Jun-16	15-Jun-2016	22-Mar-16	16-Jun-2016	13-Apr-16	3-Jun-16
Well screen interval (m)	Land Use									2.1 - 5.2	2.1 - 5.2
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Antimony	6		0.68	<2.5	-	<0.50	0.96	<2.5	-	<2.5	<0.50
Arsenic	25		<1.0	<5.0	-	<1.0	1.1	<5.0	-	<5.0	<1.0
Barium	1000		140	640	-	270	37	240	-	320	260
Beryllium	4		<0.50	<2.5	-	<0.50	<0.50	<2.5	-	<2.5	<0.50
Boron (Total)	5000		57	370	-	280	4900	140	-	110	140
Cadmium	2.7		<0.10	<0.50	-	0.23	<0.10	<0.50	-	<0.50	0.24
Chromium VI	25		<0.50	<0.50	<2.5	-		<0.50	-		
Chromium (total)	50		<5.0	<25	-	<5.0	<5.0	<25	-	<25	<5.0
Cobalt	3.8	2.5	<0.50	7.7	-	6.2	<0.50	<2.5	-	7.9	7.7
Copper	87		1.1	<5.0	-	2.3	<1.0	7	-	<25	1.5
Lead	10		<0.50	<2.5	-	<0.50	<0.50	<2.5	-	<2.5	<0.50
Molybdenum	70		1.6	7.8	-	3.4	3.6	6.6	-	<2.5	1.3
Nickel	100		<1.0	12	-	9.9	<1.0	<5.0	-	21	15
Selenium	10		<2.0	<10	-	2.2	<2.0	<10	-	<10	<2.0
Silver	1.5		<0.10	<0.50	-	<0.10	<0.10	<0.50	-	<0.50	<0.10
Tellurium (Filtered)	NV	-	-	-	-	-	-	-	-	-	-
Thallium	2		<0.050	0.28	-	0.11	<0.050	<0.25	-	<0.25	0.14
Thorium (Filtered)	NV	-	-	-	-	-	-	-	-	-	-
Uranium	20		1.4	13	-	6.3	0.74	8.7	-	6.9	6.3
Vanadium	6.2		1.1	<2.5	-	1	0.82	<2.5] -	<13	<0.50
Zinc	1100		5.4	45	-	12	<5.0	<25	-	<25	5.5
Mercury	0.29		<0.1	-	<0.1	-	-	<0.1	-		
Sodium	490000	5	130000	860000	-	1400000	260000	2000000	500000	4400000	4300000
Chloride	790000	15	210000	3100000	-	-	210000	300000	750000	-	-
Nitrate (as NO3-)	NV		-	-	-	-	-	-	-	-	-
Nitrite (as NO2-)	NV		-	-	-	-	-	-	-	-	-
Free cyanide	66		<2	-	<2	-	-	<2	-	-	-

All soil concentrations reported in μ g/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse).

Table D.8- GROUNDWATER ANALYTICAL RESULTS- Metals & Inorga

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth	MW16-14	MW16-144 (duplicate of MW16-14)	BH16-14A	BH16-14A	MW16-14B	MW16-144B (Dup of MW16- 14B)	BH 16-15	BH16-15A	MW16-202
Lab ID	Background SCS in a Potable	DED123	DED125	CNY603	DCM918	DFW812	DFW813	CBJ332	CNY604	DEM733
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	29-Sep-2016	29-Sep-2016	15-Jun-2016	20-Sep-2016	12-Oct-16	12-Oct-16	22-Mar-16	15-Jun-2016	29-Sep-2016
Well screen interval (m)	Land Use	2.1 - 5.2	2.1 - 5.2	9.1 - 10.7	9.1 - 10.7	13.7 - 15.2	13.7 - 15.2	2.1 - 5.2	10.7 - 12.2	2.3 - 5.3
Consultant	(coarse textured soil)	exp	exp	WSP	exp	exp	exp	WSP	WSP	exp
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Antimony	6	-	-	1.9	-	-	-	<0.50	-	-
Arsenic	25	-	-	1.7	-	-	-	<1.0	-	-
Barium	1000	-	-	24	-	-	-	630	-	-
Beryllium	4	-	-	<0.50	-	-	-	<0.50	-	-
Boron (Total)	5000	-	-	3200	-	-	-	130	-	-
Cadmium	2.7	-	-	<0.10	-	-	-	<0.10	-	-
Chromium VI	25	-	-	-	-	-	-	<0.50	-	-
Chromium (total)	50	-	-	<5.0	-	-	-	<5.0	-	-
Cobalt	3.8	5	5.4	<0.50	-	-	-	1.3	-	<0.50
Copper	87	-	-	<1.0	-	-	-	1.7	-	-
Lead	10	-	-	<0.50	-	-	-	<0.50	-	-
Molybdenum	70	-	-	14	-	-	-	3.9	-	-
Nickel	100	-	-	1.2	-	-	-	2.2	-	-
Selenium	10	-	-	<2.0	-	-	-	<2.0	-	-
Silver	1.5	-	-	<0.10	-	-	-	<0.10	-	-
Tellurium (Filtered)	NV	-	-	-	-	-	-		-	-
Thallium	2	-	-	<0.050	-	-	-	<0.050	J -	-
Thorium (Filtered)	NV	-	-	-	-	-	-		-	-
Uranium	20	-	-	1	-	-	-	3.9		-
Vanadium	6.2	-	-	<2.5 (1)	-	-	-	<0.50	-	-
Zinc	1100	-	-	<5.0	-	-	-	<5.0	-	-
Mercury	0.29	-	-	-	-	-	-	<0.1	-	-
Sodium	490000	-	-	1100000	990000	2400000	2300000	360000	200000	-
Chloride	790000	-	-	1800000	1500000	4700000	4700000	810000	140000	-
Nitrate (as NO3-)	NV	-	-	-	-	-	-	-	-	-
Nitrite (as NO2-)	NV	-	-	-	-	-	-	-	-	-
Free cyanide	66	-	-	-	-	-	-	<2	-	-

All soil concentrations reported in µg/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

d Concentration exceeds MOE (2011) Table 2 SCS (coar

Bold

Table D.8- GROUNDWATER ANALYTICAL RESULTS- Metals & Inorga

BRM-00235695-A0, Former Oakville Hospital

		P	
Sample ID	MOE (2011) Table 2: Full Depth	MW16-220	MW16-221
Lab ID	Background SCS in a Potable	DLG425	DLG424
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	14-Nov-16	14-Nov-16
Well screen interval (m)	Land Use	0.9 - 4.0	2.1 - 5.2
Consultant	(coarse textured soil)	exp	ехр
Laboratory		Maxxam	Maxxam
Antimony	6	-	1.3
Arsenic	25	-	1.1
Barium	1000	-	160
Beryllium	4	-	<0.50
Boron (Total)	5000	-	300
Cadmium	2.7	-	<0.10
Chromium VI	25	-	-
Chromium (total)	50	-	<5.0
Cobalt	3.8	-	3
Copper	87	-	1
Lead	10	-	<0.50
Molybdenum	70	-	7.9
Nickel	100	-	8.3
Selenium	10	-	<2.0
Silver	1.5	-	<0.10
Tellurium (Filtered)	NV		
Thallium	2	-	0.16
Thorium (Filtered)	NV		
Uranium	20	-	14
Vanadium	6.2	-	<2.5
Zinc	1100	-	9.7
Mercury	0.29	-	-
Sodium	490000	1100000	100000
Chloride	790000	2200000	-
Nitrate (as NO3-)	NV	-	-
Nitrite (as NO2-)	NV	-	-
Free cyanide	66	-	-

All soil concentrations reported in μ g/L.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coar

Table D.9- GROUNDWATER ANALYTICAL RESULTS- PCBs

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth		BH 16-11
Lab ID	Background SCS in a Potable	Reporting	CBJ326
Sampling Date	Groundwater Condition Industrial/Commercial/Community Land Use	Detection Limit (RDL)*	21-Mar-16
Well screen interval (m)	(coarse textured soil)		1.8 - 4.9
Consultant			WSP
Laboratory			Maxxam
PCBs	3	0.05	<0.05

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

Bold

Concentration exceeds MOE (2011) Table 2 SCS (coarse).

Non-detect but detection limit exceeds the MOE (2011) SCS.

Table D.10 - GW ANALYTICAL RESULTS- Polycyclic Aromatic Hydrocarbons (PAHs)

BRM-00235695-A0, Former Oakville Hospital

Sample ID	MOE (2011) Table 2: Full Depth Background SCS in a		BH 16-2	BH16-5	BH 16-9	BH 16-11
Lab ID	Potable Groundwater	Reporting Detection	CBJ330	CEL037	CBJ331	CBJ326
Sampling Date	Condition	Limit (RDL)*	22-Mar-16	13-Apr-16	22-Mar-16	21-Mar-16
Well screen interval (m)	All Types of Land Use		1.2 - 4.3	1.5 - 4.6	2.4 - 5.5	1.8 - 4.9
Consultant	(coarse textured soil)		WSP	WSP	WSP	WSP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam
Acenaphthene	4.1	0.050	<0.050	<0.050	<0.050	<0.050
Acenaphthylene	1	0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	2.4	0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)anthracene	1	0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene	0.01	0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b/j)fluoranthene	0.1	0.050	<0.050	<0.050	<0.050	<0.050
Benzo(ghi)perylene	0.2	0.050	<0.050	<0.050	<0.050	<0.050
Benzo(k)fluoranthene	0.1	0.050	<0.050	<0.050	<0.050	<0.050
Chrysene	0.1	0.050	<0.050	<0.050	<0.050	<0.050
Dibenzo(a,h)anthracene	0.2	0.050	<0.050	<0.050	<0.050	<0.050
Fluoranthene	0.41	0.050	<0.050	<0.050	<0.050	<0.050
Fluorene	120	0.050	<0.050	<0.050	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	0.2	0.050	<0.050	<0.050	<0.050	<0.050
1-Methylnaphthalene (SEE FOOTNOTE	3.2	0.050	<0.050	<0.050	<0.050	<0.050
2-Methylnaphthalene (SEE FOOTNOTE	3.2	0.050	<0.050	<0.050	<0.050	<0.050
Naphthalene	11	0.050	<0.050	<0.050	<0.050	<0.050
Phenanthrene	1	0.030	<0.030	0.055	0.083	<0.030
Pyrene	4.1	0.050	<0.050	<0.050	<0.050	<0.050
Methylnaphthalene, 2-(1-)	3.2	-	<0.071	<0.071	<0.071	<0.071

All soil concentrations reported in μ g/g.

* Maximum RDL below MOE (2011) SCS

'<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MOE (2011) Table 2 SCS (coarse).

BH 16-14	BH 16-15	BH16-15	BH16-15	BH16-15A	QA/QC 16-1 (Dup of BH16-15A)	BH 16-19
CBJ329	CBJ332	CLW963	DCM919	CNY604	CNY606	CBJ327
22-Mar-16	22-Mar-16	3-Jun-16	20-Sep-16	16-Jun-16	16-Jun-16	21-Mar-16
2.1 - 5.2	2.1 - 5.2	2.1 - 5.2	2.1 - 5.2	10.7 - 12.2	10.7 - 12.2	1.8 - 3.4
WSP	WSP	WSP	exp	WSP	WSP	WSP
Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.010	0.015	0.015	<0.010	<0.010	<0.010	<0.010
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	0.079	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<0.050	<0.050	<0.050	<0.050	0.13	0.14	<0.050
<0.050	<0.050	<0.050	<0.050	0.21	0.24	<0.050
<0.050	<0.050	0.069	<0.050	0.15	0.16	<0.050
<0.030	0.14	0.031	<0.030	0.17	0.18	<0.030
<0.050	0.057	<0.050	<0.050	<0.050	<0.050	<0.050
<0.071	<0.071	<0.071	<0.071	0.34	0.38	<0.071

The Town of Oakville Phase Two Environmental Site Assessment 327 & 291 Reynolds Street, 348 Allan Street, Oakville, Ontario BRM-00235695-B0 December 2016

Appendix E: Laboratory Certificates of Analysis

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-01-01

Attention:Netta Benazon

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/13 Report #: R4206019 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6L7374

Received: 2016/10/07, 14:06

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	4	N/A	2016/10/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	4	2016/10/11	2016/10/12	CAM SOP-00316	CCME CWS m
Moisture	4	N/A	2016/10/11	CAM SOP-00445	Carter 2nd ed 51.2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DFE691	DFE692	DFE692	DFE693	DFE694		
Sampling Date		2016/10/06 17:30	2016/10/06 10:00	2016/10/06 10:00	2016/10/04 12:00	2016/10/04 12:00		
COC Number		581304-01-01	581304-01-01	581304-01-01	581304-01-01	581304-01-01		
	UNITS	BH16-210-S5	BH16-211-S5	BH16-211-S5 Lab-Dup	BH16-5B-S5	BH16-55B-S5	RDL	QC Batch
Inorganics								
Moisture	%	15	18	18	8.5	5.7	1.0	4696199
RDL = Reportable Detection L QC Batch = Quality Control Ba Lab-Dup = Laboratory Initiate	atch	cate						

PETROLEUM HYDROCARBONS (CCME)

				• •			
Maxxam ID		DFE691	DFE692	DFE693	DFE694		
Sampling Date		2016/10/06	2016/10/06	2016/10/04	2016/10/04		
Sampling Date		17:30	10:00	12:00	12:00		
COC Number		581304-01-01	581304-01-01	581304-01-01	581304-01-01		
	UNITS	BH16-210-S5	BH16-211-S5	BH16-5B-S5	BH16-55B-S5	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4696726
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4696726
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4696726
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4696726
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	4696726
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	4696726
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	4696726
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	4696726
F2-F4 Hydrocarbons			•				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	4696118
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	50	4696118
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	50	4696118
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		4696118
Surrogate Recovery (%)			•				
1,4-Difluorobenzene	%	99	97	97	98		4696726
4-Bromofluorobenzene	%	100	100	100	99		4696726
D10-Ethylbenzene	%	94	95	96	95		4696726
D4-1,2-Dichloroethane	%	92	91	92	92		4696726
o-Terphenyl	%	98	96	97	102		4696118
RDL = Reportable Detection	Limit						-
QC Batch = Quality Control B	atch						

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BH16-210-S5					Collected: Shipped: Received:	2016/10/06 2016/10/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4696726	N/A	2016/10/12	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4696118	2016/10/11	2016/10/12	Zhiyue (Fr	ank) Zhu
Moisture		BAL	4696199	N/A	2016/10/11	Min Yang	
Maxxam ID: Sample ID: Matrix:	BH16-211-S5					Collected: Shipped: Received:	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4696726	N/A	2016/10/12	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4696118	2016/10/11	2016/10/12	Zhiyue (Fr	ank) Zhu
Moisture		BAL	4696199	N/A	2016/10/11	Min Yang	
Maxxam ID: Sample ID: Matrix:	DFE692 Dup BH16-211-S5 Soil					Collected: Shipped: Received:	2016/10/06 2016/10/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4696199	N/A	2016/10/11	Min Yang	
Maxxam ID: Sample ID: Matrix:	BH16-5B-S5					Collected: Shipped: Received:	2016/10/04 2016/10/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4696726	N/A	2016/10/12	Georgeta	Rusu
Petroleum Hydrocarbons		GC/FID	4696118	2016/10/11	2016/10/12	Zhiyue (Fr	
Moisture		BAL	4696199	N/A	2016/10/11	Min Yang	·
Maxxam ID: Sample ID: Matrix:	DFE694 BH16-55B-S5 Soil					Collected: Shipped: Received:	2016/10/04 2016/10/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4696726	N/A	2016/10/12	Georgeta	Rusu
But sele as the desired set	E2 E4 in Soil	GC/FID	4696118	2016/10/11	2016/10/12	Zhiyue (Fr	ank) Zhu
Petroleum Hydrocarbons	12-14 11 301		1050110	2010/10/11	2010/10/12	=, ac (

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	4.7°C	
Result	s relate only to th	e items tested.	

Maxxam Job #: B6L7374 Report Date: 2016/10/13

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4696118	o-Terphenyl	2016/10/12	102	60 - 130	99	60 - 130	102	%		
4696726	1,4-Difluorobenzene	2016/10/12	100	60 - 140	101	60 - 140	100	%		
4696726	4-Bromofluorobenzene	2016/10/12	99	60 - 140	98	60 - 140	99	%		
4696726	D10-Ethylbenzene	2016/10/12	95	60 - 140	88	60 - 140	94	%		
4696726	D4-1,2-Dichloroethane	2016/10/12	94	60 - 140	94	60 - 140	94	%		
4696118	F2 (C10-C16 Hydrocarbons)	2016/10/12	101	50 - 130	97	80 - 120	<10	ug/g	NC	30
4696118	F3 (C16-C34 Hydrocarbons)	2016/10/12	99	50 - 130	96	80 - 120	<50	ug/g	NC	30
4696118	F4 (C34-C50 Hydrocarbons)	2016/10/12	102	50 - 130	98	80 - 120	<50	ug/g	NC	30
4696199	Moisture	2016/10/11							0	20
4696726	Benzene	2016/10/12	93	60 - 140	96	60 - 140	<0.020	ug/g	NC	50
4696726	Ethylbenzene	2016/10/12	102	60 - 140	103	60 - 140	<0.020	ug/g	NC	50
4696726	F1 (C6-C10) - BTEX	2016/10/12					<10	ug/g	NC	30
4696726	F1 (C6-C10)	2016/10/12	90	60 - 140	93	80 - 120	<10	ug/g	NC	30
4696726	o-Xylene	2016/10/12	104	60 - 140	106	60 - 140	<0.020	ug/g	NC	50
4696726	p+m-Xylene	2016/10/12	93	60 - 140	96	60 - 140	<0.040	ug/g	NC	50
4696726	Toluene	2016/10/12	94	60 - 140	96	60 - 140	<0.020	ug/g	NC	50
4696726	Total Xylenes	2016/10/12					<0.040	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: ENV-BRM Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 581191-01-01

Attention:Katie McIsaac

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/19 Report #: R4215875 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M0896

Received: 2016/10/13, 15:06

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	2	N/A	2016/10/17	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	2	2016/10/15	2016/10/17	CAM SOP-00316	CCME CWS m
Moisture	2	N/A	2016/10/14	CAM SOP-00445	Carter 2nd ed 51.2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

Maxxam ID		DFW775	DFW776		
Sampling Date		2016/10/11 13:00	2016/10/11 11:00		
COC Number		581191-01-01	581191-01-01		
	UNITS	BH16-212-S3	BH16-213-S3	RDL	QC Batch
	•••••				Q. 2000
Inorganics					
Inorganics Moisture	%	11	18	1.0	4702069

RESULTS OF ANALYSES OF SOIL

Report Date: 2016/10/19

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

Maxxam ID		DFW775	DFW776		
Sampling Date		2016/10/11 13:00	2016/10/11 11:00		
COC Number		581191-01-01	581191-01-01		
	UNITS	BH16-212-S3	BH16-213-S3	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	<0.020	0.020	4703985
Toluene	ug/g	<0.020	<0.020	0.020	4703985
Ethylbenzene	ug/g	<0.020	<0.020	0.020	4703985
o-Xylene	ug/g	<0.020	<0.020	0.020	4703985
p+m-Xylene	ug/g	<0.040	<0.040	0.040	4703985
Total Xylenes	ug/g	<0.040	<0.040	0.040	4703985
F1 (C6-C10)	ug/g	<10	<10	10	4703985
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	4703985
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	17	13	10	4703051
F3 (C16-C34 Hydrocarbons)	ug/g	<50	81	50	4703051
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	4703051
Reached Baseline at C50	ug/g	Yes	Yes		4703051
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	100	99		4703985
4-Bromofluorobenzene	%	102	100		4703985
D10-Ethylbenzene	%	105	97		4703985
D4-1,2-Dichloroethane	%	98	99		4703985
o-Terphenyl	%	95	95		4703051
RDL = Reportable Detection L				-	
QC Batch = Quality Control Ba	atch				

PETROLEUM HYDROCARBONS (CCME)

Report Date: 2016/10/19

Matrix:

Soil

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

2016/10/13

Received:

TEST SUMMARY

Maxxam ID: DFW775 Sample ID: BH16-212-S3 Matrix: Soil					Collected: 2016/10/11 Shipped: Received: 2016/10/13
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4703985	N/A	2016/10/17	Abdi Mohamud
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4703051	2016/10/15	2016/10/17	Dorina Popa
Moisture	BAL	4702069	N/A	2016/10/14	Prgya Panchal
Maxxam ID: DFW776 Sample ID: BH16-213-S3					Collected: 2016/10/11 Shipped:

Test Description Instrumentation Batch Extracted Date Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 4703985 N/A 2016/10/17 Abdi Mohamud Petroleum Hydrocarbons F2-F4 in Soil GC/FID 4703051 2016/10/15 2016/10/17 Dorina Popa Moisture BAL 4702069 N/A 2016/10/14 Prgya Panchal

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	5.3°C								
			—							
Results	s relate only to the	e items tested.								

Maxxam Job #: B6M0896 Report Date: 2016/10/19

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4703051	o-Terphenyl	2016/10/17	88	60 - 130	90	60 - 130	93	%		
4703985	1,4-Difluorobenzene	2016/10/17	98	60 - 140	100	60 - 140	101	%		
4703985	4-Bromofluorobenzene	2016/10/17	103	60 - 140	101	60 - 140	101	%		
4703985	D10-Ethylbenzene	2016/10/17	154 (1)	60 - 140	99	60 - 140	108	%		
4703985	D4-1,2-Dichloroethane	2016/10/17	97	60 - 140	99	60 - 140	98	%		
4702069	Moisture	2016/10/14							2.4	20
4703051	F2 (C10-C16 Hydrocarbons)	2016/10/17	NC	50 - 130	85	80 - 120	<10	ug/g	0.080	30
4703051	F3 (C16-C34 Hydrocarbons)	2016/10/17	107	50 - 130	84	80 - 120	<50	ug/g	1.0	30
4703051	F4 (C34-C50 Hydrocarbons)	2016/10/17	83	50 - 130	86	80 - 120	<50	ug/g	NC	30
4703985	Benzene	2016/10/17	73	60 - 140	97	60 - 140	<0.020	ug/g	NC	50
4703985	Ethylbenzene	2016/10/17	99	60 - 140	111	60 - 140	<0.020	ug/g	3.0	50
4703985	F1 (C6-C10) - BTEX	2016/10/17					<10	ug/g	0.59	30
4703985	F1 (C6-C10)	2016/10/17	NC	60 - 140	106	80 - 120	<10	ug/g	0.63	30
4703985	o-Xylene	2016/10/17	NC	60 - 140	114	60 - 140	<0.020	ug/g	3.0	50
4703985	p+m-Xylene	2016/10/17	NC	60 - 140	103	60 - 140	<0.040	ug/g	1.6	50
4703985	Toluene	2016/10/17	61	60 - 140	98	60 - 140	<0.020	ug/g	NC	50
4703985	Total Xylenes	2016/10/17					<0.040	ug/g	1.6	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) The extraction surrogate recovery was above the control limit due to high level of native hydrocarbon present in sample.

Report Date: 2016/10/19

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-03-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/07 Report #: R4238792 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O0097

Received: 2016/11/04, 15:44

Sample Matrix: Soil # Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	16	N/A	2016/11/07	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	16	2016/11/07	2016/11/07	CAM SOP-00408	R153 Ana. Prot. 2011
Hexavalent Chromium in Soil by IC (1)	16	2016/11/05	2016/11/07	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2016/11/05	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2016/11/04	2016/11/05	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	16	2016/11/07	2016/11/07	CAM SOP-00447	EPA 6020B m
Moisture	17	N/A	2016/11/04	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	1	2016/11/04	2016/11/04	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	15	2016/11/04	2016/11/05	CAM SOP-00318	EPA 8270D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-03-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/07 Report #: R4238792 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B600097

Received: 2016/11/04, 15:44

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 23

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DJU082	DJU083	DJU084	DJU085	DJU086	DJU087		
Sampling Date		2016/11/03 11:00	2016/11/03 11:00	2016/11/03 16:10	2016/11/03 16:10	2016/11/03 16:35	2016/11/03 12:20		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP5-SS1	TP55-SS11	TP4-SS2	TP44-SS22	TP4-SS6	TP6-SS6	RDL	QC Batch
Inorganics									
Moisture	%	10	11	7.2	5.9	9.7	8.9	1.0	4735015
RDL = Reportable Detection Li	mit								
QC Batch = Quality Control Ba	tch								
Maxxam ID		DJU088	DJU089	DJU089	DJU090	DJU091	DJU092		
Sampling Date		2016/11/03 12:00	2016/11/03 14:40	2016/11/03 14:40	2016/11/03 14:10	2016/11/03 09:10	2016/11/03 10:00		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP6-SS2	TP7-SS5	TP7-SS5 Lab-Dup	TP7-SS2	TP8-SS2	TP10-SS2	RDL	QC Batch
Inorganics									
Moisture	%	7.9	19	19	10	11	8.7	1.0	4735015
RDL = Reportable Detection Li	mit								
QC Batch = Quality Control Ba	tch								
Lab-Dup = Laboratory Initiated	d Duplic	ate							
Maxxam ID		DJU093	DJU094	DJU095	DJU096	DJU097	DJU098		
Sompling Data		2016/11/03	2016/11/03	2016/11/04	2016/11/04	2016/11/04	2016/11/04		
Sampling Date		10:20	13:30	14:00	14:15	14:30	12:30		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP10-SS5	TP9-SS1	INC-SS1	INC-SS2	INC-SS3	TP2-SS1	RDL	QC Batch
Inorganics									
Moisture	%	13	4.2	11	11	9.7	7.2	1.0	4735015
RDL = Reportable Detection Li	mit								

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

2016/11/03 11:00 581304-03-01 TP5-SS1 0.2 0.086 <0.20 1.5 14 <0.20 <5.0	2016/11/03 11:00 581304-03-01 TP55-SS11 0.3 0.12 <0.20 1.7 12 0.24 <5.0	QC Batch 4735461 4736454 4736271 4736271 4736271 4736271	2016/11/03 16:10 581304-03-01 TP4-SS2 <0.2 <0.20 <0.20 1.2 7.2 <0.20	QC Batch 4735461 4736274 4736271 4736271 4736271 4736271	2016/11/03 16:10 581304-03-01 TP44-SS22 <0.2 <0.20 <0.20 1.1 5.5	0.050 0.20 1.0 0.50	QC Batch 4735461 4736274 4736419 4736419 4736419
TP5-SS1 0.2 0.086 <0.20	TP55-SS11 0.3 0.12 <0.20	4735461 4736454 4736271 4736271 4736271	<0.2 <0.050 <0.20 1.2 7.2	QC Batch 4735461 4736274 4736271 4736271 4736271	<0.2 <0.050 <0.20 1.1 5.5	0.2 0.050 0.20 1.0	4735461 4736274 4736419 4736419
0.2 0.086 <0.20 1.5 14 <0.20	0.3 0.12 <0.20 1.7 12 0.24	4735461 4736454 4736271 4736271 4736271	<0.2 <0.050 <0.20 1.2 7.2	4735461 4736274 4736271 4736271 4736271	<0.2 <0.050 <0.20 1.1 5.5	0.2 0.050 0.20 1.0	4735461 4736274 4736419 4736419
0.086 <0.20 1.5 14 <0.20	0.12 <0.20 1.7 12 0.24	4736454 4736271 4736271 4736271	<0.050 <0.20 1.2 7.2	4736274 4736271 4736271 4736271	<0.050 <0.20 1.1 5.5	0.050 0.20 1.0	4736274 4736419 4736419
0.086 <0.20 1.5 14 <0.20	0.12 <0.20 1.7 12 0.24	4736454 4736271 4736271 4736271	<0.050 <0.20 1.2 7.2	4736274 4736271 4736271 4736271	<0.050 <0.20 1.1 5.5	0.050 0.20 1.0	4736274 4736419 4736419
<0.20 1.5 14 <0.20	<0.20 1.7 12 0.24	4736271 4736271 4736271	<0.20 1.2 7.2	4736271 4736271 4736271	<0.20 1.1 5.5	0.20 1.0	4736419 4736419
<0.20 1.5 14 <0.20	<0.20 1.7 12 0.24	4736271 4736271 4736271	<0.20 1.2 7.2	4736271 4736271 4736271	<0.20 1.1 5.5	0.20 1.0	4736419 4736419
1.5 14 <0.20	1.7 12 0.24	4736271 4736271	1.2 7.2	4736271 4736271	1.1 5.5	1.0	4736419
14 <0.20	12 0.24	4736271	7.2	4736271	5.5		
<0.20	0.24					0.50	4736419
		4736271	<0.20	4726271			
<5.0	<5 O			4/302/1	<0.20	0.20	4736419
	<5.0	4736271	<5.0	4736271	<5.0	5.0	4736419
<0.10	<0.10	4736271	<0.10	4736271	<0.10	0.10	4736419
6.6	9.3	4736271	7.5	4736271	5.6	1.0	4736419
2.3	2.4	4736271	2.2	4736271	2.0	0.10	4736419
8.7	7.9	4736271	7.8	4736271	6.9	0.50	4736419
3.5	4.0	4736271	2.9	4736271	2.6	1.0	4736419
<0.50	<0.50	4736271	<0.50	4736271	<0.50	0.50	4736419
4.7	4.9	4736271	3.9	4736271	3.3	0.50	4736419
<0.50	<0.50	4736271	<0.50	4736271	<0.50	0.50	4736419
<0.20	<0.20	4736271	<0.20	4736271	<0.20	0.20	4736419
<0.050	<0.050	4736271	<0.050	4736271	<0.050	0.050	4736419
0.29	0.29	4736271	0.36	4736271	0.32	0.050	4736419
15	19	4736271	21	4736271	17	5.0	4736419
13	12	4736271	11	4736271	9.8	5.0	4736419
<0.050	<0.050	4736271	<0.050	4736271	<0.050	0.050	4736419
	6.6 2.3 8.7 3.5 <0.50	6.6 9.3 2.3 2.4 8.7 7.9 3.5 4.0 <0.50	6.69.347362712.32.447362718.77.947362713.54.04736271<0.50	6.6 9.3 4736271 7.5 2.3 2.4 4736271 2.2 8.7 7.9 4736271 7.8 3.5 4.0 4736271 2.9 <0.50	6.69.347362717.547362712.32.447362712.247362718.77.947362717.847362713.54.047362712.94736271<0.50	6.69.347362717.547362715.62.32.447362712.247362712.08.77.947362717.847362716.93.54.047362712.947362712.6<0.50	6.69.347362717.547362715.61.02.32.447362712.247362712.00.108.77.947362717.847362716.90.503.54.047362712.947362712.61.0<0.50

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		DJU085		DJU086		DJU087	DJU088		
Sampling Data		2016/11/03		2016/11/03		2016/11/03	2016/11/03		
Sampling Date		16:10		16:35		12:20	12:00		
COC Number		581304-03-01		581304-03-01		581304-03-01	581304-03-01		
	UNITS	TP44-SS22 Lab-Dup	QC Batch	TP4-SS6	QC Batch	TP6-SS6	TP6-SS2	RDL	QC Batch
Inorganics									
Chromium (VI)	ug/g		4735461	<0.2	4735461	<0.2	<0.2	0.2	4735461
Metals					•				
Hot Water Ext. Boron (B)	ug/g		4736274	0.19	4736454	0.099	<0.050	0.050	4736274
Acid Extractable Antimony (Sb)	ug/g	<0.20	4736419	<0.20	4736271	<0.20	<0.20	0.20	4736271
Acid Extractable Arsenic (As)	ug/g	1.1	4736419	4.5	4736271	2.3	2.0	1.0	4736271
Acid Extractable Barium (Ba)	ug/g	5.9	4736419	39	4736271	43	9.6	0.50	4736271
Acid Extractable Beryllium (Be)	ug/g	<0.20	4736419	0.69	4736271	0.39	<0.20	0.20	4736271
Acid Extractable Boron (B)	ug/g	<5.0	4736419	11	4736271	7.8	<5.0	5.0	4736271
Acid Extractable Cadmium (Cd)	ug/g	<0.10	4736419	<0.10	4736271	0.11	<0.10	0.10	4736271
Acid Extractable Chromium (Cr)	ug/g	6.6	4736419	20	4736271	14	4.7	1.0	4736271
Acid Extractable Cobalt (Co)	ug/g	2.0	4736419	12	4736271	7.0	2.6	0.10	4736271
Acid Extractable Copper (Cu)	ug/g	6.9	4736419	28	4736271	22	7.5	0.50	4736271
Acid Extractable Lead (Pb)	ug/g	2.8	4736419	9.2	4736271	7.6	2.7	1.0	4736271
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4736419	<0.50	4736271	<0.50	<0.50	0.50	4736271
Acid Extractable Nickel (Ni)	ug/g	3.8	4736419	27	4736271	15	4.4	0.50	4736271
Acid Extractable Selenium (Se)	ug/g	<0.50	4736419	<0.50	4736271	<0.50	<0.50	0.50	4736271
Acid Extractable Silver (Ag)	ug/g	<0.20	4736419	<0.20	4736271	<0.20	<0.20	0.20	4736271
Acid Extractable Thallium (Tl)	ug/g	<0.050	4736419	0.12	4736271	0.081	<0.050	0.050	4736271
Acid Extractable Uranium (U)	ug/g	0.32	4736419	0.57	4736271	0.57	0.22	0.050	4736271
Acid Extractable Vanadium (V)	ug/g	19	4736419	27	4736271	21	9.7	5.0	4736271
Acid Extractable Zinc (Zn)	ug/g	9.8	4736419	64	4736271	45	10	5.0	4736271
Acid Extractable Mercury (Hg)	ug/g	<0.050	4736419	<0.050	4736271	<0.050	<0.050	0.050	4736271
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Sampling Date 12:00 14:40 14:10 0 COC Number 581304-03-01 <	09:10	2016/11/03 09:10 581304-03-01		
UNITS TP6-SS2 Lab-Dup TP7-SS5 QC Batch TP7-SS2 TF Inorganics				
UNITS Lab-Dup TP7-SS5 QC Batch TP7-SS2 TF Inorganics	P8-SS2			
Metals ug/g <0.050		TP8-SS2 Lab-Dup	RDL	QC Batch
Metals ug/g <0.050 0.059 4736274 0.17 Acid Extractable Antimony (Sb) ug/g <0.20				
Hot Water Ext. Boron (B) ug/g <0.050 0.059 4736274 0.17 Acid Extractable Antimony (Sb) ug/g <0.20	<0.2		0.2	4735461
Acid Extractable Antimony (Sb)ug/g<0.204736271<0.20	•			
	0.11		0.050	4736454
Acid Extractable Arconic (Ac)	<0.20	<0.20	0.20	4736271
Acid Extractable Arsenic (As)ug/g<1.047362712.1	<1.0	<1.0	1.0	4736271
Acid Extractable Barium (Ba) ug/g 7.9 4736271 14	21	20	0.50	4736271
Acid Extractable Beryllium (Be) ug/g <0.20 4736271 0.33	0.23	0.23	0.20	4736271
Acid Extractable Boron (B) ug/g <5.0 4736271 <5.0	<5.0	<5.0	5.0	4736271
Acid Extractable Cadmium (Cd) ug/g <0.10 4736271 0.12 <	<0.10	<0.10	0.10	4736271
Acid Extractable Chromium (Cr) ug/g 4.9 4736271 8.2	8.5	8.9	1.0	4736271
Acid Extractable Cobalt (Co) ug/g 2.0 4736271 3.3	3.2	3.2	0.10	4736271
Acid Extractable Copper (Cu) ug/g 10 4736271 15	12	12	0.50	4736271
Acid Extractable Lead (Pb) ug/g 2.9 4736271 9.0	4.8	4.9	1.0	4736271
Acid Extractable Molybdenum (Mo) ug/g <a><0.50 4736271 <0.50	<0.50	<0.50	0.50	4736271
Acid Extractable Nickel (Ni) ug/g 4.4 4736271 6.9	6.7	6.0	0.50	4736271
Acid Extractable Selenium (Se) ug/g <0.50 4736271 <0.50	<0.50	<0.50	0.50	4736271
Acid Extractable Silver (Ag) ug/g <0.20 4736271 <0.20	<0.20	<0.20	0.20	4736271
Acid Extractable Thallium (TI) ug/g < <0.050 4736271 0.068 <	0.050	<0.050	0.050	4736271
Acid Extractable Uranium (U) ug/g 0.26 4736271 0.36	0.34	0.40	0.050	4736271
Acid Extractable Vanadium (V) ug/g 11 4736271 17	17	18	5.0	4736271
Acid Extractable Zinc (Zn) ug/g 12 4736271 38	18	18	5.0	4736271
Acid Extractable Mercury (Hg) ug/g <0.050 4736271 <0.050 <	0.050	<0.050	0.050	4736271
RDL = Reportable Detection Limit			-	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		DJU092		DJU093	DJU095	DJU096		
Sampling Date		2016/11/03		2016/11/03	2016/11/04	2016/11/04		
		10:00		10:20	14:00	14:15		
COC Number		581304-03-01		581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP10-SS2	QC Batch	TP10-SS5	INC-SS1	INC-SS2	RDL	QC Batch
Inorganics								
Chromium (VI)	ug/g	<0.2	4735461	<0.2	<0.2	<0.2	0.2	4735461
Metals							•	
Hot Water Ext. Boron (B)	ug/g	0.14	4736454	0.14	0.29	0.24	0.050	4736274
Acid Extractable Antimony (Sb)	ug/g	<0.20	4736271	<0.20	<0.20	<0.20	0.20	4736271
Acid Extractable Arsenic (As)	ug/g	1.6	4736271	2.8	2.4	2.4	1.0	4736271
Acid Extractable Barium (Ba)	ug/g	17	4736271	65	31	35	0.50	4736271
Acid Extractable Beryllium (Be)	ug/g	<0.20	4736271	0.50	0.24	0.25	0.20	4736271
Acid Extractable Boron (B)	ug/g	<5.0	4736271	11	<5.0	<5.0	5.0	4736271
Acid Extractable Cadmium (Cd)	ug/g	<0.10	4736271	<0.10	0.15	<0.10	0.10	4736271
Acid Extractable Chromium (Cr)	ug/g	7.7	4736271	18	9.4	11	1.0	4736271
Acid Extractable Cobalt (Co)	ug/g	3.2	4736271	10	2.9	4.0	0.10	4736271
Acid Extractable Copper (Cu)	ug/g	10	4736271	22	11	13	0.50	4736271
Acid Extractable Lead (Pb)	ug/g	4.9	4736271	8.1	18	10	1.0	4736271
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4736271	<0.50	<0.50	<0.50	0.50	4736271
Acid Extractable Nickel (Ni)	ug/g	5.9	4736271	22	6.1	8.1	0.50	4736271
Acid Extractable Selenium (Se)	ug/g	<0.50	4736271	<0.50	<0.50	<0.50	0.50	4736271
Acid Extractable Silver (Ag)	ug/g	<0.20	4736271	<0.20	<0.20	<0.20	0.20	4736271
Acid Extractable Thallium (Tl)	ug/g	<0.050	4736271	0.096	0.063	0.054	0.050	4736271
Acid Extractable Uranium (U)	ug/g	0.33	4736271	0.71	0.47	0.33	0.050	4736271
Acid Extractable Vanadium (V)	ug/g	16	4736271	25	21	18	5.0	4736271
Acid Extractable Zinc (Zn)	ug/g	17	4736271	51	37	31	5.0	4736271
Acid Extractable Mercury (Hg)	ug/g	<0.050	4736271	<0.050	<0.050	<0.050	0.050	4736271
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		DJU097		DJU098	DJU098		
Sampling Date		2016/11/04		2016/11/04	2016/11/04		
		14:30		12:30	12:30		
COC Number		581304-03-01		581304-03-01	581304-03-01		
	UNITS	INC-SS3	QC Batch	TP2-SS1	TP2-SS1 Lab-Dup	RDL	QC Batch
Inorganics							
Chromium (VI)	ug/g	<0.2	4735461	<0.2	<0.2	0.2	4735461
Metals	1				I.		
Hot Water Ext. Boron (B)	ug/g	0.59	4736457	0.11		0.050	4736274
Acid Extractable Antimony (Sb)	ug/g	<0.20	4736419	<0.20		0.20	4736271
Acid Extractable Arsenic (As)	ug/g	2.6	4736419	1.7		1.0	4736271
Acid Extractable Barium (Ba)	ug/g	28	4736419	11		0.50	4736271
Acid Extractable Beryllium (Be)	ug/g	0.28	4736419	<0.20		0.20	4736271
Acid Extractable Boron (B)	ug/g	<5.0	4736419	<5.0		5.0	4736271
Acid Extractable Cadmium (Cd)	ug/g	0.20	4736419	<0.10		0.10	4736271
Acid Extractable Chromium (Cr)	ug/g	11	4736419	7.1		1.0	4736271
Acid Extractable Cobalt (Co)	ug/g	4.1	4736419	2.5		0.10	4736271
Acid Extractable Copper (Cu)	ug/g	18	4736419	8.8		0.50	4736271
Acid Extractable Lead (Pb)	ug/g	23	4736419	4.2		1.0	4736271
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	4736419	<0.50		0.50	4736271
Acid Extractable Nickel (Ni)	ug/g	9.5	4736419	4.9		0.50	4736271
Acid Extractable Selenium (Se)	ug/g	<0.50	4736419	<0.50		0.50	4736271
Acid Extractable Silver (Ag)	ug/g	<0.20	4736419	<0.20		0.20	4736271
Acid Extractable Thallium (Tl)	ug/g	0.072	4736419	<0.050		0.050	4736271
Acid Extractable Uranium (U)	ug/g	0.40	4736419	0.32		0.050	4736271
Acid Extractable Vanadium (V)	ug/g	18	4736419	18		5.0	4736271
Acid Extractable Zinc (Zn)	ug/g	52	4736419	14		5.0	4736271
Acid Extractable Mercury (Hg)	ug/g	<0.050	4736419	<0.050		0.050	4736271
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				·	·		

Lab-Dup = Laboratory Initiated Duplicate

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		DJU082	DJU083	DJU084	DJU085	DJU086	DJU087		
Sampling Date		2016/11/03	2016/11/03	2016/11/03	2016/11/03	2016/11/03	2016/11/03		
Sampling Date		11:00	11:00	16:10	16:10	16:35	12:20		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP5-SS1	TP55-SS11	TP4-SS2	TP44-SS22	TP4-SS6	TP6-SS6	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	0.0071	4733490
Polyaromatic Hydrocarbons				•	•	•	•	•	
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0085	<0.0050	0.0050	4735086
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Chrysene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Phenanthrene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.020	<0.0050	0.0050	4735086
Pyrene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Surrogate Recovery (%)				•					
D10-Anthracene	%	106	103	103	101	100	94		4735086
D14-Terphenyl (FS)	%	107	103	100	96	104	100		4735086
D8-Acenaphthylene	%	97	90	90	88	92	90		4735086
RDL = Reportable Detection L	imit	· · · · ·							
QC Batch = Quality Control Ba	atch								

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		DJU088	DJU089	DJU090	DJU091		DJU092		
Sampling Date		2016/11/03	2016/11/03	2016/11/03	2016/11/03		2016/11/03		
		12:00	14:40	14:10	09:10		10:00		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01		581304-03-01		
	UNITS	TP6-SS2	TP7-SS5	TP7-SS2	TP8-SS2	QC Batch	TP10-SS2	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	<0.0071	4733490	<0.0071	0.0071	4734696
Polyaromatic Hydrocarbons	•	•						•	
Acenaphthene	ug/g	<0.0050	<0.0050	0.0060	<0.0050	4735086	<0.0050	0.0050	4735086
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	4735086	<0.0050	0.0050	4735086
Anthracene	ug/g	<0.0050	<0.0050	0.015	<0.0050	4735086	<0.0050	0.0050	4735086
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.063	<0.0050	4735086	0.0078	0.0050	4735086
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.062	<0.0050	4735086	0.0069	0.0050	4735086
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.092	<0.0050	4735086	0.011	0.0050	4735086
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.038	<0.0050	4735086	<0.0050	0.0050	4735086
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.028	<0.0050	4735086	<0.0050	0.0050	4735086
Chrysene	ug/g	<0.0050	<0.0050	0.056	<0.0050	4735086	0.0070	0.0050	4735086
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0088	<0.0050	4735086	<0.0050	0.0050	4735086
Fluoranthene	ug/g	<0.0050	<0.0050	0.14	<0.0050	4735086	0.016	0.0050	4735086
Fluorene	ug/g	<0.0050	<0.0050	0.0054	<0.0050	4735086	<0.0050	0.0050	4735086
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.043	<0.0050	4735086	0.0050	0.0050	4735086
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	4735086	<0.0050	0.0050	4735086
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	4735086	<0.0050	0.0050	4735086
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	4735086	<0.0050	0.0050	4735086
Phenanthrene	ug/g	<0.0050	<0.0050	0.061	<0.0050	4735086	0.0079	0.0050	4735086
Pyrene	ug/g	<0.0050	<0.0050	0.11	<0.0050	4735086	0.013	0.0050	4735086
Surrogate Recovery (%)									
D10-Anthracene	%	105	98	100	100	4735086	100		4735086
D14-Terphenyl (FS)	%	105	100	103	102	4735086	99		4735086
D8-Acenaphthylene	%	95	90	91	92	4735086	91		4735086

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		DJU093	DJU095	DJU096	DJU097	DJU098		
		2016/11/03	2016/11/04	2016/11/04	2016/11/04	2016/11/04		
Sampling Date		10:20	14:00	14:15	14:30	12:30		
COC Number		581304-03-01	581304-03-01	581304-03-01	581304-03-01	581304-03-01		
	UNITS	TP10-SS5	INC-SS1	INC-SS2	INC-SS3	TP2-SS1	RDL	QC Batch
Calculated Parameters		·	·	•				-
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	0.044	<0.0071	0.0071	4734696
Polyaromatic Hydrocarbons		l.	l.	•			J	
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	4735086
Anthracene	ug/g	<0.0050	0.0058	<0.0050	0.0083	<0.0050	0.0050	4735086
Benzo(a)anthracene	ug/g	<0.0050	0.027	0.0085	0.039	<0.0050	0.0050	4735086
Benzo(a)pyrene	ug/g	<0.0050	0.031	0.0099	0.049	<0.0050	0.0050	4735086
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.045	0.016	0.063	0.0051	0.0050	4735086
Benzo(g,h,i)perylene	ug/g	<0.0050	0.027	0.011	0.063	<0.0050	0.0050	4735086
Benzo(k)fluoranthene	ug/g	<0.0050	0.013	<0.0050	0.018	<0.0050	0.0050	4735086
Chrysene	ug/g	<0.0050	0.027	0.0086	0.035	<0.0050	0.0050	4735086
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0078	<0.0050	0.0050	4735086
Fluoranthene	ug/g	<0.0050	0.064	0.021	0.066	<0.0050	0.0050	4735086
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.0054	<0.0050	0.0050	4735086
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.026	0.0092	0.057	<0.0050	0.0050	4735086
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.016	<0.0050	0.0050	4735086
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.028	<0.0050	0.0050	4735086
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.010	<0.0050	0.0050	4735086
Phenanthrene	ug/g	<0.0050	0.027	0.0094	0.024	<0.0050	0.0050	4735086
Pyrene	ug/g	<0.0050	0.053	0.017	0.059	<0.0050	0.0050	4735086
Surrogate Recovery (%)								
D10-Anthracene	%	98	97	104	95	103		4735086
D14-Terphenyl (FS)	%	99	101	104	98	102		4735086
D8-Acenaphthylene	%	92	92	96	93	96		4735086

Maxxam ID		DJU094			
Sampling Date		2016/11/03 13:30			
COC Number		581304-03-01			
	UNITS	TP9-SS1	RDL	QC Batch	
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	0.020	4734926	
Toluene	ug/g	<0.020	0.020	4734926	
Ethylbenzene	ug/g	<0.020	0.020	4734926	
o-Xylene	ug/g	<0.020	0.020	4734926	
p+m-Xylene	ug/g	<0.040	0.040	4734926	
Total Xylenes	ug/g	<0.040	0.040	4734926	
F1 (C6-C10)	ug/g	<10	10	4734926	
F1 (C6-C10) - BTEX	ug/g	<10	10	4734926	
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	4734995	
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	4734995	
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	4734995	
Reached Baseline at C50	ug/g	Yes		4734995	
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	99		4734926	
4-Bromofluorobenzene	%	102		4734926	
D10-Ethylbenzene	%	95		4734926	
D4-1,2-Dichloroethane	%	98		4734926	
o-Terphenyl	%	97		4734995	
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

PETROLEUM HYDROCARBONS (CCME)

Report Date: 2016/11/07

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID:	DJU082
Sample ID:	TP5-SS1
Matrix:	Soil

Collected: 2016/11/03 Shipped: Received: 2016/11/04

Collected: 2016/11/03

Received: 2016/11/04

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/04	Mitesh Raj

Maxxam ID: DJU083 Sample ID: TP55-SS11 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID:	DJU084
Sample ID:	TP4-SS2
Matrix:	Soil

Collected:	2016/11/03
Shipped:	
Received:	2016/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID: DJU085 Sample ID: TP44-SS22 Matrix: Soil Collected: 2016/11/03 Shipped: Received: 2016/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736419	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DJU085 Dup Sample ID: TP44-SS22 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736419	2016/11/07	2016/11/07	Daniel Teclu
Maxxam ID: DJU086 Sample ID: TP4-SS6 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU087 Sample ID: TP6-SS6 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU088 Sample ID: TP6-SS2 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU088 Dup Sample ID: TP6-SS2 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
			1 1-1		,

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DJU089 Sample ID: TP7-SS5 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU089 Dup Sample ID: TP7-SS5 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
Maxxam ID: DJU090 Sample ID: TP7-SS2 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU091 Sample ID: TP8-SS2 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4733490	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj
Maxxam ID: DJU091 Dup Sample ID: TP8-SS2 Matrix: Soil					Collected: 2016/11/03 Shipped: Received: 2016/11/04
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
rest Description					

Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu	

Page 15 of 23

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

DJU092
TP10-SS2
Soil

Collected:	2016/11/03
Shipped:	2016/11/01
Received:	2016/11/04

Collected: 2016/11/03

Received: 2016/11/04

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736454	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID: DJU093 Sample ID: TP10-SS5 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID:	DJU094
Sample ID:	TP9-SS1
Matrix:	Soil

Collected:	2016/11/03
Shipped:	
Received:	2016/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4734926	N/A	2016/11/05	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4734995	2016/11/04	2016/11/05	Barbara Wowk
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal

Maxxam ID:	DJU095
Sample ID:	INC-SS1
Matrix:	Soil

Collected:	2016/11/04
Shipped:	
Received:	2016/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID:	DJU096
Sample ID:	INC-SS2
Matrix:	Soil

Collected:	2016/11/04
Shipped:	
Received:	2016/11/04

Collected: 2016/11/04

Received: 2016/11/04

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID: DJU097 Sample ID: INC-SS3 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736457	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736419	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID:	DJU098
Sample ID:	TP2-SS1
Matrix:	Soil

Collected:	2016/11/04
Shipped: Received:	2016/11/04
Received:	2010/11/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	4734696	N/A	2016/11/07	Automated Statchk
Hot Water Extractable Boron	ICP	4736274	2016/11/07	2016/11/07	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	4736271	2016/11/07	2016/11/07	Daniel Teclu
Moisture	BAL	4735015	N/A	2016/11/04	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4735086	2016/11/04	2016/11/05	Mitesh Raj

Maxxam ID: DJU098 Dup Sample ID: TP2-SS1 Matrix: Soil						Collected: Shipped: Received:	2016/11/04 2016/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hexavalent Chromium in	Soil by IC	IC/SPEC	4735461	2016/11/05	2016/11/07	Sally Coug	hlin

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt								
	Package 1	7.0°C							
		•	-						
Result	s relate only to th	e items tested.							

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4734926	1,4-Difluorobenzene	2016/11/04	102	60 - 140	101	60 - 140	100	%		
4734926	4-Bromofluorobenzene	2016/11/04	103	60 - 140	101	60 - 140	101	%		
4734926	D10-Ethylbenzene	2016/11/04	91	60 - 140	90	60 - 140	93	%		
4734926	D4-1,2-Dichloroethane	2016/11/04	101	60 - 140	99	60 - 140	99	%		
4734995	o-Terphenyl	2016/11/05	94	60 - 130	95	60 - 130	97	%		
4735086	D10-Anthracene	2016/11/04	103	50 - 130	97	50 - 130	99	%		
4735086	D14-Terphenyl (FS)	2016/11/04	107	50 - 130	103	50 - 130	104	%		
4735086	D8-Acenaphthylene	2016/11/04	96	50 - 130	93	50 - 130	92	%		
4734926	Benzene	2016/11/04	94	60 - 140	94	60 - 140	<0.020	ug/g	NC	50
4734926	Ethylbenzene	2016/11/04	98	60 - 140	97	60 - 140	<0.020	ug/g	NC	50
4734926	F1 (C6-C10) - BTEX	2016/11/04					<10	ug/g	NC	30
4734926	F1 (C6-C10)	2016/11/04	87	60 - 140	83	80 - 120	<10	ug/g	NC	30
4734926	o-Xylene	2016/11/04	100	60 - 140	102	60 - 140	<0.020	ug/g	NC	50
4734926	p+m-Xylene	2016/11/04	91	60 - 140	91	60 - 140	<0.040	ug/g	NC	50
4734926	Toluene	2016/11/04	92	60 - 140	91	60 - 140	<0.020	ug/g	NC	50
4734926	Total Xylenes	2016/11/04					<0.040	ug/g	NC	50
4734995	F2 (C10-C16 Hydrocarbons)	2016/11/05	93	50 - 130	88	80 - 120	<10	ug/g	NC	30
4734995	F3 (C16-C34 Hydrocarbons)	2016/11/05	NC	50 - 130	89	80 - 120	<50	ug/g	NC	30
4734995	F4 (C34-C50 Hydrocarbons)	2016/11/05	NC	50 - 130	87	80 - 120	<50	ug/g	NC	30
4735015	Moisture	2016/11/04							0	20
4735086	1-Methylnaphthalene	2016/11/04	88	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
4735086	2-Methylnaphthalene	2016/11/04	84	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
4735086	Acenaphthene	2016/11/04	99	50 - 130	97	50 - 130	<0.0050	ug/g	21	40
4735086	Acenaphthylene	2016/11/04	96	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
4735086	Anthracene	2016/11/04	99	50 - 130	95	50 - 130	<0.0050	ug/g	83 (1)	40
4735086	Benzo(a)anthracene	2016/11/04	107	50 - 130	96	50 - 130	<0.0050	ug/g	82 (1)	40
4735086	Benzo(a)pyrene	2016/11/04	107	50 - 130	99	50 - 130	<0.0050	ug/g	82 (1)	40
4735086	Benzo(b/j)fluoranthene	2016/11/04	101	50 - 130	103	50 - 130	<0.0050	ug/g	79 (1)	40
4735086	Benzo(g,h,i)perylene	2016/11/04	97	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40
4735086	Benzo(k)fluoranthene	2016/11/04	102	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4735086	Chrysene	2016/11/04	112	50 - 130	100	50 - 130	<0.0050	ug/g	81 (1)	40
4735086	Dibenz(a,h)anthracene	2016/11/04	96	50 - 130	81	50 - 130	<0.0050	ug/g	NC	40
4735086	Fluoranthene	2016/11/04	121	50 - 130	99	50 - 130	<0.0050	ug/g	88 (1)	40
4735086	Fluorene	2016/11/04	101	50 - 130	96	50 - 130	<0.0050	ug/g	44 (2)	40
4735086	Indeno(1,2,3-cd)pyrene	2016/11/04	104	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
4735086	Naphthalene	2016/11/04	76	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
4735086	Phenanthrene	2016/11/04	111	50 - 130	93	50 - 130	<0.0050	ug/g	95 (1)	40
4735086	Pyrene	2016/11/04	116	50 - 130	101	50 - 130	<0.0050	ug/g	77 (1)	40
4735461	Chromium (VI)	2016/11/07	88	75 - 125	92	80 - 120	<0.2	ug/g	NC	35
4736271	Acid Extractable Antimony (Sb)	2016/11/07	95	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
4736271	Acid Extractable Arsenic (As)	2016/11/07	97	75 - 125	100	80 - 120	<1.0	ug/g	NC	30
4736271	Acid Extractable Barium (Ba)	2016/11/07	NC	75 - 125	101	80 - 120	<0.50	ug/g	4.2	30
4736271	Acid Extractable Beryllium (Be)	2016/11/07	99	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
4736271	Acid Extractable Boron (B)	2016/11/07	97	75 - 125	97	80 - 120	<5.0	ug/g	NC	30
4736271	Acid Extractable Cadmium (Cd)	2016/11/07	101	75 - 125	95	80 - 120	<0.10	ug/g	NC	30
4736271	Acid Extractable Chromium (Cr)	2016/11/07	103	75 - 125	99	80 - 120	<1.0	ug/g	4.3	30
4736271	Acid Extractable Cobalt (Co)	2016/11/07	99	75 - 125	98	80 - 120	<0.10	ug/g	0.35	30
4736271	Acid Extractable Copper (Cu)	2016/11/07	97	75 - 125	100	80 - 120	<0.50	ug/g	2.2	30
4736271	Acid Extractable Lead (Pb)	2016/11/07	102	75 - 125	96	80 - 120	<1.0	ug/g	NC	30
4736271	Acid Extractable Mercury (Hg)	2016/11/07	98	75 - 125	95	80 - 120	<0.050	ug/g	NC	30
4736271	Acid Extractable Molybdenum (Mo)	2016/11/07	102	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
4736271	Acid Extractable Nickel (Ni)	2016/11/07	97	75 - 125	101	80 - 120	<0.50	ug/g	11	30
4736271	Acid Extractable Selenium (Se)	2016/11/07	98	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
4736271	Acid Extractable Silver (Ag)	2016/11/07	102	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
4736271	Acid Extractable Thallium (TI)	2016/11/07	101	75 - 125	94	80 - 120	<0.050	ug/g	NC	30
4736271	Acid Extractable Uranium (U)	2016/11/07	101	75 - 125	93	80 - 120	<0.050	ug/g	15	30
4736271	Acid Extractable Vanadium (V)	2016/11/07	NC	75 - 125	103	80 - 120	<5.0	ug/g	NC	30
4736271	Acid Extractable Zinc (Zn)	2016/11/07	NC	75 - 125	101	80 - 120	<5.0	ug/g	NC	30
4736274	Hot Water Ext. Boron (B)	2016/11/07	96	75 - 125	100	75 - 125	<0.050	ug/g	NC	40
4736419	Acid Extractable Antimony (Sb)	2016/11/07	100	75 - 125	103	80 - 120	<0.20	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4736419	Acid Extractable Arsenic (As)	2016/11/07	95	75 - 125	98	80 - 120	<1.0	ug/g	NC	30
4736419	Acid Extractable Barium (Ba)	2016/11/07	91	75 - 125	95	80 - 120	<0.50	ug/g	7.3	30
4736419	Acid Extractable Beryllium (Be)	2016/11/07	98	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
4736419	Acid Extractable Boron (B)	2016/11/07	95	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
4736419	Acid Extractable Cadmium (Cd)	2016/11/07	100	75 - 125	101	80 - 120	<0.10	ug/g	NC	30
4736419	Acid Extractable Chromium (Cr)	2016/11/07	101	75 - 125	102	80 - 120	<1.0	ug/g	17	30
4736419	Acid Extractable Cobalt (Co)	2016/11/07	100	75 - 125	102	80 - 120	<0.10	ug/g	3.3	30
4736419	Acid Extractable Copper (Cu)	2016/11/07	101	75 - 125	101	80 - 120	<0.50	ug/g	0.42	30
4736419	Acid Extractable Lead (Pb)	2016/11/07	97	75 - 125	102	80 - 120	<1.0	ug/g	NC	30
4736419	Acid Extractable Mercury (Hg)	2016/11/07	96	75 - 125	98	80 - 120	<0.050	ug/g	NC	30
4736419	Acid Extractable Molybdenum (Mo)	2016/11/07	101	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
4736419	Acid Extractable Nickel (Ni)	2016/11/07	101	75 - 125	102	80 - 120	<0.50	ug/g	15	30
4736419	Acid Extractable Selenium (Se)	2016/11/07	96	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
4736419	Acid Extractable Silver (Ag)	2016/11/07	101	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
4736419	Acid Extractable Thallium (Tl)	2016/11/07	95	75 - 125	101	80 - 120	<0.050	ug/g	NC	30
4736419	Acid Extractable Uranium (U)	2016/11/07	98	75 - 125	101	80 - 120	<0.050	ug/g	1.9	30
4736419	Acid Extractable Vanadium (V)	2016/11/07	NC	75 - 125	99	80 - 120	<5.0	ug/g	NC	30
4736419	Acid Extractable Zinc (Zn)	2016/11/07	95	75 - 125	102	80 - 120	<5.0	ug/g	NC	30
4736454	Hot Water Ext. Boron (B)	2016/11/07	101	75 - 125	102	75 - 125	<0.050	ug/g	NC	40

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

				Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
Ī	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
Ī	4736457	Hot Water Ext. Boron (B)	2016/11/07	100	75 - 125	101	75 - 125	<0.050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) Duplicate results exceeded RPD acceptance criteria due to the sample heterogeneity. The variability in the results for flagged analytes may be more pronounced.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 585899-01-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/11 Report #: R4243896 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B605261

Received: 2016/11/10, 17:58

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	<pre>/ Extracted</pre>	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	7	N/A	2016/11/11	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	7	2016/11/10	2016/11/11	CAM SOP-00316	CCME CWS m
Moisture	7	N/A	2016/11/10	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 585899-01-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/11 Report #: R4243896 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B605261 Received: 2016/11/10, 17:58

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 10

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DKU852	DKU853	DKU854	DKU855	DKU855	DKU856		
Sampling Date		2016/11/08 10:00	2016/11/08 11:00	2016/11/08 12:00	2016/11/08 10:00	2016/11/08 10:00	2016/11/08 09:30		
COC Number		585899-01-01	585899-01-01	585899-01-01	585899-01-01	585899-01-01	585899-01-01		
	UNITS	BH16-214-SS6	BH16-218-SS3	BH16-219-SS3	BH16-215-SS5	BH16-215-SS5 Lab-Dup	BH16-216-SS5	RDL	QC Batch
Inorganics									
Moisture	%	14	12	12	15	16	15	1.0	4743943

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		DKU857	DKU858						
Sampling Date		2016/11/08 14:45	2016/11/08 14:45						
COC Number		585899-01-01	585899-01-01						
	UNITS	BH16-217-SS5	BH16-257-SS5	RDL	QC Batch				
Inorganics									
norganics									
Moisture	%	13	14	1.0	4743943				

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DKU852	DKU853	DKU854	DKU855	DKU856	DKU857		
Sampling Date		2016/11/08	2016/11/08	2016/11/08	2016/11/08	2016/11/08	2016/11/08		
		10:00	11:00	12:00	10:00	09:30	14:45		
COC Number		585899-01-01	585899-01-01	585899-01-01	585899-01-01	585899-01-01	585899-01-01		
	UNITS	BH16-214-SS6	BH16-218-SS3	BH16-219-SS3	BH16-215-SS5	BH16-216-SS5	BH16-217-SS5	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4743864
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4743864
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4743864
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4743864
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	4743864
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	4743864
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	4743864
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	4743864
F2-F4 Hydrocarbons				•	•		•		
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	<10	10	4744003
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	<50	50	4744003
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	<50	50	4744003
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes	Yes		4744003
Surrogate Recovery (%)	•	•	•	•	•	•	•		
1,4-Difluorobenzene	%	97	97	96	97	97	97		4743864
4-Bromofluorobenzene	%	101	101	99	101	100	102		4743864
D10-Ethylbenzene	%	102	102	100	100	107	100		4743864
D4-1,2-Dichloroethane	%	99	100	100	99	100	101		4743864
o-Terphenyl	%	96	95	97	97	95	98		4744003
RDL = Reportable Detection L	imit	1	1	1		1			
QC Batch = Quality Control Ba	atch								

QC Batch = Quality Control Batch

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DKU858		
Sampling Date		2016/11/08		
		14:45		
COC Number		585899-01-01		
	UNITS	BH16-257-SS5	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/g	<0.020	0.020	4743864
Toluene	ug/g	<0.020	0.020	4743864
Ethylbenzene	ug/g	<0.020	0.020	4743864
o-Xylene	ug/g	<0.020	0.020	4743864
p+m-Xylene	ug/g	<0.040	0.040	4743864
Total Xylenes	ug/g	<0.040	0.040	4743864
F1 (C6-C10)	ug/g	<10	10	4743864
F1 (C6-C10) - BTEX	ug/g	<10	10	4743864
F2-F4 Hydrocarbons				-
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	4744003
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	4744003
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	4744003
Reached Baseline at C50	ug/g	Yes		4744003
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	96		4743864
4-Bromofluorobenzene	%	101		4743864
D10-Ethylbenzene	%	102		4743864
D4-1,2-Dichloroethane	%	98		4743864
o-Terphenyl	%	98		4744003
RDL = Reportable Detection L	.imit	-		-
QC Batch = Quality Control Ba	atch			

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DKU852 Sample ID: BH16-214-SS6 Matrix: Soil					Collected: Shipped: Received:	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta I	Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Pop)a
Moisture	BAL	4743943	N/A	2016/11/10	Prgya Pano	hal
Maxxam ID: DKU853 Sample ID: BH16-218-SS3 Matrix: Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta I	Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Pop)a
Moisture	BAL	4743943	N/A	2016/11/10	Prgya Pano	hal
Maxxam ID: DKU854 Sample ID: BH16-219-SS3 Matrix: Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta I	Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Pop	a
Moisture	BAL	4743943	N/A	2016/11/10	Prgya Pano	hal
Maxxam ID: DKU855 Sample ID: BH16-215-SS5 Matrix: Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta I	Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Pop	Da
Moisture	BAL	4743943	N/A	2016/11/10	Prgya Pano	hal
Maxxam ID: DKU855 Dup Sample ID: BH16-215-SS5 Matrix: Soil					Shipped:	2016/11/08 2016/11/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	hal
Test Description Moisture	Instrumentation BAL	Batch 4743943	Extracted	Date Analyzed 2016/11/10	Analyst Prgya Pano	hal
•						2016/11/08
Moisture Maxxam ID: DKU856 Sample ID: BH16-216-SS5 Matrix: Soil	BAL	4743943	N/A	2016/11/10	Prgya Pano Collected: Shipped: Received:	2016/11/08
Moisture Maxxam ID: DKU856 Sample ID: BH16-216-SS5					Prgya Pano Collected: Shipped:	2016/11/08 2016/11/10

Page 6 of 10

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DKU856 BH16-216-SS5 Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4743943	N/A	2016/11/10	Prgya Pan	chal
Maxxam ID: Sample ID: Matrix:	DKU857 BH16-217-SS5 Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Po	ра
Moisture		BAL	4743943	N/A	2016/11/10	Prgya Pan	chal
Maxxam ID: Sample ID: Matrix:	DKU858 BH16-257-SS5 Soil					Collected: Shipped: Received:	2016/11/08 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	4743864	N/A	2016/11/11	Georgeta	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4744003	2016/11/10	2016/11/11	Dorina Po	ра
Moisture		BAL	4743943	N/A	2016/11/10	Prgya Pan	chal

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: Former Oakville Hospital Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4743864	1,4-Difluorobenzene	2016/11/11	97	60 - 140	99	60 - 140	96	%		
4743864	4-Bromofluorobenzene	2016/11/11	100	60 - 140	101	60 - 140	100	%		
4743864	D10-Ethylbenzene	2016/11/11	98	60 - 140	88	60 - 140	90	%		
4743864	D4-1,2-Dichloroethane	2016/11/11	97	60 - 140	99	60 - 140	96	%		
4744003	o-Terphenyl	2016/11/11	102	60 - 130	98	60 - 130	96	%		
4743864	Benzene	2016/11/11	87	60 - 140	88	60 - 140	<0.020	ug/g	NC	50
4743864	Ethylbenzene	2016/11/11	97	60 - 140	98	60 - 140	<0.020	ug/g	NC	50
4743864	F1 (C6-C10) - BTEX	2016/11/11					<10	ug/g	NC	30
4743864	F1 (C6-C10)	2016/11/11	77	60 - 140	82	80 - 120	<10	ug/g	NC	30
4743864	o-Xylene	2016/11/11	102	60 - 140	104	60 - 140	<0.020	ug/g	NC	50
4743864	p+m-Xylene	2016/11/11	89	60 - 140	91	60 - 140	<0.040	ug/g	NC	50
4743864	Toluene	2016/11/11	89	60 - 140	90	60 - 140	<0.020	ug/g	NC	50
4743864	Total Xylenes	2016/11/11					<0.040	ug/g	NC	50
4743943	Moisture	2016/11/10							2.0	20
4744003	F2 (C10-C16 Hydrocarbons)	2016/11/11	105	50 - 130	101	80 - 120	<10	ug/g	NC	30
4744003	F3 (C16-C34 Hydrocarbons)	2016/11/11	99	50 - 130	95	80 - 120	<50	ug/g	NC	30
4744003	F4 (C34-C50 Hydrocarbons)	2016/11/11	101	50 - 130	96	80 - 120	<50	ug/g	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-17-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/15 Report #: R4247759 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6151

Received: 2016/11/11, 15:47

Sample Matrix: Soil # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hot Water Extractable Boron	2	2016/11/14	2016/11/14	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2016/11/13		EPA 8260C m
Conductivity	1	2016/11/14	2016/11/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2016/11/12	2016/11/14	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	4	N/A	2016/11/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	4	2016/11/12	2016/11/13	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric)	2	2016/11/15	2016/11/15	CAM SOP-00316	CCME PHC-CWS m
Strong Acid Leachable Metals by ICPMS	2	2016/11/14	2016/11/14	CAM SOP-00447	EPA 6020B m
Moisture	8	N/A	2016/11/11	CAM SOP-00445	Carter 2nd ed 51.2 m
Sodium Adsorption Ratio (SAR)	1	N/A	2016/11/14	CAM SOP-00102	EPA 6010C
SAR - ICP Metals	1	2016/11/14	2016/11/14	CAM SOP-00408	EPA 6010C m
Volatile Organic Compounds in Soil	2	N/A	2016/11/12	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-17-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/15 Report #: R4247759 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6151

Received: 2016/11/11, 15:47

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 15

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DLA164	DLA165	DLA166	DLA167	DLA168	DLA169		
Sampling Date		2016/11/11 09:00	2016/11/11 09:30	2016/11/11 09:45	2016/11/11 11:45	2016/11/11 12:00	2016/11/11 13:50		
COC Number		581304-17-01	581304-17-01	581304-17-01	581304-17-01	581304-17-01	581304-17-01		
	UNITS	BH16-221-SS1	BH16-221-SS5	BH16-221-SS6	BH16-222-SS4	BH16-222-SS6	BH16-220-SS4	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A						23		4744456
Inorganics					•				
Conductivity	mS/cm						0.98	0.002	4746541
Moisture	%	9.6	8.2	6.3	19	11	12	1.0	4745245
Metals									
Soluble Calcium (Ca)	mg/L						4.0	0.5	4746537
Soluble Magnesium (Mg)	mg/L						0.6	0.5	4746537
Soluble Sodium (Na)	mg/L						186	5	4746537
RDL = Reportable Detection QC Batch = Quality Control I								•	

Maxxam ID		DLA170	DLA171			
Sampling Date		2016/11/11 13:50	2016/11/11 13:35			
COC Number		581304-17-01	581304-17-01			
	UNITS	BH16-250-SS4	BH16-220-SS2	RDL	QC Batch	
Inorganics						
Moisture	%	12	11	1.0	4745245	
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		DLA164	DLA164	DLA171	DLA171		
Sampling Date		2016/11/11 09:00	2016/11/11 09:00	2016/11/11 13:35	2016/11/11 13:35		
COC Number		581304-17-01	581304-17-01	581304-17-01	581304-17-01		
	UNITS	BH16-221-SS1	BH16-221-SS1 Lab-Dup	BH16-220-SS2	BH16-220-SS2 Lab-Dup	RDL	QC Batch
Inorganics							
Chromium (VI)	ug/g	<0.2		<0.2	0.2	0.2	4745674
Metals				1			
Hot Water Ext. Boron (B)	ug/g	0.20	0.18	0.20		0.050	4746518
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20		0.20	4746398
Acid Extractable Arsenic (As)	ug/g	1.8	1.6	2.5		1.0	4746398
Acid Extractable Barium (Ba)	ug/g	16	19	30		0.50	4746398
Acid Extractable Beryllium (Be)	ug/g	0.22	0.21	0.27		0.20	4746398
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0		5.0	4746398
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.12	0.11		0.10	4746398
Acid Extractable Chromium (Cr)	ug/g	7.8	8.2	10		1.0	4746398
Acid Extractable Cobalt (Co)	ug/g	2.4	2.4	4.3		0.10	4746398
Acid Extractable Copper (Cu)	ug/g	5.4	5.4	15		0.50	4746398
Acid Extractable Lead (Pb)	ug/g	7.9	8.2	46		1.0	4746398
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	<0.50		0.50	4746398
Acid Extractable Nickel (Ni)	ug/g	3.9	4.4	9.1		0.50	4746398
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50		0.50	4746398
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20		0.20	4746398
Acid Extractable Thallium (Tl)	ug/g	<0.050	<0.050	0.072		0.050	4746398
Acid Extractable Uranium (U)	ug/g	0.22	0.22	0.31		0.050	4746398
Acid Extractable Vanadium (V)	ug/g	17	17	23		5.0	4746398
Acid Extractable Zinc (Zn)	ug/g	17	20	35		5.0	4746398
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050		0.050	4746398
RDL = Reportable Detection Limit	<u>.</u>						-

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxware ID		DIA1CC	DI A1CO		
Maxxam ID		DLA166	DLA168		
Sampling Date		2016/11/11 09:45	2016/11/11 12:00		
COC Number		581304-17-01	581304-17-01		
	UNITS	BH16-221-SS6	BH16-222-SS6	RDL	QC Batch
Calculated Parameters	••••••				4 0 2000
		-0.050	-0.050	0.050	4744520
1,3-Dichloropropene (cis+trans) Volatile Organics	ug/g	<0.050	<0.050	0.050	4744528
	,	0.50	0.50	0 - 0	4744400
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	4741133
Benzene	ug/g	< 0.020	< 0.020	0.020	4741133
Bromodichloromethane	ug/g	< 0.050	< 0.050	0.050	
Bromoform	ug/g	< 0.050	<0.050	0.050	4741133
Bromomethane	ug/g	<0.050	<0.050	0.050	4741133
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	4741133
Chlorobenzene	ug/g	<0.050	<0.050	0.050	4741133
Chloroform	ug/g	<0.050	<0.050	0.050	4741133
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	4741133
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	4741133
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	4741133
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	4741133
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	4741133
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	4741133
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	4741133
1,1-Dichloroethylene	ug/g	<0.050	<0.050	0.050	4741133
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	4741133
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	4741133
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	4741133
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	4741133
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	4741133
Ethylbenzene	ug/g	<0.020	<0.020	0.020	4741133
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	4741133
Hexane	ug/g	<0.050	<0.050	0.050	4741133
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	4741133
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	4741133
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	4741133
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	4741133
Styrene	ug/g	<0.050	<0.050	0.050	4741133
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	4741133
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	4741133
RDL = Reportable Detection Limit	5, 5		<u> </u>	ļ	
QC Batch = Quality Control Batch					

VOLATILE ORGANICS BY GC/MS (SOIL)

	DI A166	DI 4168		
UNITS		BH16-222-SS6	RDL	QC Batch
ug/g	<0.050	<0.050	0.050	4741133
	<0.020	<0.020	0.020	4741133
ug/g	<0.050	<0.050	0.050	4741133
ug/g	<0.050	<0.050	0.050	4741133
ug/g	<0.050	<0.050	0.050	4741133
ug/g	<0.050	<0.050	0.050	4741133
ug/g	<0.020	<0.020	0.020	4741133
ug/g	<0.020	<0.020	0.020	4741133
ug/g	<0.020	<0.020	0.020	4741133
ug/g	<0.020	<0.020	0.020	4741133
%	94	93		4741133
%	100	99		4741133
%	96	97		4741133
%	98	98		4741133
	ug/g ug/g	ug/g <0.050	2016/11/11 2016/11/11 09:45 12:00 581304-17-01 581304-17-01 UNITS BH16-221-SS6 BH16-222-SS6 ug/g <0.050	2016/11/11 09:45 2016/11/11 12:00 581304-17-01 581304-17-01 UNITS BH16-221-SS6 BH16-222-SS6 RDL ug/g <0.050

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DLA165	DLA167	DLA169	DLA170		
Sampling Date		2016/11/11	2016/11/11	2016/11/11	2016/11/11		
		09:30	11:45	13:50	13:50		
COC Number		581304-17-01	581304-17-01	581304-17-01	581304-17-01		
	UNITS	BH16-221-SS5	BH16-222-SS4	BH16-220-SS4	BH16-250-SS4	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4745387
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4745387
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4745387
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	4745387
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	4745387
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	4745387
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	4745387
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	4745387
F2-F4 Hydrocarbons		•					
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g			1100	1000	100	4748075
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	4745685
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	88	110	50	4745685
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	160	340	50	4745685
Reached Baseline at C50	ug/g	Yes	Yes	No	No		4745685
Surrogate Recovery (%)	•	•	•	•			
1,4-Difluorobenzene	%	94	96	95	95		4745387
4-Bromofluorobenzene	%	102	103	103	100		4745387
D10-Ethylbenzene	%	87	94	93	93		4745387
D4-1,2-Dichloroethane	%	98	98	98	97		4745387
o-Terphenyl	%	106	105	110	100		4745685
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DLA164 Sample ID: BH16-221-SS1 Matrix: Soil					Collected: Shipped:	, ,
Watrix: Soli					Received:	2010/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Boron	ICP	4746518	2016/11/14	2016/11/14	Jolly John	
Hexavalent Chromium in Soil by IC	IC/SPEC	4745674	2016/11/12	2016/11/14	Manoj Ger	а
Strong Acid Leachable Metals by ICPMS	ICP/MS	4746398	2016/11/14	2016/11/14	Daniel Tec	u
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Pano	hal
Maxxam ID: DLA164 Dup Sample ID: BH16-221-SS1 Matrix: Soil					Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Boron	ICP	4746518	2016/11/14	2016/11/14	Jolly John	
Strong Acid Leachable Metals by ICPMS	ICP/MS	4746398	2016/11/14	2016/11/14	Daniel Tecl	u
Maxxam ID: DLA165 Sample ID: BH16-221-SS5 Matrix: Soil					Collected: Shipped: Received:	, ,
						2010/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4745387	N/A	2016/11/12	Georgeta F	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4745685	2016/11/12	2016/11/13	Zhiyue (Fra	
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Pano	hal
Maxxam ID: DLA166 Sample ID: BH16-221-SS6 Matrix: Soil					Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	4744528	N/A	2016/11/13	Automated	1 Statchk
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Panc	
Volatile Organic Compounds in Soil	GC/MS	4741133	N/A	2016/11/12	Anna Gabr	
Maxxam ID: DLA167 Sample ID: BH16-222-SS4	GC/MS	4741133	N/A	2016/11/12	Collected: Shipped:	2016/11/11
Matrix: Soil					Received:	2016/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4745387	N/A	2016/11/12	Georgeta F	
Test Description				-		ank) Zhu

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID:	DLA168
Sample ID:	BH16-222-SS6
Matrix:	Soil

Collected:	2016/11/11
Shipped:	
Received:	2016/11/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4744528	N/A	2016/11/13	Automated Statchk
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Panchal
Volatile Organic Compounds in Soil	GC/MS	4741133	N/A	2016/11/12	Anna Gabrielyan

Maxxam ID:	DLA169
Sample ID:	BH16-220-SS4
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	4746541	2016/11/14	2016/11/14	Tahir Anwar
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4745387	N/A	2016/11/12	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4745685	2016/11/12	2016/11/13	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	4748075	2016/11/15	2016/11/15	Debra Deslandes
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Panchal
Sodium Adsorption Ratio (SAR)	CALC/MET	4744456	N/A	2016/11/14	Automated Statchk
SAR - ICP Metals	ICP	4746537	2016/11/14	2016/11/14	Jolly John

Maxxam ID:	DLA170
Sample ID:	BH16-250-SS4
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	4745387	N/A	2016/11/12	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	4745685	2016/11/12	2016/11/13	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	4748075	2016/11/15	2016/11/15	Debra Deslandes
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Panchal

Maxxam ID: DLA171 Sample ID: BH16-220-SS2 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	4746518	2016/11/14	2016/11/14	Jolly John
Hexavalent Chromium in Soil by IC	IC/SPEC	4745674	2016/11/12	2016/11/14	Manoj Gera
Strong Acid Leachable Metals by ICPMS	ICP/MS	4746398	2016/11/14	2016/11/14	Daniel Teclu
Moisture	BAL	4745245	N/A	2016/11/11	Prgya Panchal

Maxxam ID: DLA171 [Sample ID: BH16-220 Matrix: Soil	•				Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hexavalent Chromium in Soil by IC	IC/SPEC	4745674	2016/11/12	2016/11/14	Manoj Ger	a

Collected: 2016/11/11 Shipped: Received: 2016/11/11

Collected: 2016/11/11 Shipped: Received: 2016/11/11

Collected: 2016/11/11

2016/11/11

Shipped: Received:

GENERAL COMMENTS

Each te	mperature is the	average of up to	three cooler temperatures taken at receipt						
	Package 1	10.3°C	7						
Result	Results relate only to the items tested.								

Page 10 of 15

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix Spike		SPIKED BLANK		Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4741133	4-Bromofluorobenzene	2016/11/11	100	60 - 140	101	60 - 140	94	%		
4741133	D10-o-Xylene	2016/11/11	109	60 - 130	89	60 - 130	83	%		
4741133	D4-1,2-Dichloroethane	2016/11/11	94	60 - 140	96	60 - 140	108	%		
4741133	D8-Toluene	2016/11/11	106	60 - 140	105	60 - 140	92	%		
4745387	1,4-Difluorobenzene	2016/11/11	99	60 - 140	99	60 - 140	99	%		
4745387	4-Bromofluorobenzene	2016/11/11	100	60 - 140	97	60 - 140	101	%		
4745387	D10-Ethylbenzene	2016/11/11	91	60 - 140	92	60 - 140	92	%		
4745387	D4-1,2-Dichloroethane	2016/11/11	100	60 - 140	100	60 - 140	101	%		
4745685	o-Terphenyl	2016/11/12	101	60 - 130	104	60 - 130	110	%		
4741133	1,1,1,2-Tetrachloroethane	2016/11/11	98	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
4741133	1,1,1-Trichloroethane	2016/11/11	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
4741133	1,1,2,2-Tetrachloroethane	2016/11/11	90	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
4741133	1,1,2-Trichloroethane	2016/11/11	94	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
4741133	1,1-Dichloroethane	2016/11/11	95	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
4741133	1,1-Dichloroethylene	2016/11/11	100	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
4741133	1,2-Dichlorobenzene	2016/11/11	97	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
4741133	1,2-Dichloroethane	2016/11/11	87	60 - 140	89	60 - 130	<0.050	ug/g	NC	50
4741133	1,2-Dichloropropane	2016/11/11	94	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
4741133	1,3-Dichlorobenzene	2016/11/11	99	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
4741133	1,4-Dichlorobenzene	2016/11/11	102	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
4741133	Acetone (2-Propanone)	2016/11/11	87	60 - 140	84	60 - 140	<0.50	ug/g	NC	50
4741133	Benzene	2016/11/11	95	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
4741133	Bromodichloromethane	2016/11/11	93	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
4741133	Bromoform	2016/11/11	89	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
4741133	Bromomethane	2016/11/11	77	60 - 140	75	60 - 140	<0.050	ug/g	NC	50
4741133	Carbon Tetrachloride	2016/11/11	98	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
4741133	Chlorobenzene	2016/11/11	101	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
4741133	Chloroform	2016/11/11	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
4741133	cis-1,2-Dichloroethylene	2016/11/11	97	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
4741133	cis-1,3-Dichloropropene	2016/11/11	92	60 - 140	90	60 - 130	<0.030	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix Spike		SPIKED BLANK		K Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4741133	Dibromochloromethane	2016/11/11	94	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
4741133	Dichlorodifluoromethane (FREON 12)	2016/11/11	77	60 - 140	78	60 - 140	<0.050	ug/g	NC	50
4741133	Ethylbenzene	2016/11/11	107	60 - 140	103	60 - 130	<0.020	ug/g	NC	50
4741133	Ethylene Dibromide	2016/11/11	92	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
4741133	Hexane	2016/11/11	114	60 - 140	112	60 - 130	<0.050	ug/g	NC	50
4741133	Methyl Ethyl Ketone (2-Butanone)	2016/11/11	91	60 - 140	91	60 - 140	<0.50	ug/g	NC	50
4741133	Methyl Isobutyl Ketone	2016/11/11	91	60 - 140	95	60 - 130	<0.50	ug/g	NC	50
4741133	Methyl t-butyl ether (MTBE)	2016/11/11	92	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
4741133	Methylene Chloride(Dichloromethane)	2016/11/11	102	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
4741133	o-Xylene	2016/11/11	102	60 - 140	99	60 - 130	<0.020	ug/g	NC	50
4741133	p+m-Xylene	2016/11/11	108	60 - 140	103	60 - 130	<0.020	ug/g	NC	50
4741133	Styrene	2016/11/11	106	60 - 140	104	60 - 130	<0.050	ug/g	NC	50
4741133	Tetrachloroethylene	2016/11/11	100	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
4741133	Toluene	2016/11/11	104	60 - 140	101	60 - 130	<0.020	ug/g	NC	50
4741133	Total Xylenes	2016/11/11					<0.020	ug/g	NC	50
4741133	trans-1,2-Dichloroethylene	2016/11/11	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
4741133	trans-1,3-Dichloropropene	2016/11/11	96	60 - 140	88	60 - 130	<0.040	ug/g	NC	50
4741133	Trichloroethylene	2016/11/11	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
4741133	Trichlorofluoromethane (FREON 11)	2016/11/11	99	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
4741133	Vinyl Chloride	2016/11/11	94	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
4745245	Moisture	2016/11/11							0.60	20
4745387	Benzene	2016/11/11	89	60 - 140	91	60 - 140	<0.020	ug/g	NC	50
4745387	Ethylbenzene	2016/11/11	99	60 - 140	98	60 - 140	<0.020	ug/g	NC	50
4745387	F1 (C6-C10) - BTEX	2016/11/11					<10	ug/g	NC	30
4745387	F1 (C6-C10)	2016/11/11	82	60 - 140	88	80 - 120	<10	ug/g	NC	30
4745387	o-Xylene	2016/11/11	104	60 - 140	103	60 - 140	<0.020	ug/g	NC	50
4745387	p+m-Xylene	2016/11/11	90	60 - 140	90	60 - 140	<0.040	ug/g	NC	50
4745387	Toluene	2016/11/11	90	60 - 140	90	60 - 140	<0.020	ug/g	NC	50
4745387	Total Xylenes	2016/11/11					<0.040	ug/g	NC	50
4745674	Chromium (VI)	2016/11/14	91	75 - 125	95	80 - 120	<0.2	ug/g	NC	35

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

			Matrix	Matrix Spike SPIKED BLANK		BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4745685	F2 (C10-C16 Hydrocarbons)	2016/11/13	103	50 - 130	106	80 - 120	<10	ug/g	NC	30
4745685	F3 (C16-C34 Hydrocarbons)	2016/11/13	96	50 - 130	98	80 - 120	<50	ug/g	NC	30
4745685	F4 (C34-C50 Hydrocarbons)	2016/11/13	98	50 - 130	101	80 - 120	<50	ug/g	NC	30
4746398	Acid Extractable Antimony (Sb)	2016/11/14	91	75 - 125	107	80 - 120	<0.20	ug/g	NC	30
4746398	Acid Extractable Arsenic (As)	2016/11/14	98	75 - 125	102	80 - 120	<1.0	ug/g	NC	30
4746398	Acid Extractable Barium (Ba)	2016/11/14	NC	75 - 125	96	80 - 120	<0.50	ug/g	18	30
4746398	Acid Extractable Beryllium (Be)	2016/11/14	99	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
4746398	Acid Extractable Boron (B)	2016/11/14	95	75 - 125	95	80 - 120	<5.0	ug/g	NC	30
4746398	Acid Extractable Cadmium (Cd)	2016/11/14	96	75 - 125	105	80 - 120	<0.10	ug/g	NC	30
4746398	Acid Extractable Chromium (Cr)	2016/11/14	97	75 - 125	105	80 - 120	<1.0	ug/g	5.3	30
4746398	Acid Extractable Cobalt (Co)	2016/11/14	99	75 - 125	100	80 - 120	<0.10	ug/g	3.1	30
4746398	Acid Extractable Copper (Cu)	2016/11/14	93	75 - 125	104	80 - 120	<0.50	ug/g	0.86	30
4746398	Acid Extractable Lead (Pb)	2016/11/14	99	75 - 125	105	80 - 120	<1.0	ug/g	2.8	30
4746398	Acid Extractable Mercury (Hg)	2016/11/14	95	75 - 125	100	80 - 120	<0.050	ug/g	NC	30
4746398	Acid Extractable Molybdenum (Mo)	2016/11/14	99	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
4746398	Acid Extractable Nickel (Ni)	2016/11/14	102	75 - 125	104	80 - 120	<0.50	ug/g	10	30
4746398	Acid Extractable Selenium (Se)	2016/11/14	98	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
4746398	Acid Extractable Silver (Ag)	2016/11/14	97	75 - 125	104	80 - 120	<0.20	ug/g	NC	30
4746398	Acid Extractable Thallium (TI)	2016/11/14	101	75 - 125	105	80 - 120	<0.050	ug/g	NC	30
4746398	Acid Extractable Uranium (U)	2016/11/14	89	75 - 125	94	80 - 120	<0.050	ug/g	NC	30
4746398	Acid Extractable Vanadium (V)	2016/11/14	NC	75 - 125	105	80 - 120	<5.0	ug/g	NC	30
4746398	Acid Extractable Zinc (Zn)	2016/11/14	NC	75 - 125	100	80 - 120	<5.0	ug/g	NC	30
4746518	Hot Water Ext. Boron (B)	2016/11/14	98	75 - 125	99	75 - 125	<0.050	ug/g	NC	40
4746537	Soluble Calcium (Ca)	2016/11/14			98	80 - 120	<0.5	mg/L	NC	30
4746537	Soluble Magnesium (Mg)	2016/11/14			99	80 - 120	<0.5	mg/L	NC	30
4746537	Soluble Sodium (Na)	2016/11/14			94	80 - 120	<5	mg/L	0.14	30
4746541	Conductivity	2016/11/14			100	90 - 110	<0.002	mS/cm	0.98	10

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL

Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4748075	F4G-sg (Grav. Heavy Hydrocarbons)	2016/11/15	99	65 - 135	99	65 - 135	<100	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cuistin Camiere

Cristina Carriere, Scientific Services

los 3 Eva Prahilo

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 579482-01-01

Attention:Netta Benazon

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/05 Report #: R4191003 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6K9155

Received: 2016/09/28, 15:37

Sample Matrix: Soil # Samples Received: 4

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	4	N/A	2016/09/30	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	4	2016/09/30	2016/09/30	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric)	2	2016/10/05	2016/10/05	CAM SOP-00316	CCME PHC-CWS m
Moisture	4	N/A	2016/09/30	CAM SOP-00445	Carter 2nd ed 51.2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		DDS245	DDS245	DDS246	DDS247	DDS248		
Sampling Date		2016/09/26 09:10	2016/09/26 09:10	2016/09/26 10:30	2016/09/26 10:30	2016/09/26 09:45		
COC Number		579482-01-01	579482-01-01	579482-01-01	579482-01-01	579482-01-01		
	UNITS	BH16-201-5	BH16-201-5 Lab-Dup	BH16-202-5	BH16-2022-5	BH16-203-5	RDL	QC Batch
Inorganics								
Moisture	%	3.6	3.6	14	14	17	1.0	4683207
RDL = Reportable Detection L QC Batch = Quality Control Ba Lab-Dup = Laboratory Initiate	atch	cate						

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DDS245	DDS245	DDS246	DDS247	DDS248		
Sampling Date		2016/09/26	2016/09/26	2016/09/26	2016/09/26	2016/09/26		
		09:10	09:10	10:30	10:30	09:45		
COC Number		579482-01-01	579482-01-01	579482-01-01	579482-01-01	579482-01-01		
	UNITS	BH16-201-5	BH16-201-5 Lab-Dup	BH16-202-5	BH16-2022-5	BH16-203-5	RDL	QC Batch
BTEX & F1 Hydrocarbons								
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4683279
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4683279
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4683279
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	4683279
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	4683279
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	4683279
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	4683279
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	4683279
F2-F4 Hydrocarbons		•	•					
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	750		890			100	4689026
F2 (C10-C16 Hydrocarbons)	ug/g	<10		<10	<10	<10	10	4683196
F3 (C16-C34 Hydrocarbons)	ug/g	120		110	<50	<50	50	4683196
F4 (C34-C50 Hydrocarbons)	ug/g	350		260	<50	<50	50	4683196
Reached Baseline at C50	ug/g	No		No	Yes	Yes		4683196
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	103	106	103	102	102		4683279
4-Bromofluorobenzene	%	96	93	97	101	97		4683279
D10-Ethylbenzene	%	103	102	110	102	108		4683279
D4-1,2-Dichloroethane	%	101	104	101	100	100		4683279
o-Terphenyl	%	102		100	97	96		4683196
RDL = Reportable Detection Limit	•			-	-	-		-
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Dupli	cate							

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DDS245 BH16-201-5 Soil					Collected: Shipped: Received:	,, -
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & PTEV in Soil	HSGC/MSFD	4683279	N/A	2016/09/30	Joe Paino	
•		•		•			ovia
Petroleum Hydrocarbons		GC/FID	4683196	2016/09/30	2016/09/30	Biljana Laz	
F4G (CCME Hydrocarbons	Gravimetric)	BAL	4689026	2016/10/05	2016/10/05	Lovelpreet	
Moisture		BAL	4683207	N/A	2016/09/30	Shivani De	sai
Maxxam ID: Sample ID: Matrix:	DDS245 Dup BH16-201-5 Soil					Collected: Shipped: Received:	,, -
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4683279	N/A	2016/09/30	Joe Paino	
Moisture		BAL	4683207	N/A	2016/09/30	Shivani De	sai
Maxxam ID: Sample ID: Matrix:	BH16-202-5					Collected: Shipped: Received:	,, -
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	,
Petroleum Hydro. CCME F	1 & BTFY in Soil	HSGC/MSFD	4683279	N/A	2016/09/30	Joe Paino	
Petroleum Hydrocarbons		GC/FID	4683196	2016/09/30	2016/09/30	Biljana Laz	ovic
F4G (CCME Hydrocarbons		BAL	4689026	2016/10/05	2016/10/05	Lovelpreet	
Moisture	Gravimetric	BAL	4683207	N/A	2016/09/30	Shivani De	
Maxxam ID: Sample ID: Matrix:	DDS247 BH16-2022-5 Soil					Collected: Shipped: Received:	2016/09/26 2016/09/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4683279	N/A	2016/09/30	Joe Paino	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	4683196	2016/09/30	2016/09/30	Biljana Laz	ovic
Moisture		BAL	4683207	N/A	2016/09/30	Shivani De	sai
Maxxam ID: Sample ID: Matrix:	DDS248 BH16-203-5 Soil					Collected: Shipped: Received:	2016/09/26 2016/09/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	4683279	N/A	2016/09/30	Joe Paino	
	E2 E4 in Soil	GC/FID	4683196	2016/09/30	2016/09/30	Biljana Laz	ovic
Petroleum Hydrocarbons	12-14 11 301	00/110	1005150	2010/05/50	2010/05/50	Diljana Eaz	OVIC

GENERAL COMMENTS

Each te	ach temperature is the average of up to three cooler temperatures taken at receipt							
	Package 1	7.7°C						
		•						
Results	relate only to the	e items tested.						

Maxxam Job #: B6K9155 Report Date: 2016/10/05

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4683196	o-Terphenyl	2016/09/30	97	60 - 130	94	60 - 130	105	%		
4683279	1,4-Difluorobenzene	2016/09/30	103	60 - 140	103	60 - 140	105	%		
4683279	4-Bromofluorobenzene	2016/09/30	102	60 - 140	103	60 - 140	99	%		
4683279	D10-Ethylbenzene	2016/09/30	102	60 - 140	107	60 - 140	104	%		
4683279	D4-1,2-Dichloroethane	2016/09/30	100	60 - 140	99	60 - 140	102	%		
4683196	F2 (C10-C16 Hydrocarbons)	2016/09/30	90	50 - 130	87	80 - 120	<10	ug/g	NC	30
4683196	F3 (C16-C34 Hydrocarbons)	2016/09/30	95	50 - 130	91	80 - 120	<50	ug/g	NC	30
4683196	F4 (C34-C50 Hydrocarbons)	2016/09/30	87	50 - 130	84	80 - 120	<50	ug/g	NC	30
4683207	Moisture	2016/09/30							NC	20
4683279	Benzene	2016/09/30	98	60 - 140	109	60 - 140	<0.020	ug/g	NC	50
4683279	Ethylbenzene	2016/09/30	113	60 - 140	122	60 - 140	<0.020	ug/g	NC	50
4683279	F1 (C6-C10) - BTEX	2016/09/30					<10	ug/g	NC	30
4683279	F1 (C6-C10)	2016/09/30	81	60 - 140	88	80 - 120	<10	ug/g	NC	30
4683279	o-Xylene	2016/09/30	118	60 - 140	127	60 - 140	<0.020	ug/g	NC	50
4683279	p+m-Xylene	2016/09/30	104	60 - 140	112	60 - 140	<0.040	ug/g	NC	50
4683279	Toluene	2016/09/30	97	60 - 140	106	60 - 140	<0.020	ug/g	NC	50
4683279	Total Xylenes	2016/09/30					<0.040	ug/g	NC	50
4689026	F4G-sg (Grav. Heavy Hydrocarbons)	2016/10/05	105	65 - 135	102	65 - 135	<100	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 579482-04-01, 579482-02-01

Attention:Netta Benazon

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/07 Report #: R4194316 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B6L0200 Received: 2016/09/29, 16:22

Sample Matrix: Soil # Samples Received: 13

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	12	N/A	2016/10/05	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum	1	N/A	2016/10/07	CAM SOP-00301	EPA 8270D m
Moisture	12	N/A	2016/10/04	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	1	N/A	2016/10/06	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	11	2016/10/03	2016/10/03	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	1	2016/10/04	2016/10/05	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	1	2016/10/06	2016/10/07	CAM SOP-00318	EPA 8270D m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

RESULTS OF ANALYSES OF SOIL

Maxxam ID			DDX054		DDX	(055	DD	X056	DDX058		DDX059		DDX061			
Sampling Date			2016/09/2 11:00	18	2016/ 11	09/18 :00		/09/18 1:20	2016/09/18 09:30	3	2016/09/18 10:10	3 2	2016/09/18 10:30			
COC Number			579482-04	-01 5	579482	2-04-01	57948	2-04-01	579482-04-0)1 5	79482-04-0)1 5	79482-04-01			
		UNITS	BH16-204-	S2 B	3H16-2	044-S2	BH16	-204-S5	BH16-205-S	1 B	BH16-205-S	3 В	BH16-206-S2	RDL	QC	Batch
Inorganics										•						
Moisture		%	8.3		9.	.2		12	5.0		11		9.3	1.0	46	87381
RDL = Reportable Detec QC Batch = Quality Con														•		
/laxxam ID			DDX062			DDX	064		DDX06	57	DDX06	57	DDX068			
ampling Date			2016/09/18 10:35			2016/0 11:			2016/09		2016/09 12:35		2016/09/2 12:45	8		
COC Number		5	79482-04-01			579482	-02-01		579482-0	2-01	579482-0	2-01	579482-02-	01		
	U	NITS	3H16-206-S4	QC I	Batch	BH16-2	208-51	QC Bate	ch BH16-20	7-52	BH16-20 Lab-Du	-	BH16-207-9	55 R	DL	QC Batcl
norganics				•					•		•		•	•		
Noisture		%	11	468	7381	4.	0	468757	5 19		19		14	1	.0	4687381
RDL = Reportable Detectio QC Batch = Quality Contro ab-Dup = Laboratory Initi	l Batch	۱	e													
Maxx	am ID				D	DX069		DX070		C	DED170					
	ling D				201	.6/09/28 08:45	20:	16/09/28 08:50			16/09/28 09:25					
COC	Numbe	er			5794	82-02-0	1 579	482-02-0	1	579	482-02-01					
			l	JNITS	BH1	6-209-S1	L BH1	L6-209-S3	B QC Batch	BI	H208 S4	RDL	QC Batch			
Inorg	anics															
Mois	ture			%		6.4		9.3	4687381		12	1.0	4692002			
	•		Detection Lin													

Maxxam ID		DDX054		DDX055		DDX056		DDX058		
Sampling Date		2016/09/18 11:00		2016/09/18 11:00		2016/09/18 11:20		2016/09/18 09:30		
COC Number		579482-04-01		579482-04-01		579482-04-01		579482-04-01		
	UNITS	BH16-204-S2	RDL	BH16-2044-S2	RDL	BH16-204-S5	RDL	BH16-205-S1	RDL	QC Batch
Calculated Parameters						1			1	
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	0.12	0.035	<0.0071	0.0071	<0.71	0.71	4683350
Polyaromatic Hydrocarbons						1				
Acenaphthene	ug/g	0.41	0.0050	0.31	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Acenaphthylene	ug/g	0.0051	0.0050	0.030	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Anthracene	ug/g	0.54	0.0050	0.59	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Benzo(a)anthracene	ug/g	1.8	0.0050	2.0	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Benzo(a)pyrene	ug/g	1.4	0.0050	1.7	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Benzo(b/j)fluoranthene	ug/g	2.0	0.0050	2.3	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Benzo(g,h,i)perylene	ug/g	0.75	0.0050	0.92	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Benzo(k)fluoranthene	ug/g	0.65	0.0050	0.90	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Chrysene	ug/g	1.6	0.0050	1.8	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Dibenz(a,h)anthracene	ug/g	0.20	0.0050	0.23	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Fluoranthene	ug/g	4.7	0.0050	4.8	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Fluorene	ug/g	0.39	0.0050	0.37	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Indeno(1,2,3-cd)pyrene	ug/g	0.95	0.0050	1.1	0.025	<0.0050	0.0050	<0.50	0.50	4685857
1-Methylnaphthalene	ug/g	<0.0050	0.0050	0.046	0.025	<0.0050	0.0050	<0.50	0.50	4685857
2-Methylnaphthalene	ug/g	<0.0050	0.0050	0.074	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Naphthalene	ug/g	<0.0050	0.0050	0.089	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Phenanthrene	ug/g	3.7	0.0050	3.2	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Pyrene	ug/g	3.1	0.0050	3.3	0.025	<0.0050	0.0050	<0.50	0.50	4685857
Surrogate Recovery (%)										
D10-Anthracene	%	87		99		98		115		4685857
D14-Terphenyl (FS)	%	80		82		83		72		4685857
	%	87		86		90		96		4685857

Maxxam ID		DDX059		DDX061		DDX062		DDX064		
Sampling Date		2016/09/18 10:10		2016/09/18 10:30		2016/09/18 10:35		2016/09/28 11:45		
COC Number		579482-04-01		579482-04-01		579482-04-01		579482-02-01		
	UNITS	BH16-205-S3	RDL	BH16-206-S2	RDL	BH16-206-S4	QC Batch	BH16-208-S1	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	0.25	0.071	0.18	0.035	<0.0071	4683350	0.014	0.0071	4686205
Polyaromatic Hydrocarbons									1	
Acenaphthene	ug/g	<0.050	0.050	0.50	0.025	<0.0050	4685857	0.039	0.0050	4688768
Acenaphthylene	ug/g	0.075	0.050	0.055	0.025	<0.0050	4685857	0.013	0.0050	4688768
Anthracene	ug/g	<0.050	0.050	1.7	0.025	<0.0050	4685857	0.11	0.0050	4688768
Benzo(a)anthracene	ug/g	<0.050	0.050	5.1	0.025	<0.0050	4685857	0.50	0.0050	4688768
Benzo(a)pyrene	ug/g	<0.050	0.050	4.1	0.025	<0.0050	4685857	0.35	0.0050	4688768
Benzo(b/j)fluoranthene	ug/g	<0.050	0.050	4.8	0.025	<0.0050	4685857	0.41	0.0050	4688768
Benzo(g,h,i)perylene	ug/g	<0.050	0.050	2.0	0.025	<0.0050	4685857	0.21	0.0050	4688768
Benzo(k)fluoranthene	ug/g	<0.050	0.050	1.6	0.025	<0.0050	4685857	0.14	0.0050	4688768
Chrysene	ug/g	<0.050	0.050	4.1	0.025	<0.0050	4685857	0.33	0.0050	4688768
Dibenz(a,h)anthracene	ug/g	<0.050	0.050	0.54	0.025	<0.0050	4685857	0.047	0.0050	4688768
Fluoranthene	ug/g	<0.050	0.050	11	0.025	<0.0050	4685857	1.0	0.0050	4688768
Fluorene	ug/g	0.10	0.050	0.45	0.025	<0.0050	4685857	0.029	0.0050	4688768
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	0.050	2.4	0.025	<0.0050	4685857	0.26	0.0050	4688768
1-Methylnaphthalene	ug/g	0.082	0.050	0.080	0.025	<0.0050	4685857	0.0065	0.0050	4688768
2-Methylnaphthalene	ug/g	0.17	0.050	0.10	0.025	<0.0050	4685857	0.0079	0.0050	4688768
Naphthalene	ug/g	0.17	0.050	0.14	0.025	<0.0050	4685857	0.018	0.0050	4688768
Phenanthrene	ug/g	<0.050	0.050	5.4	0.025	<0.0050	4685857	0.37	0.0050	4688768
Pyrene	ug/g	<0.050	0.050	8.0	0.025	<0.0050	4685857	0.81	0.0050	4688768
Surrogate Recovery (%)										
D10-Anthracene	%	79		100		97	4685857	69		4688768
D14-Terphenyl (FS)	%	81		89		84	4685857	67		4688768
D8-Acenaphthylene	%	89		91		93	4685857	73		4688768
RDL = Reportable Detection	Limit									
QC Batch = Quality Control B	atch									

Maxxam ID		DDX067	DDX068		DDX069		DDX070		
Sampling Date		2016/09/28 12:35	2016/09/28 12:45		2016/09/28 08:45		2016/09/28 08:50		
COC Number		579482-02-01	579482-02-01		579482-02-01		579482-02-01		
	UNITS	BH16-207-S2	BH16-207-S5	RDL	BH16-209-S1	RDL	BH16-209-S3	RDL	QC Batch
Calculated Parameters									•
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	0.0071	<0.71	0.71	<0.0071	0.0071	4683350
Polyaromatic Hydrocarbons									•
Acenaphthene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Anthracene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.0050	0.53	0.50	<0.0050	0.0050	4685857
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	0.66	0.50	<0.0050	0.0050	4685857
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Chrysene	ug/g	<0.0050	<0.0050	0.0050	0.50	0.50	<0.0050	0.0050	4685857
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Fluoranthene	ug/g	<0.0050	<0.0050	0.0050	1.1	0.50	<0.0050	0.0050	4685857
Fluorene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Naphthalene	ug/g	<0.0050	<0.0050	0.0050	<0.50	0.50	<0.0050	0.0050	4685857
Phenanthrene	ug/g	<0.0050	<0.0050	0.0050	0.55	0.50	<0.0050	0.0050	4685857
Pyrene	ug/g	<0.0050	<0.0050	0.0050	0.90	0.50	<0.0050	0.0050	4685857
Surrogate Recovery (%)									
D10-Anthracene	%	99	100		115		100		4685857
D14-Terphenyl (FS)	%	85	85		88		83		4685857
D8-Acenaphthylene	%	92	92		111		90		4685857
RDL = Reportable Detection L QC Batch = Quality Control B									

	2016/09/28 09:25	2016/09/28		
	09:25			
		09:25		
	579482-02-01	579482-02-01		
UNITS	BH208 S4	BH208 S4 Lab-Dup	RDL	QC Batch
ug/g	<0.0071		0.0071	4691177
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
ug/g	<0.0050	<0.0050	0.0050	4692492
%	74	70		4692492
%	74	71		4692492
%	68	64		4692492
atch	rate			
	ug/g ug/g	ug/g <0.0071	UNITS BH208 S4 Lab-Dup ug/g <0.0071	UNITS BH208 S4 Lab-Dup RDL ug/g <0.0071

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DDX054 Sample ID: BH16-204-S2 Matrix: Soil					Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	4683350	N/A	2016/10/05	Automated	d Statchk
Moisture	BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: DDX055 Sample ID: BH16-2044-S2 Matrix: Soil	<u>.</u>				Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	4683350	N/A	2016/10/05	Automated	d Statchk
Moisture	BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: DDX056 Sample ID: BH16-204-S5 Matrix: Soil					Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	4683350	N/A	2016/10/05	Automated	d Statchk
Moisture	BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: DDX058 Sample ID: BH16-205-S1 Matrix: Soil					Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	4683350	N/A	2016/10/05	Automated	d Statchk
· · ·						
Moisture	BAL	4687381	N/A	2016/10/04	Min Yang	
	BAL GC/MS	4687381 4685857	N/A 2016/10/03	2016/10/04 2016/10/03	Min Yang Lingyun Fe	ng
Moisture			,			-
Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID: DDX059 Sample ID: BH16-205-S3			,		Lingyun Fe Collected: Shipped:	2016/09/18
Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID: DDX059 Sample ID: BH16-205-S3 Matrix: Soil	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe Collected: Shipped: Received:	2016/09/18 2016/09/29
Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID: DDX059 Sample ID: BH16-205-S3 Matrix: Soil Test Description	GC/MS Instrumentation	4685857 Batch	2016/10/03 Extracted	2016/10/03 Date Analyzed	Lingyun Fe Collected: Shipped: Received: Analyst	2016/09/18 2016/09/29

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DDX061 BH16-206-S2 Soil					Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4683350	N/A	2016/10/05	Automate	d Statchk
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DDX062 BH16-206-S4 Soil					Collected: Shipped: Received:	2016/09/18 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4683350	N/A	2016/10/05	Automated	d Statchk
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DDX064 BH16-208-S1 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4686205	N/A	2016/10/05	Automated	d Statchk
Moisture		BAL	4687575	N/A	2016/10/04	Prgya Pano	chal
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4688768	2016/10/04	2016/10/05	Mitesh Raj	
Maxxam ID: Sample ID: Matrix:	DDX067 BH16-207-S2 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4683350	N/A	2016/10/05	Automated	d Statchk
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
	DDX067 Dup BH16-207-S2 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
Maxxam ID: Sample ID: Matrix:	DDX068 BH16-207-S5 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID:	DDX068 BH16-207-S5					Collected: Shipped:	2016/09/28
Matrix:	Soil					Received:	2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DDX069 BH16-209-S1 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4683350	N/A	2016/10/05	Automated	l Statchk
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DDX070 BH16-209-S3 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4683350	N/A	2016/10/05	Automated	l Statchk
Moisture		BAL	4687381	N/A	2016/10/04	Min Yang	
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4685857	2016/10/03	2016/10/03	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DED170 BH208 S4 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4691177	N/A	2016/10/07	Automated	l Statchk
Moisture		BAL	4692002	N/A	2016/10/06	Nimarta Si	ngh
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	4692492	2016/10/06	2016/10/07	Lingyun Fe	ng
Maxxam ID: Sample ID: Matrix:	DED170 Dup BH208 S4 Soil					Collected: Shipped: Received:	2016/09/28 2016/09/29
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt								
Package 1 5.0°C								
PAH analysis: Due to the sample matrix, some of the samples required dilution. Detection limits were adjusted accordingly.								
Revised Report [2016/10/06] PAH analysis has been added to sample BH208-S4								
Results relate only to the items tested.								

Maxxam Job #: B6L0200 Report Date: 2016/10/07

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4685857	D10-Anthracene	2016/10/03	96	50 - 130	92	50 - 130	98	%		
4685857	D14-Terphenyl (FS)	2016/10/03	86	50 - 130	84	50 - 130	87	%		
4685857	D8-Acenaphthylene	2016/10/03	92	50 - 130	88	50 - 130	90	%		
4688768	D10-Anthracene	2016/10/05	81	50 - 130	81	50 - 130	87	%		
4688768	D14-Terphenyl (FS)	2016/10/05	81	50 - 130	85	50 - 130	89	%		
4688768	D8-Acenaphthylene	2016/10/05	86	50 - 130	84	50 - 130	88	%		
4692492	D10-Anthracene	2016/10/07	91	50 - 130	84	50 - 130	79	%		
4692492	D14-Terphenyl (FS)	2016/10/07	91	50 - 130	83	50 - 130	80	%		
4692492	D8-Acenaphthylene	2016/10/07	86	50 - 130	79	50 - 130	74	%		
4685857	1-Methylnaphthalene	2016/10/03	77	50 - 130	83	50 - 130	<0.0050	ug/g	NC	40
4685857	2-Methylnaphthalene	2016/10/03	78	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
4685857	Acenaphthene	2016/10/03	84	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
4685857	Acenaphthylene	2016/10/03	85	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
4685857	Anthracene	2016/10/03	84	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
4685857	Benzo(a)anthracene	2016/10/03	92	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
4685857	Benzo(a)pyrene	2016/10/03	93	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40
4685857	Benzo(b/j)fluoranthene	2016/10/03	88	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
4685857	Benzo(g,h,i)perylene	2016/10/03	82	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
4685857	Benzo(k)fluoranthene	2016/10/03	91	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
4685857	Chrysene	2016/10/03	94	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
4685857	Dibenz(a,h)anthracene	2016/10/03	81	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
4685857	Fluoranthene	2016/10/03	87	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
4685857	Fluorene	2016/10/03	87	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
4685857	Indeno(1,2,3-cd)pyrene	2016/10/03	85	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
4685857	Naphthalene	2016/10/03	67	50 - 130	76	50 - 130	<0.0050	ug/g	NC	40
4685857	Phenanthrene	2016/10/03	86	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
4685857	Pyrene	2016/10/03	90	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
4687381	Moisture	2016/10/04							0.53	20
4687575	Moisture	2016/10/04							1.9	20
4688768	1-Methylnaphthalene	2016/10/05	56	50 - 130	72	50 - 130	<0.0050	ug/g	NC	40

Maxxam Job #: B6L0200 Report Date: 2016/10/07

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4688768	2-Methylnaphthalene	2016/10/05	56	50 - 130	74	50 - 130	<0.0050	ug/g	NC	40
4688768	Acenaphthene	2016/10/05	59	50 - 130	74	50 - 130	<0.0050	ug/g	16	40
4688768	Acenaphthylene	2016/10/05	90	50 - 130	74	50 - 130	<0.0050	ug/g	27	40
4688768	Anthracene	2016/10/05	69	50 - 130	73	50 - 130	<0.0050	ug/g	33	40
4688768	Benzo(a)anthracene	2016/10/05	NC	50 - 130	82	50 - 130	<0.0050	ug/g	22	40
4688768	Benzo(a)pyrene	2016/10/05	107	50 - 130	76	50 - 130	<0.0050	ug/g	37	40
4688768	Benzo(b/j)fluoranthene	2016/10/05	69	50 - 130	79	50 - 130	<0.0050	ug/g	36	40
4688768	Benzo(g,h,i)perylene	2016/10/05	79	50 - 130	78	50 - 130	<0.0050	ug/g	38	40
4688768	Benzo(k)fluoranthene	2016/10/05	81	50 - 130	79	50 - 130	<0.0050	ug/g	36	40
4688768	Chrysene	2016/10/05	104	50 - 130	83	50 - 130	<0.0050	ug/g	23	40
4688768	Dibenz(a,h)anthracene	2016/10/05	66	50 - 130	79	50 - 130	<0.0050	ug/g	35	40
4688768	Fluoranthene	2016/10/05	NC	50 - 130	81	50 - 130	<0.0050	ug/g	19	40
4688768	Fluorene	2016/10/05	60	50 - 130	81	50 - 130	<0.0050	ug/g	23	40
4688768	Indeno(1,2,3-cd)pyrene	2016/10/05	97	50 - 130	82	50 - 130	<0.0050	ug/g	35	40
4688768	Naphthalene	2016/10/05	51	50 - 130	68	50 - 130	<0.0050	ug/g	4.5	40
4688768	Phenanthrene	2016/10/05	NC	50 - 130	75	50 - 130	<0.0050	ug/g	27	40
4688768	Pyrene	2016/10/05	NC	50 - 130	83	50 - 130	<0.0050	ug/g	20	40
4692002	Moisture	2016/10/06							3.7	20
4692492	1-Methylnaphthalene	2016/10/07	78	50 - 130	77	50 - 130	<0.0050	ug/g	NC	40
4692492	2-Methylnaphthalene	2016/10/07	76	50 - 130	76	50 - 130	<0.0050	ug/g	NC	40
4692492	Acenaphthene	2016/10/07	88	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40
4692492	Acenaphthylene	2016/10/07	83	50 - 130	81	50 - 130	<0.0050	ug/g	NC	40
4692492	Anthracene	2016/10/07	82	50 - 130	79	50 - 130	<0.0050	ug/g	NC	40
4692492	Benzo(a)anthracene	2016/10/07	91	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40
4692492	Benzo(a)pyrene	2016/10/07	85	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40
4692492	Benzo(b/j)fluoranthene	2016/10/07	112	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
4692492	Benzo(g,h,i)perylene	2016/10/07	108	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
4692492	Benzo(k)fluoranthene	2016/10/07	121	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
4692492	Chrysene	2016/10/07	99	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
4692492	Dibenz(a,h)anthracene	2016/10/07	106	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40

Maxxam Job #: B6L0200 Report Date: 2016/10/07

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4692492	Fluoranthene	2016/10/07	92	50 - 130	89	50 - 130	<0.0050	ug/g	NC	40
4692492	Fluorene	2016/10/07	87	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40
4692492	Indeno(1,2,3-cd)pyrene	2016/10/07	107	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
4692492	Naphthalene	2016/10/07	73	50 - 130	73	50 - 130	<0.0050	ug/g	NC	40
4692492	Phenanthrene	2016/10/07	88	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
4692492	Pyrene	2016/10/07	95	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Your P.O. #: HAM-ENV Your Project #: HAM-801053-A Site Location: OAKVILLE HOSPITAL Your C.O.C. #: n/a

Attention:Netta Benazon

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/09/23 Report #: R4178347 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6K2899 Received: 2016/09/21, 15:20

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	1	N/A	2016/09/23	CAM SOP-00301	EPA 8270D m
Chloride by Automated Colourimetry	1	N/A	2016/09/22	CAM SOP-00463	EPA 325.2 m
Lab Filtered Metals Analysis by ICP	1	2016/09/22	2016/09/23	CAM SOP-00408	EPA 6010C m
PAH Compounds in Water by GC/MS (SIM)	1	2016/09/22	2016/09/22	CAM SOP-00318	EPA 8270D m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

RESULTS OF ANALYSES OF WATER

Maxxam ID		DCM918		
Sampling Date		2016/09/20 14:00		
COC Number		n/a		
	UNITS	BH16-14A	RDL	QC Batch
				-
Inorganics	I			
Inorganics Dissolved Chloride (Cl)	mg/L	1500	15	4670841

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		DCM918	DCM918				
Sampling Date		2016/09/20 14:00	2016/09/20 14:00				
COC Number		n/a	n/a				
	UNITS	BH16-14A	BH16-14A Lab-Dup	RDL	QC Batch		
Metals							
Dissolved Sodium (Na)	mg/L	990	990	5	4671626		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate							

Maxxam ID		DCM919	DCM919				
		2016/09/20	2016/09/20				
Sampling Date		12:30	12:30				
COC Number		n/a	n/a				
	UNITS	BH16-15	BH16-15 Lab-Dup	RDL	QC Batch		
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/L	<0.071		0.071	4670075		
Polyaromatic Hydrocarbons							
Acenaphthene	ug/L	<0.050	<0.050	0.050	4672842		
Acenaphthylene	ug/L	<0.050	<0.050	0.050	4672842		
Anthracene	ug/L	<0.050	<0.050	0.050	4672842		
Benzo(a)anthracene	ug/L	<0.050	<0.050	0.050	4672842		
Benzo(a)pyrene	ug/L	<0.010	<0.010	0.010	4672842		
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	0.050	4672842		
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	4672842		
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	4672842		
Chrysene	ug/L	<0.050	<0.050	0.050	4672842		
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	0.050	4672842		
Fluoranthene	ug/L	<0.050	<0.050	0.050	4672842		
Fluorene	ug/L	<0.050	<0.050	0.050	4672842		
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	4672842		
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	4672842		
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	4672842		
Naphthalene	ug/L	<0.050	<0.050	0.050	4672842		
Phenanthrene	ug/L	<0.030	<0.030	0.030	4672842		
Pyrene	ug/L	<0.050	<0.050	0.050	4672842		
Surrogate Recovery (%)							
D10-Anthracene	%	92	95		4672842		
D14-Terphenyl (FS)	%	97	101		4672842		
D8-Acenaphthylene	%	96	98		4672842		
RDL = Reportable Detection	Limit						
QC Batch = Quality Control Batch							
Lab-Dup = Laboratory Initiate	ed Duplio	ate					

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

exp Services Inc Client Project #: HAM-801053-A Site Location: OAKVILLE HOSPITAL Your P.O. #: HAM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DCM918 BH16-14A Water					Collected: Shipped: Received:	2016/09/20 2016/09/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated C	olourimetry	KONE	4670841	N/A	2016/09/22	Alina Dob	reanu
Lab Filtered Metals Analy	sis by ICP	ICP	4671626	2016/09/22	2016/09/23	Azita Faza	eli
Maxxam ID: Sample ID: Matrix:	DCM918 Dup BH16-14A Water					Collected: Shipped: Received:	2016/09/20 2016/09/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lab Filtered Metals Analy	sis by ICP	ICP	4671626	2016/09/22	2016/09/23	Azita Faza	eli
Maxxam ID: Sample ID: Matrix:	DCM919 BH16-15 Water					Collected: Shipped: Received:	2016/09/20 2016/09/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	4670075	N/A	2016/09/23	Automate	d Statchk
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	4672842	2016/09/22	2016/09/22	Mitesh Ra	j
Maxxam ID: Sample ID: Matrix:	DCM919 Dup BH16-15 Water					Collected: Shipped: Received:	2016/09/20 2016/09/21
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	4672842	2016/09/22	2016/09/22	Mitesh Ra	j

GENERAL COMMENTS

Each te	ach temperature is the average of up to three cooler temperatures taken at receipt							
	Package 1	1.7°C						
Results	relate only to the	e items tested.						

Maxxam Job #: B6K2899 Report Date: 2016/09/23

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: HAM-801053-A

Site Location: OAKVILLE HOSPITAL Your P.O. #: HAM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4672842	D10-Anthracene	2016/09/22	104	50 - 130	93	50 - 130	92	%		
4672842	D14-Terphenyl (FS)	2016/09/22	98	50 - 130	98	50 - 130	96	%		
4672842	D8-Acenaphthylene	2016/09/22	112	50 - 130	92	50 - 130	92	%		
4670841	Dissolved Chloride (Cl)	2016/09/22	NC	80 - 120	102	80 - 120	<1.0	mg/L	0.12	20
4671626	Dissolved Sodium (Na)	2016/09/23	NC	80 - 120	100	80 - 120	<0.5	mg/L	0.071	25
4672842	1-Methylnaphthalene	2016/09/22	84	50 - 130	87	50 - 130	<0.050	ug/L	NC	30
4672842	2-Methylnaphthalene	2016/09/22	85	50 - 130	88	50 - 130	<0.050	ug/L	NC	30
4672842	Acenaphthene	2016/09/22	93	50 - 130	95	50 - 130	<0.050	ug/L	NC	30
4672842	Acenaphthylene	2016/09/22	98	50 - 130	83	50 - 130	<0.050	ug/L	NC	30
4672842	Anthracene	2016/09/22	90	50 - 130	84	50 - 130	<0.050	ug/L	NC	30
4672842	Benzo(a)anthracene	2016/09/22	107	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
4672842	Benzo(a)pyrene	2016/09/22	97	50 - 130	100	50 - 130	<0.010	ug/L	NC	30
4672842	Benzo(b/j)fluoranthene	2016/09/22	103	50 - 130	122	50 - 130	<0.050	ug/L	NC	30
4672842	Benzo(g,h,i)perylene	2016/09/22	100	50 - 130	117	50 - 130	<0.050	ug/L	NC	30
4672842	Benzo(k)fluoranthene	2016/09/22	104	50 - 130	119	50 - 130	<0.050	ug/L	NC	30
4672842	Chrysene	2016/09/22	100	50 - 130	104	50 - 130	<0.050	ug/L	NC	30
4672842	Dibenz(a,h)anthracene	2016/09/22	100	50 - 130	113	50 - 130	<0.050	ug/L	NC	30
4672842	Fluoranthene	2016/09/22	110	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
4672842	Fluorene	2016/09/22	107	50 - 130	106	50 - 130	<0.050	ug/L	NC	30
4672842	Indeno(1,2,3-cd)pyrene	2016/09/22	104	50 - 130	113	50 - 130	<0.050	ug/L	NC	30
4672842	Naphthalene	2016/09/22	79	50 - 130	82	50 - 130	<0.050	ug/L	NC	30
4672842	Phenanthrene	2016/09/22	100	50 - 130	99	50 - 130	<0.030	ug/L	NC	30

Maxxam Job #: B6K2899 Report Date: 2016/09/23

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-801053-A Site Location: OAKVILLE HOSPITAL Your P.O. #: HAM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4672842	Pyrene	2016/09/22	108	50 - 130	104	50 - 130	<0.050	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cuistin Camiere

Cristina Carriere, Scientific Services

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: 527 CARLTON STREET,FORMER OAKVILLE HOSPITAL Your C.O.C. #: 574590-01-01

Attention:Netta Benazon

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/11 Report #: R4200938 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6L3611 Received: 2016/10/04, 14:12

Sample Matrix: Water # Samples Received: 1

	Da	ate	Date		
Analyses	Quantity Ex	tracted	Analyzed	Laboratory Method	Reference
Dissolved Metals by ICPMS	1 N/	/A	2016/10/07	7 CAM SOP-00447	EPA 6020B m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: 527 CARLTON STREET,FORMER OAKVILLE HOSPITAL

Your P.O. #: BRM-ENV Sampler Initials: KM

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		DEM733							
Sampling Date		2016/09/29 14:00							
COC Number		574590-01-01							
	UNITS	BH16-202	RDL	QC Batch					
Metals									
Metals									
Metals Dissolved Cobalt (Co)	ug/L	<0.50	0.50	4691102					

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: 527 CARLTON STREET,FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

		D stat	E too to t	A I	
Sample ID: Matrix:				Shipped: Received:	2016/10/04
Maxxam ID:					2016/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	4691102	N/A	2016/10/07	John Bowman

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

GENERAL COMMENTS

Each temperature is the	average of up to th	ree cooler temperatures taken at receipt	
Package 1	6.0°C		
-	•		
Results relate only to th	e items tested.		

Maxxam Job #: B6L3611 Report Date: 2016/10/11

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

527 CARLTON STREET, FORMER OAKVILLE

Site Location: HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

		Matrix Spike		Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4691102	Dissolved Cobalt (Co)	2016/10/07	107	80 - 120	102	80 - 120	<0.50	ug/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Your P.O. #: ENV-BRM Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 581191-02-01

Attention:Katie McIsaac

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/10/19 Report #: R4216691 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6M0905

Received: 2016/10/13, 15:06

Sample Matrix: Water # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Chloride by Automated Colourimetry	2	N/A	2016/10/18	CAM SOP-00463	EPA 325.2 m
Petroleum Hydro. CCME F1 & BTEX in Water	6	N/A	2016/10/17	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2016/10/18	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	6	2016/10/16	2016/10/17	CAM SOP-00316	CCME PHC-CWS m
Lab Filtered Metals Analysis by ICP	2	2016/10/17	2016/10/19	CAM SOP-00408	EPA 6010C m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

RESULTS OF ANALYSES OF WATER

Maxxam ID		DFW812	DFW813						
Sampling Date		2016/10/12 18:15	2016/10/12 18:15						
COC Number		581191-02-01	581191-02-01						
	UNITS	MW16-14B	MW16-144B	RDL	QC Batch				
Inorganics									
Inorganics									
Inorganics Dissolved Chloride (Cl)	mg/L	4700	4700	50	4703199				

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		DFW812	DFW813						
Sampling Date		2016/10/12 18:15	2016/10/12 18:15						
COC Number		581191-02-01	581191-02-01						
	UNITS	MW16-14B	MW16-144B	RDL	QC Batch				
Metals									
Dissolved Sodium (Na)	mg/L	2400	2300	50	4703527				
Dissolved Sodium (Na) mg/L 2400 2300 50 470352 RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DFW808	DFW808		DFW809	DFW810	DFW811		
Sampling Date		2016/10/12 11:00	2016/10/12 11:00		2016/10/12 15:30	2016/10/12 15:30	2016/10/12 14:50		
COC Number		581191-02-01	581191-02-01		581191-02-01	581191-02-01	581191-02-01		
	UNITS	MW16-211	MW16-211 Lab-Dup	QC Batch	MW16-210	MW16-2101	MW16-203A	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/L	<0.20	<0.20	4705016	<0.20	<0.20	<0.20	0.20	4704407
Toluene	ug/L	<0.20	<0.20	4705016	<0.20	<0.20	<0.20	0.20	4704407
Ethylbenzene	ug/L	<0.20	<0.20	4705016	<0.20	<0.20	<0.20	0.20	4704407
o-Xylene	ug/L	<0.20	<0.20	4705016	<0.20	<0.20	<0.20	0.20	4704407
p+m-Xylene	ug/L	<0.40	<0.40	4705016	<0.40	<0.40	<0.40	0.40	4704407
Total Xylenes	ug/L	<0.40	<0.40	4705016	<0.40	<0.40	<0.40	0.40	4704407
F1 (C6-C10)	ug/L	<25	<25	4705016	<25	<25	<25	25	4704407
F1 (C6-C10) - BTEX	ug/L	<25	<25	4705016	<25	<25	<25	25	4704407
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	<100		4703727	<100	<100	<100	100	4703727
F3 (C16-C34 Hydrocarbons)	ug/L	<200		4703727	3700	2500	<200	200	4703727
F4 (C34-C50 Hydrocarbons)	ug/L	<200		4703727	1100	700	<200	200	4703727
Reached Baseline at C50	ug/L	Yes		4703727	Yes	Yes	Yes		4703727
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	103	104	4705016	103	101	102		4704407
4-Bromofluorobenzene	%	97	95	4705016	102	102	103		4704407
D10-Ethylbenzene	%	98	96	4705016	111	108	110		4704407
D4-1,2-Dichloroethane	%	98	98	4705016	99	97	98		4704407
o-Terphenyl	%	109		4703727	110	110	106		4703727
RDL = Reportable Detection L QC Batch = Quality Control Ba									
Lab-Dup = Laboratory Initiate		ate							

-				,	1	
Maxxam ID		DFW814	DFW815	DFW816		
Sampling Date		2016/10/13	2016/10/13	2016/10/13		
		09:00	10:00	11:00		
COC Number		581191-02-01	581191-02-01	581191-02-01		
	UNITS	MW16-5B	MW16-213	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/L	<0.20	<0.20	<0.20	0.20	4704407
Toluene	ug/L	<0.20	<0.20	<0.20	0.20	4704407
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	0.20	4704407
o-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	4704407
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	0.40	4704407
Total Xylenes	ug/L	<0.40	<0.40	<0.40	0.40	4704407
F1 (C6-C10)	ug/L	<25	<25	<25	25	4704407
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	25	4704407
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100		100	4703727
F3 (C16-C34 Hydrocarbons)	ug/L	210	<200		200	4703727
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200		200	4703727
Reached Baseline at C50	ug/L	Yes	Yes			4703727
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	101	102	102		4704407
4-Bromofluorobenzene	%	101	102	102		4704407
D10-Ethylbenzene	%	109	110	109		4704407
D4-1,2-Dichloroethane	%	97	98	98		4704407
o-Terphenyl	%	106	106			4703727
RDL = Reportable Detection I	imit	-				
QC Batch = Quality Control B	atch					

PETROLEUM HYDROCARBONS (CCME)

Report Date: 2016/10/19

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DFW808 MW16-211 Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	4705016	N/A	2016/10/17	Georgeta Rusu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW808 Dup MW16-211 Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	4705016	N/A	2016/10/17	Georgeta Rusu
Maxxam ID: Sample ID: Matrix:	DFW809 MW16-210 Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/17	Ravinder Gaidhu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW810 MW16-2101 Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/17	Ravinder Gaidhu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW811 MW16-203A Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/17	Ravinder Gaidhu
Petroleum Hydrocarbons	52 54				2016/10/117	
	F2-F4 In Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW812 MW16-14B Water	GC/FID	4703727	2016/10/16	2016/10/17	Collected: 2016/10/12 Shipped: Received: 2016/10/13
Sample ID:	DFW812 MW16-14B	GC/FID	4703727 Batch	2016/10/16 Extracted	2016/10/17 Date Analyzed	Collected: 2016/10/12 Shipped:
Sample ID: Matrix:	DFW812 MW16-14B Water					Collected: 2016/10/12 Shipped: Received: 2016/10/13

Report Date: 2016/10/19

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DFW813 MW16-144B Water					Collected: Shipped: Received:	2016/10/12 2016/10/13
	Water					Received.	2010/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated C	Colourimetry	KONE	4703199	N/A	2016/10/18	Deonarine	Ramnarine
Lab Filtered Metals Analy	vsis by ICP	ICP	4703527	2016/10/17	2016/10/19	Archana P	atel
Maxxam ID: Sample ID: Matrix:	DFW814 MW16-5B Water					Collected: Shipped: Received:	2016/10/13 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/17	Ravinder (Gaidhu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret	Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW815 MW16-213 Water					Collected: Shipped: Received:	2016/10/13 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/17	Ravinder (Gaidhu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4703727	2016/10/16	2016/10/17	Margaret	Kulczyk-Stanko
Maxxam ID: Sample ID: Matrix:	DFW816 TRIP BLANK Water					Collected: Shipped: Received:	2016/10/13 2016/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4704407	N/A	2016/10/18	Ravinder (Gaidhu

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	5.3°C	
			—
Results	s relate only to the	e items tested.	

Maxxam Job #: B6M0905 Report Date: 2016/10/19

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4703727	o-Terphenyl	2016/10/17	111	60 - 130	114	60 - 130	106	%		
4704407	1,4-Difluorobenzene	2016/10/17	103	70 - 130	101	70 - 130	99	%		
4704407	4-Bromofluorobenzene	2016/10/17	102	70 - 130	102	70 - 130	100	%		
4704407	D10-Ethylbenzene	2016/10/17	100	70 - 130	97	70 - 130	106	%		
4704407	D4-1,2-Dichloroethane	2016/10/17	97	70 - 130	102	70 - 130	98	%		
4705016	1,4-Difluorobenzene	2016/10/17	103	70 - 130	102	70 - 130	103	%		
4705016	4-Bromofluorobenzene	2016/10/17	99	70 - 130	98	70 - 130	95	%		
4705016	D10-Ethylbenzene	2016/10/17	89	70 - 130	86	70 - 130	94	%		
4705016	D4-1,2-Dichloroethane	2016/10/17	97	70 - 130	99	70 - 130	98	%		
4703199	Dissolved Chloride (Cl)	2016/10/18	NC	80 - 120	104	80 - 120	<1.0	mg/L	0.74	20
4703527	Dissolved Sodium (Na)	2016/10/18	98	80 - 120	97	80 - 120	<0.5	mg/L	2.3	25
4703727	F2 (C10-C16 Hydrocarbons)	2016/10/17	NC	50 - 130	113	60 - 130	<100	ug/L	NC	30
4703727	F3 (C16-C34 Hydrocarbons)	2016/10/17	NC	50 - 130	104	60 - 130	<200	ug/L	NC	30
4703727	F4 (C34-C50 Hydrocarbons)	2016/10/17	98	50 - 130	101	60 - 130	<200	ug/L	NC	30
4704407	Benzene	2016/10/17	91	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
4704407	Ethylbenzene	2016/10/17	100	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
4704407	F1 (C6-C10) - BTEX	2016/10/17					<25	ug/L	NC	30
4704407	F1 (C6-C10)	2016/10/17	75	70 - 130	87	70 - 130	<25	ug/L	NC	30
4704407	o-Xylene	2016/10/17	104	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
4704407	p+m-Xylene	2016/10/17	91	70 - 130	91	70 - 130	<0.40	ug/L	NC	30
4704407	Toluene	2016/10/17	89	70 - 130	89	70 - 130	<0.20	ug/L	NC	30
4704407	Total Xylenes	2016/10/17					<0.40	ug/L	NC	30
4705016	Benzene	2016/10/17	92	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
4705016	Ethylbenzene	2016/10/17	96	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
4705016	F1 (C6-C10) - BTEX	2016/10/17					<25	ug/L	NC	30
4705016	F1 (C6-C10)	2016/10/17	95	70 - 130	85	70 - 130	<25	ug/L	NC	30
4705016	o-Xylene	2016/10/17	98	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
4705016	p+m-Xylene	2016/10/17	85	70 - 130	81	70 - 130	<0.40	ug/L	NC	30
4705016	Toluene	2016/10/17	92	70 - 130	87	70 - 130	<0.20	ug/L	NC	30

Maxxam Job #: B6M0905 Report Date: 2016/10/19

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		
	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
1	4705016	Total Xylenes	2016/10/17					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Report Date: 2016/10/19

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your P.O. #: ENV-BRM Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 585899-02-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/11 Report #: R4244105 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O5166 Received: 2016/11/10, 17:32

Sample Matrix: Water

Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	4	N/A	2016/11/11	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2016/11/11	2016/11/11	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Your C.O.C. #: 585899-02-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/11 Report #: R4244105 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O5166 Received: 2016/11/10, 17:32

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DKU559	DKU559	DKU560	DKU561	DKU562		
Sampling Date		2016/11/10 13:15	2016/11/10 13:15	2016/11/10 14:30	2016/11/10 14:30	2016/11/10 15:15		
COC Number		585899-02-01	585899-02-01	585899-02-01	585899-02-01	585899-02-01		
	UNITS	MW16-214	MW16-214 Lab-Dup	MW16-215	MW16-255	MW16-219	RDL	QC Batch
BTEX & F1 Hydrocarbons	<u>.</u>			·				-
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4744441
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4744441
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4744441
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4744441
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	4744441
Total Xylenes	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	4744441
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	25	4744441
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	25	4744441
F2-F4 Hydrocarbons				•				
F2 (C10-C16 Hydrocarbons)	ug/L	<100				<100	100	4744282
F3 (C16-C34 Hydrocarbons)	ug/L	<200				<200	200	4744282
F4 (C34-C50 Hydrocarbons)	ug/L	<200				<200	200	4744282
Reached Baseline at C50	ug/L	Yes				Yes		4744282
Surrogate Recovery (%)				•				
1,4-Difluorobenzene	%	103	103	101	100	100		4744441
4-Bromofluorobenzene	%	102	101	99	99	99		4744441
D10-Ethylbenzene	%	98	97	98	95	94		4744441
D4-1,2-Dichloroethane	%	97	98	95	96	96		4744441
o-Terphenyl	%	100				97		4744282
RDL = Reportable Detection L	.imit							
QC Batch = Quality Control Ba	atch							
Lab-Dup = Laboratory Initiate	d Duplic	cate						

Report Date: 2016/11/11

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: Former Oakville Hospital Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DKU559 MW16-214 Water					Collected: 2016/11/10 Shipped: Received: 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	4744441	N/A	2016/11/11	Haibin Wu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4744282	2016/11/11	2016/11/11	Barbara Wowk
Maxxam ID: Sample ID: Matrix:	DKU559 Dup MW16-214 Water					Collected: 2016/11/10 Shipped: Received: 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4744441	N/A	2016/11/11	Haibin Wu
Maxxam ID: Sample ID: Matrix:	DKU560 MW16-215 Water					Collected: 2016/11/10 Shipped: Received: 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	4744441	N/A	2016/11/11	Haibin Wu
Maxxam ID: Sample ID: Matrix:	DKU561 MW16-255 Water					Collected: 2016/11/10 Shipped: Received: 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	4744441	N/A	2016/11/11	Haibin Wu
Maxxam ID: Sample ID: Matrix:	DKU562 MW16-219 Water					Collected: 2016/11/10 Shipped: Received: 2016/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME I	F1 & BTEX in Water	HSGC/MSFD	4744441	N/A	2016/11/11	Haibin Wu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4744282	2016/11/11	2016/11/11	Barbara Wowk

GENERAL COMMENTS

Each to	emperature is the	average of up to th	ree cooler temperatures taken at receipt				
	Package 1	13.0°C					
All sample bottles contained visible sediment, which was included in the extraction. All sample vials contained visible sediment.							
Result	s relate only to th	e items tested.					

Maxxam Job #: B6O5166 Report Date: 2016/11/11

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: Former Oakville Hospital Sampler Initials: KM

			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4744282	o-Terphenyl	2016/11/11	98	60 - 130	97	60 - 130	95	%		
4744441	1,4-Difluorobenzene	2016/11/11	103	70 - 130	103	70 - 130	104	%		
4744441	4-Bromofluorobenzene	2016/11/11	104	70 - 130	104	70 - 130	102	%		
4744441	D10-Ethylbenzene	2016/11/11	99	70 - 130	104	70 - 130	98	%		
4744441	D4-1,2-Dichloroethane	2016/11/11	98	70 - 130	102	70 - 130	99	%		
4744282	F2 (C10-C16 Hydrocarbons)	2016/11/11	96	50 - 130	98	60 - 130	<100	ug/L	4.3	30
4744282	F3 (C16-C34 Hydrocarbons)	2016/11/11	NC	50 - 130	100	60 - 130	<200	ug/L	5.2	30
4744282	F4 (C34-C50 Hydrocarbons)	2016/11/11	100	50 - 130	100	60 - 130	<200	ug/L	3.3	30
4744441	Benzene	2016/11/11	88	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
4744441	Ethylbenzene	2016/11/11	92	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
4744441	F1 (C6-C10) - BTEX	2016/11/11					<25	ug/L	NC	30
4744441	F1 (C6-C10)	2016/11/11	95	70 - 130	101	70 - 130	<25	ug/L	NC	30
4744441	o-Xylene	2016/11/11	94	70 - 130	112	70 - 130	<0.20	ug/L	NC	30
4744441	p+m-Xylene	2016/11/11	90	70 - 130	108	70 - 130	<0.40	ug/L	NC	30
4744441	Toluene	2016/11/11	85	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
4744441	Total Xylenes	2016/11/11					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-16-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/14 Report #: R4246191 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6180

Received: 2016/11/11, 15:47

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water	3	N/A	2016/11/13	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	4	2016/11/12	2016/11/14	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-16-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/14 Report #: R4246191 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6180 Received: 2016/11/11, 15:47

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

PETROLEUM HYDROCARBONS (CCME)

				. ,			
Maxxam ID		DLA332	DLA333	DLA334	DLA336		
Sampling Date		2016/11/11	2016/11/11	2016/11/11			
		14:00	12:00	14:00			
COC Number		581304-16-01	581304-16-01	581304-16-01	581304-16-01		
	UNITS	MW16-216	MW16-217	MW16-256	MW16-255	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/L	<0.20	<0.20	<0.20		0.20	4745663
Toluene	ug/L	<0.20	<0.20	<0.20		0.20	4745663
Ethylbenzene	ug/L	<0.20	<0.20	<0.20		0.20	4745663
o-Xylene	ug/L	<0.20	<0.20	<0.20		0.20	4745663
p+m-Xylene	ug/L	<0.40	<0.40	<0.40		0.40	4745663
Total Xylenes	ug/L	<0.40	<0.40	<0.40		0.40	4745663
F1 (C6-C10)	ug/L	<25	<25	<25		25	4745663
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25		25	4745663
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	100	4745673
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	4745673
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	200	4745673
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes		4745673
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	103	102	101			4745663
4-Bromofluorobenzene	%	98	98	98			4745663
D10-Ethylbenzene	%	116	110	110			4745663
D4-1,2-Dichloroethane	%	97	99	98			4745663
o-Terphenyl	%	100	100	100	101		4745673
RDL = Reportable Detection I	imit				-		
QC Batch = Quality Control B	atch						
QC Batch – Quality Control B	attii						

Report Date: 2016/11/14

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DLA332 MW16-216 Water					Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4745663	N/A	2016/11/13	Abdi Moh	amud
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4745673	2016/11/12	2016/11/14	(Kent) Ma	olin Li
Maxxam ID: Sample ID: Matrix:	DLA333 MW16-217 Water					Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	Petroleum Hydro. CCME F1 & BTEX in Water		4745663	N/A	2016/11/13	Abdi Moh	amud
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4745673	2016/11/12	2016/11/14	(Kent) Ma	olin Li
Maxxam ID: Sample ID: Matrix:	DLA334 MW16-256 Water					Collected: Shipped: Received:	2016/11/11 2016/11/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	4745663	N/A	2016/11/13	Abdi Moh	amud
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4745673	2016/11/12	2016/11/14	(Kent) Ma	olin Li
Maxxam ID: Sample ID: Matrix:	DLA336 MW16-255 Water					Collected: Shipped: Received:	2016/11/11
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4745673	2016/11/12	2016/11/14	(Kent) Ma	olin Li

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	10.3°C								
			—							
Results	Results relate only to the items tested.									

Maxxam Job #: B6O6180 Report Date: 2016/11/14

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED BLANK		Method E	Blank	RPI	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4745663	1,4-Difluorobenzene	2016/11/12	103	70 - 130	99	70 - 130	101	%		
4745663	4-Bromofluorobenzene	2016/11/12	102	70 - 130	98	70 - 130	100	%		
4745663	D10-Ethylbenzene	2016/11/12	102	70 - 130	103	70 - 130	106	%		
4745663	D4-1,2-Dichloroethane	2016/11/12	94	70 - 130	92	70 - 130	95	%		
4745673	o-Terphenyl	2016/11/14	103	60 - 130	103	60 - 130	102	%		
4745663	Benzene	2016/11/12	89	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
4745663	Ethylbenzene	2016/11/12	96	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
4745663	F1 (C6-C10) - BTEX	2016/11/12					<25	ug/L	NC	30
4745663	F1 (C6-C10)	2016/11/12	79	70 - 130	85	70 - 130	<25	ug/L	NC	30
4745663	o-Xylene	2016/11/12	100	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
4745663	p+m-Xylene	2016/11/12	89	70 - 130	95	70 - 130	<0.40	ug/L	NC	30
4745663	Toluene	2016/11/12	87	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
4745663	Total Xylenes	2016/11/12					<0.40	ug/L	NC	30
4745673	F2 (C10-C16 Hydrocarbons)	2016/11/14	103	50 - 130	98	60 - 130	<100	ug/L	NC	30
4745673	F3 (C16-C34 Hydrocarbons)	2016/11/14	NC	50 - 130	105	60 - 130	<200	ug/L	NC	30
4745673	F4 (C34-C50 Hydrocarbons)	2016/11/14	102	50 - 130	101	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Report Date: 2016/11/14

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-05-01, 581304-16-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/14 Report #: R4246279 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6195 Received: 2016/11/11, 15:47

Sample Matrix: Water # Samples Received: 1

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1 2016/11/1	2 2016/11/1	4 CAM SOP-00316	CCME PHC-CWS m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-05-01, 581304-16-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/14 Report #: R4246279 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B6O6195 Received: 2016/11/11, 15:47

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 7

Maxxam ID		DLA390							
Sampling Date		2016/11/11							
		14:00							
COC Number		581304-05-01							
	UNITS	MW16-215	RDL	QC Batch					
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	4745673					
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	4745673					
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	4745673					
Reached Baseline at C50	ug/L	Yes		4745673					
Surrogate Recovery (%)									
o-Terphenyl	%	99		4745673					
RDL = Reportable Detection I	imit								
QC Batch = Quality Control Batch									

PETROLEUM HYDROCARBONS (CCME)

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	DLA390 MW16-215 Water					Collected: 2016/11/11 Shipped: Received: 2016/11/11	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	4745673	2016/11/12	2016/11/14	(Kent) Maolin Li	

GENERAL COMMENTS

Each te	emperature is the	average of up to th	ree cooler temperatures taken at receipt
	Package 1	10.3°C	
			•
Results	s relate only to th	e items tested.	

Maxxam Job #: B6O6195 Report Date: 2016/11/14

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4745673	o-Terphenyl	2016/11/14	103	60 - 130	103	60 - 130	102	%		
4745673	F2 (C10-C16 Hydrocarbons)	2016/11/14	103	50 - 130	98	60 - 130	<100	ug/L	NC	30
4745673	F3 (C16-C34 Hydrocarbons)	2016/11/14	NC	50 - 130	105	60 - 130	<200	ug/L	NC	30
4745673	F4 (C34-C50 Hydrocarbons)	2016/11/14	102	50 - 130	101	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-06-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/15 Report #: R4247900 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B607210

Received: 2016/11/14, 15:22

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	1	N/A	2016/11/15		EPA 8260C m
Chloride by Automated Colourimetry	1	N/A	2016/11/15	CAM SOP-00463	EPA 325.2 m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2016/11/15	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2016/11/14	2016/11/15	CAM SOP-00316	CCME PHC-CWS m
Dissolved Metals Analysis by ICP	1	2016/11/15	2016/11/15	CAM SOP-00408	EPA 6010C m
Dissolved Metals by ICPMS	1	N/A	2016/11/15	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds in Water	1	N/A	2016/11/15	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your P.O. #: BRM-ENV Your Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your C.O.C. #: 581304-06-01

Attention:Stephanie Hsia

exp Services Inc Hamilton Branch 80 Bancroft St Hamilton, ON L8E 2W5

> Report Date: 2016/11/15 Report #: R4247900 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B607210 Received: 2016/11/14, 15:22

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

RESULTS OF ANALYSES OF WATER

Maxxam ID		DLG425							
Sampling Date		2016/11/14 14:40							
COC Number		581304-06-01							
	UNITS	MW16-220	RDL	QC Batch					
Inorganics									
Inorganics									
Inorganics Dissolved Chloride (Cl)	mg/L	2200	20	4745912					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		DLG424	DLG424	DLG425	DLG425		
Sampling Date		2016/11/14 13:40	2016/11/14 13:40	2016/11/14 14:40	2016/11/14 14:40		
COC Number		581304-06-01	581304-06-01	581304-06-01	581304-06-01		
	UNITS	MW16-221	MW16-221 Lab-Dup	MW16-220	MW16-220 Lab-Dup	RDL	QC Batch
Metals							
Dissolved Sodium (Na)	mg/L			1100	1100	5	4748060
Dissolved Antimony (Sb)	ug/L	1.3	1.3			0.50	4747649
Dissolved Arsenic (As)	ug/L	1.1	1.1			1.0	4747649
Dissolved Barium (Ba)	ug/L	160	160			2.0	4747649
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50			0.50	4747649
Dissolved Boron (B)	ug/L	300	310			10	4747649
Dissolved Cadmium (Cd)	ug/L	<0.10	0.11			0.10	4747649
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0			5.0	4747649
Dissolved Cobalt (Co)	ug/L	3.0	3.1			2.5	4747649
Dissolved Copper (Cu)	ug/L	1.0	1.4			1.0	4747649
Dissolved Lead (Pb)	ug/L	<0.50	<0.50			0.50	4747649
Dissolved Molybdenum (Mo)	ug/L	7.9	7.9			0.50	4747649
Dissolved Nickel (Ni)	ug/L	8.3	8.3			5.0	4747649
Dissolved Selenium (Se)	ug/L	<2.0	<2.0			2.0	4747649
Dissolved Silver (Ag)	ug/L	<0.10	<0.10			0.10	4747649
Dissolved Sodium (Na)	ug/L	1000000	1000000			500	4747649
Dissolved Thallium (Tl)	ug/L	0.16	0.17			0.050	4747649
Dissolved Uranium (U)	ug/L	14	14			0.10	4747649
Dissolved Vanadium (V)	ug/L	<2.5 (1)	<2.5			2.5	4747649
Dissolved Zinc (Zn)	ug/L	9.7	11			5.0	4747649

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Metal Analysis:Detection Limit was raised due to matrix interferences.

DLG424 Maxxam ID 2016/11/14 Sampling Date 13:40 COC Number 581304-06-01 UNITS MW16-221 RDL QC Batch **Calculated Parameters** 1,3-Dichloropropene (cis+trans) ug/L <0.50 0.50 4746691 Volatile Organics Acetone (2-Propanone) ug/L <10 10 4742361 Benzene ug/L <0.20 0.20 4742361 Bromodichloromethane ug/L <0.50 0.50 4742361 Bromoform ug/L <1.0 1.0 4742361 Bromomethane ug/L < 0.50 0.50 4742361 Carbon Tetrachloride ug/L < 0.20 0.20 4742361 Chlorobenzene 0.20 4742361 ug/L <0.20 Chloroform ug/L <0.20 0.20 4742361 Dibromochloromethane ug/L <0.50 0.50 4742361 1,2-Dichlorobenzene ug/L < 0.50 0.50 4742361 1,3-Dichlorobenzene < 0.50 0.50 4742361 ug/L 1,4-Dichlorobenzene ug/L <0.50 0.50 4742361 Dichlorodifluoromethane (FREON 12) 1.0 4742361 ug/L <1.0 1,1-Dichloroethane ug/L <0.20 0.20 4742361 1,2-Dichloroethane 0.50 4742361 ug/L < 0.50 1,1-Dichloroethylene < 0.20 0.20 4742361 ug/L cis-1,2-Dichloroethylene ug/L <0.50 0.50 4742361 trans-1,2-Dichloroethylene ug/L < 0.50 0.50 4742361 1,2-Dichloropropane ug/L <0.20 0.20 4742361 cis-1,3-Dichloropropene ug/L < 0.30 0.30 4742361 trans-1,3-Dichloropropene <0.40 0.40 4742361 ug/L Ethylbenzene ug/L <0.20 0.20 4742361 Ethylene Dibromide 0.20 4742361 ug/L <0.20 Hexane ug/L <1.0 1.0 4742361 Methylene Chloride(Dichloromethane) 4742361 ug/L <2.0 2.0 Methyl Ethyl Ketone (2-Butanone) ug/L <10 10 4742361 Methyl Isobutyl Ketone 5.0 4742361 ug/L <5.0 Methyl t-butyl ether (MTBE) < 0.50 0.50 4742361 ug/L

VOLATILE ORGANICS BY GC/MS (WATER)

ug/L

ug/L

ug/L

<0.50

< 0.50

<0.50

0.50

0.50

4742361

4742361

0.50 4742361

Styrene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

		-	
	DLG424		
	2016/11/14		
	13:40		
	581304-06-01		
UNITS	MW16-221	RDL	QC Batch
ug/L	<0.20	0.20	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.50	0.50	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.50	0.50	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.20	0.20	4742361
ug/L	<0.20	0.20	4742361
%	96		4742361
%	101		4742361
%	94		4742361
	ug/L ug/L	2016/11/14 13:40 2016/11/14 13:40 581304-06-01 UNITS MW16-221 ug/L <0.20	2016/11/14 13:40 2016/11/14 13:40 581304-06-01 UNITS MW16-221 RDL ug/L <0.20 0.20 % 96 % 101

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		DLG424	DLG425	DLG425									
		2016/11/14	2016/11/14	2016/11/14									
Sampling Date		13:40	14:40	14:40									
COC Number		581304-06-01	581304-06-01	581304-06-01									
	UNITS	MW16-221	MW16-220	MW16-220 Lab-Dup	RDL	QC Batch							
3TEX & F1 Hydrocarbons													
Benzene	ug/L		<0.20	<0.20	0.20	4747560							
Toluene	ug/L		<0.20	<0.20	0.20	4747560							
Ethylbenzene	ug/L		<0.20	<0.20	0.20	4747560							
o-Xylene	ug/L		<0.20	<0.20	0.20	4747560							
p+m-Xylene	ug/L		<0.40	<0.40	0.40	4747560							
Total Xylenes	ug/L		<0.40	<0.40	0.40	4747560							
F1 (C6-C10)	ug/L	<25	<25	<25	25	4747560							
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	25	4747560							
F2-F4 Hydrocarbons		•	•	•									
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	100	4747755							
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	200	4747755							
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	200	4747755							
Reached Baseline at C50	ug/L	Yes	Yes	Yes		4747755							
Surrogate Recovery (%)			•										
1,4-Difluorobenzene	%	100	101	100		4747560							
4-Bromofluorobenzene	%	99	100	100		4747560							
D10-Ethylbenzene	%	104	105	103		4747560							
D4-1,2-Dichloroethane	%	97	95	97		4747560							
o-Terphenyl	%	90	93	91		4747755							
RDL = Reportable Detection I	imit												
QC Batch = Quality Control B	atch												
Lab-Dup = Laboratory Initiate	ed Duplic	cate											

PETROLEUM HYDROCARBONS (CCME)

Report Date: 2016/11/15

exp Services Inc Client Project #: BRM-00235695-A0 Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

TEST SUMMARY

Maxxam ID: DLG424 Sample ID: MW16-221 Matrix: Water					Collected: 2016/11/14 Shipped: Received: 2016/11/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	4746691	N/A	2016/11/15	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4747560	N/A	2016/11/15	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4747755	2016/11/14	2016/11/15	Barbara Wowk
Dissolved Metals by ICPMS	ICP/MS	4747649	N/A	2016/11/15	Cristina Petran
Volatile Organic Compounds in Water	GC/MS	4742361	N/A	2016/11/15	Anna Gabrielyan
Maxxam ID: DLG424 Dup Sample ID: MW16-221 Matrix: Water					Collected: 2016/11/14 Shipped: Received: 2016/11/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	4747649	N/A	2016/11/15	Cristina Petran
Maxxam ID: DLG425 Sample ID: MW16-220 Matrix: Water					Collected: 2016/11/14 Shipped: Received: 2016/11/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	4745912	N/A	2016/11/15	Deonarine Ramnarine
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4747560	N/A	2016/11/15	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4747755	2016/11/14	2016/11/15	Barbara Wowk
Dissolved Metals Analysis by ICP	ICP	4748060	2016/11/15	2016/11/15	Azita Fazaeli
Maxxam ID: DLG425 Dup Sample ID: MW16-220 Matrix: Water					Collected: 2016/11/14 Shipped: Received: 2016/11/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	4747560	N/A	2016/11/15	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	4747755	2016/11/14	2016/11/15	Barbara Wowk
Dissolved Metals Analysis by ICP	ICP	4748060	2016/11/15	2016/11/15	Azita Fazaeli

GENERAL COMMENTS

Each te	ach temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	13.7°C								
Results	relate only to the	e items tested.								

Maxxam Job #: B6O7210 Report Date: 2016/11/15

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4742361	4-Bromofluorobenzene	2016/11/13	104	70 - 130	103	70 - 130	102	%		
4742361	D4-1,2-Dichloroethane	2016/11/13	94	70 - 130	92	70 - 130	94	%		
4742361	D8-Toluene	2016/11/13	102	70 - 130	101	70 - 130	94	%		
4747560	1,4-Difluorobenzene	2016/11/15	99	70 - 130	100	70 - 130	100	%		
4747560	4-Bromofluorobenzene	2016/11/15	100	70 - 130	100	70 - 130	99	%		
4747560	D10-Ethylbenzene	2016/11/15	95	70 - 130	99	70 - 130	101	%		
4747560	D4-1,2-Dichloroethane	2016/11/15	97	70 - 130	98	70 - 130	97	%		
4747755	o-Terphenyl	2016/11/15	92	60 - 130	91	60 - 130	91	%		
4742361	1,1,1,2-Tetrachloroethane	2016/11/13	106	70 - 130	100	70 - 130	<0.50	ug/L		
4742361	1,1,1-Trichloroethane	2016/11/13	95	70 - 130	93	70 - 130	<0.20	ug/L		
4742361	1,1,2,2-Tetrachloroethane	2016/11/13	106	70 - 130	97	70 - 130	<0.50	ug/L		
4742361	1,1,2-Trichloroethane	2016/11/13	98	70 - 130	92	70 - 130	<0.50	ug/L		
4742361	1,1-Dichloroethane	2016/11/13	93	70 - 130	91	70 - 130	<0.20	ug/L		
4742361	1,1-Dichloroethylene	2016/11/13	92	70 - 130	91	70 - 130	<0.20	ug/L		
4742361	1,2-Dichlorobenzene	2016/11/13	103	70 - 130	98	70 - 130	<0.50	ug/L		
4742361	1,2-Dichloroethane	2016/11/13	90	70 - 130	87	70 - 130	<0.50	ug/L		
4742361	1,2-Dichloropropane	2016/11/13	95	70 - 130	93	70 - 130	<0.20	ug/L		
4742361	1,3-Dichlorobenzene	2016/11/13	102	70 - 130	98	70 - 130	<0.50	ug/L		
4742361	1,4-Dichlorobenzene	2016/11/13	104	70 - 130	100	70 - 130	<0.50	ug/L		
4742361	Acetone (2-Propanone)	2016/11/13	88	60 - 140	82	60 - 140	<10	ug/L		
4742361	Benzene	2016/11/13	96	70 - 130	94	70 - 130	<0.20	ug/L		
4742361	Bromodichloromethane	2016/11/13	102	70 - 130	99	70 - 130	<0.50	ug/L		
4742361	Bromoform	2016/11/13	107	70 - 130	98	70 - 130	<1.0	ug/L		
4742361	Bromomethane	2016/11/13	62	60 - 140	76	60 - 140	<0.50	ug/L		
4742361	Carbon Tetrachloride	2016/11/13	101	70 - 130	99	70 - 130	<0.20	ug/L		
4742361	Chlorobenzene	2016/11/13	103	70 - 130	99	70 - 130	<0.20	ug/L		
4742361	Chloroform	2016/11/13	94	70 - 130	91	70 - 130	<0.20	ug/L		
4742361	cis-1,2-Dichloroethylene	2016/11/13	96	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
4742361	cis-1,3-Dichloropropene	2016/11/13	91	70 - 130	96	70 - 130	<0.30	ug/L		
4742361	Dibromochloromethane	2016/11/13	105	70 - 130	98	70 - 130	<0.50	ug/L		

Maxxam Job #: B6O7210 Report Date: 2016/11/15

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED	SPIKED BLANK		Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4742361	Dichlorodifluoromethane (FREON 12)	2016/11/13	89	60 - 140	85	60 - 140	<1.0	ug/L		
4742361	Ethylbenzene	2016/11/13	101	70 - 130	98	70 - 130	<0.20	ug/L		
4742361	Ethylene Dibromide	2016/11/13	101	70 - 130	96	70 - 130	<0.20	ug/L		
4742361	Hexane	2016/11/13	96	70 - 130	95	70 - 130	<1.0	ug/L		
4742361	Methyl Ethyl Ketone (2-Butanone)	2016/11/13	90	60 - 140	84	60 - 140	<10	ug/L		
4742361	Methyl Isobutyl Ketone	2016/11/13	102	70 - 130	96	70 - 130	<5.0	ug/L		
4742361	Methyl t-butyl ether (MTBE)	2016/11/13	94	70 - 130	92	70 - 130	<0.50	ug/L		
4742361	Methylene Chloride(Dichloromethane)	2016/11/13	100	70 - 130	97	70 - 130	<2.0	ug/L		
4742361	o-Xylene	2016/11/13	96	70 - 130	96	70 - 130	<0.20	ug/L		
4742361	p+m-Xylene	2016/11/13	101	70 - 130	98	70 - 130	<0.20	ug/L		
4742361	Styrene	2016/11/13	104	70 - 130	98	70 - 130	<0.50	ug/L		
4742361	Tetrachloroethylene	2016/11/13	103	70 - 130	99	70 - 130	<0.20	ug/L		
4742361	Toluene	2016/11/13	96	70 - 130	92	70 - 130	<0.20	ug/L		
4742361	Total Xylenes	2016/11/13					<0.20	ug/L		
4742361	trans-1,2-Dichloroethylene	2016/11/13	92	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
4742361	trans-1,3-Dichloropropene	2016/11/13	93	70 - 130	94	70 - 130	<0.40	ug/L		
4742361	Trichloroethylene	2016/11/13	101	70 - 130	98	70 - 130	<0.20	ug/L		
4742361	Trichlorofluoromethane (FREON 11)	2016/11/13	99	70 - 130	96	70 - 130	<0.50	ug/L		
4742361	Vinyl Chloride	2016/11/13	93	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
4745912	Dissolved Chloride (Cl)	2016/11/15	NC	80 - 120	102	80 - 120	<1.0	mg/L	0.24	20
4747560	Benzene	2016/11/15	93	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
4747560	Ethylbenzene	2016/11/15	96	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
4747560	F1 (C6-C10) - BTEX	2016/11/15					<25	ug/L	NC	30
4747560	F1 (C6-C10)	2016/11/15	76	70 - 130	89	70 - 130	<25	ug/L	NC	30
4747560	o-Xylene	2016/11/15	99	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
4747560	p+m-Xylene	2016/11/15	89	70 - 130	90	70 - 130	<0.40	ug/L	NC	30
4747560	Toluene	2016/11/15	91	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
4747560	Total Xylenes	2016/11/15					<0.40	ug/L	NC	30
4747649	Dissolved Antimony (Sb)	2016/11/15	101	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
4747649	Dissolved Arsenic (As)	2016/11/15	98	80 - 120	99	80 - 120	<1.0	ug/L	NC	20

Maxxam Job #: B6O7210 Report Date: 2016/11/15

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-00235695-A0

Site Location: FORMER OAKVILLE HOSPITAL Your P.O. #: BRM-ENV Sampler Initials: KM

			Matrix Spike		SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4747649	Dissolved Barium (Ba)	2016/11/15	93	80 - 120	98	80 - 120	<2.0	ug/L	0.0057	20
4747649	Dissolved Beryllium (Be)	2016/11/15	96	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
4747649	Dissolved Boron (B)	2016/11/15	NC	80 - 120	100	80 - 120	<10	ug/L	2.5	20
4747649	Dissolved Cadmium (Cd)	2016/11/15	96	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
4747649	Dissolved Chromium (Cr)	2016/11/15	98	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
4747649	Dissolved Cobalt (Co)	2016/11/15	94	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
4747649	Dissolved Copper (Cu)	2016/11/15	94	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
4747649	Dissolved Lead (Pb)	2016/11/15	87	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
4747649	Dissolved Molybdenum (Mo)	2016/11/15	105	80 - 120	99	80 - 120	<0.50	ug/L	0.51	20
4747649	Dissolved Nickel (Ni)	2016/11/15	91	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
4747649	Dissolved Selenium (Se)	2016/11/15	95	80 - 120	98	80 - 120	<2.0	ug/L	NC	20
4747649	Dissolved Silver (Ag)	2016/11/15	92	80 - 120	97	80 - 120	<0.10	ug/L	NC	20
4747649	Dissolved Sodium (Na)	2016/11/15	NC	80 - 120	99	80 - 120	<100	ug/L	1.6	20
4747649	Dissolved Thallium (TI)	2016/11/15	86	80 - 120	93	80 - 120	<0.050	ug/L	NC	20
4747649	Dissolved Uranium (U)	2016/11/15	98	80 - 120	102	80 - 120	<0.10	ug/L	0.31	20
4747649	Dissolved Vanadium (V)	2016/11/15	99	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
4747649	Dissolved Zinc (Zn)	2016/11/15	93	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
4747755	F2 (C10-C16 Hydrocarbons)	2016/11/15	89	50 - 130	92	60 - 130	<100	ug/L	NC	30
4747755	F3 (C16-C34 Hydrocarbons)	2016/11/15	83	50 - 130	87	60 - 130	<200	ug/L	NC	30
4747755	F4 (C34-C50 Hydrocarbons)	2016/11/15	86	50 - 130	89	60 - 130	<200	ug/L	NC	30
4748060	Dissolved Sodium (Na)	2016/11/15	NC	80 - 120	104	80 - 120	<0.5	mg/L	0.46	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.