

Noise & Vibration Impact Study

420-468 South Service Road East Oakville, Ontario

South Service Holding Corp.

17 October 2025

Prepared by:

Detaria

Andrew DeFaria, B.A.Sc. Acoustical Engineering Graduate 519-340-4242 andrew.defaria@ghd.com

Reviewed by:

Ben Wiseman, P.Eng. Senior Acoustical Engineer 519-340-4121 ben.wiseman@ghd.com

GHD Limited 735

455 Phillip Street, Suite #100A Waterloo, Ontario N2L 3X2, Canada **T** 519-884-0510 | www.ghd.com

Document Status

Status	Revision Author		Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S0	DRAFT	A. DeFaria	B. Wiseman		M. Masschaele		
S4	FINAL	A. DeFaria	B. Wiseman		M. Masschaele		Oct.30/24
	Rev.01	A. DeFaria	B. Wiseman	Just .	M. Masschaele	Michael Warehole	Oct.17/25

© GHD 2025

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive Summary

GHD Limited (GHD) was retained by South Service Holding Corp. (Client) to prepare a Noise and Vibration Impact Study (Study) for the proposed residential development (Development) located at 420-468 South Service Road East, Oakville, Ontario (Site). This Study has been prepared in support of the planning approvals for the Development.

The Site is bounded by South Service Road and the QEW to the northwest, the Oakville GO Subdivision Rail Line to the southeast, with existing light industrial / commercial properties to the northeast and southwest. The Development includes 14 high-rise residential towers ranging from 35 to 48 storeys tall, with ten six-storey podiums at the bases of the towers. There are publicly accessible parks planned for central areas of each block.

The purpose of this Study is to assess the following potential impacts:

- Noise impacts at the Development due to future projected road traffic
- Stationary noise impacts from off-site industrial/commercial facilities
- Stationary noise impacts to the Development and surroundings from on-site equipment
- Ground-borne vibration impacts due to rail traffic

Future predicted noise levels at the Development from road traffic on the nearby major roadways are sufficiently high that noise mitigation is required in the form of building envelope sound transmission class (STC) specifications, acoustic barriers, and central air conditioning. Noise warning clauses are also recommended.

Cumulative stationary noise levels at the Site from nearby industrial and commercial facilities are within the applicable stationary noise limits of the MECP. The Development is not predicted to impact the ability of the nearby commercial or industrial facilities to comply with the sound level limits of NPC-300.

According to the "Guidelines for New Development in Proximity to Railway Operations, May 2013" (GNDPRO), if the proposed dwelling units are located more than 75 m from the railway right-of-way, vibration measurements are not required. The nearest proposed buildings of the Development are approximately 120 metres from the right-of-way of the CN Oakville Subdivision rail line; therefore, vibration measurements are not required.

This report is subject to, and must be read in conjunction with, the limitations set out in section 1.3 and the assumptions and qualifications contained throughout the Report.

Contents

1.	Intro	luction		5
	1.1	Purpose of this	Report	5
	1.2	Site and Develo	ppment Description	5
	1.3	Scope and Limi	tations	5
2.	Soun	d and Vibration C	riteria	e
	2.1	Halton Region I	Noise Abatement Guidelines	6
	2.2	Road and Rail	Traffic Criteria	6
	2.3	Stationary Nois	e Limits	7
		2.3.1 MECP	Standard Limits	7
		2.3.2 Backgro	ound Sound Levels	3
	2.4	Rail Vibration C	riteria	g
3.	Trans	portation Noise I	mpact Assessment	9
	3.1	Methodology		g
	3.2	Traffic Input Pa	rameters	10
		-	raffic Data	10
		_	affic Data	10
	3.3	Road and Rail		11
			f Window Receivers	11
	0.4		r Living Areas	14
	3.4	•	Noise Mitigation	18
		3.4.1 Building 3.4.1.1	g Envelope Construction Exterior Glazing	18 19
		3.4.1.2	Exterior Walls	19
		3.4.2 Ventilat	ion	19
		3.4.3 Acousti	c Barriers	19
4.	Statio	nary Noise Impa	ct Assessment	20
	4.1	Methodology		20
	4.2	Off-Site Station	ary Noise Sources	20
		4.2.1 Tractor	Trailers	20
			Equipment	21
			otive Service	21
	4.3	Stationary Nois		21
	4.4	•	from the Development	21
			r Noise Impacts	21
_	_		Noise Impacts	22
5.		mmendations		22
	5.1	•	pe Construction	22
	5.2	Ventilation		22
	5.3	Acoustic Barrie		22
	5.4	Warning Clause	es es	23
6.	Conc	lusions		23
7.	Refer	ences		24

Figure Index

Figure 1.1	Key Plan
Figure 2.1	Minimum Background Sound Levels Due to Road Traffic
Figure 3.1	Future Sound Levels Due to Road and Rail Traffic
Figure 3.2	Transportation Noise: OLA Location Plan
Figure 3.3	Transportation Noise: Minimum Glazing STC Rating Requirements
Figure 4.1	Stationary Noise: Nearby Industry Noise Source Locations
Figure 4.2	Stationary Noise: Noise Contour Plot
Figure 4.3	Stationary Noise: NE Predicted Noise Minus Applicable Sound Level Limit
Figure 4.4	Stationary Noise: SW Predicted Noise Minus Applicable Sound Level Limit

Table index

Table 2.1	Road Traffic – Outdoor Sound Level Limits	6
Table 2.2	Road and Rail Traffic – Indoor Sound Level Limits (Residential uses)	7
Table 2.3	Road and Rail Traffic – Indoor Sound Level Limits (Non-Residential uses)	7
Table 2.4	MECP Minimum Exclusionary Sound Level Limits for Steady Sound – Class 1 Area	8
Table 2.5	Background Road Traffic Parameters	8
Table 2.6	Applicable Sound Level Limits for Steady Sound	9
Table 3.1	Future (2035) Road Traffic Input Parameters	10
Table 3.2	Future (2035) Rail Traffic Input Parameters	10
Table 3.3	Future Road and Rail Noise Levels – Plane of Window	11
Table 3.4	Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 1)	14
Table 3.5	Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 2)	15
Table 3.6	Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 3)	16
Table 3.7	Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 4)	17
Table 3.8	Assumed Window-to-Floor Areas	18
Table 3.9	Example Window Assemblies and STC Ratings	19
Table 4 1	Unmitigated Stationary Noise Prediction Results Summary	21

Appendices

Appendix A	Zoning Map and Development Drawings
Appendix B	Sample STAMSON Calculations and Locations
Appendix C	Road and Rail Traffic Data
Appendix D	Stationary Noise Source Summary

1. Introduction

1.1 Purpose of this Report

GHD Limited (GHD) was retained by South Service Holding Corp. (Client) to prepare a Noise and Vibration Impact Study (Study) for the proposed high-rise residential Development (Development) located at 420-468 South Service Road East, Oakville, Ontario (Site). This Study has been prepared in support of the planning applications for the Development in accordance with the following guidelines:

- Ontario Ministry of Environment, Conservation and Parks (MECP) guideline NPC-300 "Environmental Noise Guideline: Stationary and Transportation Sources – Approval and Planning" (2013)
- Federation of Canadian Municipalities (FCM) & The Railway Association of Canada (RAC) document entitled
 "Guidelines for New Development in Proximity to Railway Operations, May 2013"
- Halton Region Regional Official Plan Guidelines "Noise Abatement Guidelines (2014)

1.2 Site and Development Description

The Site is located at 420-468 South Service Road East, Oakville, Ontario, approximately 210 metres northeast of Trafalgar Road and approximately 15 metres southeast of the QEW. The GO Transit Oakville Subdivision Rail Line runs approximately 90 metres southeast from the Site. A key plan is included as Figure 1.1, which shows the location of the Site in relation to these transportation corridors.

The Site is currently zoned as Employment (6T-32T-MTE). The lands surrounding the Site predominantly include properties zoned as Employment (MTE, E1, E2), Commercial (C2, C3, MTC, E4), and Utility (U) in all cardinal directions, Residential to the northwest and southeast and a few additional zoning categories dispersed around a one-kilometre radius around the Site (including designations such as: Future Development, Community Use, Institutional, Natural Area, and Park). A zoning map is included in Figure A.1 of Appendix A.

The area surrounding the Site is relatively flat apart from a few bridge features (for instance, the Trafalgar Road bridge over the QEW), and there are several intervening structures that obstruct the line of sight to the roadways, particularly at the lower floors.

GHD conducted a site visit on September 27, 2024, to record observations regarding significant sources of noise and vibration in the area surrounding the Development. GHD observed that sound levels at the site were generally dominated by noise from Highway 403/QEW, and noise/vibration from off-site industrial activity was not audible/perceptible during the site visit.

The Development consists of 14 high-rise residential towers ranging from 35 to 48 storeys tall, with ten podiums at the bases of the towers all at six storeys tall. There are publicly accessible parks planned for central areas of each block. Locations of outdoor amenities are not known at this time but are expected to be provided at grade and/or on the roofs of the podiums. The Development Concept Plan is provided in Appendix A for reference.

1.3 Scope and Limitations

This report: has been prepared by GHD for South Service Holding Corp. and may only be used and relied on by South Service Holding Corp. for the purpose agreed between GHD and South Service Holding Corp. as set out in section 1.1 of this report.

GHD otherwise disclaims responsibility to any person other than South Service Holding Corp. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

2. Sound and Vibration Criteria

2.1 Halton Region Noise Abatement Guidelines

Halton Region's Noise Abatement Guidelines (HRNAG) were reviewed in the context of this Study. The HRNAG provides information on the requirements for mitigation. Section 4.0 of the HRNAG, which addresses new developments, states that developer will be required to abate noise originating from traffic, industrial and commercial plazas, and/or other noise sources which exceed the Ministry of the Environment (since renamed the Ministry of Environment, Conservation and Parks) guidelines. The relevant noise guidelines and criteria of the Ministry of Environment, Conservation and Parks (MECP) are summarized in Section 2.2 and 2.3 of this Study.

2.2 Road and Rail Traffic Criteria

Under NPC-300, road and rail traffic noise impacts are evaluated separately for exterior receptors and interior receptors based on the average day (07:00 to 23:00) and night (23:00 to 07:00) noise impacts. The sound levels are expressed in terms of A-weighted equivalent sound levels (Leq).

NPC-300 defines two categories of receivers for transportation noise:

- Plane of Window (POW): Point corresponding with the centre of a window of a sensitive space.
- Outdoor Living Area (OLA): Outdoor location intended and designed for quiet enjoyment of the outdoor environment that is readily accessible from the building (e.g., backyards, front yards, gardens, terraces, patios).
 Private balconies and terraces are only considered OLAs if they are greater than 4 metres in depth and if they are the only outdoor living area for the occupant(s).

NPC-300 specifies sound level limits for POW and OLA receivers as summarized in Table 2.1 below.

Table 2.1 Road Traffic – Outdoor Sound Level Limits

Receiver Category	Sound Level Limit (dBA)		
	Day (16-hour Leq)	Night (8-hour Leq)	
Plane-of-Window (POW)	55	50	
Outdoor Living Area (OLA)	55	N/A	

For POWs, combined road and rail traffic sound levels exceeding the corresponding criteria above would require additional controls for MECP compliance. Depending on the magnitude of the exceedances, additional controls may include ventilation requirements, requirements for building envelope elements, and/or noise warning clauses. For sound levels greater than 55 dBA and less than or equal to 65 dBA during the day or greater than 50 dBA and less than or equal to 60 dBA during the night, the building should be designed with a provision for the installation of central air conditioning in the future, at the occupant's discretion with the inclusion of warning clause Type C. If the sound levels are greater than 65 dBA during the day or greater than 60 dBA at night, installation of central air conditioning should be implemented with the inclusion of warning clause Type D.

For OLAs, road traffic sound levels exceeding the daytime limit indicated above would require design of noise barriers to achieve the target, and/or warning clauses. NPC-300 states that sound levels up to 5 dBA above the OLA sound level limit (i.e., up to 60 dBA) are acceptable with the use of an appropriate noise warning clause.

If POW sound levels from future road traffic exceed 65 dBA during the day or 60 dBA at night, or if sound levels from future rail traffic exceed 60 dBA during the day or 55 dBA at night, building envelope components must be designed to achieve the indoor sound level limits of NPC-300. The indoor sound level limits for road and rail traffic are summarized in Table 2.2 below.

Table 2.2 Road and Rail Traffic – Indoor Sound Level Limits (Residential uses)

Receiver Category	Road Sound Le	Road Sound Level Limits (dBA)		Rail Sound Level Limits (dBA)	
	Day (16-hour Leq)	Night (8-hour Leq)	Day (16-hour Leq)	Night (8-hour Leq)	
Indoor living areas (excluding sleeping quarters)	45	45	40	40	
Sleeping quarters	45	40	40	35	

NPC-300 includes supplementary road traffic indoor sound level limits for non-residential sensitive land uses, which are summarized in Table 2.3 below.

Table 2.3 Road and Rail Traffic – Indoor Sound Level Limits (Non-Residential uses)

Receiver Category	Road Sound Le	Road Sound Level Limits (dBA)		Rail Sound Level Limits (dBA)	
	Day (16-hour Leq)	Night (8-hour Leq)	Day (16-hour Leq)	Night (8-hour Leq)	
General offices, reception areas, retail stores, etc.	50	-	45	-	
Hospitals, schools, nursing/retirement homes, daycare centres, theatres, places of worship, libraries, individual or semi-private offices, conference rooms, reading rooms, etc.	45	-	40	-	
Sleeping quarters of hotels/motels	-	45	-	40	
Sleeping quarters of hospitals, nursing/retirement homes, etc.	-	40	-	35	

2.3 Stationary Noise Limits

2.3.1 MECP Standard Limits

NPC-300 defines stationary noise sources as sound from all sources that are normally operated within the property lines of a facility. The noise impact from stationary sources is evaluated based on operations during a predictable worst-case hour. Stationary noise assessment criteria are generally determined based on the MECP's minimum exclusionary sound level limits, as presented in NPC-300, in comparison to the background sound levels experienced in the area.

The Site is in what would generally be considered a Class 1 acoustic environment as defined by NPC-300, as the acoustic environment is dominated by human activities (i.e., road traffic). Since the day and evening sound limits are equivalent in a Class 1 area, the day and evening periods are consolidated into a single day period from 7 am to 11 pm.

Table 2.4 below summarizes the MECP's minimum exclusionary sound level limits for Class 1 areas, which are expressed in terms of 1-hour equivalent sound levels (1-hour Leq):

Table 2.4 MECP Minimum Exclusionary Sound Level Limits for Steady Sound – Class 1 Area

Point of Reception Type	Sound Level Limits (dBA)		
	Day (7am – 11pm)	Night (11pm – 7am)	
Plane of window	50	45	
Outdoor space	50		

Impulse noise sources are evaluated separately from steady noise sources. However, no significant impulse noise sources were identified during field review; therefore, an impulse noise assessment is not considered warranted.

2.3.2 Background Sound Levels

GHD conducted a background sound level assessment to evaluate the existing background noise due to road traffic on the QEW, Trafalgar Road, Cornwall Road, and South Service Road East. Background noise was modelled in CadnaA, which was set to predict noise emission rates in accordance with the United States of America's (US) Department of Transportation's Traffic Noise Model (TNM). These noise emissions were validated with STAMSON, the MECP's computerized model of the Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT). The applicable noise criteria at a point of reception are based on the higher of the background sound level and the MECP's minimum sound level limits, as noted in Section 2.2.1.

The computer model input parameters include, among other data, the number of road segments, number of house rows, the positional relationship of the receptor to a noise source or barrier in terms of distance, elevation and angle, the basic site topography, the ground surface type, traffic volumes, traffic composition, and speed limit.

Hourly traffic counts from 2019 for the QEW (Highway 403) were obtained from the Ontario Ministry of Transportation. Additionally, TMC data was obtained from Halton Region. These counts were used to determine the minimum hourly count during the day and nighttime periods based on a published typical hourly traffic distribution for noise modelling (VanDelden et al, 2008).

Table 2.5 Background Road Traffic Parameters

Road Segment	Minimum Hourly Daytime Vehicles	Minimum Hourly Nighttime Vehicles	Commercial Vehicle Rates (medium trucks / heavy trucks)
QEW	4228	951	5% / 15%
Trafalgar Road (60km/h)	523	42	0% / 2%
Trafalgar Road (50km/h)	523	42	0% / 2%
South Service Road East	104	8	0% / 1%
Cornwall Road	411	33	0% / 4%

The above road traffic data was used to calculate background sound levels at the façades and outdoor points of reception of the Development using the detailed model methodology described in Section 3.1 of this Study. Predicted noise levels exceed the Class 1 exclusionary limits at the worst-case facades of the development. Figure 2.1 shows the lowest predicted road traffic sound levels at each of the outer façades and outdoor points of reception of the Development based on the road traffic data summarized above. The lowest sound levels generally occur at the tallest floor level (142.5 metres above grade) and increase towards the lower floors due to closer proximity and increased exposure to the QEW.

Where the predicted background sound level due to road traffic exceeds the corresponding minimum exclusionary sound level limit of NPC-300 (see Table 2.4), the background sound level is instead used as the criteria for

assessment of stationary noise impacts. The applicable site-specific sound level limits for the Development are summarized as follows:

Table 2.6 Applicable Sound Level Limits for Steady Sound

Worst-case Façade / POR ID	Sound Level Limits (dBA)			
	Day (7am – 7pm)	Night (11pm – 7am)		
Block 1 – Podium of Tower C	64	55		
Block 2 – Podium of Tower H	68	62		
Block 3 – Podium of Tower M	66	60		
Block 4 – Podium of Tower I	66	60		

The applicable guideline sound level limits for regular scheduled testing of emergency equipment (e.g., standby generator) are 5 dBA higher than the corresponding values above.

2.4 Rail Vibration Criteria

The Federation of Canadian Municipalities (FCM) & The Railway Association of Canada (RAC) document entitled "Guidelines for New Development in Proximity to Railway Operations, May 2013" (GNDPRO) contains criteria for assessment of ground-borne vibration due to rail operations. According to the GNDPRO, if the proposed dwelling units of a proposed development are located more than 75 m from the railway right-of-way, vibration measurements are not required. The nearest proposed buildings of the Development are approximately 120 metres from the right-of-way of the CN Oakville Subdivision rail line; therefore, vibration measurements are not required.

3. Transportation Noise Impact Assessment

3.1 Methodology

The roadways near the Site were modelled as line sources in CadnaA using sound power levels determined from STAMSON. The STAMSON generated sound power levels were then applied to equation 36 of the United States of America's (US) Department of Transportation's Traffic Noise Model 3.0 (TNM 3.0) Technical Manual. This equation is used to determine the noise spectra for cars, medium trucks, and heavy trucks depending on road and vehicle conditions. For the purposes of this assessment, average pavement type and vehicles operating at full throttle was assumed.

Rail traffic noise levels are modelled as line sources of sound using the rail source element in CadnaA using the US Federal Transit Administration and Federal Railway Administration's prediction algorithm (FTA/FRA Model). The rail noise sources were set to use noise emission rates calculated using STAMSON.

The 3D CadnaA model accounts for the complex geometry at the Site and the surrounding area. The area surrounding the Site features significant elevation changes near the highway ramps, which have been captured in the model using ground elevation data from the Development Concept (Appendix A) and the area surrounding the Site obtained from Region of Halton Open Data. Road traffic noise levels were predicted at all POWs of the Development using the Building Noise Map feature of CadnaA, and at OLAs using point receivers.

To demonstrate that the model is generally consistent with the STAMSON model that is the standard in Ontario, a sample STAMSON calculation is included in Appendix B representing a northwest façade of the podium of Tower A, 19.5 metres above grade (m A.G.). The prediction results are within ± 1 dBA of the CadnaA noise predictions, indicating that the CadnaA model is consistent with STAMSON. Appendix B also includes Figure B.1 which displays the sample calculation locations for ease of reference.

3.2 Traffic Input Parameters

3.2.1 Road Traffic Data

Future road traffic model parameters used in this Study is summarized as follows:

Table 3.1 Future (2035) Road Traffic Input Parameters

Road Segment	Future AADT	Speed Limit (km/h)	Day / Night Split	Commercial Vehicle Rates (medium trucks / heavy trucks)
QEW	254,812	100	85% / 15%	5% / 15%
Trafalgar Road (60km/h)	55,000	60	90% / 10%	0% / 2%
Trafalgar Road (50km/h)	55,000	50	90% / 10%	0% / 2%
South Service Road East	5,469	60	90% / 10%	0% / 1%
Cornwall Road	21,566	60	90% / 10%	0% / 4%
North Service Road East	11,350	60	90% / 10%	0% / 4%
Chartwell Road	6,395	50	90% / 10%	0% / 4%

Road traffic volumes for the QEW were obtained from data published by the Ontario Ministry of Transportation (MTO) in the form of Summer Average Daily Traffic (SADT) volumes for the year 2021 (SADT is used because it is higher than the AADT in this case). Based on the MTO's published data, the average annual SADT growth rate from 2015 to 2021 was 0.49%, which was used to forecast the volumes to 2035. The day / night split and commercial vehicle rates were calculated based on the hourly traffic counts.

Road traffic volumes for South Service Road East, and Cornwall Road were obtained from the Region of Halton in the form of Turning Movement Counts (TMC) for the year 2024. Traffic data for Trafalgar Road was obtained as ultimate traffic volumes. GHD applied an assumed growth rate of 2.5% to the TMC data to estimate the future 2035 AADT. A day / night split of 90% / 10% was assumed. Commercial vehicle rates were determined based on the TMC reports. AADT values were estimated from the TMC counts based on guidance from the Ontario Traffic Manual.

Road traffic volumes for North Service Road East and Chartwell Road were obtained from the Town of Oakville open data in the form of AADT volumes for the year 2018. GHD applied an assumed growth rate of 2.5% to estimate the future 2035 AADT. A day / night split of 90% / 10% was assumed. Commercial vehicle rates were conservatively assumed to be equal to those of Cornwall Road.

Figure 1.1 shows the location of the roadways noted above in relation to the Site. All road traffic data referenced in this Study is included in Appendix C.

3.2.2 Rail Traffic Data

Future rail traffic model parameters used in this Study are summarized as follows:

Table 3.2 Future (2035) Rail Traffic Input Parameters

Rail Source	Future Daytime Trains	Future Nighttime Trains	Locomotive Type	Max. Locomotives per Train	Max. Cars per Train	Max. Speed (km/h)
CN Rail – Oakville Subdivision (Way Freight)	4	5	Diesel	4	25	97
Via Rail – Oakville Subdivision	18	0	Diesel	2	10	153
GO Rail – Oakville Subdivision	354	54	Diesel	1	10	153

Rail traffic data for CN freight, way freight, and VIA Rail passenger traffic operating on the GO Rail Line - Oakville Subdivision was obtained from Canadian National (CN) railway. Future rail volumes for these rail traffic sources were estimated using an assumed annual growth rate of 2.5%.

Future 2035 forecast rail traffic data for the GO Rail Line traffic operating on the Oakville Subdivision was obtained from Metrolinx. As per Metrolinx's recommendations, despite the planned future electrification of GO trains on the Oakville Subdivision, all locomotives were modelled as diesel locomotives.

Figure 1.1 shows the location of the rail line noted above in relation to the Site. All rail traffic data referenced in this Study is included in Appendix C.

3.3 Road and Rail Traffic Results

3.3.1 Plane of Window Receivers

Predicted future road and rail traffic noise impacts at the worst-case POW receivers of the Development are summarized as follows:

Table 3.3 Future Road and Rail Noise Levels – Plane of Window

Building	Façade		Futu		Limits			
		Ro	ad	F	Rail	T	otal	Exceeded?
		Day	Night	Day	Night	Day	Night	
Tower A	Northeast	80	76	64	59	80	76	Yes
	Southeast	66	62	66	61	69	65	Yes
	Southwest	79	75	65	60	79	75	Yes
	Northwest	82	78	53	48	82	78	Yes
Tower B	Northeast	79	75	61	56	79	75	Yes
	Southeast	67	62	65	60	69	64	Yes
	Southwest	79	74	63	58	79	74	Yes
	Northwest	82	77	53	48	82	77	Yes
Podium of Towers A and B	Northeast	81	76	60	55	81	76	Yes
	Southeast	67	62	63	58	68	63	Yes
	Southwest	80	75	63	58	80	75	Yes
	Northwest	83	78	59	54	83	78	Yes
Tower C	Northeast	73	69	64	59	74	69	Yes
	Southeast	65	60	68	63	70	65	Yes
	Southwest	74	70	68	63	75	71	Yes
	Northwest	76	71	57	52	76	71	Yes
Podium of Tower C	Northeast	70	65	63	58	71	66	Yes
	Southeast	64	59	65	60	68	63	Yes
	Southwest	74	69	65	60	75	70	Yes
	Northwest	74	70	60	55	74	70	Yes

Building	Façade		Fut	ure Nois	se Levels (dBA)		Limits
		R	Road		Rail		Γotal	Exceeded?
		Day	Night	Day	Night	Day	Night	
Tower D	Northeast	76	71	64	59	76	71	Yes
	Southeast	64	59	67	62	69	64	Yes
	Southwest	75	71	64	60	75	71	Yes
	Northwest	79	74	53	49	79	74	Yes
Podium of Tower D	Northeast	77	73	63	58	77	73	Yes
	Southeast	64	59	64	59	67	62	Yes
	Southwest	77	73	64	59	77	73	Yes
	Northwest	79	75	60	55	79	75	Yes
Tower E	Northeast	76	72	65	60	76	72	Yes
	Southeast	65	61	66	61	69	64	Yes
	Southwest	76	71	64	59	76	71	Yes
	Northwest	79	75	53	49	79	75	Yes
Podium of Tower E	Northeast	77	72	64	59	77	72	Yes
	Southeast	66	62	64	59	68	64	Yes
	Southwest	77	72	63	58	77	72	Yes
	Northwest	79	75	60	55	79	75	Yes
Tower F	Northeast	79	75	64	59	79	75	Yes
	Southeast	68	64	66	61	70	66	Yes
	Southwest	79	75	61	56	79	75	Yes
	Northwest	82	78	53	48	82	78	Yes
Tower G	Northeast	79	75	66	62	79	75	Yes
	Southeast	69	65	66	61	71	66	Yes
	Southwest	79	75	61	57	79	75	Yes
	Northwest	82	78	53	48	82	78	Yes
Podium of Towers F and G	Northeast	81	77	66	61	81	77	Yes
	Southeast	69	65	65	61	70	66	Yes
	Southwest	80	76	59	55	80	76	Yes
	Northwest	83	78	59	54	83	78	Yes
Tower H	Northeast	75	71	69	64	76	72	Yes
	Southeast	65	60	69	64	70	65	Yes
	Southwest	74	70	60	55	74	70	Yes
	Northwest	76	72	60	55	76	72	Yes
Podium of Tower H	Northeast	75	70	67	62	76	71	Yes
	Southeast	68	63	67	62	71	66	Yes
	Southwest	71	66	62	57	72	67	Yes
	Northwest	75	70	60	55	75	70	Yes

Building	Façade	Future Noise Levels (dBA)					Limits	
		R	oad	l	Rail	T	otal	Exceeded?
		Day	Night	Day	Night	Day	Night	1
Tower I	Northeast	69	64	69	64	72	67	Yes
	Southeast	65	60	70	65	71	66	Yes
	Southwest	71	67	68	63	73	68	Yes
	Northwest	72	68	62	57	72	68	Yes
Tower J	Northeast	66	62	71	66	72	67	Yes
	Southeast	57	52	73	68	73	68	Yes
	Southwest	70	66	70	65	73	69	Yes
	Northwest	71	66	62	58	72	67	Yes
Podium of Towers I and J	Northeast	64	59	69	64	70	65	Yes
	Southeast	58	53	71	66	71	66	Yes
	Southwest	70	66	68	63	72	68	Yes
	Northwest	71	66	62	57	72	67	Yes
Tower K	Northeast	69	65	68	63	72	67	Yes
	Southeast	56	51	71	67	71	67	Yes
	Southwest	69	65	69	64	72	68	Yes
	Northwest	72	67	60	55	72	67	Yes
Podium of Tower K	Northeast	70	66	68	63	72	68	Yes
	Southeast	58	53	70	65	70	65	Yes
	Southwest	66	62	68	61	70	65	Yes
	Northwest	70	66	63	58	71	67	Yes
Tower L	Northeast	70	66	69	64	73	68	Yes
	Southeast	58	52	71	67	71	67	Yes
	Southwest	70	65	68	63	72	67	Yes
	Northwest	72	68	61	57	72	68	Yes
Podium of Tower L	Northeast	67	62	68	63	71	66	Yes
	Southeast	58	53	70	65	70	65	Yes
	Southwest	70	65	67	63	72	67	Yes
	Northwest	70	66	62	57	71	67	Yes
Tower M	Northeast	72	67	69	64	74	69	Yes
	Southeast	65	61	70	65	71	66	Yes
	Southwest	69	65	68	63	72	67	Yes
	Northwest	73	68	62	57	73	68	Yes
Tower N	Northeast	71	66	70	66	74	69	Yes
	Southeast	58	53	73	68	73	68	Yes
	Southwest	67	62	70	66	72	67	Yes
	Northwest	71	67	63	58	72	68	Yes

Building	Façade	Future Noise Levels (dBA)						Limits
		Ro	ad	Rail		Total		Exceeded?
		Day	Night	Day	Night	Day	Night	
Podium of Towers M and N	Northeast	72	68	68	63	73	69	Yes
	Southeast	60	55	69	64	70	65	Yes
	Southwest	67	63	67	62	70	66	Yes
	Northwest	72	67	63	58	73	68	Yes

As seen above, future road and rail noise levels at the façades generally range from 67 dBA to 83 dBA during the day and 62 dBA to 78 dBA at night. These sound levels are sufficiently high that the Development must incorporate physical noise mitigation and noise warning clauses in accordance with NPC-300, which are described further in Section 3.4. Figure 3.1 shows the predicted road noise levels at the façades throughout the Development.

3.3.2 Outdoor Living Areas

The design of the Development is preliminary, and specific locations for outdoor amenity spaces are not yet known. It is expected that outdoor amenity spaces would be located at grade or on the roofs of the podiums. Tables 3.4 through 3.6 present the predicted cumulative road and rail noise levels at various potential outdoor amenity space locations.

Predicted future road traffic noise impacts at the worst-case OLA receivers of the Development are summarized as follows:

Table 3.4 Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 1)

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-01a	Potential Block 1 outdoor amenity space located at grade (1.5 metres above grade [m AG])	61	55	Likely feasible with acoustic barrier and warning clause Type B
OLA-01b	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	69	55	Potentially feasible with tiered podium to provide acoustic screening, with warning clause Type B
OLA-01c	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	73	55	Unlikely feasible
OLA-01d	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	78	55	Unlikely feasible
OLA-01e	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	68	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-01f	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	70	55	Unlikely feasible
OLA-01g	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	69	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-01h	Potential Block 1 outdoor amenity space located on podium roof (19.5 m AG)	74	55	Unlikely feasible

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-01i	Potential Block 1 outdoor amenity space located on roof of Tower A (136.5 m AG)	65	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-01j	Potential Block 1 outdoor amenity space located on roof of Tower B (145.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-01k	Potential Block 1 outdoor amenity space located on roof of Tower D (136.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-01I	Potential Block 1 outdoor amenity space located on roof of Tower C (121.5 m AG)	65	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B

Table 3.5 Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 2)

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-02a	Potential Block 2 outdoor amenity space located at grade (1.5 metres above grade [m AG])	61	55	Likely feasible with acoustic barrier and warning clause Type B
OLA-02b	Potential Block 2 outdoor amenity space located on podium roof (19.5 m AG)	72	55	Unlikely feasible
OLA-02c	Potential Block 2 outdoor amenity space located on podium roof (19.5 m AG)	77	55	Unlikely feasible
OLA-02d	Potential Block 2 outdoor amenity space located on podium roof (19.5 m AG)	70	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-02e	Potential Block 2 outdoor amenity space located on podium (19.5 m AG)	68	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-02f	Potential Block 2 outdoor amenity space located on podium (19.5 m AG)	78	55	Unlikely feasible

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-02g	Potential Block 2 outdoor amenity space located on roof of Tower F (145.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-02h	Potential Block 2 outdoor amenity space located on roof of Tower G (136.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-02i	Potential Block 2 outdoor amenity space located on roof of Tower H (121.5 m AG)	65	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-02j	Potential Block 2 outdoor amenity space located on roof of Tower E (136.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B

Table 3.6 Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 3)

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-03a	Potential Block 3 outdoor amenity space located at grade (1.5 metres above grade [m AG])	66	55	Likely feasible with acoustic barrier and warning clause Type B
OLA-03b	Potential Block 3 outdoor amenity space located on podium (19.5 m AG)	70	55	Unlikely feasible
OLA-03c	Potential Block 3 outdoor amenity space located on podium (19.5 m AG)	69	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-03d	Potential Block 3 outdoor amenity space located on podium (19.5 m AG)	69	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-03e	Potential Block 3 outdoor amenity space located on podium (19.5 m AG)	68	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-03f	Potential Block 3 outdoor amenity space located on roof of Tower J (106.5 m AG)	65	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-03g	Potential Block 3 outdoor amenity space located on roof of Tower I (121.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-03h	Potential Block 3 outdoor amenity space located on roof of Tower K (136.5 m AG)	63	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B

Table 3.7 Cumulative Road and Rail Noise Levels – Outdoor Living Areas (Block 4)

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-04a	Potential Block 4 outdoor amenity space located at grade (1.5 metres above grade [m AG])	66	55	Likely feasible with acoustic barrier and warning clause Type B
OLA-04b	Potential Block 4 outdoor amenity space located at grade (1.5 m AG)	69	55	Likely feasible with acoustic barrier and warning clause Type B
OLA-04c	Potential Block 4 outdoor amenity space located on podium (19.5 m AG)	67	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-04d	Potential Block 4 outdoor amenity space located on podium (19.5 m AG)	68	55	Potentially feasible with tiered podium to provide acoustic screening of QEW, with warning clause Type B
OLA-04e	Potential Block 4 outdoor amenity space located on podium (19.5 m AG)	73	55	Unlikely feasible
OLA-04f	Potential Block 4 outdoor amenity space located on podium (19.5 m AG)	70	55	Unlikely feasible
OLA-04g	Potential Block 4 outdoor amenity space located on roof of Tower L (136.5 m AG)	63	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B

Receiver ID	Receiver Description	Cumulative Road and Rail Daytime Noise Level (dBA)	Daytime Sound Level Limit (dBA)	Mitigation / Warning Clause Requirements
OLA-04h	Potential Block 4 outdoor amenity space located on roof of Tower M (121.5 m AG)	64	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B
OLA-04i	Potential Block 4 outdoor amenity space located on roof of Tower N (106.5 m AG)	65	55	Likely feasible with amenity space located southeast of mechanical penthouse plus acoustic barriers and warning clause Type B

As seen above, the daytime road noise levels at the OLAs range from 60 dBA to 78 dBA. Noise levels at all OLAs are sufficiently high that physical noise mitigation and/or noise warning clauses are required, which are described further in Section 5. OLA receiver locations are shown in Figure 3.2.

3.4 Transportation Noise Mitigation

3.4.1 Building Envelope Construction

Predicted future traffic noise levels are sufficiently high that the building envelope must be designed with sufficient sound insulation performance to achieve the sound level criteria of NPC-300 for indoor living spaces. Sound insulation performance for windows and walls are commonly specified in terms of Sound Transmission Class (STC) ratings. Higher STC ratings generally correspond to higher sound insulation performance.

STC rating requirements are dependent on the exterior noise levels, source type/spectrum, angles of incidence, sizes of façade components relative to the room size, and sound absorption characteristics of the subject indoor living space. Using these variables, STC rating requirements can be calculated using the method described in the National Research Council Canada's "Controlling Sound Transmission into Buildings" (BPN 56) publication. In accordance with NPC-300, STC rating requirements are calculated separately for road, rail, and air traffic noise, and are then combined on a logarithmic energy sum basis.

Given the preliminary nature of the design of the Development, detailed floor plans and building elevations are not yet available. Therefore, minimum STC rating requirements have been calculated based on assumed window-to-floor area ratios (i.e., total window area for a room divided by its floor area) summarized below:

Table 3.8 Assumed Window-to-Floor Areas

Room Type	Fixed Glazing	Operable Windows	Exterior Doors	Total
Sleeping quarters	43%	7%		50%
Other living spaces	20%	2%	8%	30%

Note that if the total actual window-to-floor area ratios are determined to exceed these values during detailed design, then window STC rating requirements would require an updated assessment to ensure acceptable indoor noise levels.

STC rating requirements are significantly affected by window-to-floor area ratios and phasing of the towers; therefore, the STC rating requirements should be updated based on the detailed floor plans and elevations for each building prior to tendering exterior glazing.

3.4.1.1 Exterior Glazing

Road traffic sound levels at the facades of the Development vary significantly, with the highest road traffic sound levels at the northwest façades closest to the QEW. Accordingly, exterior glazing STC requirements vary throughout the Development, as shown in Figure 3.3, with minimum rating requirements ranging from STC-33 to STC-42 based on the assumptions stated above. STC performance in these ranges can be achieved with commercially available glazing assemblies from established glazing suppliers. Examples of glazing assemblies capable of achieving the necessary performance are included in Table 3.7 below:

Table 3.9	Example Window	Accombline	and STC Ratings
i abie 3.5	Examble williadw	ASSEIIIDIIES	and Sic Rainings

Minimum STC Rating Requirement		Glazing	Glazing Assembly Description		
Fixed Glazing	Operable Windows	Exterior Doors	Assembly Short Form		
STC-33	STC-32	STC-32	6-25AS-6	Two 6 mm thick monolithic glass panes separated by an air gap of 25 mm	
STC-36	STC-34	STC-33	6L-13AS-6	One 6 mm thick laminated glass pane and one 6 monolithic glass pane separated by an air gap of 1 mm	
			8-13AS-6	One 8 mm thick monolithic glass pane and one 6 mm monolithic glass pane separated by an air gap of 13 mm	
STC-39	STC-37	STC-36	10-25AS-6	One 10 mm thick monolithic glass pane and one 6 mm monolithic glass pane separated by an air gap of 25 mm	
STC-42	STC-39	STC-38	10L-25AS-6	One 10 mm thick laminated glass pane and one 6 mm monolithic glass pane separated by an air gap of 25 mm	

STC ratings for windows are dependent on a variety of factors (e.g., frame design, seals, etc.) and can vary significantly between manufacturers. Therefore, the final STC rating requirements for the windows should be included in the specifications, and window suppliers should be required to submit laboratory test data with their shop drawings to demonstrate that the STC requirements will be achieved.

3.4.1.2 Exterior Walls

Figure 3.3 includes minimum STC rating requirements for exterior wall assemblies. The highest of the exterior wall requirements is **STC-53** for the façades closest to the QEW, with lower ratings for façades with less exposure to the QEW. Conventional glass or aluminum spandrel panel, brick veneer, or precast concrete exterior wall assemblies are expected to be sufficient, complete with acoustically insulated furring partitions on the interior side. Other exterior wall assemblies may also be acceptable. Exterior wall assemblies should be reviewed during the detailed design phase to ensure the required STC performance is met.

3 4 2 Ventilation

Predicted future traffic noise levels at the façades of the Development are sufficiently high that central air conditioning is required to be installed prior to occupancy for all residential dwellings. This will allow windows and doors to remain closed to help ensure that the indoor sound level limits of NPC-300 are met. Warning clause **Type D** should also be used for all residential dwellings (wording included in Section 5.2).

3.4.3 Acoustic Barriers

As mentioned in Section 3.3.2, various potential OLA locations have been evaluated. It is generally recommended to select locations for outdoor amenity spaces with maximum shielding from the QEW, such as at-grade locations interior

to each of the Blocks. Some podium-level amenity spaces may also be considered and would likely warrant the construction of acoustic barriers.

It is recommended that an updated traffic noise analysis be completed for each phase of the Development at the Site Plan Application stage, once specific locations for OLAs are known.

4. Stationary Noise Impact Assessment

4.1 Methodology

Detailed assessment of noise impacts from each of the facilities identified in the Land Use Compatibility Study dated October 16, 2025, has been carried out using CadnaA version 2025 MR1 (CadnaA). CadnaA is the industry standard for noise modelling of industrial and commercial facilities and is based on ISO standard 9613 2 "Acoustics – Attenuation of Sound during Propagation Outdoors" (1996). CadnaA modelling assumptions used in this Study include:

- Reflection Order: A maximum reflection order of 2 was used to evaluate indirect noise impact from reflecting surfaces.
- Ground Absorption: The model includes a map of ground absorption coefficients of 0.25 for asphalt surfaces and
 1.0 for absorptive areas of grass.
- Receptor Elevation: POR receptor heights were modelled appropriately based on an assumed storey height of 3 m, with POR receptors modelled at the midpoint of the storey (i.e., 1.5 m, 4.5 m, etc.)
- Tonality: No tonal sources were identified.
- Building Surfaces: The buildings are modelled as reflective surfaces.

4.2 Off-Site Stationary Noise Sources

As mentioned in Section 1.2 of this Study, off-site stationary sources of noise were not audible during GHD's site visit on September 27, 2024. Nevertheless, the following off-site stationary noise sources have been identified as warranting further detailed assessment in the Land Use Compatibility Study prepared by GHD, dated October 16, 2025, and are listed below:

- Safe Management Group Inc.
- Assured Automotive
- Multi-tenant Commercial Building 482 South Service Road
- Blastaway Cleaning Services

Additionally, GHD submitted a request to CN Proximity to obtain a copy of the noise model for the CN Oakville Yard. CN Proximity advised that CN does not have an acoustic model for the CN Oakville Yard. Further, GHD notes that there are existing residential uses along the south side of Cornwall Road, approximately 115 metres from the CN Oakville Yard. The CN Oakville Yard is significantly closer to these existing points of reception than the Development. Therefore, the CN Oakville Yard is not considered to warrant further assessment.

The following subsections describe noise sources and assumptions used in the stationary noise impact assessment. Noise source locations are identified in Figure 4.1; and source sound level data, operating conditions, and heights are included in Table D.1 of Appendix D.

4.2.1 Tractor Trailers

Heavy trucks are expected to be part of the operations at Assured Automotive, Blastaway Cleaning Services, and 482 South Service Road for shipping and receiving equipment and parts, with speeds and volumes summarized in Table D.1 of Appendix D. The assessment conservatively assumes worst-case hour truck movements would occur

during the same hour and are evaluated cumulatively. Noise emissions from heavy truck movements were modelled using reference sound levels published by the United States Federal Highway Administration.

4.2.2 HVAC Equipment

The majority of the buildings surrounding the Site utilize roof-mounted heating, ventilation, and air conditioning (HVAC) equipment. GHD modelled these sources using representative sound data for similar HVAC units. These units are conservatively modelled to operate continuously during the day and evening, and on a 50% duty cycle at night (30 minutes per hour).

4.2.3 Automotive Service

The automotive service facility (Assured Automotive) southwest of the site performs service/maintenance work on automobiles. Based on GHD's experience, the primary sources of noise emissions associated with service activities at these facilities are periodic operations of pneumatic impact wrenches. GHD modelled this source using representative sound data for pneumatic impact wrenches from GHD's past projects. Pneumatic impact wrenches are quasi-steady impulsive noise sources and are evaluated as steady noise sources with a +10 dB penalty as required by MECP quideline NPC-104.

4.3 Stationary Noise Results

Predicted stationary noise levels at the worst-case PORs of the Development are shown in Figure 4.2 and summarized as follows in terms of 1-hour Leq:

Worst-case Façade /	Predicted Noise Level (dBA)		Sound Level Limit (dBA)		Limits
POR ID	Day	Night	Day	Night	Exceeded?
Block 1	49	42	64	55	No
Block 2	59	51	68	62	No
Block 3	48	39	66	60	No
Block 4	56	45	66	60	No

Table 4.1 Unmitigated Stationary Noise Prediction Results Summary

As seen above, predicted noise levels at the worst-case PORs of the Development are within the applicable sound level limits of NPC-300. As such, the Development does not require noise mitigation measures for stationary noise impacts. Further, worst-case façade sound levels were identified after reviewing the highest noise impact which was determined by subtracting the predicted sound levels from the applicable sound level limits. Figures 4.3 and 4.4 shows the difference in the predicted sound level and applicable sound level limits for clarity.

4.4 Noise Impacts from the Development

4.4.1 Outdoor Noise Impacts

Base building cooling and ventilation systems for the Development have the potential to result in noise impacts on noise sensitive spaces within the Development itself and at existing residential uses surrounding the Site. The specific equipment selections are not available at the time of writing; therefore, it is anticipated that noise emissions from rooftop equipment will be evaluated as part of the detailed design of the Development. GHD recommends that contingencies be carried for noise controls, which may be necessary to achieve compliance with the sound level limits of NPC-300 at all worst-case points of reception both on-site and off-site, including but not limited to:

 Acoustic louvers and/or barriers to surround large rooftop mechanical equipment (e.g., cooling towers, chillers, make up air units)

- Acoustic enclosures for any standby emergency generator sets located outdoors (Level 2 minimum)
- Ventilation silencers and exhaust mufflers for any standby emergency sets located indoors
- Silencers for parking exhaust fans

Specific noise control requirements will be dependent on base building equipment locations and sound power levels, which are not available at this stage of the design. Therefore, noise emissions from on-site base building equipment should be evaluated during the detailed design phase.

4.4.2 Indoor Noise Impacts

Mechanical equipment and other building services also have the potential to cause annoyance due to noise and vibration transmission to residences. The American Society of Heating, Refrigerating, and Air conditioning Engineers (ASHRAE) guidelines specify acceptable noise levels from such equipment. Specification of noise controls (e.g., silencers, floating concrete slabs, acoustic ceilings, vibration isolators) to achieve these criteria is typically completed as part of the detailed building design, once equipment selections are made and floor layouts are more developed.

The Ontario Building Code stipulates minimum STC and apparent sound transmission class (ASTC) rating requirements for demising partitions separating residential suites from other spaces inside the building. For demising partitions separating suites from elevator shafts or garbage chutes, constructions meeting a minimum STC-55 rating must be used. For demising partitions separating suites from any other space in the building, constructions meeting a minimum STC-50 rating must be used. Suite demising partitions must also achieve a minimum rating of ASTC-47.

5. Recommendations

5.1 Building Envelope Construction

For the worst-case façades of the Development in close proximity to Highway 403/QEW, exterior vision glazing must achieve ratings of at least **STC-42**, with exterior walls rated **STC-53 or higher**. Figure 3.3 shows the preliminary minimum STC requirements throughout the façades of the Development based on assumed window-to-floor area ratios.

STC ratings recommended in this Study are preliminary and subject to change depending on actual window-to-floor area ratios and phasing of the towers, and should be updated at the detailed design stage, prior to tendering exterior glazing and architectural assemblies.

5.2 Ventilation

Central air conditioning is required to be installed prior to occupancy for all residential dwellings. This will allow windows and doors to remain closed to help ensure that the indoor sound level limits of NPC-300 are met.

5.3 Acoustic Barriers

As mentioned in Section 3.3.2, various potential OLA locations have been evaluated. It is generally recommended to select locations for outdoor amenity spaces with maximum shielding from the QEW, such as at-grade locations interior to each of the Blocks. Some podium-level amenity spaces may also be considered and would likely warrant the construction of acoustic barriers. Additionally, there is potential for OLA locations on top of the roofs of towers, provided that they are located southeast of the mechanical penthouses.

It is recommended that an updated traffic noise analysis be completed for each phase of the Development at the Site Plan Application stage, once specific locations for OLAs are known.

5.4 Warning Clauses

The following warning clauses are recommended to be included in agreements of Offers of Purchase and Sale, lease/rental agreements, and condominium declarations for all residential dwellings of the Development:

CN Rail Warning Clause (within 1000 m of ROW): "Warning: Canadian National Railway Company or its assigns or successors in interest has or have a rights-of-way within 1000 meters from the land the subject hereof. There may be alterations to or expansions of the railway facilities on such rights-of-way in the future including the possibility that the railway or its assigns or successors as aforesaid may expand its operations, which expansion may affect the living environment of the residents in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating measures in the design of the development and individual dwelling(s). CNR will not be responsible for any complaints or claims arising from use of such facilities and/or operations on, over or under the aforesaid rights-of-way."

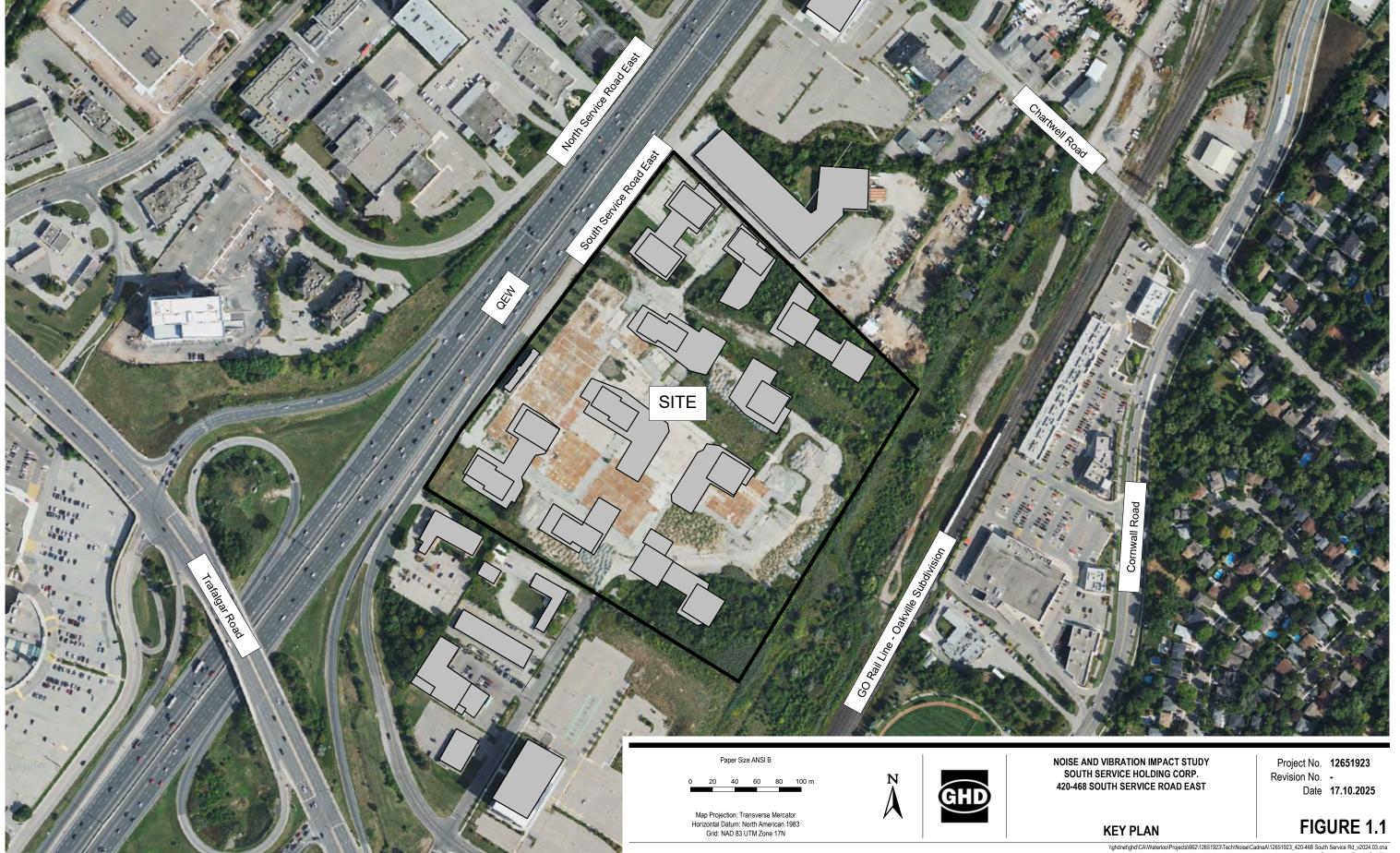
Metrolinx Warning Clause: "Metrolinx, carrying on business as GO Transit, and its assigns and successors in interest operate commuter transit service within 300 metres from the land which is the subject hereof. In addition to the current use of these lands, there may be alterations to or expansions of the rail and other facilities on such lands in the future including the possibility that GO Transit or any railway entering into an agreement with GO Transit or any railway assigns or successors as aforesaid may expand their operations, which expansion may affect the living environment of the residents in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating measures in the design of the development and individual dwellings. Metrolinx will not be responsible for any complaints or claims arising from use of such facilities and/or operations on, over or under these lands."

Warning Clause Type A: "Purchasers/tenants are advised that sound levels due to increasing road traffic and rail traffic may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

Warning Clause Type B: "Purchasers/tenants are advised that despite the inclusion of noise control features in the development, sound levels due to increasing road and rail traffic may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

Warning Clause Type D: "This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks."

Warning Clause Type E: "Purchasers/tenants are advised that due to the proximity of the adjacent commercial operations, noise from these facilities may at times be audible."


6. Conclusions

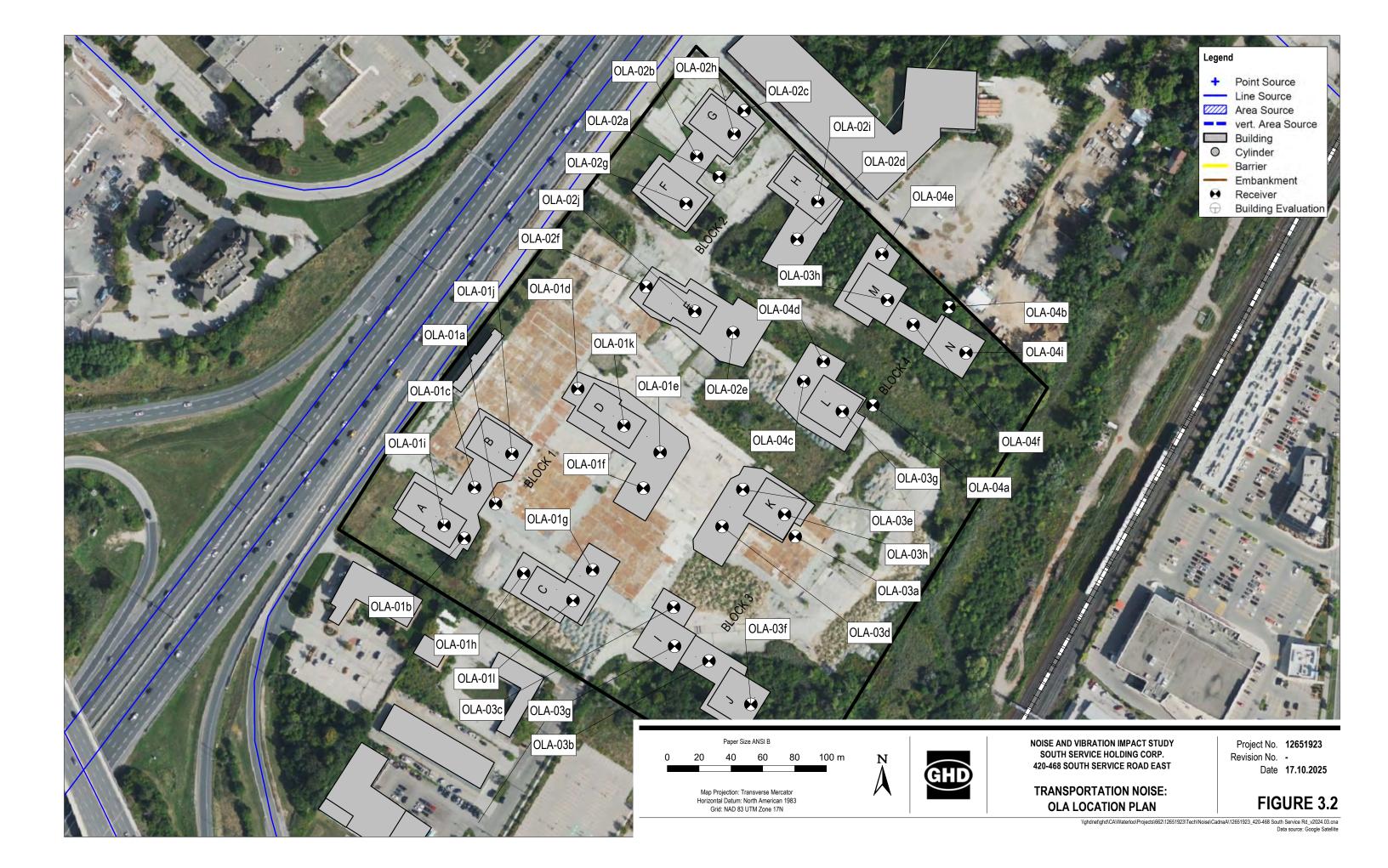
The Study concludes that the proposed development is feasible and will not be restricted by the surrounding noise and vibration impact exposures, provided that the proposed Development adheres to the noise mitigation recommended in this Study. The recommended noise mitigation at the Development consists of building envelope STC performance requirements, installation of central air conditioning, noise warning clauses, and acoustic barriers.

The Development is not anticipated to affect the ability of the nearby industrial/commercial facilities to comply with the sound level limits of the MECP.

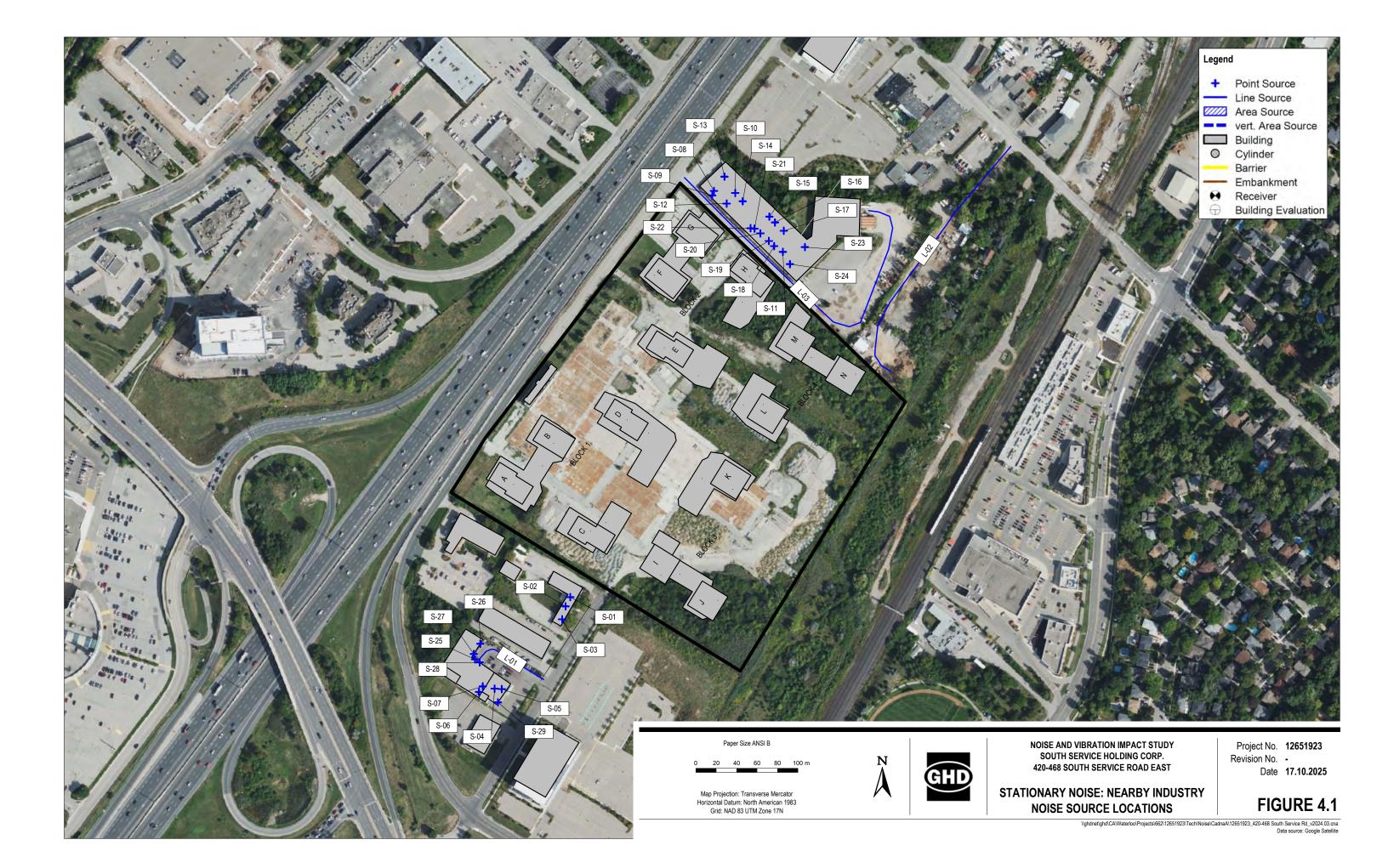
7. References

- Ontario Ministry of Environment, Conservation and Parks (MECP, 2013), Publication NPC-300: *Environmental Noise Guideline: Stationary and Transportation Sources Approval and Planning*
- National Research Council Canada (NRC, 1985), Building Practice Note 56: Controlling Sound Transmission Into Buildings
- Railway Association of Canada/Federation of Canadian Municipalities (RAC/FCM), 2013, *Guidelines for New Development in Proximity to Railway Operations*
- U.S. Federal Transit Administration (FTA, 2013), Transit Noise and Vibration Impact Assessment Manual

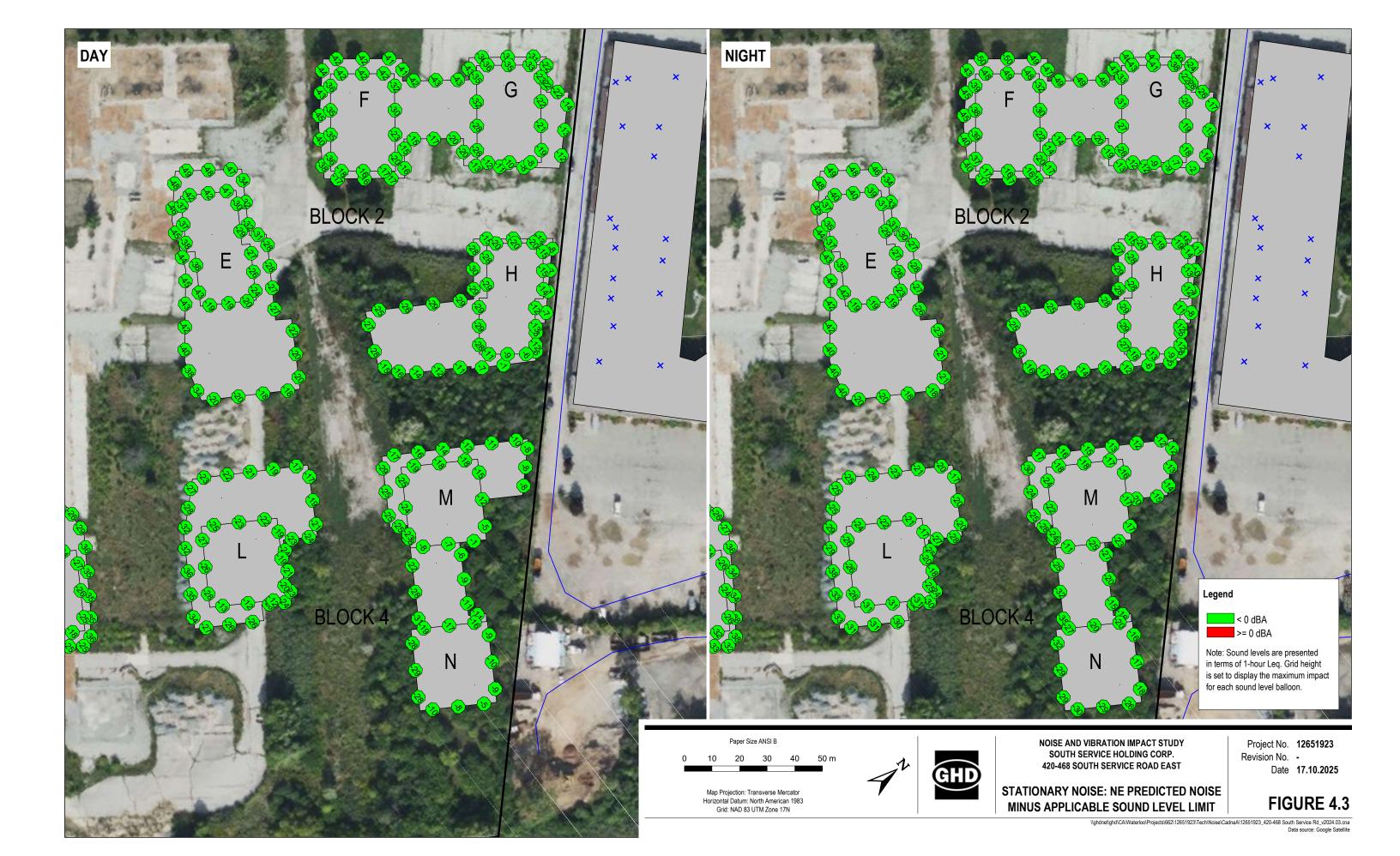
\\ghdnet\ghd\CA\\Waterloo\\Projects\662\12651923\\Tech\\Noise\CadnaA\12651923_420-468 South Service Rd_v2024.03 cna
Data source: Google Satellite

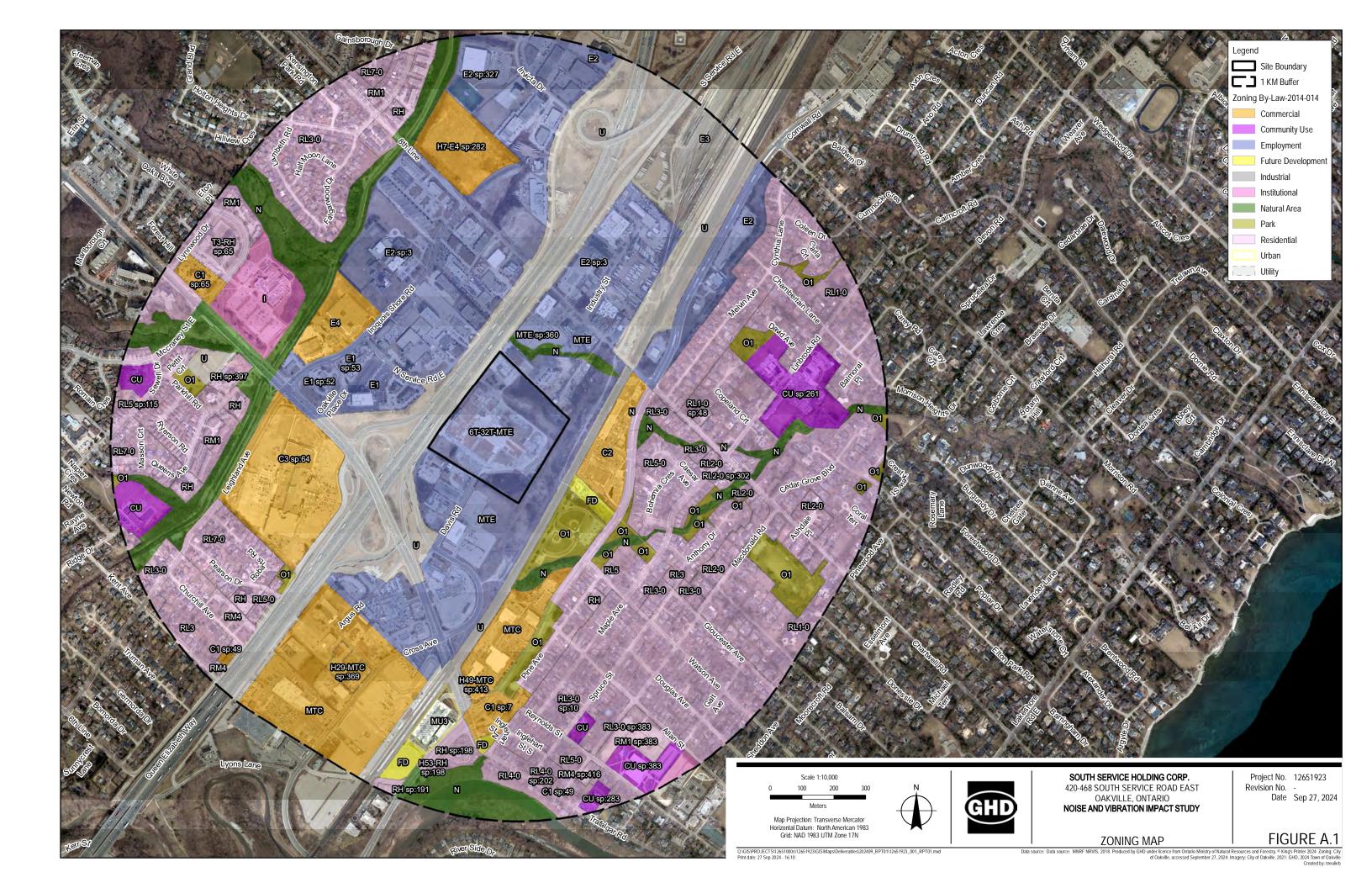


\\ghdnet\ghd\CA\\Waterloo\Projects\662\12651923\Tech\\Noise\Cadna\\12651923_420-468 South Service Rd_v2024.03.cna Data source: Google Satellite



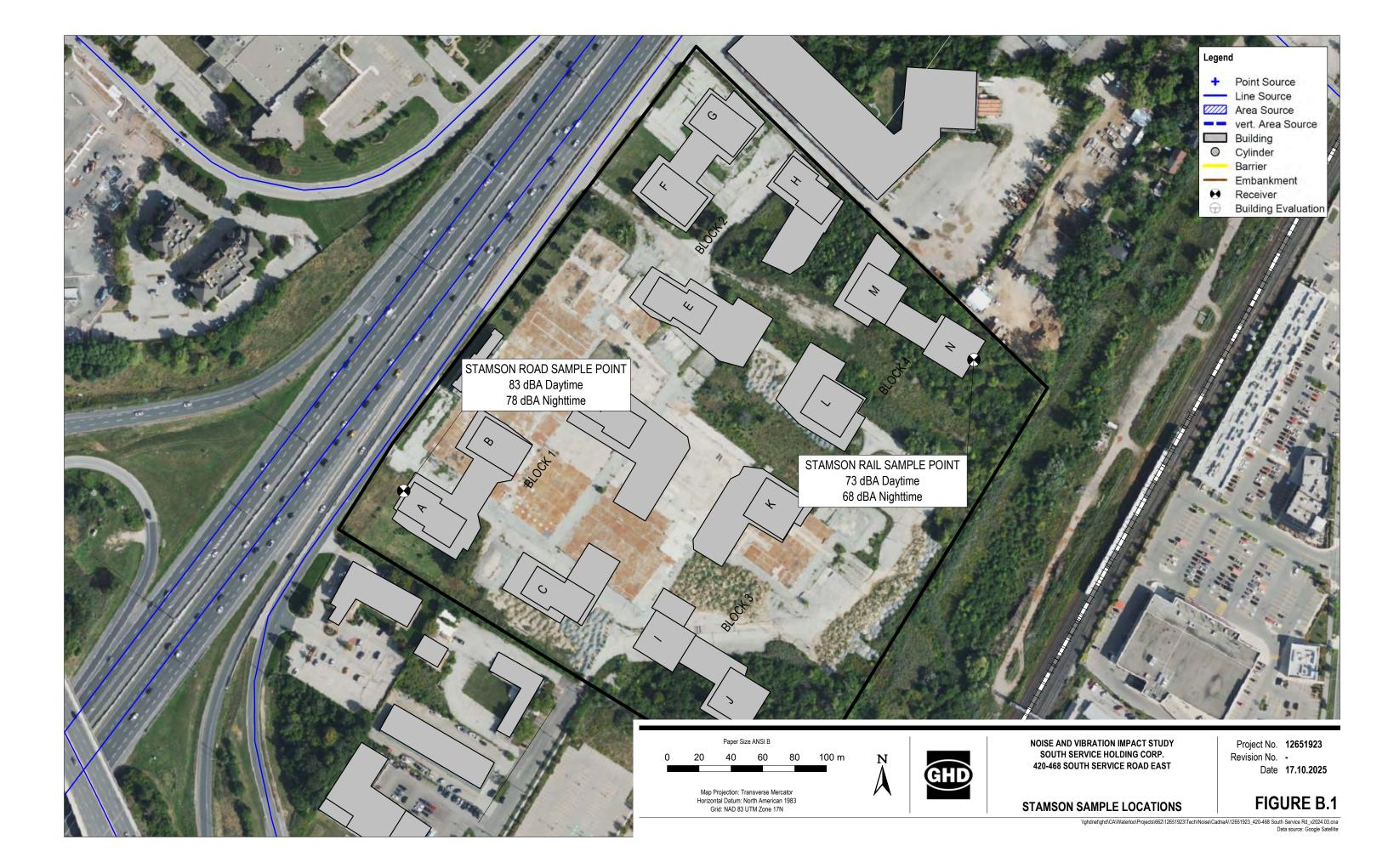
Nghidnet(ghd)CAlWaterloolProjects/662\12651923\TechlNoiselCadnaA\12651923_420-468 South Service Rd_v2024.03.cna


Data source: Google Satellite





Appendices


Appendix A

Zoning Map and Development Drawings

Appendix B Sample STAMSON Calculation

STAMSON 5.0 SUMMARY REPORT Date: 03-10-2025 14:22:58 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: 420ssre.te Time Period: Day/Night 16/8 hours

Description: NORTHWEST WORST CASE FACADE

Road data, segment # 1: QEW (day/night)

Car traffic volume: 173272/30577 veh/TimePeriod Medium truck volume: 10830/1911 veh/TimePeriod Heavy truck volume: 32489/5733 veh/TimePeriod

Posted speed limit: 100 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 1: QEW (day/night)

Angle1 Angle2 : -90.00 deg 76.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance: 64.07 / 64.07 m Receiver height : 19.50 / 19.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Road data, segment # 2: SSRE (day/night)

Car traffic volume: 4866/541 veh/TimePeriod Medium truck volume: 0/0 veh/TimePeriod Heavy truck volume: 57/7 veh/TimePeriod

Posted speed limit: 60 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 2: SSRE (day/night)

Receiver source distance: 25.55 / 25.55 m Receiver height : 19.50 / 19.50 m

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Road data, segment # 3: NSRE (day/night)

Car traffic volume: 9807/1090 veh/TimePeriod Medium truck volume: 0/0 veh/TimePeriod

Heavy truck volume: 409/45 veh/TimePeriod

Posted speed limit: 60 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 3: NSRE (day/night)

Angle1 Angle2 : -40.00 deg 27.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 1 (Absorptive ground surface)

Receiver source distance: 186.84 / 186.84 m Receiver height : 19.50 / 19.50 m

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Road data, segment # 4: TRAF60 (day/night)

Car traffic volume: 48510/5390 veh/TimePeriod Medium truck volume: 0/0 veh/TimePeriod Heavy truck volume: 990/110 veh/TimePeriod

Posted speed limit: 60 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 4: TRAF60 (day/night)

Receiver source distance: 265.95 / 265.95 m Receiver height : 19.50 / 19.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Road data, segment # 5: TRAF50 (day/night)

Car traffic volume: 48510/5390 veh/TimePeriod Medium truck volume: 0/0 veh/TimePeriod Heavy truck volume: 990/110 veh/TimePeriod

Posted speed limit: 50 km/h Road gradient : 0 %

Road pavement : 1 (Typical asphalt or concrete)

Data for Segment # 5: TRAF50 (day/night)

Receiver source distance: 265.95 / 265.95 m

Receiver height : 19.50 / 19.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Topography : 1 Reference angle : 0.00

Result summary (day)

```
! source ! Road ! Total
! height ! Leq ! Leq
! (m) ! (dBA) ! (dBA)

1.QEW ! 1.97! 82.23! 82.23
2.SSRE ! 1.04! 58.81! 58.81
3.NSRE ! 1.41! 50.41! 50.41
4.TRAF60 ! 1.19! 52.32! 52.32
5.TRAF50 ! 1.19! 51.87! 51.87

Total 82.26 dBA
```

Result summary (night)

```
! source ! Road ! Total
! height ! Leq ! Leq
! (m) ! (dBA) ! (dBA)

1.QEW ! 1.97! 77.71! 77.71
2.SSRE ! 1.06! 52.44! 52.44
3.NSRE ! 1.41! 43.85! 43.85
4.TRAF60 ! 1.19! 45.79! 45.79
5.TRAF50 ! 1.19! 45.34! 45.34

Total 77.73 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 82.26 (NIGHT): 77.73

COMPREHENSIVE REPORT STAMSON 5.0 Date: 15-10-2025 10:32:54 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: train.te Time Period: Day/Night 16/8 hours Description: TOWER N 16TH FLOOR SOUTHEAST FACADE

Rail data, segment # 1: OAKVILLE (day/night)

Train ! Trains ! Speed !# loc !# Cars! Eng !Cont Type ! !(km/h) !/Train!/Train! type !weld

- 2. WAY FREIGHT! 4.0/5.0 ! 97.0 ! 4.0 ! 25.0 !Diesel! Yes
- 3. VIA ! 18.0/0.0 ! 150.0 ! 2.0 ! 10.0 !Diesel! Yes

Data for Segment # 1: OAKVILLE (day/night)

No of house rows : 0/0
Surface : 1 (Absorptive ground surface)

Receiver source distance: 136.10 / 136.10 m

Receiver height : 46.50 / 46.50 m

Topography : 1 (Flat/gentle slope; no barrier)

No Whistle

Reference angle : 0.00

Train # 1: GO RAIL, Segment # 1: OAKVILLE (day)

LOCOMOTIVE (0.00 + 71.87 + 0.00) = 71.87 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

_____ -90 90 0.00 81.44 -9.58 0.00 0.00 0.00 0.00 71.87

WHEEL (0.00 + 64.32 + 0.00) = 64.32 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 73.90 -9.58 0.00 0.00 0.00 0.00 64.32

Segment Leq: 72.57 dBA

Train # 2: WAY FREIGHT, Segment # 1: OAKVILLE (day)

LOCOMOTIVE (0.00 + 56.18 + 0.00) = 56.18 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

```
-90 90 0.00 65.76 -9.58 0.00 0.00 0.00 0.00 56.18
```

WHEEL (0.00 + 47.12 + 0.00) = 47.12 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 56.70 -9.58 0.00 0.00 0.00 0.00 47.12

Segment Leq: 56.69 dBA

Train # 3: VIA, Segment # 1: OAKVILLE (day)

LOCOMOTIVE (0.00 + 62.07 + 0.00) = 62.07 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 71.65 -9.58 0.00 0.00 0.00 0.00 62.07

WHEEL (0.00 + 52.79 + 0.00) = 52.79 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 62.37 -9.58 0.00 0.00 0.00 0.00 52.79

Segment Leq: 62.55 dBA

Total Leq All Segments: 73.08 dBA

Train # 1: GO RAIL, Segment # 1: OAKVILLE (night)

LOCOMOTIVE (0.00 + 66.71 + 0.00) = 66.71 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 76.29 -9.58 0.00 0.00 0.00 0.00 66.71

WHEEL (0.00 + 59.17 + 0.00) = 59.17 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 68.75 -9.58 0.00 0.00 0.00 0.00 59.17

Segment Leq: 67.41 dBA

Train # 2: WAY FREIGHT, Segment # 1: OAKVILLE (night)

LOCOMOTIVE (0.00 + 60.16 + 0.00) = 60.16 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 69.74 -9.58 0.00 0.00 0.00 0.00 60.16

WHEEL (0.00 + 51.10 + 0.00) = 51.10 dBA

Anglel Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 60.68 -9.58 0.00 0.00 0.00 0.00 51.10

Segment Leq: 60.67 dBA

Train # 3: VIA, Segment # 1: OAKVILLE (night)

LOCOMOTIVE (0.00 + -9.58 + 0.00) = 0.00 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 0.00 -9.58 0.00 0.00 0.00 0.00 -9.58

WHEEL (0.00 + -9.58 + 0.00) = 0.00 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 0.00 -9.58 0.00 0.00 0.00 0.00 -9.58

Segment Leq: 0.00 dBA

Total Leq All Segments: 68.24 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 73.08 (NIGHT): 68.24

Appendix C

Road and Rail Traffic Data

Year	Highway	Location Description	Dist	Pattern	AADT	SADT	SWADT	WADT	Truck	Total	Total	Trucks	Truck
			(KM)	Туре					AADT	Collisions	CR	Collisions	CR
2004	QEW			С	159,200	179,300	179,600	143,400	14,300	96	0.8	11	0.1
2005	QEW			С	161,900	180,300	181,800	145,400	14,600	114	0.9	17	0.1
2006	QEW			С	164,700	183,000	184,400	148,200	14,800	97	0.8	11	0.1
2007	QEW			c	167,400	186,000	188,600	150,400	15,100	101	0.8	19	0.1
2008	QEW			С	170,100	187,700	185,100	152,600	15,300	91	0.7	23	0.2
2009	QEW			С	172,900	190,200	191,900	155,600	15,600	70	0.5	12	0.1
2010	QEW			С	175,600	193,500	195,300	158,100	15,800	68	0.5	9	0.1
2011	QEW			C		196,600				133	1.0	22	0.2
2012	QEW			C	181,100	199,500	195,300	163,100	16,300	90	0.6	8	0.1
2013	QEW			C	187,000	206,100	203,500	168,300	16,800	71	0.5	6	0.0
2014	QEW			C		226,600				101	0.6	12	0.1
2015	QEW			C		231,000				102	0.6	10	0.1
2016	QEW			C		236,500				91	0.6	15	0.1
2017	QEW			C		224,800				95	0.6	11	0.1
2018	QEW			C		229,000				104	0.7	14	0.1
2019	QEW			C		232,100				106	0.7	19	0.1
2021	QEW			С		238,300				174	1.0	20	0.1
1988	QEW	TRAFALGAR RD IC-118	1.4	C		123,800			1 '	66	1.2	13	0.2
1989	QEW			C		128,000				97	1.7	13	0.2
1990	QEW			С		133,300				84	1.4	11	0.2
1991	QEW			С		133,400				93	1.5	23	0.4
1992	QEW			С		133,200				77	1.3	15	0.2
1993	QEW			С		141,200				113	1.8	15	0.2
1994	QEW			С		143,200				100	1.5	12	0.2
1995	QEW			С		146,100				89	1.3	20	0.3
1996	QEW			С		155,100				73	1.1	10	0.1
1997	QEW			С		158,000				109	1.6	11	0.2
1998	QEW			C		161,300				97	1.4	13	0.2
1999	QEW			С		160,600				142	2.0	19	0.3
2000	QEW			С		165,500				117	1.6	24	0.3
2001	QEW			C		168,600				97	1.3	14	0.2
2002	QEW			C		171,100				89	1.2	16	0.2
2003	QEW			C		174,300				86	1.1	15	0.2
2004	QEW			1		178,100				115	1.5	21	0.3
2005	QEW			C		179,000				126	1.6	18	0.2
2006	QEW			C		181,700				140	1.7	19	0.2
2007	QEW			C		184,700				108	1.3	24	0.3
2008	QEW			C		186,400				141	1.7	33	0.4
2009	QEW			C		188,800				103	1.2	14	0.2
2010	QEW					192,100				93	1.1	16	0.2
2011	QEW			C	177,000	195,100	196,800	159,300	24,800	52	0.6	10	0.1

Year	Highway	Location Description	Dist	Pattern	AADT	SADT	SWADT	WADT	Truck	Total	Total	Trucks	Truck
			(KM)	Туре					AADT	Collisions	CR	Collisions	CR
2012	QEW			C		198,000				38	0.4	3	0.0
2013	QEW			C		214,900				77	0.8	12	0.1
2014	QEW			C		220,000				94	0.9	12	0.1
2015	QEW			C		231,000				119	1.1	17	0.2
2016	QEW			C		236,500				73	0.7	11	0.1
2017	QEW			C		224,300				97	1.0	16	0.2
2018	QEW			C		228,500				114	1.1	14	0.1
2019	QEW			C		231,600				142	1.4	20	0.2
2021	QEW			С		237,900				122	1.1	19	0.2
1988	QEW	ROYAL WINDSOR DR (WBL) IC 119	3.1	C		106,600		-	14,400	72	0.7	14	0.1
1989	QEW			C		110,200				72	0.6	9	0.1
1990	QEW			С		114,600				42	0.4	3	0.0
1991	QEW			C		114,300				38	0.3	2	0.0
1992	QEW			C		113,800				38	0.3	4	0.0
1993	QEW			C		115,500				52	0.4	5	0.0
1994	QEW			C		120,000				54	0.4	15	0.1
1995	QEW			C		122,100				44	0.4	13	0.1
1996	QEW			C		129,100				64	0.5	12	0.1
1997	QEW			C		131,200				105	0.8	22	0.2
1998	QEW			C		133,600				63	0.5	15	0.1
1999	QEW			C		153,300				44	0.3	12	0.1
2000	QEW			C		158,200				111	0.7	19	0.1
2001	QEW			C		161,300				76	0.5	14	0.1
2002	QEW			C		163,800			l	83	0.5	13	0.1
2003	QEW			С		167,000				79	0.5	26	0.2
2004	QEW			С		176,300				100	0.6	22	0.1
2005	QEW			С		179,900				98	0.5	11	0.1
2006	QEW			C		185,100				94	0.5	16	0.1
2007	QEW			С		190,800				103	0.5	23	0.1
2008	QEW			C		195,100				136	0.7	26	0.1
2009	QEW			C		200,100				92	0.5	12	0.1
2010	QEW			C		206,100				84	0.4	19	0.1
2011	QEW			C		211,600				104	0.5	19	0.1
2012	QEW			C		217,200				84	0.4	14	0.1
2013	QEW			C		222,800				112	0.5	14	0.1
2014	QEW			C		205,700				107	0.5	12	0.1
2015	QEW			C		214,500				154	0.7	29	0.1
2016	QEW			C		217,800				101	0.5	16	0.1
2017	QEW			C		233,300				160	0.7	25	0.1
2018	QEW			C		238,700				162	0.7	23	0.1
2019	QEW			C	[222,300	243,000	241,500	201,200	33,300	135	0.5	15	0.1

SEVEN DAY HOURLY REPORT

Station 1: QEWDE0270DWS

HIGHWAY: QEW STREAM: SINGLE ROADWAY DIRECTION: FORT ERIE BOUND

LHRS / OFFSET: 10135 / 0.3 LOCATION: (43.463, -79.682) CONFIDENCE LEVEL: 95%

DESCRIPTION EAST OF TRAFALGAR

	MON	TUE	WED	THU	FRI	SAT	SUN
	17-Jun-19	18-Jun-19	19-Jun-19	20-Jun-19	21-Jun-19	22-Jun-19	23-Jun-19
HOUR-ENDING	Loops						
01:00	1411	1321	1541	1656	1700	2776	298
02:00	657	726	794	925	934	1503	169
03:00	505	571	616	644	741	908	112
04:00	444	917	665	665	742	705	70
05:00	779	907	1101	1145	1064	618	57
06:00	1956	1946	1930	1883	1971	1116	76
07:00	4651	4661	4670	4219	4593	2252	136
08:00	6132	6441	6044	5522	6203	3568	230
09:00	5814	5857	5328	4545	6190	5342	354
10:00	5294	5646	5042	5365	5810	6535	51
11:00	4964	5670	5844	5631	6134	6707	630
12:00	5388	5648	5995	5431	6019	5979	65 ⁻
13:00	5640	5829	5792	5812	6126	5624	624
14:00	5764	5834	5849	5412	5930	5167	62
15:00	6219	5676	5802	5591	6075	5891	63
16:00	5984	5424	5248	5414	5727	6352	60:
17:00	6380	5608	5764	5843	5789	6550	59
18:00	6055	5940	6214	5769	6047	6330	633
19:00	5451	5947	6012	5588	5816	6062	575
20:00	5069	5958	5607	5101	5692	5177	533
21:00	4488	4908	4748	4759	5429	4763	510
22:00	3695	4167	4215	4226	4572	4361	473
23:00	2911	3466	3408	3364	3874	4252	377
23:59	2229	2783	3075	2814	3387	3927	258

24 Hr Total	97,880	101,851	101,304	97,324	106,565	102,465	97,418
A.M. Total	37,995	40,311	39,570	37,631	42,101	38,009	33,015
P.M. Total	59,885	61,540	61,734	59,693	64,464	64,456	64,403
Noon-Noon		100,196	101,110	99,365	101,794	102,473	97,471
Highest Hour Starting	16:00	07:00	17:00	16:00	07:00	10:00	11:00
Highest Hour Volume	6,380	6,441	6,214	5,843	6,203	6,707	6,510
ADT =	100,687	ı	AWD =	100,616	,	,	

ADT (Average Daily Traffic)-The average daily volume of the days being displayed

LHRS (Linear Highway Reference

 $AWD \; (Average \; Weekday \; Traffic) \; - \; The \; average \; weekday \; traffic \; based \; on \; data \; taken \; from \; Monday \; @ \; noon \; to \; Friday \; @ \; noon.$

SEVEN DAY HOURLY REPORT

Station 1: QEWDE0271DES

HIGHWAY: QEW STREAM: HOV DIRECTION: TORONTO BOUND

LHRS / OFFSET: 10135 / 0.2 LOCATION: (43.462, -79.683) DESCRIPTION: TRAFALGAR

Station 2: QEWDE0270DES

HIGHWAY: QEW STREAM: SINGLE ROADWAY DIRECTION: TORONTO BOUND

LHRS / OFFSET: 10135 / 0.2 LOCATION: (43.462, -79.683) DESCRIPTION: TRAFALGAR CONFIDENCE LEVEL: 95%

	MC	ON	TUI	E	WE	D	TH	U	FF	RI	SA	AT	SUI	٧	
	17-Ju	ın-19	18-Jur	า-19	19-Jui	า-19	20-Ju	n-19	21-Ju	ın-19	22-Ju	ın-19	23-Jur	n-19	
	VDS1	VDS2													
HOUR-ENDING	Loops														
01:00	190	1155	98	948	108	1025	104	1032	120	1061	243	1684	930	3120	
02:00	56	569	42	600	54	662	44	656	47	648	117	1059	276	1434	
03:00	32	481	35	478	26	481	24	549	29	546	67	756	113	933	
04:00	53	657	35	656	31	653	33	650	39	673	59	661	80	699	
05:00	145	1462	117	1383	117	1436	112	1433	121	1368	51	880	59	692	
06:00	1231	4859	1205	4709	1177	4800	1061	4532	1120	4412	161	1517	102	1067	
07:00	1657	5849	1688	5915	1630	5745	1587	5230	1531	5363	346	2254	167	1390	
08:00	1659	5869	1622	5922	1611	5666	1591	5254	1561	5639	557	2908	227	1699	
09:00	1605	5489	1573	5568	1612	5409	1485	5002	1486	5475	816	3820	464	2504	
10:00	1196	4595	1388	4858	1409	4844	1171	4625	1368	4922	1329	4657	866	3575	
11:00	1059	4717	1297	4965	1398	5055	1176	4762	1526	5162	1542	4951	1239	4370	
12:00	998	4750	1058	5016	1062	5065	1463	5022	1509	4917	1718	5115	1651	5055	
13:00	831	4507	1091	4936	1106	4898	1466	4920	1450	4984	1580	4867	1649	4964	
14:00	939	4474	1105	4771	1195	4897	1380	4963	1376	4999	1506	4762	1661	4776	
15:00	993	4696	1228	5158	1208	5125	1167	4925	1419	5061	1667	4956	1479	4645	
16:00	1003	4799	1521	5276	1369	5227	1450	5194	1228	4643	1633	5004	1669	5122	
17:00	1507	5115	1608	5276	1455	4371	1584	5191	1635	4896	1611	4920	1562	4943	
18:00	1594	5236	1570	5128	1652	4916	1583	5077	1596	4913	1642	4966	1585	4882	
19:00	1082	4456	1262	4707	1287	4358	1038	4136	1612	4945	1581	5025	1534	5077	
20:00	917	3883	909	4219	1144	4465	1136	4150	1314	4832	1443	4565	1572	4914	
21:00	642	3378	722	3634	763	3775	731	3533	1093	3822	1208	4094	1497	4609	
22:00	514	2838	641	3290	681	3308	592	3092	817	3554	1308	4068	1418	4347	
23:00	376	2286	380	2335	411	2594	411	2428	720	2589	1227	3887	839	3126	
23:59	159	1673	219	1764	203	1811	259	1826	436	2322	1015	3472	482	2230	
24 Hr Total	20,438	87,793	22,414	91,512	22,709	90,586	22,648	88,182	25,153	91,746	24,427	84,848	23,121	80,173	
A.M. Total	9,881	40,452	10,158	41,018	10,235	40,841	9,851	38,747	10,457	40,186	7,006	30,262	6,174	26,538	
P.M. Total	10,557	47,341	12,256	50,494	12,474	49,745	12,797	49,435	14,696	51,560	17,421	54,586	16,947	53,635	
Noon-Noon			20,715	88,359	22,491	91,335	22,325	88,492	23,254	89,621	21,702	81,822	23,595	81,124	
Highest Hour Starting	07:00	07:00	06:00	07:00	17:00	06:00	07:00	07:00	16:00	07:00	11:00	11:00	15:00	15:00	
Highest Hour Volume	1,659	5,869	1,688	5,922	1,652	5,745	1,591	5,254	1,635	5,639	1,718	5,115	1,669	5,122	
						1									

ADT (Average Daily Traffic)-The average daily volume of the days being displayed

LHRS (Linear Highway Reference

AWD (Average Weekday Traffic) - The average weekday traffic based on data taken from Monday @noon to Friday @noon.

Trafalgar Rd @ Cornwall Rd **Morning Peak Diagram Specified Period One Hour Peak** From: 8:00:00 From: 7:00:00 To: 9:00:00 To: 9:00:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030770100 Trafalgar Rd & Cornwall Rd Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 2702 Cyclists 0 1 2 Cyclists 0 East Leg Total: 1870 41 North Entering: 1553 Trucks 10 16 15 Trucks 40 East Entering: 911 East Peds: North Peds: 29 Cars 356 592 562 1510 Cars 1109 5 \mathbb{X} Totals 366 Totals 1149 Peds Cross: Peds Cross: 609 578 Trafalgar Rd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 29 728 757 536 26 0 562 311 18 0 329 18 2 0 20 Cornwall Rd 865 0 Cyclists Trucks Cars Totals Cornwall Rd 6 227 233 19 316 335 4 57 Trucks Cyclists Totals 0 61 Cars 29 600 921 37 959 Trafalgar Rd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 667 Cars 61 346 43 450 West Peds: 18 Trucks 22 Trucks 1 3 12 South Peds: 14 8 West Entering: 629 Cyclists 0 0 0 Cyclists 1 South Entering: 462 West Leg Total: 1386 Totals 62 South Leg Total: 1152 Totals 690 **Comments**

Trafalgar Rd @ Cornwall Rd Mid-day Peak Diagram **Specified Period One Hour Peak** From: 11:00:00 **From:** 11:45:00 To: 14:00:00 To: 12:45:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030770100 Trafalgar Rd & Cornwall Rd Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 2744 Cyclists 0 0 Cyclists 2 East Leg Total: 1956 46 North Entering: 1382 Trucks 22 15 Trucks 39 East Entering: 1019 North Peds: 25 Cars 262 566 507 1335 Cars 1321 East Peds: 15 \mathbb{X} Totals 284 Totals 1362 Peds Cross: 576 522 Peds Cross: Trafalgar Rd Trucks Cyclists Totals Cyclists Trucks Cars Totals Cars 35 642 677 594 16 0 610 358 345 13 0 49 2 0 51 Cornwall Rd 988 0 Cyclists Trucks Cars Totals Cornwall Rd 11 290 302 1 15 335 351 Trucks Cyclists Totals 0 0 64 64 Cars 26 689 901 35 937 Trafalgar Rd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 679 Cars 35 437 59 531 7 West Peds: Trucks 11 Trucks 0 12 5 17 South Peds: 5 West Entering: 717 Cyclists 0 Cyclists 1 0 1 South Entering: 549 West Leg Total: 1394 Totals 35 South Leg Total: 1240 Totals 691 **Comments**

Trafalgar Rd @ Cornwall Rd **Afternoon Peak Diagram Specified Period One Hour Peak** From: 15:00:00 From: 15:00:00 To: 18:00:00 To: 16:00:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030770100 Trafalgar Rd & Cornwall Rd Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 2890 Cyclists 2 1 Cyclists 2 East Leg Total: 2243 30 East Entering: North Entering: 1342 Trucks 15 3 12 Trucks 40 1271 East Peds: North Peds: 28 Cars 294 520 494 1308 Cars 1506 12 \mathbb{X} Totals 1548 Peds Cross: Totals 311 524 507 Peds Cross: Trafalgar Rd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 36 820 859 717 25 0 742 464 18 1 483 45 0 46 Cornwall Rd 1226 Cyclists Trucks Cars Totals Cornwall Rd 9 298 307 1 12 400 413 2 51 53 Trucks Cyclists Totals 0 Cars 2 23 749 946 24 972 Trafalgar Rd \mathbb{X} Peds Cross: 605 Peds Cross: \bowtie Cars 616 Cars 62 491 52 West Peds: 8 Trucks 6 Trucks 3 0 9 South Peds: 12 2 West Entering: 773 Cyclists 0 2 0 Cyclists 1 South Entering: 616 West Leg Total: 1632 Totals 65 South Leg Total: 1239 Totals 623 **Comments**

Trafalgar Rd @ Cornwall Rd

Total Count Diagram

Municipality: Halton Region Site #: 1030770100

Intersection: Trafalgar Rd & Cornwall Rd

TFR File #:

North Peds:

Peds Cross:

Count date: 9-May-2024 Weather conditions:

Clear/Dry

Person(s) who counted:

Major Road: Trafalgar Rd runs N/S

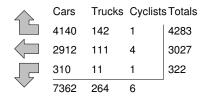
Pyramid Traffic Inc

** Signalized Intersection **

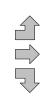
North Leg Total: 20381 North Entering: 10491 225 ⋈

Cyclists 2 2 Trucks 95 61 109 4053 Cars 2347 3816 Totals 2444 3927 4120

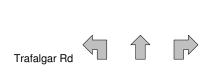
10 Cyclists 14 265 Trucks 279 10216 Cars 9597 Totals 9890


East Leg Total: 14777 East Entering: 7632 East Peds: 98 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 212 5654 5872



Trafalgar Rd



Cornwall Rd

Cyclists Trucks Cars Totals 71 2146 2221 105 2685 2794 391 400 0 9 185 5222

Cornwall Rd

Cars	Trucks	Cyclists	Totals
6908	231	6	7145

 \mathbb{X} Peds Cross: West Peds: 109 West Entering: 5415 West Leg Total: 11287

Cars 4754 Trucks 81 Cyclists 7 Totals 4842

4113 Cars 395 3311 407 Trucks 6 17 89 66 9 Cyclists 0 0 Totals 401 3386

Peds Cross: \bowtie South Peds: 82 South Entering: 4211 South Leg Total: 9053

Comments

Trafalgar Rd @ South Service Rd E **Morning Peak Diagram Specified Period One Hour Peak** From: 7:00:00 **From:** 7:45:00 To: 9:00:00 To: 8:45:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030780100 Trafalgar Rd & South Service Rd E Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 3565 Cyclists 0 0 Cyclists 1 East Leg Total: 368 52 North Entering: 2004 Trucks 13 38 1 Trucks 69 East Entering: 165 North Peds: Cars 501 1318 132 1951 Cars 1491 East Peds: 3 \mathbb{X} Totals 514 Totals 1561 Peds Cross: Peds Cross: \bowtie 1357 133 Trafalgar Rd Cyclists Trucks Cars Totals Trucks Cyclists Totals Cars 23 610 633 6 0 83 35 0 37 43 2 45 Cross Ave 155 2 Cyclists Trucks Cars Totals South Service Rd E 431 459 28 0 47 47 5 Trucks Cyclists Totals 0 89 94 Cars 33 567 202 0 203 Trafalgar Rd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 1450 Cars 74 983 23 1080 West Peds: 6 Trucks 43 Trucks 8 35 0 43 South Peds: 6 West Entering: 600 Cyclists 3 Cyclists 0 0 1 South Entering: 1124 West Leg Total: 1233 Totals 82 1019 South Leg Total: 2620 Totals 1496 **Comments**

Trafalgar Rd @ South Service Rd E **Specified Period** Mid-day Peak Diagram **One Hour Peak** From: 11:00:00 From: 12:00:00 To: 14:00:00 To: 13:00:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030780100 Trafalgar Rd & South Service Rd E Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 3369 Cyclists 0 0 0 Cyclists 0 East Leg Total: 392 56 North Entering: 1571 Trucks 12 38 6 Trucks 69 East Entering: 219 North Peds: Cars 210 1215 90 1515 Cars 1729 East Peds: 8 \mathbb{X} Totals 222 Totals 1798 Peds Cross: Peds Cross: \bowtie 1253 96 Trafalgar Rd Trucks Cyclists Totals Cyclists Trucks Cars Totals Cars 20 362 385 8 0 118 58 3 63 36 38 1 Cross Ave 204 Cyclists Trucks Cars Totals South Service Rd E 0 25 382 407 0 46 46 2 122 Trucks Cyclists Totals 6 114 Cars 542 166 0 173 Trafalgar Rd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 1365 Cars 94 1237 30 1361 West Peds: 8 Trucks 45 Trucks 6 1 43 South Peds: 6 36 West Entering: 575 Cyclists 3 0 Cyclists 0 0 South Entering: 1404 West Leg Total: 960 Totals 100 1273 South Leg Total: 2817 Totals 1413

Comments

Trafalgar Rd @ South Service Rd E **Afternoon Peak Diagram Specified Period One Hour Peak** From: 15:00:00 From: 17:00:00 To: 18:00:00 To: 18:00:00 Weather conditions: Municipality: Halton Region Clear/Dry Site #: 1030780100 Trafalgar Rd & South Service Rd E Intersection: Person(s) who counted: Pyramid Traffic Inc TFR File #: Count date: 9-May-2024 ** Signalized Intersection ** Major Road: Trafalgar Rd runs N/S North Leg Total: 3790 Cyclists 0 0 2 Cyclists 2 East Leg Total: 677 22 North Entering: 1611 Trucks 13 1 Trucks 37 East Entering: 502 North Peds: Cars 277 1205 105 1587 Cars 2140 East Peds: 10 \mathbb{X} Totals 290 Totals 2179 Peds Cross: Peds Cross: \bowtie 1215 106 Trafalgar Rd Cyclists Trucks Cars Totals Trucks Cyclists Totals Cars 17 487 504 265 0 267 128 0 0 128 106 1 107 Cross Ave 499 Cyclists Trucks Cars Totals South Service Rd E 27 807 835 0 43 43 2 5 97 104 Trucks Cyclists Totals Cars 32 947 174 0 175 Trafalgar Rd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 1408 Cars 82 1068 26 1176 West Peds: 21 Trucks 13 Trucks 4 0 12 South Peds: 6 West Entering: 982 Cyclists 5 Cyclists 0 1 0 South Entering: 1189 West Leg Total: 1486 Totals 86 1077 South Leg Total: 2615 Totals 1426 **Comments**

Trafalgar Rd @ South Service Rd E

Total Count Diagram

Municipality: Halton Region Site #: 1030780100

Trafalgar Rd & South Service Rd E Intersection:

TFR File #:

North Leg Total: 26707

North Entering: 12405

North Peds:

Peds Cross:

Count date: 9-May-2024 Weather conditions:

Clear/Dry

Person(s) who counted:

Pyramid Traffic Inc

** Signalized Intersection **

Cyclists 2 10 Trucks 100 210 Cars 2297 9034 Totals 2399 9254

13 335 12057

Trafalgar Rd

1

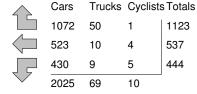
25

726

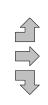
752

Cyclists 13 Trucks 483 Cars 13806 Totals 14302

Major Road: Trafalgar Rd runs N/S


East Leg Total: 3419 East Entering: 2104 East Peds: 56 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 149 3465 3624


 \bowtie

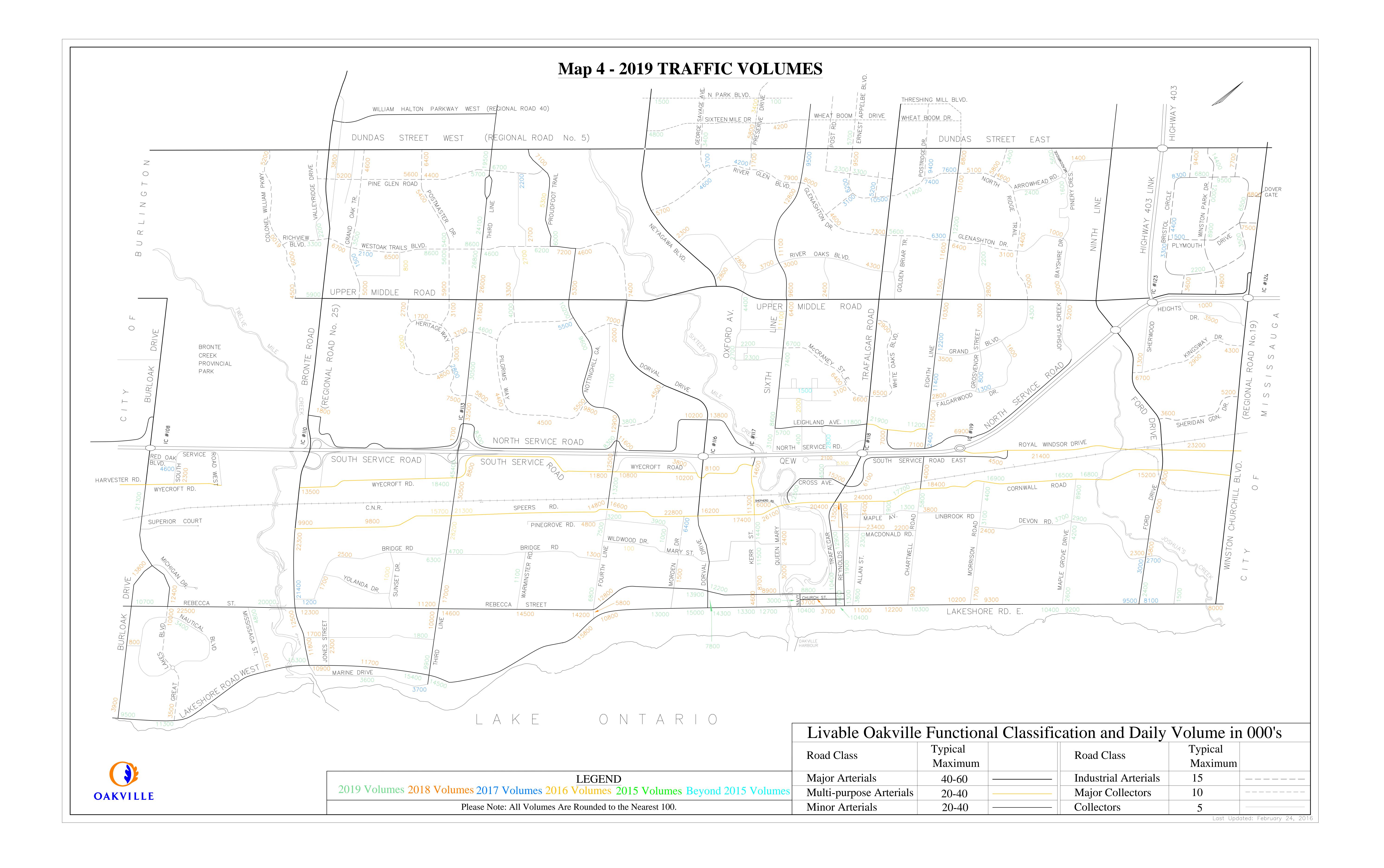
Cyclists Trucks Cars Totals 197 3746 3949 1 2 349 352 44 749 805 12 4844

Cross Ave

South Service Rd E

Trafalgar Rd

Trucks Cyclists Totals Cars 1280 31 1315


 \mathbb{X} Peds Cross: West Peds: 78 West Entering: 5106 West Leg Total: 8730

Cars 10213 Trucks 263 Cyclists 27 Totals 10503

Cars 645 8988 205 9838 Trucks 39 4 279 236 2 12 Cyclists 4 Totals 688 9230

Peds Cross: \bowtie South Peds: 57 South Entering: 10129 South Leg Total: 20632

Comments

From: Komejan, Robert < Robert. Komejan@halton.ca>

Sent: September 30, 2025 12:03 PM **To:** Ben Wiseman ben.wiseman@ghd.com

Subject: FW: Ultimate AADT Traffic Data - 420 South Service Road East, Oakville

Importance: High

You don't often get email from robert.komejan@halton.ca. Learn why this is important

Hi Ben,

We do not have ultimate AADT data for South Service Road, as it is a Town-owned Road. However, for Trafalgar Road, the ultimate AADT is 55.000.

Please let me know if you have any further questions or need additional information.

Regards,

Robert Komejan

Traffic Operations and Safety Co-op Student

Engineering & Construction

Public Works

Halton Region

905-825-6000, ext. x7174 | 1-866-442-5866

This message, including any attachments, is intended only for the person(s) named above and may contain confidential and/or privileged information. Any use, distribution, copying or disclosure by anyone other than the intended recipient is strictly prohibited. If you are not the intended recipient, please notify us immediately by telephone or e-mail and permanently delete the original transmission from us, including any attachments, without making a copy.

From: Access Halton <accesshalton@halton.ca>
Sent: Thursday, September 25, 2025 3:04 PM

 $\textbf{To:} traffic data requests < \underline{traffic data requests@halton.ca} >$

Subject: FW: Ultimate AADT Traffic Data - 420 South Service Road East, Oakville

Importance: High

Hello,

 $The following\ email\ came\ into\ the\ Access\ Halton\ Inbox;\ would\ you\ mind\ having\ someone\ respond?$

Many thanks,

Purnima

Customer Service Representative

Access Halton

905-825-6000 | 1-866-442-5866

From: Ben Wiseman < Ben.Wiseman@ghd.com > Sent: Wednesday, September 24, 2025 3:00 PM
To: Access Halton < accesshalton@halton.ca > Cc: Andrew DeFaria < Andrew DeFaria@ghd.com >

Subject: Ultimate AADT Traffic Data - 420 South Service Road East, Oakville

Importance: High

CAUTION: This email originated from outside the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe. If you are unsure or need assistance please contact the IT Service Desk.

Hi there,

GHD is working on an updated noise impact study for a proposed residential development at 420 South Service Rd E, Oakville. See location below and at the following link for reference: https://maps.app.goo.gl/9fgJY71SEUdUPPMu9

As part of the updated study, we have been asked by the peer reviewer to obtain Ultimate AADT traffic data for the regional roads. Can you please advise if this data is available, and if so please provide it as soon as you are able.

Thanks,

Ben Wiseman

B.A.Sc. P.Eng. Senior Acoustical Engineer Air, Noise & Compliance Group

GHD

Proudly employee-owned | ghd.com 455 Phillip Street Waterloo Ontario N2L 3X2 Canada D 519 340 4121 E ben.wiseman@ghd.com

GHD FIRST Emergency Spill Hotline +1 800 679 9082

→ The Power of Commitment

Connect

Please consider the environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

From: Rail Data Requests

To: Andrew DeFaria

Subject: RE: Traffic Data Request - 420 South Service Road East, Oakville

Date: Friday, 20 September 2024 11:38:29 AM

Attachments: image007.png

image008.png image009.png image010.png image011.png image012.png image013.png

Hi Andrew.

Further to your request dated September 17, 2024, the subject lands (420 South Service Road E., Oakville) are located within 300 metres of the Metrolinx Oakville Subdivision (which carries Lakeshore West GO rail service).

It's anticipated that GO rail service on this Subdivision will be comprised of diesel and electric trains. The GO rail fleet combination on this Subdivision will consist of up to 1 locomotive and 10 passenger cars. The typical GO rail weekday train volume forecast near the subject lands, including both revenue and equipment trips is in the order of 408 trains. The planned detailed trip breakdown is listed below:

	1 Diesel Locomotive	1 Electric Locomotive		1 Diesel Locomotive	1 Electric Locomotive
Day (0700-2300)	132	222	Night (2300-0700)	20	34

The current track design speed near the subject lands is 80 mph (129 km/h). The track speed increases to 95 mph (153 km/h) after mile 20.8, just before trains going eastbound cross Chartwell Rd.

There are anti-whistling by-laws in affect near the subject lands at Chartwell Rd & Kerr St at railway crossing.

With respect to future electrified rail service, Metrolinx is committed to finding the most sustainable solution for electrifying the GO rail network and we are currently working towards the next phase.

Options have been studied as part of the Transit Project Assessment Process (TPAP) for the GO Expansion program, currently in the Development Phase. ONxpress will be responsible for selecting and delivering the right trains and infrastructure to unlock the benefits of GO Expansion. Construction to support GO Expansion is currently underway.

However, we can advise that train noise is dominated by the powertrain at lower speeds and by the wheel-track interaction at higher speeds. Hence, the noise level and spectrum of electric trains is expected to be very similar at higher speeds, if not identical, to those of equivalent diesel trains.

Given the above considerations, it would be prudent at this time, for the purposes of acoustical analyses for development in proximity to Metrolinx corridors, to assume that the acoustical characteristics of electrified and diesel trains are equivalent. In light of the aforementioned information, <u>acoustical models should employ diesel train parameters as the basis for analyses</u>. We anticipate that additional information regarding specific operational parameters for electrified trains will become available in the future once the proponent team is selected.

Operational information is subject to change and may be influenced by, among other factors, service planning priorities, operational considerations, funding availability and passenger demand.

It should be noted that this information only pertains to Metrolinx rail service. It would be prudent to contact other rail operators in the area directly for rail traffic information pertaining to non-Metrolinx rail service.

I trust this information is useful. Should you have any questions or concerns, please do not hesitate to contact me.

Best,

Jenna Auger (She/Her)

Third Party Projects Review (TPPR)
Development & Real Estate Management
T: (416)-881-0579
10 Bay Street | Toronto | Ontario | M5J 2N8

∠X⊆ METROLINX

From: Andrew DeFaria < Andrew. DeFaria@ghd.com>

Sent: Tuesday, September 17, 2024 4:25 PM

To: Rail Data Requests < Rail Data Requests @ metrolinx.com >

Subject: Traffic Data Request - 420 South Service Road East, Oakville

EXTERNAL SENDER: Do not click any links or open any attachments unless you trust the sender and know the content is safe. EXPÉDITEUR EXTERNE: Ne cliquez sur aucun lien et n'ouvrez aucune pièce jointe à moins qu'ils ne proviennent d'un expéditeur fiable, ou que vous ayez l'assurance que le contenu provient d'une source sûre.

Hi there,

GHD is working on a noise study for a proposed development located at 420 South Service Road East in Oakville, Ontario. As part of this study, we need to evaluate rail noise impacts from the GO trains operating on the adjacent Oakville Subdivision rail line. Could you please provide the rail traffic data for this section of the rail line?

For ease of reference, please use the following link which indicates the approximate location of the site:

A timely response would be much appreciated.

Thanks,

Andrew DeFaria
Acoustical Engineering Assistant

GHD

Proudly employee-owned | ghd.com

455 Phillip Street Unit #100 Waterloo Ontario N2L 3X2 Canada D +1 519 340 4242 E andrew.defaria@ghd.com

→ The Power of Commitment

Connect

Please consider the environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

This e-mail is intended only for the person or entity to which it is addressed. If you received this in error, please contact the sender and delete all copies of the e-mail together with any attachments.

Train Count Data

System Engineering Engineering Services

1 Administration Road Concord, ON, L4K 1B9 T: 905.669.3264 F: 905.760.3406

TRANSMITTAL

Permits.gld@cn.ca

To: Destinataire :	GHD 455 Phillip Street Unit #100 Waterloo Ontario N2L 3X2 Canada	Project :	OAK-20.81- 420 South Service Road East, Oakville ON
Att'n:	Andrew DeFaria	Routing:	andrew.defaria@ghd.com
From: Expéditeur :	Sarangan Srikanth	Date:	10/29/2024
Cc:	Adjacent Development CN via e-mail		
☐ Urgent	☐ For Your Use ☐ For F	Review	For Your Information Confidential
Re: Tra Oakville O		-20.81-	420 South Service Road East,
			fic Data; this data does not reflect GO mount of \$500.00 +HST will be
Should you permits.gld	3 '	e do not	hesitate to contact the undersigned at
Sincerely,			
Sarange	an Srikanth		
Sarangan Sr		da	

Train Count Data Page 1

Date: 2024/10/29 Project Number: OAK-20.81- 420 South Service Road East, Oakville ON

Dear Andrew:

Re: Train Traffic Data – OAK-20.81- 420 South Service Road East, Oakville ON

The following is provided in response to Andrew's 2024/09/17 request for information regarding rail traffic in the vicinity of 420 South Service Road East, Oakville ON at approximately Mile 20.81 on CN's Oakville Subdivision.

Typical daily traffic volumes are recorded below. However, traffic volumes may fluctuate due to overall economic conditions, varying traffic demands, weather conditions, track maintenance programs, statutory holidays and traffic detours that when required may be heavy although temporary. For the purpose of noise and vibration reports, train volumes must be escalated by 2.5% per annum for a 10-year period.

Typical daily traffic volumes at this site location are as follows:

*Maximum train speed is given in Miles per Hour

	0700-2300			
Type of Train	Volumes	Max.Consist	Max. Speed	Max. Power
Freight	0	140	60	4
Way Freight	3	25	60	4
Passenger	14	10	95	2

	2300-0700			
Type of Train	Volumes	Max.Consist	Max. Speed	Max. Power
Freight	0	140	60	4
Way Freight	4	25	60	4
Passenger	0	10	95	2

The volumes recorded reflect westbound and eastbound freight and passenger operations on CN's Oakville Subdivision.

Except where anti-whistling bylaws are in effect, engine-warning whistles and bells are normally sounded at all at-grade crossings. There are two (2) at-grade crossings in the immediate vicinity of the study area at Mile 20.55 Chartwell Road and Mile 21.94 Kerr Street. Anti-whistling bylaws are in effect at these crossings. Please note that engine warning whistles may be sounded in cases of emergency, as a safety and or warning precaution at station locations and pedestrian crossings and occasionally for operating requirements.

With respect to equipment restrictions, the gross weight of the heaviest permissible car is 286,000 lbs.

The triple (3) mainline track is considered to be continuously welded rail throughout the study area. The presence of four (4) switches located at Mile 21.92, 22.04, 22.05 and 22.13 may exacerbate the noise and vibration caused by train movements.

The Canadian National Railway continues to be strongly opposed to locating developments near railway facilities and rights-of-way due to potential safety and environmental conflicts. Development adjacent to the Railway Right-of-Way is not appropriate without sound impact mitigation measures to reduce the incompatibility. For confirmation of the applicable rail noise, vibration and safety standards, Adjacent Development, Canadian National Railway Properties at Proximity@cn.ca should be contacted directly.

I trust the above information will satisfy your current request.

Sincerely,

Sarangan Srikanth
Sarangan Srikanth

Officer Public Works – Eastern Canada

Permits.gld@cn.ca

Appendix D

Stationary Noise Source Summary

Table D.1

Noise Source Sound Level Summary 420 South Service Road East 420-468 South Service Road East, Oakville, Ontario

Cadna A ID	Noise Source Description		1/1 Octave Band Data						Unadjusted Total Sound Power Level	Tonal Pe Assess	•	Height Absolute	Operating Time	Vehicle Volumes	Speed Reference/Comments			
		-	32	63	125	250	500	1000	2000	4000	8000	(dBA)		(dBA)	(m)	Day/Night (min)	Day/Night (veh/hr)	(km/hr)
L-01	Assured Automotive - Heavy Truck Movement	PWL (dB) A-weighted correction PWL (dBA)	27.6 -39.4 -11.8	113.6 -26.2 87.4	108.6 -16.1 92.5	101.6 -8.6 93.0	103.6 -3.2 100.4	100.6 0.0 100.6	99.6 1.2 100.8	96.6 1.0 97.6	87.6 -1.1 86.5	115.6 106.5	No	0	105.1	_	4/0	Referenced from US Federal Highway Administration (FHWA) Traffic Noise Model (TNM) Technical Manual, December 2019 20 Heavy Trucks: Cruise Throttle - TNM Technical Manual, Figure 6, p. 26
L-02	Blastaway Cleaning Services - Heavy Truck Movement	PWL (dB) A-weighted correction PWL (dBA)	27.6 -39.4 -11.8	113.6 -26.2 87.4	108.6 -16.1 92.5	101.6 -8.6 93.0	103.6 -3.2 100.4	100.6 0.0 100.6	99.6 1.2 100.8	96.6 1.0 97.6	87.6 -1.1 86.5	115.6 106.5	No	0	104.3	_	4/0	Referenced from US Federal Highway Administration (FHWA) Traffic Noise Model (TMM) Technical Manual, December 2019 20 Heavy Trucks: Cruise Throttle - TNM Technical Manual, Figure 6, p. 26
L-03	482 South Service Road - Heavy Truck Movement	PWL (dB) A-weighted correction PWL (dBA)	27.6 -39.4 -11.8	113.6 -26.2 87.4	108.6 -16.1 92.5	101.6 -8.6 93.0	103.6 -3.2 100.4	100.6 0.0 100.6	99.6 1.2 100.8	96.6 1.0 97.6	87.6 -1.1 86.5	115.6 106.5	No	0	105.8	_	4/0	Referenced from US Federal Highway Administration (FHWA) Traffic Noise Model (TNM) Technical Manual, December 2019 20 Heavy Trucks: Cruise Throttle - TNM Technical Manual, Figure 6, p. 26
S-01	Safe Management Group Inc Rooftop HVAC	PWL (dB) A-weighted correction PWL (dBA)	-39.4 	97.6 -26.2 71.4	90.4 -16.1 74.3	85.7 -8.6 77.1	84.8 -3.2 81.6	83.9 0.0 83.9	77.5 1.2 78.7	71.3 1.0 72.3	65.8 -1.1 64.7	98.9 87.6	No	0	108.3	60/30	_	— GHD Reference Spectra
S-02	Safe Management Group Inc Rooftop HVAC	PWL (dB) A-weighted correction PWL (dBA)	71.0 -39.4 31.6	74.0 -26.2 47.8	75.0 -16.1 58.9	75.0 -8.6 66.4	74.0 -3.2 70.8	72.0 0.0 72.0	68.0 1.2 69.2	64.0 1.0 65.0	58.0 -1.1 56.9	81.8 76.5	No	0	108.3	60/30	_	GHD Reference Spectra
S-03	Safe Management Group Inc Rooftop HVAC	PWL (dB) A-weighted correction PWL (dBA)	71.0 -39.4 31.6	74.0 -26.2 47.8	75.0 -16.1 58.9	75.0 -8.6 66.4	74.0 -3.2 70.8	72.0 0.0 72.0	68.0 1.2 69.2	64.0 1.0 65.0	58.0 -1.1 56.9	81.8 76.5		0	108.3	60/30	_	GHD Reference Spectra
S-04	Assured Automotive - Rooftop HVAC	PWL (dB) A-weighted correction	-39.4	97.6 -26.2	90.4 -16.1	85.7 -8.6	84.8 -3.2	83.9 0.0	77.5 1.2	71.3 1.0	65.8 -1.1	98.9	No	0				•
S-05	Assured Automotive - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	71.0 -39.4	71.4 74.0 -26.2	74.3 75.0 -16.1	77.1 75.0 -8.6	81.6 74.0 -3.2	83.9 72.0 0.0	78.7 68.0 1.2	72.3 64.0 1.0	64.7 58.0 -1.1	87.6 81.8	No		111.3	60/30	_	— GHD Reference Spectra
S-06	Assured Automotive - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 71.0 -39.4	47.8 74.0 -26.2	58.9 75.0 -16.1	66.4 75.0 -8.6	70.8 74.0 -3.2	72.0 72.0 0.0	69.2 68.0 1.2	65.0 64.0 1.0	56.9 58.0 -1.1	76.5 81.8	No	0	111.3	60/30	_	— GHD Reference Spectra
S-07	Assured Automotive - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 — -39.4	47.8 97.6 -26.2	58.9 90.4 -16.1	66.4 85.7 -8.6	70.8 84.8 -3.2	72.0 83.9 0.0	69.2 77.5 1.2	65.0 71.3 1.0	56.9 65.8 -1.1	76.5 98.9	No	0	108.7	60/30	_	— GHD Reference Spectra
S-08	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	71.0 -39.4	71.4 74.0 -26.2	74.3 75.0 -16.1	77.1 75.0 -8.6	81.6 74.0 -3.2	83.9 72.0 0.0	78.7 68.0 1.2	72.3 64.0 1.0	64.7 58.0 -1.1	87.6 81.8	No	0	108.7	60/30	_	— GHD Reference Spectra
S-09	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 71.0 -39.4	47.8 74.0 -26.2	58.9 75.0 -16.1	66.4 75.0 -8.6	70.8 74.0 -3.2	72.0 72.0 0.0	69.2 68.0 1.2	65.0 64.0 1.0	56.9 58.0 -1.1	76.5 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-10	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 71.0 -39.4	47.8 74.0 -26.2	58.9 75.0 -16.1	66.4 75.0 -8.6	70.8 74.0 -3.2	72.0 72.0 0.0	69.2 68.0 1.2	65.0 64.0 1.0	56.9 58.0 -1.1	76.5 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-11	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 — -39.4	47.8 97.6 -26.2	58.9 90.4 -16.1	66.4 85.7 -8.6	70.8 84.8 -3.2	72.0 83.9 0.0	69.2 77.5 1.2	65.0 71.3 1.0	56.9 65.8 -1.1	76.5 98.9	No	0	111.0	60/30	_	— GHD Reference Spectra
S-12	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	71.0 -39.4	71.4 74.0 -26.2	74.3 75.0 -16.1	77.1 75.0 -8.6	81.6 74.0 -3.2	83.9 72.0 0.0	78.7 68.0 1.2	72.3 64.0 1.0	64.7 58.0 -1.1	87.6 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-13	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 71.0 -39.4	47.8 74.0 -26.2	58.9 75.0 -16.1	66.4 75.0 -8.6	70.8 74.0 -3.2	72.0 72.0 0.0	69.2 68.0 1.2	65.0 64.0 1.0	56.9 58.0 -1.1	76.5 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-14	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 — -39.4	47.8 97.6 -26.2	58.9 90.4 -16.1	66.4 85.7 -8.6	70.8 84.8 -3.2	72.0 83.9 0.0	69.2 77.5 1.2	65.0 71.3 1.0	56.9 65.8 -1.1	76.5 98.9	No	0	111.0	60/30	_	— GHD Reference Spectra
S-15	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	71.0 -39.4	71.4 74.0 -26.2	74.3 75.0 -16.1	77.1 75.0 -8.6	81.6 74.0 -3.2	83.9 72.0 0.0	78.7 68.0 1.2	72.3 64.0 1.0	64.7 58.0 -1.1	87.6 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-16	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB) A-weighted correction	31.6 71.0 -39.4	47.8 74.0 -26.2	58.9 75.0 -16.1	66.4 75.0 -8.6	70.8 74.0 -3.2	72.0 72.0 0.0	69.2 68.0 1.2	65.0 64.0 1.0	56.9 58.0 -1.1	76.5 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-17	482 South Service Road - Rooftop HVAC	PWL (dBA) PWL (dB)	31.6	47.8 97.6	58.9 90.4	66.4 85.7	70.8 84.8 -3.2	72.0 83.9	69.2 77.5 1.2	65.0 71.3 1.0	56.9 65.8 -1.1	76.5 98.9	No	0	111.0	60/30	_	— GHD Reference Spectra
S-18	482 South Service Road - Rooftop HVAC	A-weighted correction PWL (dBA) PWL (dB)	-39.4 — 71.0	-26.2 71.4 74.0	-16.1 74.3 75.0	-8.6 77.1 75.0	81.6 74.0	0.0 83.9 72.0	78.7 68.0	72.3 64.0	64.7 58.0	87.6 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
S-19	482 South Service Road - Rooftop HVAC	A-weighted correction PWL (dBA) PWL (dB)	-39.4 31.6 71.0	-26.2 47.8 74.0	-16.1 58.9 75.0	-8.6 66.4 75.0	-3.2 70.8 74.0	0.0 72.0 72.0	1.2 69.2 68.0	1.0 65.0 64.0	-1.1 56.9 58.0	76.5 81.8	No	0	111.0	60/30	_	— GHD Reference Spectra
		A-weighted correction PWL (dBA)	-39.4 31.6	-26.2 47.8	-16.1 58.9	-8.6 66.4	-3.2 70.8	0.0 72.0	1.2 69.2	1.0 65.0	-1.1 56.9	76.5	No	0	111.0	60/30	_	— GHD Reference Spectra

Table D.1 **Noise Source Sound Level Summary** 420 South Service Road East 420-468 South Service Road East, Oakville, Ontario

104.2

Nο

103.8

5/0

— GHD Reference Spectra

Cadna A ID Noise Source Description 1/1 Octave Band Data **Unadjusted Total Tonal Penalty** Vehicle Speed Reference/Comments Height Operating Sound Power Level Assessment Absolute Time Volumes Day/Night Day/Night 125 250 500 1000 (dBA) (dBA) (m) (km/hr) (veh/hr) (min) S-20 482 South Service Road - Rooftop HVAC PWL (dB) 71.0 74.0 75.0 75.0 74.0 72.0 68.0 64.0 58.0 81.8 A-weighted correction -39.4 -26.2 -16.1 -8.6 -3.2 0.0 1.2 1.0 -1.1 PWL (dBA) — GHD Reference Spectra 31.6 47.8 58.9 66.4 70.8 72.0 69.2 65.0 56.9 76.5 No 111.0 60/30 PWL (dB) 71.0 74 0 75.0 S-21 482 South Service Road - Rooftop HVAC 75.0 74.0 72.0 68.0 64.0 58.0 81.8 A-weighted correction -39.4 -26.2 -16.1 -86 -3.2 0.0 1.2 1.0 -1.1 PWL (dBA) - GHD Reference Spectra 31.6 47.8 58.9 66.4 70.8 72.0 69.2 65.0 56.9 76.5 111.0 60/30 S-22 482 South Service Road - Roofton HVAC PWL (dB) 71.0 74 N 75.0 75.0 74.0 68.0 64.0 58.0 72.0 81.8 A-weighted correction PWL (dBA) -39.4 -26.2 -16 1 -86 -32 0.0 12 1.0 -1 1 31.6 47.8 66.4 65.0 76.5 111.0 60/30 GHD Reference Spectra 58.9 70.8 72.0 69.2 56.9 No PWL (dB) 71.0 74.0 75.0 75.0 74.0 72.0 68.0 64.0 58.0 S-23 482 South Service Road - Rooftop HVAC 81.8 A-weighted correction -39.4 -3.2 0.0 -1.1 -26.2 -16.1 -8.6 1.2 1.0 PWL (dBA) 31.6 47.8 58.9 66.4 69.2 65.0 111.0 60/30 - GHD Reference Spectra 70.8 72.0 56.9 76.5 No 71.0 74.0 75.0 75.0 74.0 68.0 64.0 58.0 S-24 482 South Service Road - Rooftop HVAC PWL (dB) 72.0 81.8 A-weighted correction -39.4 -26.2 -16.1 -8.6 -3.2 0.0 1.0 -1.1 1.2 PWL (dBA) 31.6 47.8 58.9 66.4 70.8 72.0 69.2 65.0 56.9 76.5 111.0 60/30 — GHD Reference Spectra PWL (dB) 111.6 103.1 93.2 93.4 97.2 99.4 98.3 95.5 92.1 S-25 Assured Automotive - Pneumatic Wrench 112.9 A-weighted correction -39.4 -26.2 -16.1 -8.6 -3.2 0.0 1.2 1.0 -1.1 PWL (dBA) 72.2 76.9 77.1 84.8 94.0 99.4 99.5 96.5 91.0 104.2 104.6 5/0 — GHD Reference Spectra S-26 Assured Automotive - Pneumatic Wrench PWL (dB) 111.6 103.1 93.2 93.4 97.2 99.4 98.3 95.5 92.1 112.9 A-weighted correction -39.4 -26.2 -3.2 -1.1 PWL (dBA) 72.2 76.9 77.1 84.8 94.0 99.4 99.5 96.5 91.0 104.2 104.7 5/0 - GHD Reference Spectra PWL (dB) S-27 Assured Automotive - Pneumatic Wrench 111.6 103.1 93.2 93.4 97.2 99.4 98.3 95.5 92.1 112.9 A-weighted correction -39.4 -26.2 -16.1 -8.6 -3.2 0.0 1.2 1.0 PWL (dBA) 72.2 76.9 77.1 84.8 94.0 99.4 99.5 96.5 91.0 104.2 No 104.7 5/0 — GHD Reference Spectra 93.4 97.2 S-28 Assured Automotive - Pneumatic Wrench PWL (dB) 111.6 103.1 93.2 99.4 98.3 95.5 92.1 112.9 A-weighted correction -39.4 -26.2 -16.1 -8.6 -3.2 0.0 1.2 1.0 -1.1 PWL (dBA) 72.2 76.9 77.1 84.8 94.0 99.4 99.5 96.5 91.0 104.2 No 104.5 5/0 - GHD Reference Spectra PWL (dB) 111.6 97.2 S-29 103.1 93.2 93.4 99.4 98.3 95.5 92.1 112.9 Assured Automotive - Pneumatic Wrench A-weighted correction -39.4 -26.2 -16.1 77.1 -8.6 -3.2 0.0 1.2 1.0 -1.1

PWL (dBA)

722

76.9

84 8

94 0

99 4

99.5

96.5

91.0

