Phase Two Environmental Site Assessment

3270 Sixth Line Oakville, Ontario

Prepared For:

Argo (West Morrison Creek) Limited 2173 Turnberry Road Burlington, ON L7M 4P8

DS Project No: 17-508-100

Date: 2019-09-06

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Executive Summary

DS Consultants Ltd. (DS) was retained by Argo (West Morrison Creek) Limited (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the Property located at 3270 Sixth Line, Oakville, Ontario, herein referred to as the "Phase Two Property". DS understands that this Phase Two ESA may be used to support the filing of a Record of Site Condition (RSC) as part of the proposed redevelopment of the Phase Two Property for residential purposes.

It is the opinion of DS that the intended future property use (residential) constitutes a more sensitive property use, as defined under O.Reg. 153/04 (as amended). Given that the proposed change in property use is to a more sensitive property use, the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) will be mandated under O.Reg. 153/04 (as amended).

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase Two Property is a 12.58-hectare (31.08 acres) parcel of land situated within mixed residential and agricultural neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located approximately 1-kilometre (km) north of the intersection of Dundas Street West and Sixth Line and was vacant at the time of this investigation.

The Phase Two Property was historically operated as an agricultural field with a residential dwelling, from the late 1800s to the late 1900s. The southeast corner of the Property has been occupied by cellular communication tower (commercial use) from the early 2000s until approximately 2017 when the tower was demolished. A total of three (3) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to three (3) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table 1-1: Summary of APECs

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	On-site	PCA#40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications - Historical use of the Property for agricultural purposes	On Site	OC Pesticides	Soil and Ground water
APEC-2	Southeast portion of the Property	PCA#30 Importation of Fill Material of Unknown Quality - Inferred presence of fill material on-Site,	On Site	PHCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR	Soil
APEC-3	Within the vicinity of the historical communication tower on the southeast portion of the site.	PCA#28 Gasoline and Associated Products Storage in Fixed Tanks - Historical use of the portion of the Property for Roger Cell Tower	On Site	PHC (F1-F4), BTEX	Soil and Ground water

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA is warranted in order to assess the soil and groundwater conditions on the Phase Two Property.

The Phase Two ESA involved the advancement of thirteen (13) boreholes and twelve (12) test pits, which was completed between November 2017 and January 2018. The boreholes were advanced to a maximum depth of 5.0 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in six (6) of the boreholes to facilitate the collection of groundwater samples and the assessment of groundwater flow direction. The borehole locations were determined based on the findings of the Phase One ESA. All APECs were investigated with boreholes and/or monitoring wells in accordance with the requirements of 0.Reg. 153/04 (as amended). Soil and groundwater samples were collected and submitted for analysis of all PCOCs, including metals and ORPs, PHCs, BTEX and OCPs.

The soil and groundwater analytical results were compared to the "Table 1: Full Depth Background Site Condition Standards" provided in the MECP document entitled, "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*" dated April 15, 2011 (Table 1 SCS) for residential/parkland /institutional/industrial/commercial/community property use.

Based on the findings of the Phase Two ESA, DS presents the following findings:

- A surficial layer of topsoil approximately 125 to 300 mm thick was encountered in boreholes BH17-1R to BH17-7R and BH17-1N to BH17-3N. Underlaying this is a fill layer in boreholes BH17-1T, BH17-2T, and BH17-3T extending approximately 1.5 to 3.1 mbgs or, in the remaining boreholes, a weathered/disturbed layer of native clayey silt approximately 0.4 to 0.8 mbgs. This was underlaid by a silty clay till which was found in all the boreholes, except BH17-1T & BH17-2T. This layer extended until bedrock. Shale bedrock was encountered in all boreholes and range between 1.5 to 4.6mbgs with corresponding elevations of 171.1 and 172.8 masl.
- A total of ten (10) groundwater monitoring events were completed between July 2017 and July 2018. The depth to groundwater was found to range between 2.75 to 5.08 mbgs on January 9, 2018, and between 2.18 to 3.75 mbgs on July 31, 2018. The groundwater flow direction was calculated to be southeasterly based on the July 31, 2018 groundwater level measurements. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.
- Mixed fill containing varies aesthetic impacts including wood, construction debris, plastic, glass and concrete was observed in test pits TP3r, TP4r, TP5r, TP6r, TP7r, TP8r and TP10r. Faint petroleum-like odours were also observed in test pits TP3r and TP4r at depths ranging between 0-0.6 mbgs.
- PHC and BTEX impacts were identified in test pits TP3r and TP4r at depths ranging between 0-0.6 mbgs. All of the remaining soil samples analysed met the MECP Table 1 SCS.
- The PHC impacts in soil were remediated on November 26, 2018 through the bulk excavation and off-site disposal of the impacted soils in the vicinity of TP3r and TP4r. Approximately 18 cubic metres of soil was excavated and disposed of at a licensed

MECP facility. The confirmatory sampling conducted on November 26, 2018 verified that the remedial activities had been successful.

- Groundwater samples were collected from four (4) monitoring wells and submitted for analysis of metals and ORPs, PHCs, VOCs and OCPs. The results of the chemical analyses indicated that all samples met the MECP Table 1 SCS, with the exception of sample MW1D-17 which exceeded the Table 1 SCS for uranium. No anthropogenic source of uranium impacts in groundwater has been identified. This has been attributed to natural background conditions and is not considered to be contamination as defined under the EPA.
- Approximately 20 cubic metres of fill material was imported to the Property on November 28, 2018 to backfill the remedial excavation. Verification sampling conducted on November 27, 2018 indicated that the import fill meets the Applicable MECP Table 1 SCS.

Based on a review of the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

- The PHC impacts in soil were successfully remediated on November 26, 2018 through the bulk excavation and off-site disposal of the impacted soils in the vicinity of TP3r and TP4r. The remaining soils on-Site meet the applicable MECP Table 1 SCS.
- Uranium impacts were identified in groundwater sampled from monitoring well MW1D-17. The elevated levels of uranium are considered by the QP_{ESA} to be naturally occurring, and not contamination as defined in the Environmental Protection Act. As such, the groundwater the Phase Two Property is considered to meet the Table 1 SCS.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of November 27, 2018. No further sub-surface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property. A Record of Site Condition may be filed for the Phase Two Property based on the findings of this investigation.

Table of Contents

1.0	Introduction	5
1.1	Site Description	
1.2	Property Ownership	
1.3	Current and Proposed Future Use	
1.4	Applicable Site Condition Standards	
2.0	Background Information	
2.1	Physical Setting	
	2.1.1 Water Bodies and Areas of Natural Significance	
	2.1.2 Topography and Surface Water Draining Features	8
2.2	Past Investigations	8
	2.2.1 Previous Report Summary	8
3.0	Scope of the Investigation	9
3.1	Overview of Site Investigation	.10
3.2	Media Investigated	.10
	3.2.1 Rationale for Inclusion or Exclusion of Media	. 10
	3.2.2 Overview of Field Investigation of Media	. 11
3.3	Phase One Conceptual Site Model	.11
	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	. 12
	3.3.2 Contaminants of Potential Concern	. 12
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	. 12
	3.3.4 Geological and Hydrogeological Information	. 12
	3.3.5 Uncertainty and Absence of Information	.13
3.4	Deviations from Sampling and Analysis Plan	
3.5	Impediments	
4.0	Investigation Method	14
4.1	General	
4.2	Drilling and Excavating	
4.3	Soil Sampling	
4.4 4.5	Field Screening Measurements Groundwater Monitoring Well Installation	
4.5 4.6	Groundwater Field Measurement of Water Quality Parameters	
4.7	Groundwater Sampling	
4.8	Sediment Sampling	
4.9	Analytical Testing	
4.10	Residue Management Procedures	18
	4.10.1 Soil Cuttings From Drilling and Excavations	. 18
	4.10.2 Water from Well Development and Purging	. 18
	4.10.3 Fluids from Equipment Cleaning	. 18
4.11	Elevation Surveying	18

4.12	Quality Assurance and Quality Control Measures	19
	4.12.1 Sample containers, preservation, labelling, handling and custody	′ for
	samples submitted for laboratory analysis, including any deviations from the	SAP
	19	
	4.12.2 Description of equipment cleaning procedures followed during	g all
	sampling	19
	4.12.3 Description of how the field quality control measures referred t	o in
	subsection 3 (3) were carried out	20
	4.12.4 Description of, and rational for, any deviations from the procedures se	
	in the quality assurance and quality control program set out in the SAP	20
5.0	Review and Evaluation	
5.1	Geology	20
5.2	Ground Water Elevations and Flow Direction	21
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	21
	5.2.2 Results of Interface Probe Measurements	21
	5.2.3 Product Thickness and Free Flowing Product	21
	5.2.4 Groundwater Elevation	22
	5.2.5 Groundwater Flow Direction	22
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater	Flow
	Direction	22
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the W	/ater
	Table 22	
5.3	Ground Water Hydraulic Gradients	22
	5.3.1 Horizontal Hydraulic Gradient	22
	5.3.2 Vertical Hydraulic Gradient	23
5.4	Fine-Medium Soil Texture	23
	5.4.1 Rational for use of Fine-Medium Soil Texture Category	23
	5.4.2 Results of Grain Size Analysis	23
	5.4.3 Rational for the Number of Samples Collected and Analyzed	23
5.5	Soil Field Screening	
5.6	Soil Quality	
	5.6.1 Metals and ORPs	
	5.6.2 Petroleum Hydrocarbons	24
	5.6.3 Organochlorine Pesticides	
	5.6.4 Polychlorinated Biphenyls	25
	5.6.5 Commentary on Soil Quality	
5.7	Ground Water Quality	26

	5.7.1 Metals and ORPs	
	5.7.2 Petroleum Hydrocarbons	27
	5.7.3 Volatile Organic Compounds	27
	5.7.4 Organochlorine Pesticides	27
	5.7.5 Commentary on Groundwater Quality	27
5.8	Sediment Quality	
5.9	Quality Assurance and Quality Control Results	
5.10	Phase Two Conceptual Site Model	
6.0	Conclusions	29
6.1	Qualifications of the Assessors	
6.2	Signatures	
6.3	Limitations	
7.0	References	

TABLES:

Table 1 –	Summary of	Monitoring '	Well Ins	tallation	and C	Groundwater	Data
-----------	------------	--------------	----------	-----------	-------	-------------	------

- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Investigated
- Table 5 Summary of Metals and ORPs in Soil
- Table 6 Summary of PHCs + BTEX in Soil
- Table 7 Summary of OCPs in Soil
- Table 8 Summary of PCBs in Soil
- Table 9 Summary of Metals and OCPs in Groundwater
- Table 10 Summary of PHCs in Groundwater
- Table 11 Summary of VOCs in Groundwater
- Table 12 Summary of OCPs in Groundwater
- Table 13 Summary of Maximum Concentrations in Soil
- Table 14 Summary of Maximum Concentrations in Groundwater

FIGURES:

- Figure 1 Site Location Plan
- Figure 2 Phase One Property Site Plan
- Figure 3A Phase One Study Area
- Figure 4 Borehole Location Plan with APECs
- Figure 5 Groundwater Elevation Contours and Flow Direction
- Figure 6A Soil Characterization Metals and ORPs
- Figure 6B Soil Characterization PHCs
- Figure 6C Soil Characterization OCPs and PCBs
- Figure 7A Groundwater Characterization Metals and ORPs
- Figure 7B Groundwater Characterization PHCs
- Figure 7C Groundwater Characterization VOCs
- Figure 7D Groundwater Characterization OCPs
- Figure 8A- TP1 Confirmatory Soil Sample Location Plan
- Figure 8B- TP2 Confirmatory Soil Sample Location Plan
- Figure 9 Cross Section A-A'
- Figure 9A Cross Section A-A' with PHCs and BTEX Impacts in soil (Pre-Remediation)
- Figure 9B Cross Section A-A' with PHCs and BTEX Impacts in soil (Post-Remediation)
- Figure 10 Cross Section B-B'
- Figure 10A Cross Section B-B' with PHCs and BTEX Impacts in soil (Pre-Remediation)
- Figure 10B Cross Section B-B' with PHCs and BTEX Impacts in soil (Post-Remediation)
- Figure 11A- Pathways and Receptors (Pre-Remediation)
- Figure 11B- Pathways and Receptors (Post-Remediation)

APPENDICES:

- Appendix A Plan of Survey
- Appendix B Sampling Analysis Plan
- Appendix C Borehole Logs
- Appendix D Certificate of Analysis
- Appendix E Remediation Report
- Appendix F Phase Two Conceptual Site Model

1.0 Introduction

DS Consultants Ltd. (DS) was retained by Argo (West Morrison Creek) Limited to complete a Phase Two Environmental Site Assessment (ESA) of the Property located at 3270 Sixth Line, Oakville, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS's understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property. DS understands that this Phase Two ESA may be used to support the filing of a Record of Site Condition (RSC) as part of the proposed redevelopment of the Site for residential purposes.

It is the opinion of DS that the intended future property use (residential) constitutes a more sensitive property use, as defined under O.Reg. 153/04 (as amended). Given that the proposed change in property use is to a more sensitive property use, the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) will be mandated under O.Reg. 153/04 (as amended).

The Phase Two ESA was completed to satisfy the intent of the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is a 12.58-hectare (31.08 acres) parcel of land situated within a mixed residential and agricultural neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located approximately 1km north of the intersection of Dundas Street West and Sixth Line and was vacant at the time of this investigation. A Site Location Plan is provided in Figure 1.

For the purposes of this report, Dundas Street West is assumed to be aligned in an east-west orientation, and Sixth Line in a north-south orientation. A Plan of Survey for the Property dated November 7, 2016 and prepared by J.D. Barnes Limited, an Ontario Land Surveyor, has been provided under Appendix A.

The Property was undeveloped and included no structures at the time of this investigation. The Property was previously developed with a residential house, three (3) detached storage sheds, and a cellular communication tower, all of which were located in the southeast corner of the Property and have been demolished. Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1:Phase Two Property Information

Criteria	Information	Source
Legal Description	Part of the Lot 16, Concession 1, North of Dundas Street, PART 1 20R13395 and Part 1 20R13449, Oakville, Regional Municipality of Halton	Legal Survey
Property Identification Number (PIN)	24929-0058 (LT) 24929-0192 (LT)	Legal Survey
Municipal Address	3270 Sixth Line, Oakville, Ontario	Town of Oakville
Zoning	Existing Development (ED)	Town of Oakville
Current Site Occupants	Emilia Marchetti	Client
Site Area	12.58 hectares (31.08 acres)	Legal Survey
Centroid UTM Coordinates	Northing: 4817843.04 Easting: 604576.64 Zone: 17T	Legal Survey

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Address	Contact
Mr. Kevin Singh	2173 Turnberry Road Burlington, ON, L7M 4P8	Email: kevin@argoland.com

1.3 Current and Proposed Future Use

The Phase Two Property is currently vacant. The last use of the property was considered to be commercial property use under O.Reg. 153/04 (as amended), due to the historical presence of a cellular communication tower on the Property. It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.4 Applicable Site Condition Standards

The Phase Two Property is a vacant property located within the Town of Oakville, and the proposed future land use is residential. According to Conservation Halton, a wetland is located on the south adjacent property.

Under Section 41 of O.Reg. 153/04 (as amended), the Site is classified as "environmentally sensitive" if the pH of the surface soil (ground surface to 1.5 metres below ground surface) is less than 5 or greater than 9, if the subsurface soil (deeper than 1.5 mbgs) is less than 5 or

greater than 11, or if the Site is considered to be an area of natural significance or is adjacent to or contains land within 30 metres of an area of natural significance.

Based on a review of the Halton Region Official Plan and the Town of Oakville Official Plan, the Site is located within an area of natural significance (Natural Heritage Area). As such, the Phase Two Property is considered to be environmentally sensitive.

As a result, the soil and groundwater analytical results were compared to the "Table 1: Full Depth Background Site Condition Standards" provided in the MECP document entitled, "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*" dated April 15, 2011 (Table 1 SCS) for residential/parkland /institutional/industrial/commercial/community property use.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

A tributary of Morrison Creek is the closest body of water to the Phase Two Property, located along the northern boundary of the Property.

The Natural Heritage Areas database published by the Ministry of Natural Resources (MNR) was reviewed in order to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. The Halton Region and Town of Oakville Official Plans, as well as Conservation Halton were also reviewed as part of this assessment.

A review of these databases indicated the Northern Bobwhite as an endangered within 1 km of the Site, according to the MNRF. The North Oakville-Milton East Wetland complex is present on the south adjacent property and on the southern boarder of the Property, according to the MNRF and Conservation Halton. According to the Halton Region Official Plan the Property is located within a Regional Natural Heritage System.

According to the MNRF, the Northern Bobwhite is a bird that prefers abandoned farm field and grassland areas, during the winter they are known to migrate to mildly forested areas. As the Property is located within a developed residential/agricultural neighborhood, it is not likely to provide a viable habitat for such species.

If required, an environmental specialist could be retained to undertake a site-specific ecological assessment, however at this time further assessment is not warranted.

7

2.1.2 Topography and Surface Water Draining Features

The Phase Two Property is located in an urban setting, at an elevation of 176 metres above sea level (masl). The topography of the Phase Two Property is generally flat, with a slight slope to the southeast towards Morrison Creek. The neighbouring property are generally at a similar elevation. There are no drainage features (e.g. ditches, swales, etc.) present on-Site. Surface water flow associated with precipitation events is anticipated infiltrate locally or run overland and drain into the tributary located on the south adjacent property.

2.2 Past Investigations

2.2.1 Previous Report Summary

DS reviewed the following environmental report prepared for the Property. The report was provided by the client to DS.

- *"Summary of Findings of Phase I Environmental Site Assessment, Part Lot 16, Concession 1, North of Dundas Street (Including 3270 Sixth Line), Oakville, Ontario (Marchetti Property)",* prepared for Argo Developments Corporation, prepared by Sirati & Partners Consultants Ltd., dated February 21, 2017 (SPCL 2017 Phase One Summary); and
- *"Geotechnical Investigation, Proposes Residential Subdivision-3270 Sixth Line, Oakville, ON",* prepared for Argo Developments Corporation, prepared by DS Consultants, dated April 2, 2018 (DS 2018 Geotech Investigation);

These reports were reviewed in order to assess for the presence of known or suspected PCAs and APECs, and to determine if there are known soil and/or groundwater impacts on the Phase One Property. A summary of the pertinent details of the reports reviewed is provided below:

SPCL 2017 Phase One Summary

The SPCL 2017 Phase One ESA was conducted in general accordance with CSA document entitled "Phase I Environmental Site Assessment" (CSA Document Z768-01), dated November 2001 (reaffirmed 2006), and included a review of readily available historical records and reasonably ascertainable regulatory information, a Site Reconnaissance, interviews, evaluation of information, and reporting. The following pertinent information was noted by DS:

The Phase One Property was previously used for both agricultural purposes until 1999 when a cell tower was built in the southeastern portion of the Site.

- First developed use of the Phase One Property was determined to be agricultural, when the crown patent was issued to William Freeman in 1908.
- Four potentially contaminating activities were identified:
 - Electrical transformers associated with the former cell tower;
 - Piles of debris located on the property;
 - \circ Fill material of unknown quality was present on the Phase One Property; and
 - The property was used as an agricultural field for over 100 years, it is possible that pesticides were historically used.
- A historical watering well is located on the Phase One Property.

SPCL concluded that the portion of the property where the cell tower was previously located would require a Phase One ESA, a Phase Two ESA, and an RSC in accordance with O.Reg. 153/04 would be required if the property were to be redeveloped for residential purposes. SPCL also concluded that the watering well observed on the Phase One Property should be located and decommissioned in accordance with O.Reg. 903.

DS 2018 Geotechnical Investigation

The DS 2018 Geotechnical Investigation was conducted in order to investigate the subsurface conditions in order to provide preliminary recommendations pertaining to the geotechnical design of underground utilities. The investigation involved the advancement of thirteen (13) boreholes in November 2017. Upon borehole completion, six (6) monitoring wells were installed for purposes of groundwater level monitoring.

A 125 to 300mm thick layer of surficial topsoil was found on the Phase One Property. Underlaying this was a layer of fill material extending approximately 1.5 to 3.1 meters below ground surface (mbgs). Or, a layer of weathered/disturbed till was observed extending approximately 0.6 to 1.0 mbgs. This was underlain by a silty clay till which was underlaid by Shale Bedrock, which was encountered at depths ranging from 1.5 to 4.6 mbgs with corresponding elevations of 171.1 and 172.8 masl.

Groundwater was encountered in all of the monitoring wells advanced by DS on the Phase One Property. On January 24, 2018 groundwater levels ranged approximately 0.6 to 4.6 mbgs.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The

scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of thirteen (13) boreholes on the Phase Two Property, to depths ranging between 2.9 to 5.0 mbgs. Six (6) of the boreholes were instrumented with groundwater monitoring wells upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using an RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;
- Advanced twelve (12) test pits using an excavator to depths ranging from 1.3 to 2.7 mbgs.
- Submitted "worst case" soil samples collected from the boreholes and test pits for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Developed and purged all monitoring wells prior to sampling. Groundwater samples were collected for all COPCs identified in the Phase One ESA;
- Compared all soil and groundwater analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Sediment	Excluded	Sediment is not present on the Phase Two Property.
Surface Water	Excluded	Surface water is not present on the Phase Two Property.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation	
Soil	A total of thirteen (13) boreholes were advanced on the Phase Two Property, to a	
	maximum depth of 5.0 mbgs.	
	Twelve (12) test pits were advanced on the Phase Two Property to a maximum depth of	
	2.7 mbgs.	
	Soil samples were collected and submitted for analysis of all relevant PCOCs.	
Groundwater	A total of four (4) monitoring wells were selected for use in assessing the groundwater	
	quality on the Phase Two Property. Representative groundwater samples were collected	
	from each monitoring well and submitted for analysis of all relevant PCOCs.	

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at 3270 Sixth Line, Oakville, Ontario. The Phase One Conceptual Site Model is presented in Drawings 3A, 3B, and 4 and visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 3B and discussed in the Phase One ESA Report. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

 Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Contributing to APEC (Y/N)
1	PCA#40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	Historical use of the Property for agricultural purposes	Yes – APEC1
2	PCA#30: Importation of Fill Material of Unknown Quality	Fill material is anticipated in the vicinity of the historical residential home, storage buildings, and communication tower.	Yes – APEC 2
3	PCA#28: Gasoline and Associated Products Storage in Fixed Tanks	Historical presence of a generator used to service the historical communication tower.	Yes – APEC 3

3.3.2 Contaminants of Potential Concern

The following contaminants of potential concern were identified for the Phase One Property: PHC (F1-F4), BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, and OCPs.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Underground utilities were not identified at the Phase One Property. It is not anticipated that any historical utilities present would have the potential to act as preferential pathways for contaminant transport.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase One Property is generally flat, with a surface elevation of 176 metres above sea level (masl). The topography within the Phase One Study Area generally slopes to the southeasterly, towards Morrison Creek, located approximately 1.5 km southeast of the Phase One Property. A tributary of Morrison Creek is the nearest body of water to the Phase One Property and is located on the north adjacent property

approximately. Based on a review of the MECP well records, the depth to groundwater in the vicinity of the Phase One Property is approximately 13.3-17.1 mbgs. The shallow groundwater flow direction within the Phase One Study Area is inferred to be southeasterly towards Morrison Creek.

The northern portion of the site is situated within a till moraine physiographic region, while the southern portion of the site is situated within a drumlinized till plain physiographic region. The surficial geology within the Phase One Study area is described as "clay to silt textured till derived from glaciolacustrine deposits or shale", and the bedrock is described as "shale, limestone, dolostone, and siltstone of the Queenston Formation". Based on a review of MECP Well Records, the bedrock in the Phase One Study Area is anticipated to be encountered at an approximate depth range of 3.0 to 10.0 metres below ground surface (mbgs).

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by EcoLog ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 4. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Parameter	Details			
Drilling Contractor	Terra Firma Environmental Services Ltd. (Terra Firma), Toronto, Ontario			
Drilling Dates	November 14 and 15, 2017			
Drilling Equipment Used	CME55 Hollow and solid stem 2-inch split spoon soil sampling device			
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; 			

Parameter	Details
	Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample.
Sample collection frequency	Samples were collected at a frequency of every 0.6 m per 0.8 m from the ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.

Parameter	Details
Drilling Contractor	Provided by Client
Drilling Dates	January 18, 2018
Drilling Equipment Used	Excavator
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using an excavator. Soil samples were extracted from the interior of the excavator bucket rather than from areas in contact with the sampler sidewalls; Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample.
Sample collection frequency	Samples were collected at an approximate frequency of every 0.8 m.

4.3 Soil Sampling

Soil samples were collected using a combination of split spoon samplers and via excavator. Discrete soil samples were collected by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling and recorded on field borehole logs. The borehole logs are presented under Appendix C. Additional detail regarding the lithology encountered in the boreholes is presented under Section 5.1 and depicted visually in Figures 9 and 10.

4.4 Field Screening Measurements

The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's '*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'*.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Parameter	Details
Make and Model of Field Screening	RKI Eagle 2, Model 5101-P2
Instrument	Serial Number: E2A292
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene CGD: Hexane
Procedures for checking calibration of equipment	In-field re-calibration of the RKI Eagle 2 was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the calibration had drifted by more than +/- 10%.

Table 4-3: Field Screening Equipment

A summary of the soil headspace measurements is provided in the borehole logs, provided under Appendix C.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of six (6) of the boreholes advanced on the Phase Two Property. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a

1.5 m or 3.5m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective aboveground monument casings.

Details regarding the monitoring well construction can be found in Table 1, and on the borehole logs provided in Appendix C.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

The monitoring wells were developed on January 18, 2018. In accordance with DS SOPs for monitoring well development, the wells were developed by purging the monitoring wells dry and allowing them to recover three (3) times using dedicated inertial pumps comprised of Waterra polyethylene tubing and dedicated foot valves.

4.6 Groundwater Field Measurement of Water Quality Parameters

Field measurements of water quality parameters including temperature, specific conductivity, pH, turbidity, dissolved oxygen, oxidation-reduction potential and turbidity were not collected, due to the low yield and slow recovery of the monitoring wells.

During well development and purging, ground water samples were visually screened for turbidity, suspended solids, odour, or sheen. No sheen, free product or odour were observed in the wells.

4.7 Groundwater Sampling

Groundwater samples were collected a minimum of 24 hours after the development of the monitoring wells. The wells were purged using dedicated polyethylene bailers.

Samples were collected upon stabilization of the water quality parameters. Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro in-line filters. The groundwater was transferred directly into laboratory supplied containers and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil and groundwater samples collected were submitted to AGAT Laboratories under chain of custody protocols. AGAT is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. AGAT conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums and left on-site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.2 Water from Well Development and Purging

Excess water derived from well purging activities was stored in 20-L sealed plastic pails, and temporarily stored on site. Upon receipt of the analytical results it was determined that the purged groundwater meets the applicable Table 1 SCS. Based on this the purged groundwater was allowed to re-infiltrate adjacent to the monitoring wells.

4.10.3 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.11 Elevation Surveying

The borehole and monitoring well locations were surveyed using a Sokkia GCX-2 GNSS RTK receiver, referenced to a local benchmark (ID #04519910058) with an elevation of 174 metres above sea level.

The ground surface elevations can be found on the borehole logs presented in Appendix C.

4.12 Quality Assurance and Quality Control Measures

4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Media	Parameter	Sample Container
	PHCs F1 VOCs	40 mL methanol preserved glass vial with septum lid.
Soil	PHCs F2-F4 metals and ORPs PAHs	120 mL or 250 mL unpreserved glass jar with Teflon [™] -lined lid.
	PHCs F1 VOCs	40 mL glass vial with septum lid, containing sodium bisulphate preservative.
	PHCs F2-F4	250 mL amber glass bottle with sodium bisulphate preservative
Groundwater	PAHs	250 mL amber glass bottle (unpreserved)
	Inorganics	500 mL high density polyethylene bottle (unpreserved)
	Metals	125 mL high density polyethylene bottle containing nitric acid preservative
Groundwater	Hexavalent Chromium	125 mL high density polyethylene bottle containing ammonium sulphate/ammonium hydroxide preservative
Giounuwater	Mercury	125 mL glass bottle containing hydrochloric acid preservative
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide preservative

 Table 4-4: Summary of Sample Bottle Preservatives

Groundwater samples were collected using dedicated equipment for each well. Groundwater samples collected for analysis of dissolved metals, mercury and hexavalent chromium were filtered in the field using a dedicated 0.45-micron in-line filter. Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.12.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

19

The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of AlconoxTM and distilled water. The AlconoxTM solution was rinsed off using distilled water.

4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis. A laboratory prepared trip blank accompanied the groundwater samples during each sampling event and was submitted for laboratory analysis of VOCs.

All field screening devices (e.g. RKI Eagle 2) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

4.12.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix C.

A surficial layer of topsoil approximately 125 to 300 mm thick was encountered in boreholes BH17-1R to BH17-7R and BH17-1N to BH17-3N. Underlaying this is a fill layer in boreholes BH17-1T, BH17-2T, and BH17-3T extending approximately 1.5 to 3.1 mbgs or, in the remaining boreholes, a weathered/disturbed layer of native clayey silt approximately 0.4 to 0.8 mbgs. This was underlaid by a silty clay till which was found in all the boreholes, except BH17-1T & BH17-2T. This layer extended until bedrock. Shale bedrock was encountered in all boreholes and range between 1.5 to 4.6mbgs with corresponding elevations of 171.1 and 172.8 masl.

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Topsoil	0.13-0.30	177.2	173.09	
Fill Material	0.79-3.1	174.87	171.3	Clayey silt to silty clay, trace to some organics, wood pieces, trace shale fragments
Clayey Silt	0.6-1.0	177.1	173.1	Some sand, reddish brown.
Silty Clay Till	0.5-3.8	176.4	171.1	Water bearing formation, some sand, trace gravel, occasional cobble/boulder
Shale Bedrock	-	172.8	-	Queenston Formation

Table 5-1: Summary	of Geologic Units	Investigated
--------------------	-------------------	--------------

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A total of six (6) monitoring wells were installed on the Phase Two Property in order to assess the groundwater quality in relation to APEC-1 and APEC-3. The COPCs associated with these APECs were OCPs, PHCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Chloride, Sodium, Cr (VI), and Hg. The monitoring wells were screened to intersect the first water bearing formation encountered, in order to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater at the water table. The monitoring wells were screened within the silty clay till unit with bottom depths ranging from 2.9 to 5.5 mbgs. This unit is inferred to be an unconfined aquifer.

5.2.2 Results of Interface Probe Measurements

A total of ten (10) groundwater monitoring events were completed between July 2017 and July 2018. A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst interface probe model 122. The depth to groundwater was found to range between 2.75 to 5.08 mbgs on January 9, 2018, and between 2.18 to 3.75 mbgs on July 31, 2018. There was no indication of DNAPL or LNAPL in the monitoring wells during any of the groundwater monitoring events.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1. Generally, the groundwater elevation was found to range from 169.90. to 177.10 masl in the aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property. Based on the groundwater elevations calculated, the groundwater flow direction is interpreted to be southeasterly towards an unnamed creek. The groundwater elevation contours and flow direction are presented on Figure 5.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The shallow aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advanced on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

In general, the depth to groundwater was found to fluctuate approximately 2 metres between winter and summer monitoring events.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The Phase Two Property is currently undeveloped, no buried services are present. All historical buried utilities have been decommissioned.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on July 31, 2018.

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Overburden – (silty clay till)	Minimum:0.006
	Average: 0.0061
	Maximum:0.0066

Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was calculated based on the groundwater levels recorded on July 31, 2018.

Table 5-3: Summary of Vertical Hydraulic Gradient Calculations

Monitoring Well Nest	Calculated Vertical Hydraulic Gradient		
MW1S-17	0.7546 (downward)		
MW1D-17			

5.4 Fine-Medium Soil Texture

5.4.1 Rational for use of Fine-Medium Soil Texture Category

A total of four (4) grain size analyses were conducted as part of this investigation. The results of the grain size analyses indicate that more than two-thirds of the soils encountered are medium to fine textured.

5.4.2 Results of Grain Size Analysis

A summary of the soil samples analyzed, and the corresponding grain size results is presented in the table below:

Sample	% Gravel	% Sand	% Silt	% Clay	Classification
BH17-1R SS2	3%	20%	57%	20%	Fine-textured
BH17-4R SS2	5%	15%	56%	56%	Fine-textured
BH17-1N SS2	12%	17%	49%	22%	Fine-textured
BH17-3R SS2	3%	19%	53%	25%	Fine-textured

Table 5-4: Summary of Grain Size Analyses

5.4.3 Rational for the Number of Samples Collected and Analyzed

The grain size analyses were conducted for the purposes of this Phase Two ESA, in addition to a geotechnical investigation which was conducted concurrently. At least one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix C). The soil vapour headspace readings were collected using an RKI Eagle-2 multi-gas detector in methane elimination mode. The CGD readings ranged between 2.3 and 15.4 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). Mixed fill containing varies aesthetic impacts including wood, construction debris, plastic, glass and concrete was observed in test pits TP3r, TP4r, TP5r, TP6r, TP7r, TP8r and TP10r. Faint petroleum-like odours were also observed in test pits TP3r and TP4r at depths ranging between 0-0.6 mbgs.

No staining, orders, sheening or evidences of LNAPL or DNAPL were present at the time of sampling.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 8. A visual summary of the location of the sample locations is provided in Figures 6A through 6C. The laboratory certificates of analysis have been provided under Appendix D.

5.6.1 Metals and ORPs

A total of seventeen (17) samples, including three (3) field duplicates for QA/QC purposes were submitted for analysis of metals and ORPs. The results of the analyses are tabulated in Table 5 and presented on Figure 6A. The results of the analyses indicated that there were no exceedances of the Table 1 SCS.

5.6.2 Petroleum Hydrocarbons

A total of eleven (11) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 6 and presented on Figure 6B. The results of the analyses indicated the following exceedances of the Table 1 SCS:

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 1 SCS	Reported Value
TP3r GS1 0-0.4	Benzene	µg/g	0.02	0.63	
	Toluene	µg/g	0.2	3.8	

Table 5-5: Summary of PHCs in Soil

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 1 SCS	Reported Value
		Ethylbenzene	μg/g	0.05	1.4
		Xylene Mixture	μg/g	0.05	7.7
		F1 (C6 to C10)	µg/g	25	61
		F1 (C6 to C10) minus BTEX	µg/g	25	47
		F2 (C10 to C16)	µg/g	10	27
		F3 (C16 to C34)	µg/g	240	270
		Benzene	µg/g	0.02	0.81
		Toluene	μg/g	0.2	4.6
		Ethylbenzene	µg/g	0.05	1.5
TP3r GS0Dup		Xylene Mixture	µg/g	0.05	9.5
(Duplicate of	0-0.4	F1 (C6 to C10)	μg/g	25	79
TP3r GS1)		F1 (C6 to C10) minus BTEX	µg/g	25	63
		F2 (C10 to C16)	µg/g	10	30
		F3 (C16 to C34)	µg/g	240	300
	0-0.6	Toluene	µg/g	0.2	0.57
TP4r GS1		Ethylbenzene	µg/g	0.05	0.16
1141 (31		Xylene Mixture	µg/g	0.05	1.6
		F1 (C6 to C10)	µg/g	25	32

5.6.3 Organochlorine Pesticides

A total of four (4) samples including one (1) field duplicate for QA/QC purposes were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 7 and presented on Figure 6C. The results of the analyses indicated that there were no exceedances of the Table 1 SCS.

5.6.4 Polychlorinated Biphenyls

One (1) sample was submitted for analysis of PCBs. The results of the analyses are tabulated in Table 8 and presented on Figure 6C. The results of the analyses indicated that there were no exceedances of the Table 1 SCS.

5.6.5 Commentary on Soil Quality

The results of the soil chemical analysis conducted indicated that PHC (incl. BTEX) impacts are present on the Phase Two Property.

Soil impacted with PHCs were identified in test pit TP3R GS1 (benzene, toluene, ethylbenzene, xylene, PHC F1, PHC F2, and PHC F3) at a depth ranging from 0.0-0.4 mbgs. Impacts were also identified in test pit TP4r GS1 (toluene, ethylbenzene, xylene, PHC F1 and F2) from 0.0-0.6 mbgs.

The horizontal and vertical extent of the PHC impacts in soil was determined at the time of remedial excavation, completed on November 26, 2018. The horizontal extent of the PHC impacts in soil is depicted on Figures 8A and 8B. The vertical extent of the PHC impacts in soil is depicted on Figures 9A and 10A. The horizontal extent of the PHC impacts in soil was found to be contained within a 2 metre radius of TP3r and TP4r and found to extend to a maximum depth of 1.5 mbgs.

Additional details regarding the remedial activities are provided in Appendix E.

5.7 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 9 through 12. A visual summary of the location of the sample locations is provided in Figures 7A through 7D. The laboratory certificates of analysis have been provided under Appendix D.

5.7.1 Metals and ORPs

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of metals and ORPs. One (1) additional verification sample was collected from monitoring well MW1D-17 and submitted for analysis of uranium.

The results of the analyses are tabulated in Table 9 and presented on Figure 7A. The groundwater samples transferred into the metals, mercury, and hexavalent chromium bottles were field filtered using a 0.45-micron in-line filter. The results of the analyses indicated the following exceedances of the Table 1 SCS:

Sample ID	Well Screen Interval (mbgs)	Parameter	Units	Table 1 SCS	Reported Value
MW1D-17	3.5-5.3	Uranium	ug/I	8.9	21.4
(Jan 23, 2018)	5.5-5.5	Uraniuni	µg/L	0.7	21.4
MW1D-17	3.5-5.3	Uranium	µg/L	8.9	22.6
(Feb 2, 2018)					

Table 5-6: Summary of Metals and ORPs Exceedances in Groundwater

All of the remaining samples analysed met the MECP Table 1 SCS.

5.7.2 Petroleum Hydrocarbons

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 10 and presented on Figure 7B. All of the sample concentrations were reported as non-detectable.

5.7.3 Volatile Organic Compounds

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of VOCs. One (1) trip blank was also submitted for analysis as part of the QA/QC program. The results of the analyses are tabulated in Table 11 and presented on Figure 7C. All of the sample concentrations were reported as non-detectable.

5.7.4 Organochlorine Pesticides

A total of five (5) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 12 and presented on Figure 7D. All of the sample concentrations were reported as non-detectable.

5.7.5 Commentary on Groundwater Quality

All of the groundwater samples analysed met the MECP Table 1 SCS for all of the parameters analysed, with the exception of MW1D-17, which exceeded the Table 1 SCS for uranium.

No potential source of uranium was identified in the Phase One ESA in the vicinity of MW1D-17. This monitoring well is situated in an agricultural field, and fill material was not identified any of the boreholes advanced in the vicinity of MW1D-17 (BH17-1N and BH17-3R). The monitoring well screen is situated across the Queenston formation shale and the silty clay till. The silty clay till is of low hydraulic conductivity and is anticipated to retard downward contaminant migration.

The uranium concentration in the soil sample submitted from the boreholes BH17-1N and BH17-3R were both 0.6 μ g/g, which is 0.1 μ g/g above the laboratory detection limit, indicating that there is not a significant contaminant source present in the soil. Uranium is naturally occurring in soils and bedrock. Based on the lack of a potential source of contamination (no PCA identified relevant to uranium), the lack of contaminant mass in soil, and the low permeability soils on-site, it is the opinion of the QP_{ESA} that the elevated concentration of uranium in groundwater in MW1D-17 is naturally occurring, and not contamination, as defined under the Environmental Protection Act.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Sample ID	QA/QC	Medium	Parameter	QA/QC Result
	duplicate	neurum	Analyzed	
BH17-1R SS1	BH-17-BR SS-1	Soil	Metals and ORPs	All results were within the analytical protocol criteria for RPD.
BH17-5R SS2	BH17-AR SS2	Soil	Metals and ORPs, OCPs	All results were within the analytical protocol criteria for RPD.
BH17-2T SS- 2	BH17-AT SS- 2	Soil	Metals and ORPs	All results were within the analytical protocol criteria for RPD.
BH17-3T SS- 2	BH17-BT SS2	Soil	PHCs and BTEX	All results were within the analytical protocol criteria for RPD.
TP3r GS1	TP3r GS0Dup	Soil	PHCs and BTEX	All results were within the analytical protocol criteria for RPD.
TP10r GS1	TP10r GS0 Dup	Soil	PHCs and BTEX	All results were within the analytical protocol criteria for RPD.
MW17-1T	Dup-1	Groundwater	Metals and ORPs, PHCs, VOCs, OCPs	All results were within the analytical protocol criteria for RPD.

Table 5-7: Summary of QA/QC Results

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

AGAT routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the AGAT QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D.

With respect to subsection 47(3) of O. Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix D.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

5.10 Phase Two Conceptual Site Model

A Phase Two Conceptual Site Model has been prepared for the Site based on the Phase One ESA, Phase Two ESA, and remediation activities. The Phase Two Conceptual Site Model has been provided under Appendix F.

6.0 Conclusions

This Phase Two ESA involved that advancement of thirteen (13) boreholes and twelve (12) test pits, the installation of six (6) monitoring wells on the Property, and the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including: metals and ORPs, PHCs, BTEX and OCPs.

Mixed fill containing varies aesthetic impacts including wood, construction debris, plastic, glass and concrete was observed in test pits TP3r, TP4r, TP5r, TP6r, TP7r, TP8r and TP10r. Faint petroleum-like odours were also observed in test pits TP3r and TP4r at depths ranging between 0-0.6 mbgs.

PHC impacts were identified in the shallow fill material in the vicinity of test pits TP3r and TP4r. The impacted fill material was remediated through the excavation and off-site disposal

of the impacted fill. Post remediation confirmatory sampling was conducted on November 26, the results of which indicated that the remaining samples met the MECP Table 1 SCS.

All of the groundwater samples met the MECP Table 1 SCS, with the exception of MW1D-17, which exceeded the SCS for uranium. This has been attributed to natural background conditions and is not considered to be contamination as defined under the EPA.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- The PHC impacts in soil were successfully remediated on November 26, 2018 through the bulk excavation and off-site disposal of the impacted soils in the vicinity of TP3r and TP4r. The remaining soils on-Site meet the applicable MECP Table 1 SCS.
- Approximately 20 cubic metres of fill material was imported to the Property on November 28, 2018 to backfill the remedial excavation. Verification sampling conducted on November 27, 2018 indicated that the import fill meets the Applicable MECP Table 1 SCS.
- Uranium impacts were identified in groundwater sampled from monitoring well MW1D-17. The elevated levels of uranium are considered by the QP_{ESA} to be naturally occurring, and not contamination as defined in the Environmental Protection Act. As such, the groundwater the Phase Two Property is considered to meet the Table 1 SCS.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of November 27, 2018. No further sub-surface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property. A Record of Site Condition may be filed for the Phase Two Property based on the findings of this investigation.

6.1 Qualifications of the Assessors

Ms. Aphrodite Koseos, B.Sc., EPt.

Ms. Koseos is an Environmental Technician with DS Consultants Ltd. Aphrodite holds a Bachelor of Science Degree from Simon Fraser University with a major in Environmental Science and a specialization in Earth Systems. Aphrodite is also registered as an environmental professional in training with ECO Canada. Aphrodite has had several years of experience in the environmental sector conducting Phase One and Phase Two Environmental Site Assessments.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Fioravanti is the Manager of Environmental Services with DS Consultants Limited. Patrick holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over eight years of environmental consulting experience and has conducted and/or managed over 100 projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment. He has conducted work across southern and eastern Ontario, and Quebec in his professional experience. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

6.2 Signatures

This Phase Two ESA was conducted under the supervision of Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Ahoseos

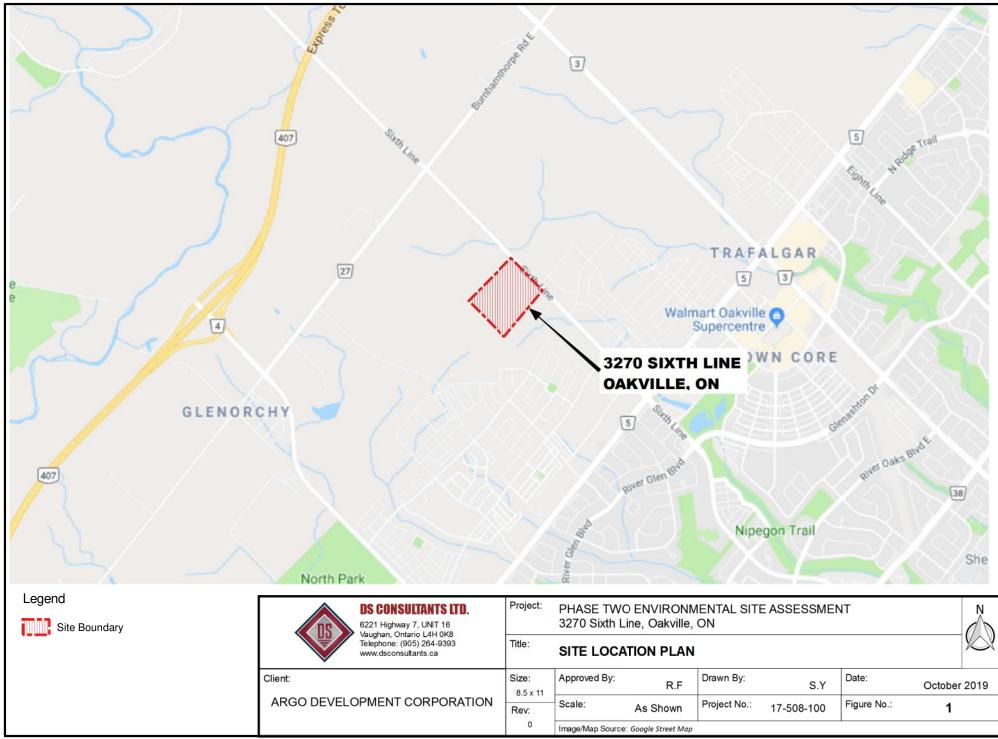
Aphrodite Koseos, B.Sc., EPt. Environmental Technician

Patrick Fioravanti, B.Sc., P.Geo., Manager – Environmental Services

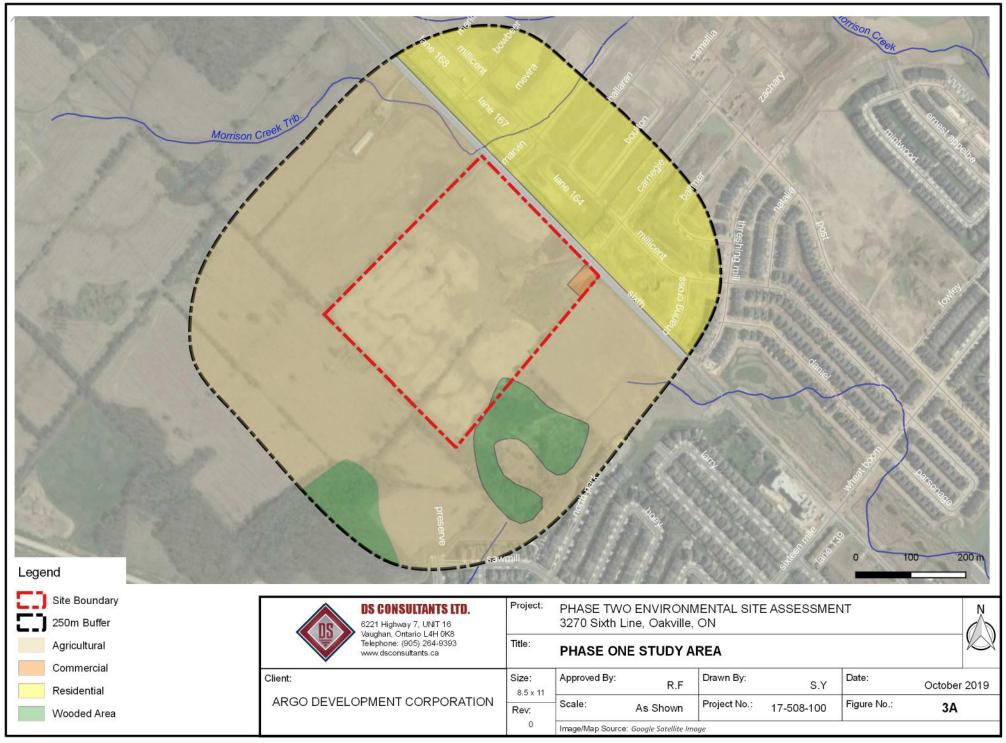
6.3 Limitations

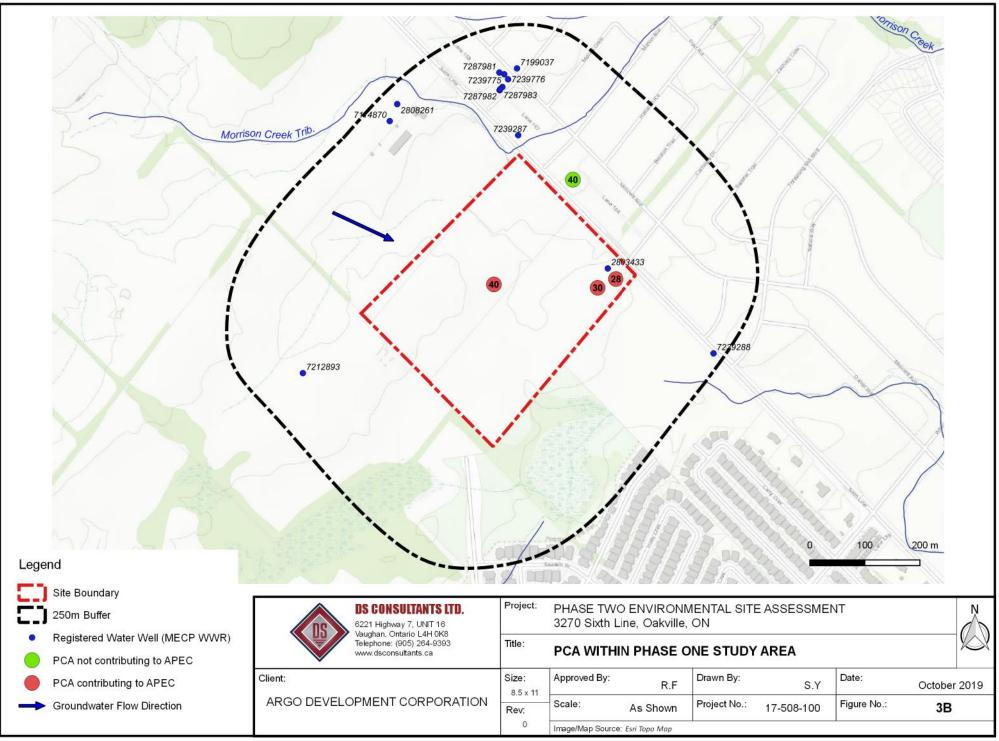
This report was prepared for the sole use of Argo (West Morrison Creek) Limited and is intended to provide an assessment of the environmental condition on the property located at 3270 Sixth Line, Oakville, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

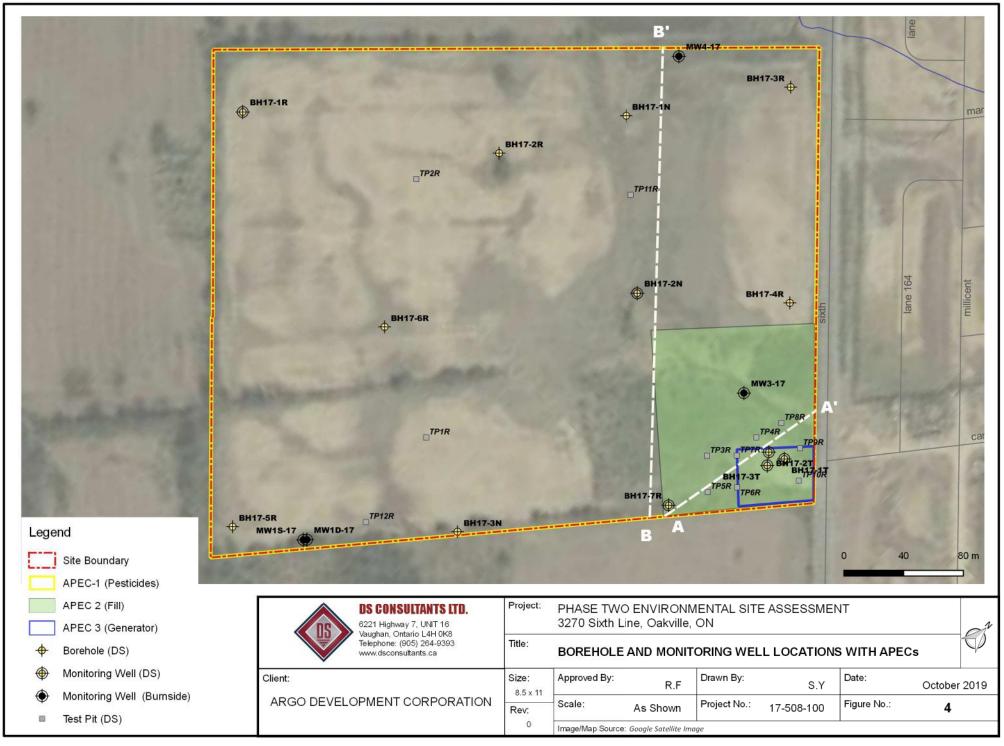
The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

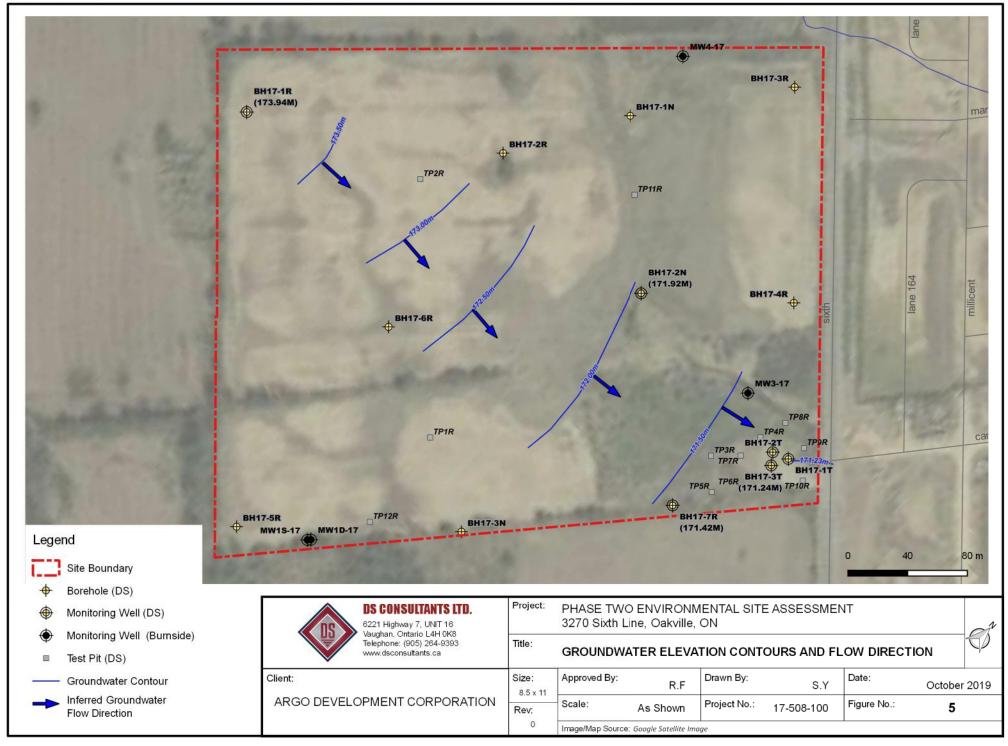

7.0 References

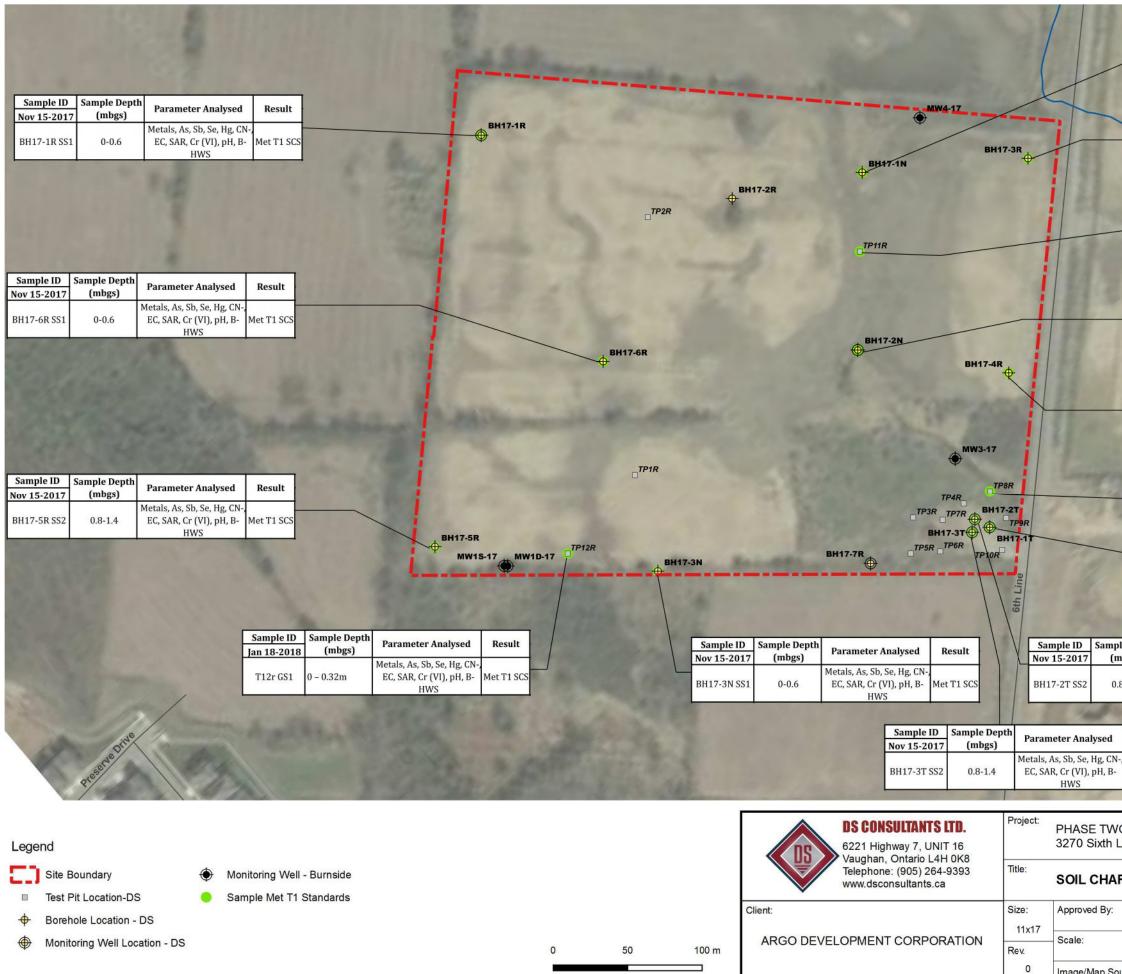
- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.1of the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.

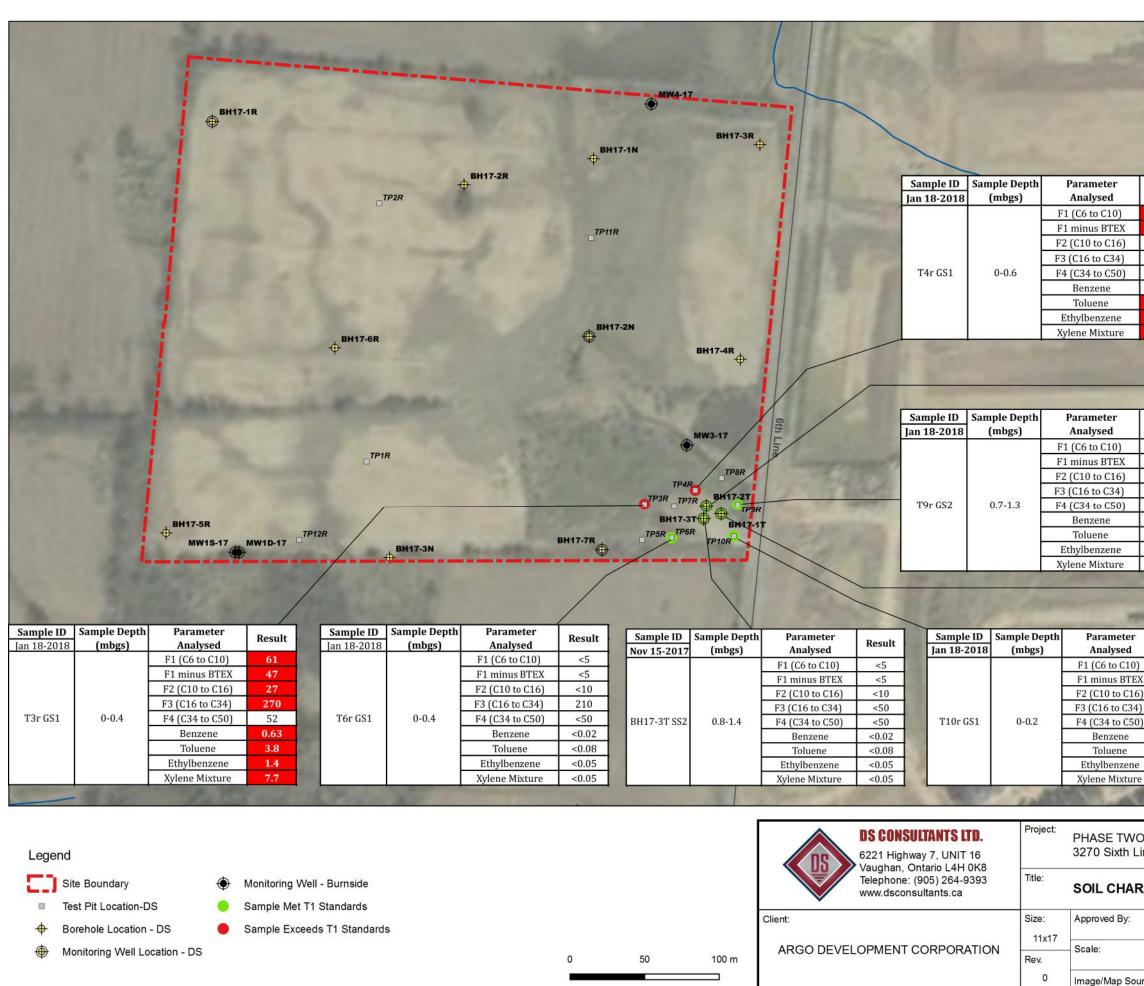

- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. *Surficial Geology of Southern Ontario*.




Figures



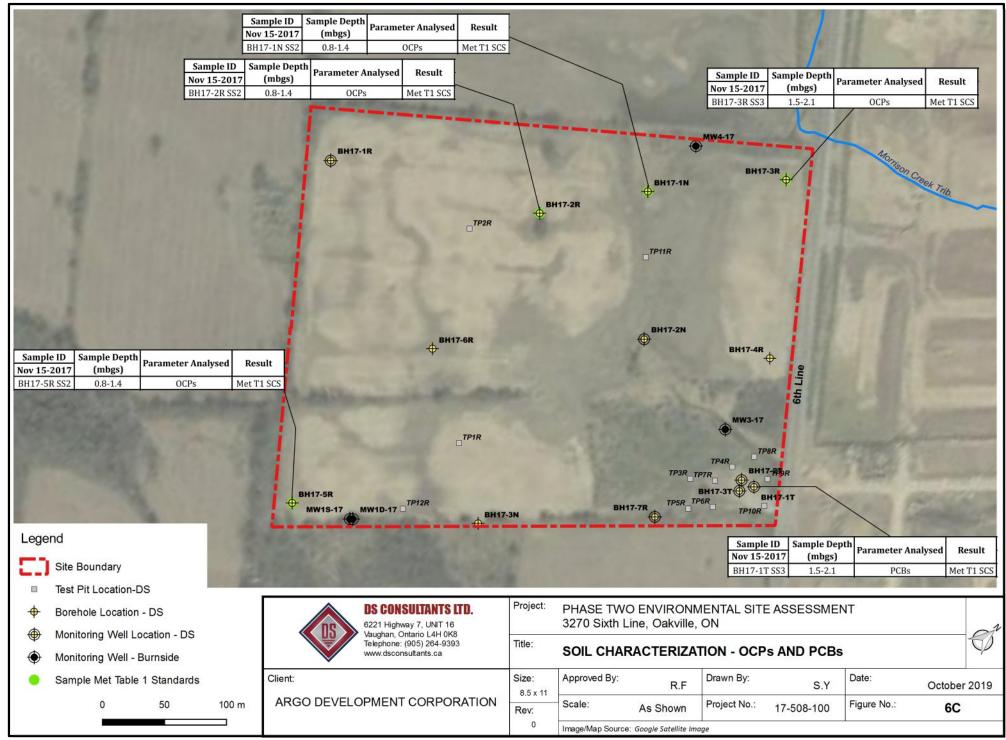




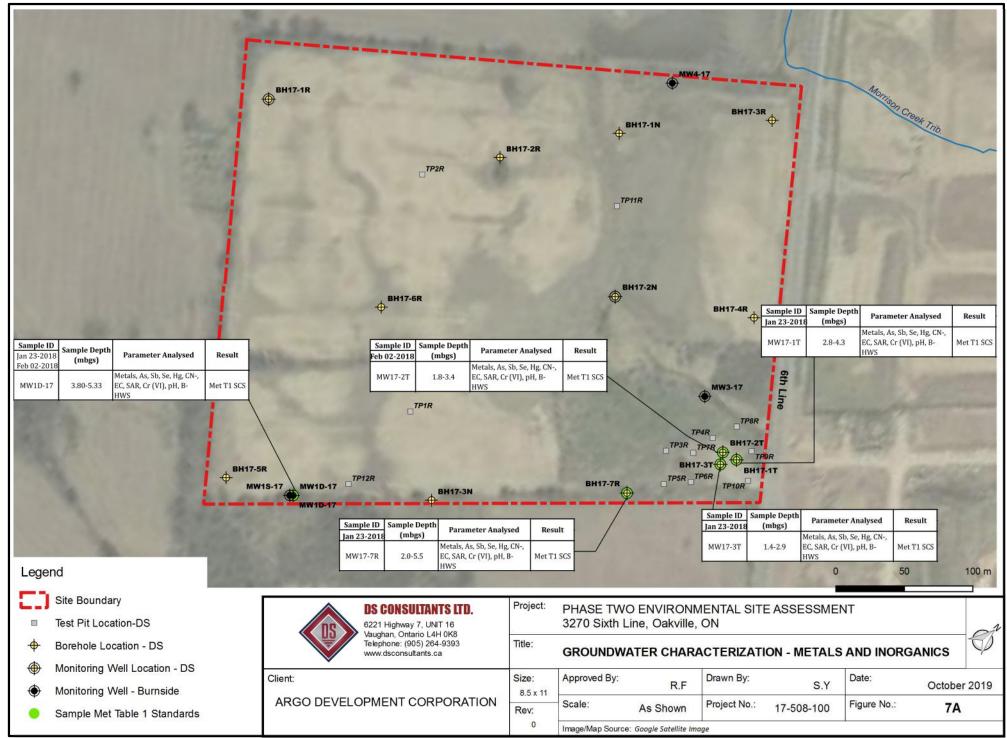
	Sample Nov 15-2		Sample I (mb	107	Parameter	Analysed	Result
	BH17-1N		0.8-:		Metals, As, Sb EC, SAR, Cr (HW	(VI), pH, B-	Met T1 SCS
	Sample Nov 15-2		Sample (mb		Parameter	Analysed	Result
-	BH17-3R		1.5-2		Metals, As, Sb EC, SAR, Cr (VI), pH, B-	Met T1 SCS
	1			100	HW	/5	
	Sample Jan 18-2		Sample (mbg		Parameter	Analysed	Result
-	T11r G		0 – 0.32n		Metals, As, Sb, EC, SAR, Cr (HW	VI), pH, B-	Met T1 SCS
	Sample	ID	Sample	Donth	202	Real	
	Nov 15-2		(mb		Parameter	100400408 4 0402784480	Result
	BH17-2N	SS1	0-0	.6	Metals, As, Sb, EC, SAR, Cr (HW	VI), pH, B-	Met T1 SCS
	Sample	ID	Sample	Denth	The same of	-	
	Nov 15-2		Sample (mb)	100	Parameter	a se constaña de constaña de	Result
	BH17-4R	SS1	0-0	.6	Metals, As, Sb EC, SAR, Cr (HW	VI), pH, B-	Met T1 SCS
	Comula	ID	Comula	Denth	- Carton	and the	and services
	Sample Jan 18-2		Sample (mbj		Parameter	nandra de la de la	Result
	T8r GS	52	0.9-2	2.0	Metals, As, Sb EC, SAR, Cr (HW	VI), pH, B-	Met T1 SCS
	Sample	ID	Sample	Depth	Parameter	Analyzed	Popult
	Nov 15-2 BH17-1T	2017	(mb)		Parameter Metals, As, Sb EC, SAR, Cr (, Se, Hg, CN-	Result Met T1 SCS
	100	1		1.0	HW		and the second
h	Paramete	er An	alysed	Rest	ult -	1	1
	Metals, As, EC, SAR, C			Met T1	SCS	1	
Contraction of the local distribution of the		-		and the	1		
ult	L .		1 M		50	1.2	and the
S	ics				3		
	RONMEN kville, ON		LSITE	ASSE	SSMENT		
E	RIZATIC	DN -	META	LS A	ND INORC	GANICS	
	R.F	Draw	vn By:		S.Y	Date:	C
s	Shown	Proje	ect No.:	17	-508-100	Figure No.	

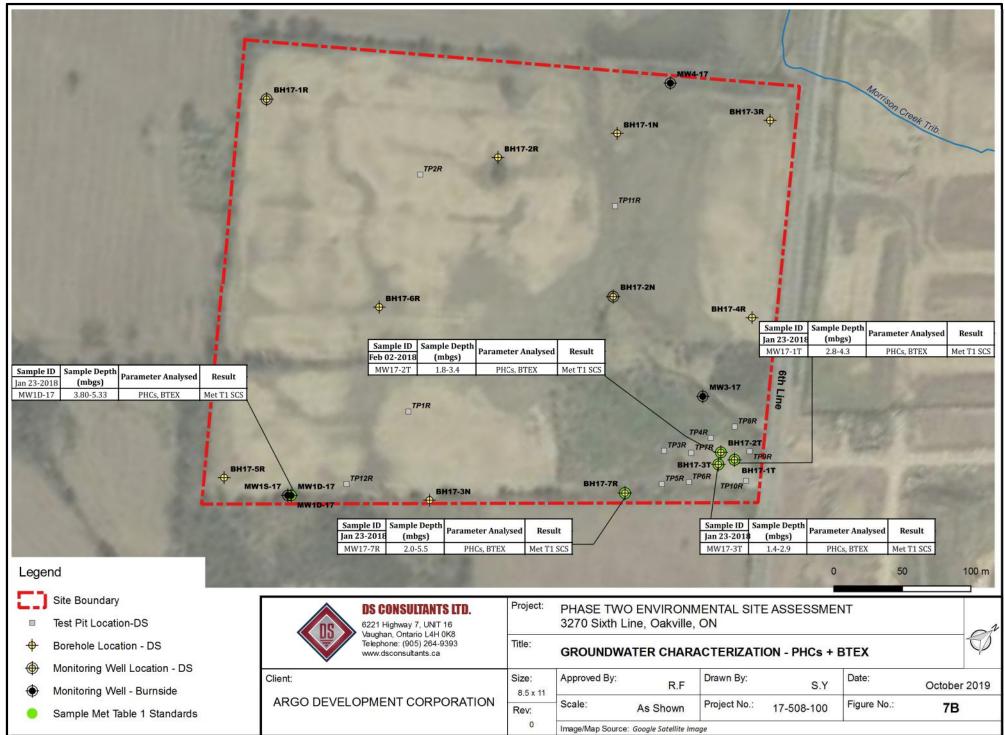
Image/Map Source: Google Satellite Image

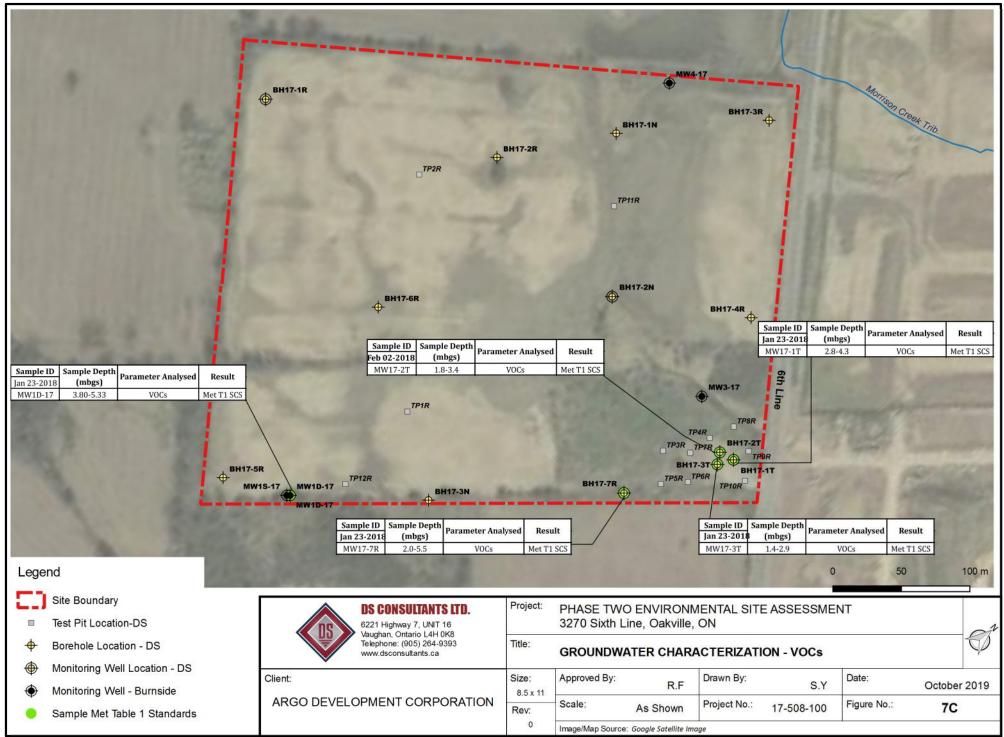
· PHCs.qgs tion ਠ Soil 68 2019\Figu ber ≥ Oakville\1-QGIS\Ph chetti, Mar 508-20 on/17-C:\0Sha

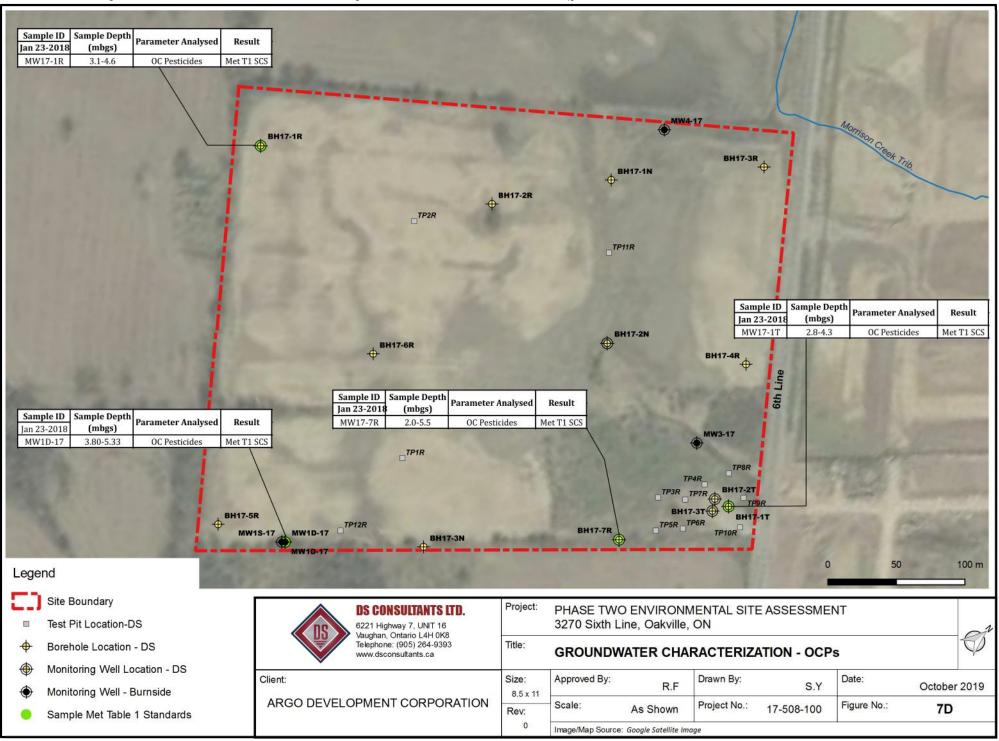

			/			1-
			1			
	1	_				
R	esult					
	32	1				
	30					
ŝ	<10					
2	<50					
	<50				and the second	
<	< 0.02		Sample ID	Sample Depth	Parameter	
	0.57		Nov 15-2017	(mbgs)	Analysed	Result
1	0.16				F1 (C6 to C10)	<5
	1.6				F1 minus BTEX	<5
				1	F2 (C10 to C16)	<10
				1	F3 (C16 to C34)	<50
	1.		BH17-2T SS3	1.5-2.1	F4 (C34 to C50)	<50
				[Benzene	< 0.02
				[Toluene	<0.08
R	esult	1.10			Ethylbenzene	< 0.05
	<5	-			Xylene Mixture	< 0.05
	<5	Carlos and		4		
ş	<10					
	-10					
-	<50	-				
ł			-	1		
1	<50		-	1 dias		
~	<50 <50 <0.02 <0.08		arm 1	Sample Depth	Parameter	
~ ~	<50 <50 <0.02 <0.08 <0.05		Sample ID	Sample Depth		Result
~ ~	<50 <50 <0.02 <0.08		arm 1		Analysed	
~ ~	<50 <50 <0.02 <0.08 <0.05		Sample ID		Analysed F1 (C6 to C10)	<5
~ ~	<50 <50 <0.02 <0.08 <0.05		Sample ID		Analysed F1 (C6 to C10) F1 minus BTEX	
~ ~	<50 <50 <0.02 <0.08 <0.05		Sample ID		Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16)	<5 <5 <10
<	<50 <50 <0.02 <0.08 <0.05		Sample ID	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34)	<5
<	<50 <50 <0.02 <0.08 <0.05	It .	Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16)	<5 <5 <10 <50
<	<50 <50 :0.02 :0.08 :0.05 :0.05 Resu	-	Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50)	<5 <5 <10 <50 <50
~ ~	<50 <50 <0.02 <0.08 <0.05 <0.05 c0.05c0.05c0.05		Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene	<pre> <5 <5 <10 <50 <50 <0.02</pre>
~ ~	<50 <50 <0.02 <0.08 <0.05 <0.05 <0.05 <0.05 <0.05		Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene	<5
~ ~	<50 <50 0.02 0.08 0.05 0.05 Resu <5 <5 <10		Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <50 <50 <50 <0.02 <0.08 <0.05
~ ~ ~	<50 <50 0.02 0.08 0.05 0.05 Resu <5 <5 <10 80		Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <10 <50 <50 <0.02 <0.08 <0.05
~ ~	<50 <50 0.02 0.08 0.05 0.05 Resu <5 <5 <10		Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <10 <50 <50 <0.02 <0.08 <0.05
	<50 <50 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.08 <0.02 <0.08 <0.02 <0.08 <0.02 <0.08 <0.05 <0.02 <0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	2	Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <10 <50 <50 <0.02 <0.08 <0.05
<	<50 <50 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28	Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <50 <50 <50 <0.02 <0.08 <0.05
~ ~	<50 <50 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00 <0.0 <0.	2 8 5	Sample ID Nov 15-201	7 (mbgs)	Analysed F1 (C6 to C10) F1 minus BTEX F2 (C10 to C16) F3 (C16 to C34) F4 (C34 to C50) Benzene Toluene Ethylbenzene	<5 <5 <50 <50 <50 <0.02 <0.08 <0.05

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 3270 Sixth Line, Oakville, ON

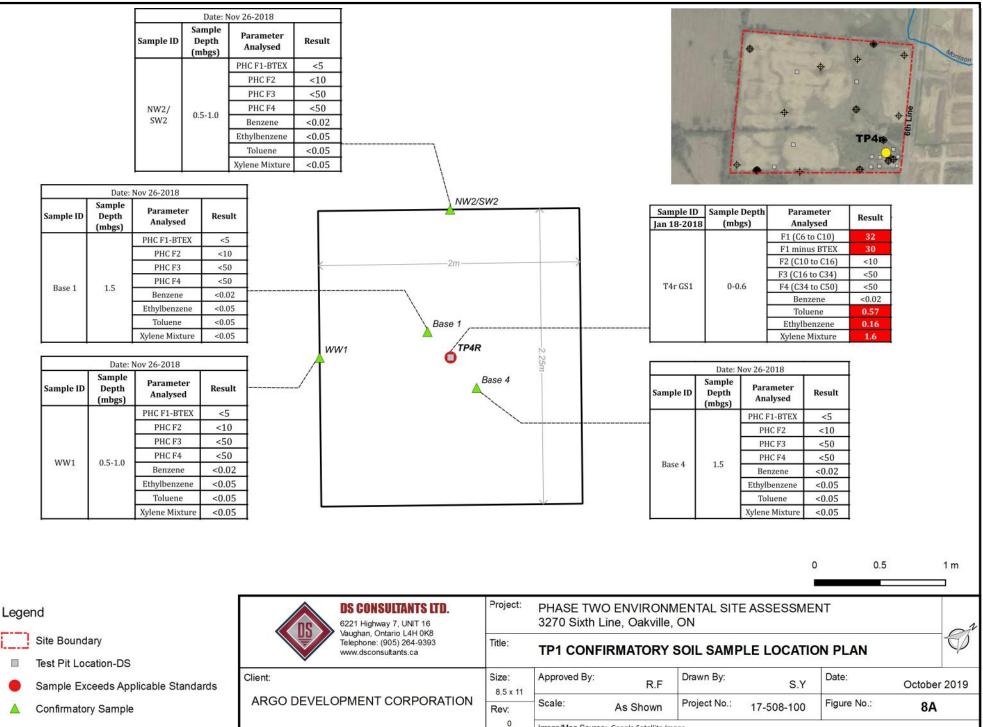

- P

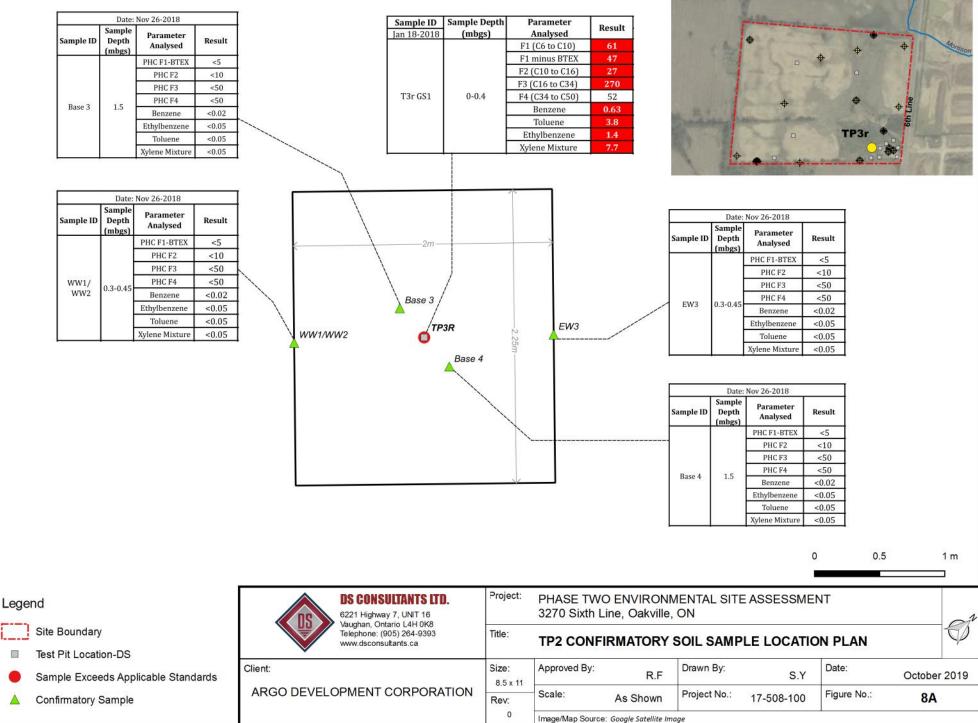

SOIL CHARACTERIZATION - PHCs + BTEX


R.F	Drawn By:	S.Y	Date:	October 2019
As Shown	Project No.:	17-508-100	Figure No.:	6B

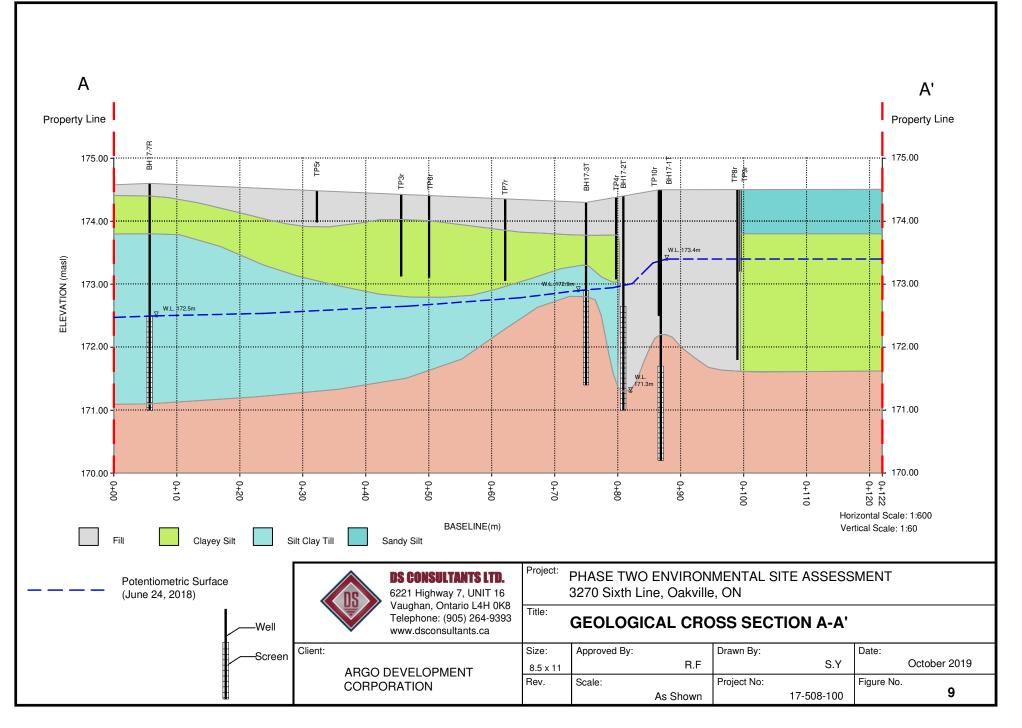


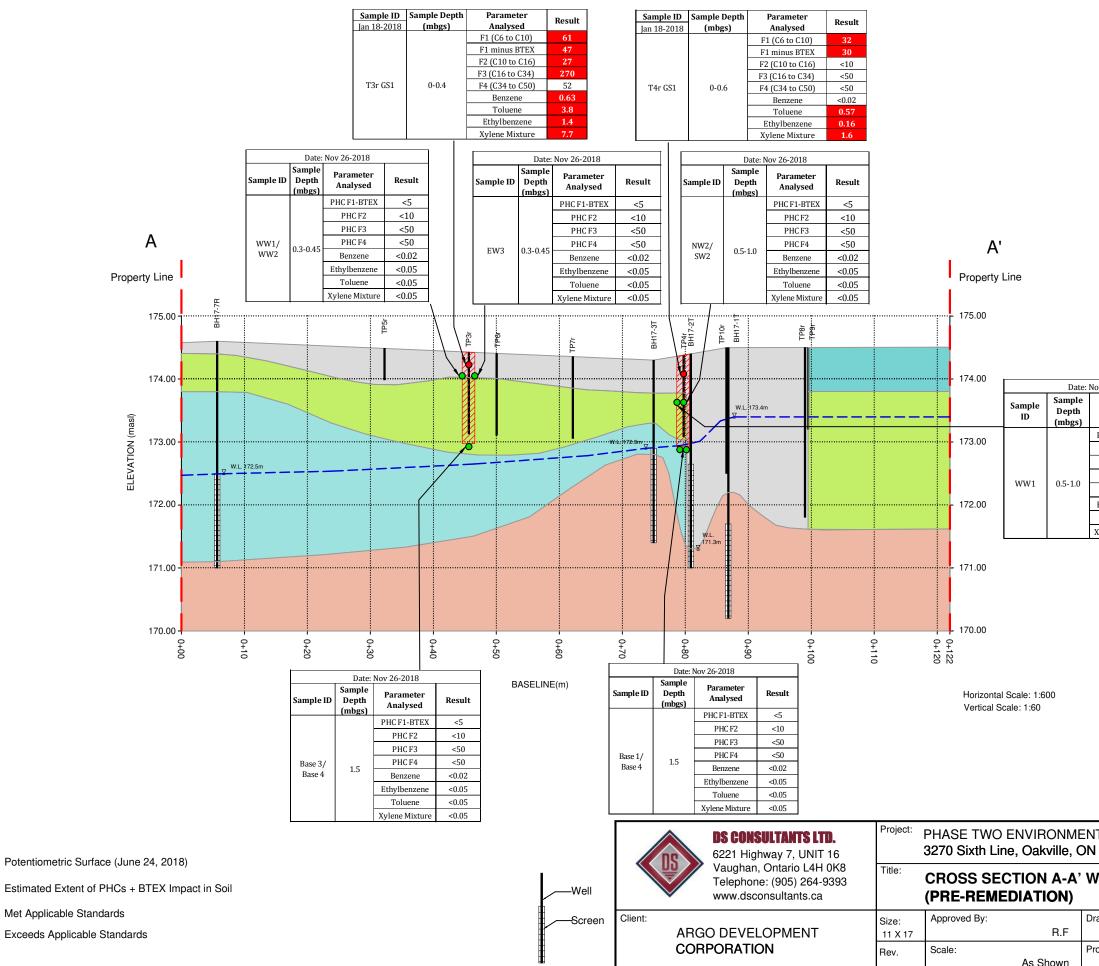
C:\0Sharon\17-508-20 Argo Marchetti, Oakville\1-QGIS\Phase Two\October 2019\Figure 7A - Groundwater Characterization - MI.qgs



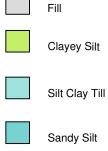


C:\0Sharon\17-508-20 Argo Marchetti, Oakville\1-QGIS\Phase Two\October 2019\Figure 7D - Groundwater Characterization - OCPs.qgs

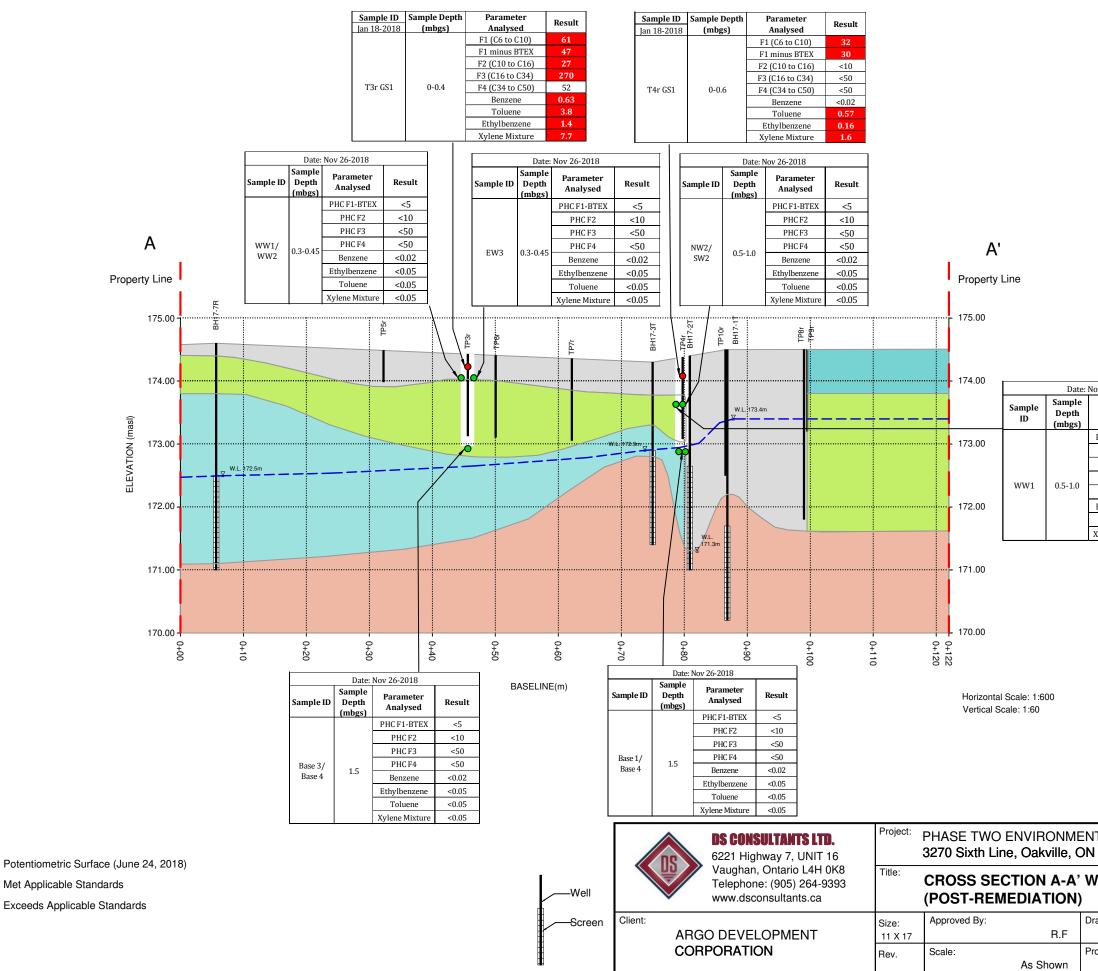



Image/Map Source: Google Satellite Image

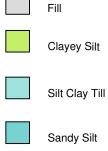
C:\0Sharon\17-508-20 Argo Marchetti, Oakville\1-QGIS\Phase Two\October 2019\Figure 8B- TP3r Confirmatory Soil Sample Location Plan.qgs



Path:c:\0sharon\17-508-20 argo marchetti, oakville\7-misc\cad\geological cross section - marchetti.dwg



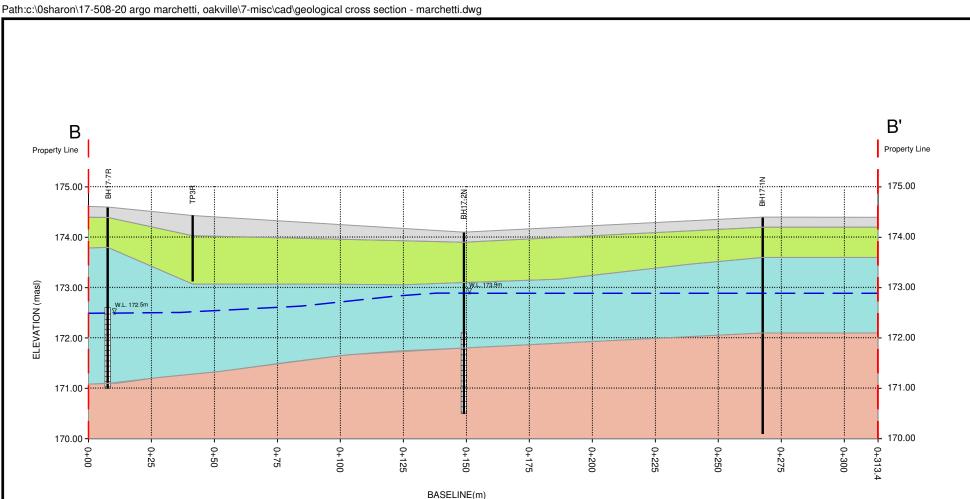
	Date:	Nov 26-2018	
Sample ID	Sample Depth (mbgs)	Parameter Analysed	Result
		PHC F1-BTEX	<5
	0.5-1.0	PHC F2	<10
		PHC F3	<50
WW1		PHC F4	<50
VV VV 1	0.5-1.0	Benzene	< 0.02
		Ethylbenzene	< 0.05
		Toluene	< 0.05
		Xylene Mixture	< 0.05


PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

, ,									
ECTION A-A' WITH PHCs AND BTEX IMPACTS IN SOIL IEDIATION)									
	Drawn By:		Date:						
R.F		S.Y		September 2019					
	Project No:		Figure No.						
As Shown		17-508-100		9A					

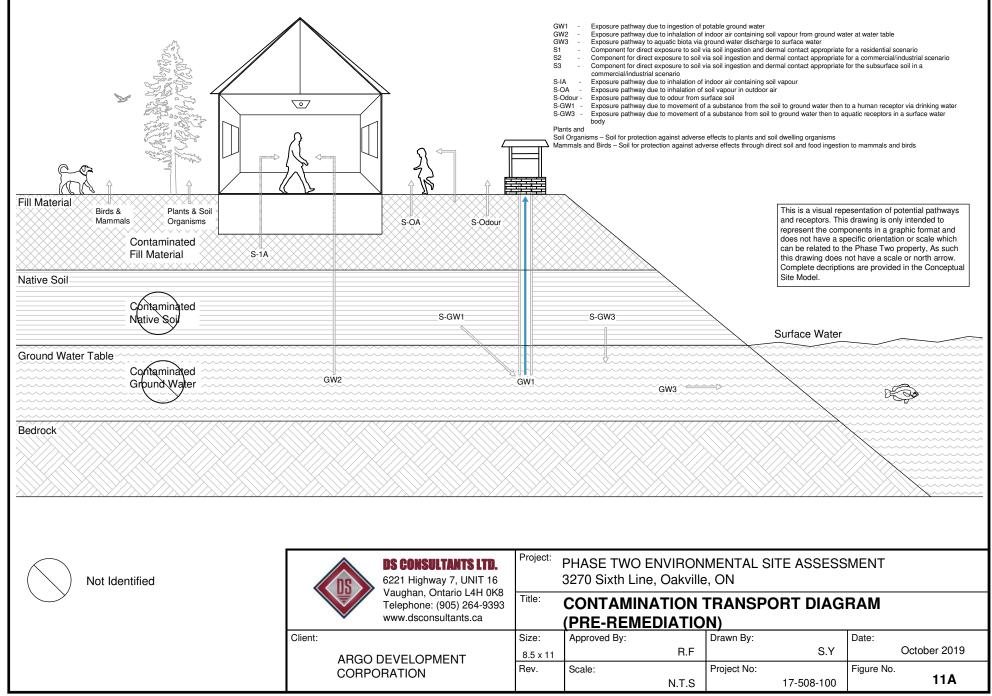
 \circ

	Date:	Nov 26-2018	
Sample ID	Sample Depth (mbgs)	Parameter Analysed	Result
		PHC F1-BTEX	<5
	0.5-1.0	PHC F2	<10
		PHC F3	<50
WW1		PHC F4	<50
****		Benzene	< 0.02
		Ethylbenzene	< 0.05
		Toluene	< 0.05
		Xylene Mixture	< 0.05

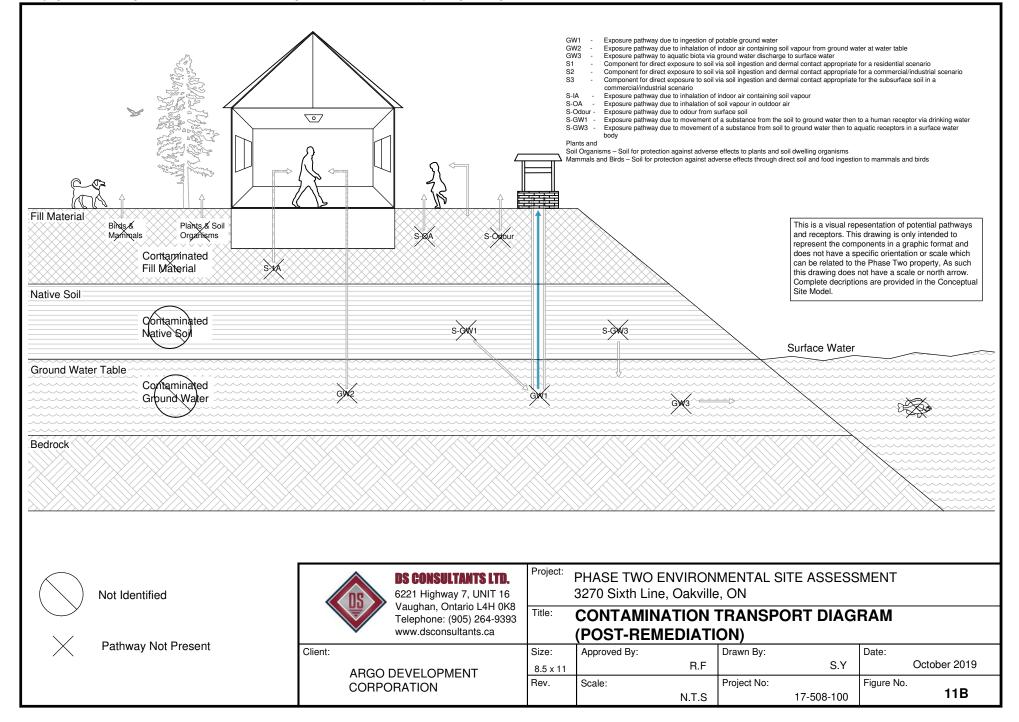


9B

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT


ECTION A-A' WITH PHCs AND BTEX IMPACTS IN SOIL MEDIATION)								
	Drawn By:		Date:					
R.F		S.Y		September 2019				
	Project No:		Figure No.					

17-508-100



Path:j:/-gis/17-508-20 argo marchetti, oakville/7-misc/cad/figure 11 - contaminant transport diagram.dwg

Path:j:/-gis\17-508-20 argo marchetti, oakville\7-misc\cad\figure 11 - contaminant transport diagram.dwg

Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

	Well ID		BH17-1T	BH17-2T	BH17-3T	BH17-2N	BH17-7R	BH17-1R	MW3-17	MW4-17	MW1S-17	MW1D-17	
	Installed By:		DS	DS	DS	DS	DS	DS	Burnside	Burnside	Burnside	Burnside	
Ir	stallation Date:		15-Nov-17	15-Nov-17	15-Nov-17	15-Nov-17	15-Nov-17	14-Nov-17	23-Jun-17	13-Jun-17	12-Jun-17	20-Jun-17	
	Well Status:		Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	
Inner Diameter		(mm)	50	50	50	50	50	50	50	50	50	50	
Surface Elevatio		(masl)	174.48	177.44	174.33	174.10	174.60	177.20	174.54	177.17	175.04	174.98	
Bottom of Conci of Bentonite Sea		mbgs	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
		masl	174.18	177.14	174.03	173.80	174.30	176.90	174.24	176.87	174.74	174.68	
Bottom of Bento of Sand Pack	onite Seal/Top	mbgs	2.10	1.50	1.20	1.50	1.50	2.50	1.83	2.74	1.37	3.65	
		masl	172.38	175.94	173.13	172.60	173.10	174.70	172.71	174.43	173.67	171.33	
Top of Well Scre	een	mbgs	2.80 171.68	1.80 175.64	1.40 172.93	2.00 172.10	2.00 172.60	3.10 174.10	2.25 172.29	3.10 174.07	1.70 173.34	3.80 171.18	
Well Screen Len	ath	masl m	1/1.08	1/5.64	172.93	1/2.10	3.50	1/4.10	0.80	0.70	0.59	1/1.18	
Wen bereen hen	gui	mbgs	4.30	3.40	2.90	3.50	5.50	4.60	3.05	3.81	2.29	5.33	
Bottom of Well	Screen	masl	170.18	174.04	171.13	170.30	168.80	172.30	171.19	173.06	172.45	169.35	
GW													
041145	Depth to GW	mbgs			N				2.34	2.22	Dry	3.30	
26-Jul-17	GW Elevation	masl			Not const	Not constructed yet				174.95	-	171.68	
	Depth to GW	mbgs	Dry	3.12	Dry	Dry	Dry	Dry	Dry	2.85	Dry	4.96	
16-Nov-17	GW Elevation	masl	-	174.32	-	-	-	-	-	174.32	-	170.02	
22/24 Nov 17	Depth to GW	mbgs	2.82	2.00	2.18	2.53	Dry	4.49	3.01	1.99	2.25	2.25 4.66	
23/24-Nov-17	GW Elevation	masl	171.66	175.44	172.15	171.57	-	172.71	171.53	175.18	172.79	170.32	
09-Jan-18	Depth to GW	mbgs	3.28	3.14	Dry	Dry	Dry	4.57	Dry	2.75	Dry	5.08	
09-jan-10	GW Elevation	masl	171.20	174.30	-	-	-	172.63	-	174.42	-	169.90	
18-Jan-18	Depth to GW	mbgs	2.23	NM	1.37	2.47	2.51	4.60	NM	NM	NM	NM	
10 jan 10	GW Elevation	masl	172.25	NM	172.96	171.63	172.09	172.60	NM	NM	NM	NM	
24-Jan-18	Depth to GW	mbgs	1.10	NM	0.56	1.16	2.13	4.60	NM	NM	NM	NM	
21 jun 10	GW Elevation	masl	173.38	NM	173.77	172.94	172.47	172.60	NM	NM	NM	NM	
25-Jan-18	Depth to GW	mbgs	NM	NM	NM	NM	1.54	4.48	2.44	1.35	2.24	3.62	
20 jun 10	GW Elevation	masl	NM	NM	NM	NM	173.06	172.72	172.10	175.82	172.80	171.36	
28-Feb-18	Depth to GW	mbgs	0.85	-0.06	0.17	0.24	0.72	2.43	0.95	0.57	2.15	1.71	
_0.00.10	GW Elevation	masl	173.63	177.50	174.16	173.86	173.88	174.77	173.59	176.60	172.89	173.27	
19-Apr-18	Depth to GW	mbgs	0.59	-0.10	NM	NM	0.38	1.75	0.67	0.07	0.79	1.35	
17 110	GW Elevation	masl	173.89	177.54	NM	NM	174.22	175.45	173.87	177.10	174.25	173.63	
31-Jul-18	Depth to GW	mbgs	3.25	2.83	2.69	2.18	3.18	3.26	2.76	2.24	2.18	3.75	
51-jui-10	GW Elevation	masl	171.23	174.61	171.64	171.92	171.42	173.94	171.78	174.93	172.86	171.23	

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated / Rationale
BH17-1R	SS-1	0.0-0.6	Clayey silt	Metals and Inorganics	Assess background soil conditions
BH17-BR SS-1	Duplicate of BH- 17-1R SS-1	0.0-0.6	Clayey silt	Metals and Inorganics	Assess background soil conditions
BH17-3R	SS-3	1.5-2.1	Silty Clay Till	Metals and Inorganics, OCPs	APEC-1
BH17-4R	SS-1	0.0-0.61	Clayey silt	Metals and Inorganics	Assess background soil conditions
BH17-5R	SS-2	0.75-1.35	Silty Clay Till	Metals and Inorganics, OCPs, PCBs	APEC-1
BH17-AR SS-2	Duplicate of BH17-5R SS-2	0.75-1.35	Silty Clay Till	Metals and Inorganics, OCPs, PCBs	APEC-1
BH17-6R	SS-1	0-0.6	Clayey silt	Metals and Inorganics	Assess background soil conditions
	SS-2	0.75-1.35	Fill	PHCs and BTEX	APEC-3
BH17-1T	SS-3	1.5-2.1	Fill	Metals and Inorganics, OCPs, PCBs	APEC-2
BH17-2T	SS-2	0.75-1.35	5 Fill Metals and i		APEC-2
	SS-3	1.5-2.1	Fill	PHCs and BTEX	APEC-3
BH17-AT SS2	Duplicate of BH17-2T SS-2	0.75-1.35	Fill	Metals and Inorganics	APEC-2
BH17-3T	SS-2	0.75-1.35	Fill/Silty Clay Till	Metals and Inorganics, PHCs and BTEX	APEC-2, APEC-3
BH17-BT SS2	Duplicate of BH17-3T-SS-2	0.75-1.35	Fill/Silty Clay Till	PHCs and BTEX	APEC-3
BH17-1N	SS-2	0.75-1.35	Silty Clay Till	Metals and Inorganics, OCPs, PCBs	APEC-1
BH17-2N	SS-1	0.0-0.6	Clayey silt	Metals and Inorganics	Assess background soil conditions
BH17-3N	SS-1	0.0-0.6	Clayey silt	Metals and Inorganics	Assess background soil conditions
TP3r	GS1	0-0.4	Fill	PHCs and BTEX	APEC-2, APEC-3
TP3r	GS0Dup	0-0.4	Fill	PHCs and BTEX	Duplicate of TP3r GS1
TP4r	GS1	0-0.6	Fill	PHCs and BTEX	APEC-2, APEC-3
TP6r	GS1	0-0.4	Fill	PHCs and BTEX	APEC-2, APEC-3
TP8r	GS2	0.9-2.0	Fill	Metals and Inorganics	APEC-2, APEC-3
TP9r	GS2	0.7-1.3	Fill	PHCs and BTEX	APEC-2, APEC-3
TP10r	GS1	0-0.2	Fill	PHCs and BTEX	APEC-2, APEC-3
TP10r	GS0Dup	0-0.2	Fill	PHCs and BTEX	Duplicate of TP10r GS1
TP11r	GS1	0-0.5	Fill	Metals and Inorganics	APEC-2, APEC-3

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated / Rationale
TP12r	GS1	0-0.5	Fill	Metals and Inorganics	APEC-2, APEC-3

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section

Table 5. Summary of oronnewater Samples Submittee for Gremital Analysis										
Well ID			reen (masl)	Sample Date	Parameter Analyzed	APEC Investigated				
BH17-1T	170.18	1	171.68	23-Jan-18	Metals and inorganics, PHCs. VOCs, OCPs	APEC-1, APEC-3				
DUP-1 (BH17- 1T)	170.18	1	171.68	23-Jan-18	Metals and inorganics, PHCs. VOCs, OCPs	APEC-1, APEC-3				
BH17-2T	174.04	1	175.64	02-Feb-18	Metals and inorganics, PHCs. VOCs	APEC-3				
BH17-3T	171.13	1	172.93	23-Jan-18	Metals and inorganics, PHCs. VOCs	APEC-3				
BH17-2N	170.30	-	172.10	Not Sampled	N/A	N/A				
BH17-7R	168.80	-	172.60	23-Jan-18	Metals and inorganics, PHCs. VOCs, OCPs	APEC-1, APEC-3				
BH17-1R	172.30	-	174.10	Not Sampled	N/A	N/A				
MW3-17	171.19	-	172.29	Not Sampled	N/A	N/A				
MW4-17	173.06	-	174.07	Not Sampled	N/A	N/A				
MW1S-17	172.45	-	173.34	Not Sampled	N/A	N/A				
MW1D-17	169.35	-	171.18	23-Jan-18	Metals and inorganics, PHCs. VOCs	APEC-3				
				02-Feb-18	Uranium	N/A				

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table 4: Summary of APECs Investigated

APEC	Description	PCOCs	Media	Borehole Within APEC	Samples Analysed	Parameter Analyzed
				BH17-3R	SS-3	OCPs
			Soil	BH17-5R	SS-2	OCPs
			5011	BH17-AR	SS-2	OCPs
	PCA#40: Pesticides (including Herbicides,			BH17-1T	SS-3	OCPs
APEC-1	Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage	OC Pesticides		MW17-1T	-	OCPs
	and Large-Scale Applications			DUP-1	-	OCPs
			Groundwater	MW 1D-17	-	OCPs
				MW17-7R	-	OCPs
				MW17-1R	-	OCPs
				BH17-1T	SS-2	PHCs and BTEX
		Metals, As, Sb, Se, B-HWS, CN-, electrical			SS-3	M&I
					SS-2	M&I
				BH17-2T	SS-3	PHCs and BTEX
				BH17-AT	SS-2	M&I
				BH17-3T	SS-2	M&I, PHCs and BTEX
				BH17-BT	SS-2	PHCs and BTEX
				TD2 -	GS1	PHCs and BTEX
APEC-2	PCA# 30 - Importation of Fill Material of Unknown Quality	conductivity, Cr (VI), Hg,	Soil	TP3r	GS0Dup	PHCs and BTEX
		low or high pH, SAR,		TP4r	GS1	PHCs and BTEX
		PHCs, BTEX		TP6r	GS1	PHCs and BTEX
				TP8r	GS2	M&I
				TP9r	GS2	PHCs and BTEX
				TP10r	GS1	PHCs and BTEX
				11101	GS0Dup	PHCs and BTEX
				TP11r	GS1	M&I
				TP12r	GS1	M&I

Table 4: Summary of APECs Investigated

APEC	Description	PCOCs	Media	Borehole Within APEC	Samples Analysed	Parameter Analyzed
				BH17-1T	SS2	PHCs and BTEX
		PHCs and BTEX	Soil	BH17-2T	SS3	PHCs and BTEX
				BH17-3T	SS-2	PHCs and BTEX
				BH17-BT	SS-2	PHCs and BTEX
	Historical use of the Property for a Rogers Communication Tower with backup generator			TP3r	GS1	PHCs and BTEX
					GS0Dup	PHCs and BTEX
				TP4r	GS1	PHCs and BTEX
APEC-3				TP6r	GS1	PHCs and BTEX
				TP9r	GS2	PHCs and BTEX
				TP10r	GS1	PHCs and BTEX
					GS0Dup	PHCs and BTEX
			Groundwater	BH17-1T	-	PHCs and VOCs
				BH17-2T	-	PHCs and VOCs
				BH17-3T	-	PHCs and VOCs

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table 5: Summary of Metals and Inorganics in Soil

Parameter		BH-17-1R SS-1	BH-17-BR SS-1 (BH-17-1R SS-1)	BH-17-3R SS-3	BH-17-4R SS-1	BH-17-5R SS-2	BH-17-AR SS-2 (BH-17-5R SS-2)	
Date of Collection	MECP	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	
Date Reported	Table 1 SCS	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	
Sampling Depth (mbgs)		0.0 - 0.6	0.0 - 0.6	1.5 - 2.1	0.0 - 0.6	0.75 - 1.35	0.75-1.37	
Analytical Report Reference No.		8924500	8924516	8924502	8924504	8924505	8924508	
Antimony	1.3	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	18	6	6	6	6	5	5	
Barium	220	80	77	109	90	93	89	
Beryllium	2.5	0.7	0.6	0.6	0.8	0.6	0.6	
Boron	36	6	8	11	6	10	9	
Boron (Hot Water Soluble)	NA	0.12	0.15	0.68	0.16	0.12	0.12	
Cadmium	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	70	24	23	23	24	21	21	
Cobalt	21	13.3	13.6	15.2	13	13.4	13	
Copper	92	30	23	37	25	35	36	
Lead	120	16	14	15	16	13	13	
Molybdenum	2	0.5	<0.5	0.8	<0.5	0.7	0.6	
Nickel	82	27	24	29	29	26	24	
Selenium	1.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Silver	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Uranium	2.5	0.5	0.5	1.1	<0.5	0.6	0.6	
Vanadium	86	31	30	28	31	27	27	
Zinc	290	62	61	63	64	58	59	
Chromium VI	0.66	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide	0.051	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	
Mercury	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity	0.57	0.212	0.199	0.201	0.249	0.123	0.123	
Sodium Adsorption Ratio	2.4	0.095	0.201	0.581	0.207	0.087	0.084	
pH, 2:1 CaCl2 Extraction		7.59	7.49	7.79	7.36	7.67	7.62	

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section

Table 5: Summary of Metals and Inorganics in Soil

Parameter		BH-17-6R SS-1	BH-17-1N SS-2	BH-17-2N SS-1	BH-17-1T SS-3	BH-17-2T SS-2	BH-17-AT SS-2 (BH-17-2T SS-2)	
Date of Collection	MECP	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	
Date Reported	Table 1 SCS	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	
Sampling Depth (mbgs)		0.0-0.6	0.75-1.35	0.0-0.6	1.5-2.1	0.75-1.35	0.75-1.35	
Analytical Report Reference No.		8924509	8924510	8924511	8924521	8924522	8924745	
Antimony	1.3	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	18	6	6	6	6	5	4	
Barium	220	100	111	120	163	90	109	
Beryllium	2.5	0.7	0.6	0.7	0.7	0.6	0.7	
Boron	36	6	8	<5	16	14	<5	
Boron (Hot Water Soluble)	NA	<0.10	0.15	0.23	0.22	0.4	0.26	
Cadmium	1.2	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	
Chromium	70	29	24	26	25	22	25	
Cobalt	21	13.7	13.7	15.7	15.7	11.9	11.1	
Copper	92	25	27	14	8	18	13	
Lead	120	16	22	18	17	16	16	
Molybdenum	2	<0.5	0.6	0.5	1	0.8	0.6	
Nickel	82	28	28	22	30	23	22	
Selenium	1.5	0.5	0.4	0.8	0.9	<0.4	0.5	
Silver	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	1	<0.4	<0.4	<0.4	0.7	<0.4	< 0.4	
Uranium	2.5	0.6	0.6	1.3	0.6	< 0.5	1.1	
Vanadium	86	35	31	37	29	23	28	
Zinc	290	65	63	76	63	88	75	
Chromium VI	0.66	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide	0.051	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	
Mercury	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity	0.57	0.331	0.28	0.382	0.18	0.252	0.32	
Sodium Adsorption Ratio	2.4	0.091	1.46	2.15	0.295	0.192	0.153	
pH, 2:1 CaCl2 Extraction		7.07	7.57	6.97	7.34	7.62	7.27	

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section

Table 5: Summary of Metals and Inorganics in Soil

Parameter		BH-17-3T SS-2	BH-17-3N SS-1	TP8r GS2	TP11r GS1	TP12r GS1
Date of Collection	MECP	15-Nov-2017	15-Nov-2017	22-Jan-2018	22-Jan-2018	22-Jan-2018
Date Reported	Table 1 SCS	30-Nov-2017	30-Nov-2017	31-Jan-2018	31-Jan-2018	31-Jan-2018
Sampling Depth (mbgs)		0.75 - 1.35	0.0-0.6	0.9-2.0	0.0-0.5	0.0-0.5
Analytical Report Reference No.		8924738	8932678	9028451	9028452	9028454
Antimony	1.3	<0.8	<0.8	1.2	<0.8	<0.8
Arsenic	18	5	5	7	4	5
Barium	220	105	89	99	88	66
Beryllium	2.5	0.6	0.7	0.7	0.8	0.6
Boron	36	10	5	7	<5	6
Boron (Hot Water Soluble)	NA	0.34	0.12	0.47	0.81	0.11
Cadmium	1.2	1.2	<0.5	0.8	<0.5	< 0.5
Chromium	70	21	27	17	19	18
Cobalt	21	12.4	12.8	11.3	8.3	11.7
Copper	92	21	35	35	18	27
Lead	120	14	18	61	19	13
Molybdenum	2	0.6	0.7	0.8	<0.5	<0.5
Nickel	82	25	35	19	20	25
Selenium	1.5	<0.4	<0.4	0.6	0.6	0.4
Silver	0.5	<0.2	<0.2	<0.2	<0.2	< 0.2
Thallium	1	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	2.5	<0.5	0.5	0.7	1	<0.5
Vanadium	86	26	26	24	23	20
Zinc	290	232	81	274	87	62
Chromium VI	0.66	<0.2	<0.2	<0.2	<0.2	< 0.2
Cyanide	0.051	<0.040	< 0.040	<0.040	<0.040	< 0.040
Mercury	0.27	<0.10	<0.10	0.13	<0.10	<0.10
Electrical Conductivity	0.57	0.184	0.164	0.258	0.231	0.168
Sodium Adsorption Ratio	2.4	0.217	0.18	0.116	1.82	0.115
pH, 2:1 CaCl2 Extraction		7.6	7.38	7.24	6.41	7.26

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section Project No.: 17-508-100 Phase Two ESA 3270 Sith Line, Oakville, ON

Table 6: Summary of PHCs and BTEX in Soil

Parameter		BH-17-1T-SS-2	BH-17-2T-SS-3	BH-17-3T-SS-2	BH-17-BT-SS-2 (BH- 17-3T-SS-2)	TP3r GS1
Date of Collection		15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017	18-Jan-2018
Date Reported		30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017	31-Jan-2018
Sampling Depth (mbgs)		0.75 - 1.35	1.5 - 2.1	0.75 - 1.35	0.75 - 1.35	0.0-0.4
Analytical Report Reference No.		8924520	8924730	8924738	8924747	9028448
Benzene	0.02	< 0.02	< 0.02	< 0.02	<0.02	0.63
Toluene	0.2	<0.08	<0.08	< 0.08	<0.08	3.8
Ethylbenzene	0.05	< 0.05	< 0.05	< 0.05	<0.05	1.4
Xylene Mixture	0.05	< 0.05	< 0.05	< 0.05	<0.05	7.7
F1 (C6 to C10)	25	<5	<5	<5	<5	61
F1 (C6 to C10) minus BTEX	25	<5	<5	<5	<5	47
F2 (C10 to C16)	10	<10	<10	<10	<10	27
F3 (C16 to C34)	240	<50	<50	<50	<50	270
F4 (C34 to C50)	120	<50	<50	<50	<50	52

For Table Notes see Notes for Soil and Groundwater

Summary Tables, included at the end of this Section

Project No.: 17-508-100 Phase Two ESA 3270 Sith Line, Oakville, ON

Table 6: Summary of PHCs and BTEX in Soil

Parameter		TP3r GS0Dup	TP4r GS1	TP6r GS1	TP9r GS2	TP10r GS1
Date of Collection	MECP Table	18-Jan-2018	18-Jan-2018	18-Jan-2018	18-Jan-2018	18-Jan-2018
Date Reported	1 SCS	31-Jan-2018	31-Jan-2018	31-Jan-2018	31-Jan-2018	31-Jan-2018
Sampling Depth (mbgs)		0.0-0.4	0.0-0.6	0.0-0.4	0.7-1.3	0.0-0.2
Analytical Report Reference No.		9028453	9028449	9028450	9028447	9028445
Benzene	0.02	0.81	< 0.02	< 0.02	< 0.02	< 0.02
Toluene	0.2	4.6	0.57	<0.08	<0.08	< 0.08
Ethylbenzene	0.05	1.5	0.16	< 0.05	< 0.05	< 0.05
Xylene Mixture	0.05	9.5	1.6	< 0.05	< 0.05	< 0.05
F1 (C6 to C10)	25	79	32	<5	<5	<5
F1 (C6 to C10) minus BTEX	25	63	30	<5	<5	<5
F2 (C10 to C16)	10	30	<10	<10	<10	<10
F3 (C16 to C34)	240	300	<50	210	<50	<50
F4 (C34 to C50)	120	51	<50	<50	<50	<50

For Table Notes see **Notes for Soil and Groundwater**

Summary Tables, included at the end of this Section

Project No.: 17-508-100 Phase Two ESA 3270 Sith Line, Oakville, ON

Table 6: Summary of PHCs and BTEX in Soil

Parameter		TP10r GS0 Dup	
Date of Collection	MECP Table	18-Jan-2018	
Date Reported	1 SCS	31-Jan-2018	
Sampling Depth (mbgs)		0.0-0.2	
Analytical Report Reference No.		9028446	
Benzene	0.02	< 0.02	
Toluene	0.2	<0.08	
Ethylbenzene	0.05	< 0.05	
Xylene Mixture	0.05	< 0.05	
F1 (C6 to C10)	25	<5	
F1 (C6 to C10) minus BTEX	25	<5	
F2 (C10 to C16)	10	<10	
F3 (C16 to C34)	240	80	
F4 (C34 to C50)	120	<50	

For Table Notes see Notes for Soil and Groundwater

Summary Tables, included at the end of this Section

Table 7: Summary of OCPs in Soil

Parameter		BH-17-3R SS-3	BH-17-5R SS-2	BH-17-AR SS-2 (BH- 17-5R SS-2)	BH-17-1N SS-2
Date of Collection	МЕСР	15-Nov-2017	15-Nov-2017	15-Nov-2017	15-Nov-2017
Date Reported	-	30-Nov-2017	30-Nov-2017	30-Nov-2017	30-Nov-2017
Sample Depth (mbgs)		1.5-2.1	0.75 - 1.35	0.75 - 1.35	0.75 - 1.35
Analytical Report Reference No.		8924502	8924505	8924508	8924510
Hexachloroethane	0.01	<0.01	< 0.01	< 0.01	< 0.01
Gamma-Hexachlorocyclohexane	0.01	<0.005	<0.005	< 0.005	< 0.005
Heptachlor	0.05	<0.005	<0.005	<0.005	< 0.005
Aldrin	0.05	< 0.005	<0.005	<0.005	< 0.005
Heptachlor Epoxide	0.05	<0.005	<0.005	< 0.005	< 0.005
Endosulfan	0.04	<0.005	<0.005	< 0.005	< 0.005
Chlordane	0.05	< 0.007	< 0.007	< 0.007	< 0.007
DDE	0.05	< 0.007	< 0.007	< 0.007	< 0.007
DDD	0.05	< 0.007	< 0.007	< 0.007	< 0.007
DDT	1.4	< 0.007	< 0.007	< 0.007	< 0.007
Dieldrin	0.05	<0.005	<0.005	< 0.005	< 0.005
Endrin	0.04	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	0.05	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	0.01	<0.005	<0.005	< 0.005	< 0.005
Hexachlorobutadiene	0.01	< 0.01	< 0.01	<0.01	< 0.01

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section Project No.: 17-508-100 Phase Two ESA 3270 Sith Line, Oakville, ON

Table 8: Summary of PCBs in Soil

Parameter		BH-17-1T SS-3
Date of Collection	MECE	15-Nov-2017
Date Reported	MECP Table 1 SCS	30-Nov-2017
Samaple Depth(mbgs)	10010 1 505	1.5-2.3
Analytical Report Reference No.		8924521
Aroclor 1242		<0.1
Aroclor 1248		<0.1
Aroclor 1254		<0.1
Aroclor 1260		<0.1
Polychlorinated Biphenyls	0.3	<0.1

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section

Table 9: Summary of Metals and Inorganics in Groundwater

Parameter		MW 17 - 1T	DUP-1	MW 17 - 3T	MW 1D - 17	MW1D-17	MW 17 - 7R	MW17-2t
Date of Collection	МЕСР	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	2-Feb-18	23-Jan-18	2-Feb-18
Date Reported	Table 1	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18	8-Feb-18	1-Feb-18	8-Feb-18
Screen Interval (mbgs)	SCS	2.8-4.3	2.8-4.3	1.4-2.9	3.8-5.3	3.8-5.3	2.0-3.5	1.8-3.4
Analytical Report Reference No.		9028692	9028698	9028693	9028694	9043568	9028695	9043569
Antimony	1.5	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0
Arsenic	13	<1.0	<1.0	<1.0	<1.0	-	<1.0	2
Barium	610	60	59	39.4	88.9	-	78	97.5
Beryllium	0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5
Boron	1700	51.6	55.2	123	194	-	42.4	65.4
Cadmium	0.5	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2
Chromium	11	<2.0	<2.0	<2.0	<2.0	-	<2.0	<2.0
Cobalt	3.8	<0.5	<0.5	<0.5	<0.5	-	<0.5	0.5
Copper	5	1.9	1.8	1.6	<1.0	-	1.2	5
Lead	1.9	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5
Molybdenum	23	1.2	1.2	1.3	9.3	-	2.4	4.1
Nickel	14	1.1	1	<1.0	<1.0	-	<1.0	2
Selenium	5	<1.0	1.2	<1.0	3.1	-	<1.0	1.5
Silver	0.3	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2
Thallium	0.5	<0.3	<0.3	<0.3	<0.3	-	<0.3	<0.3
Uranium	8.9	4.4	4.6	2.7	21.4*	22.6*	1.9	2.1
Vanadium	3.9	0.9	1	<0.4	0.8	-	0.6	1.5
Zinc	160	<5.0	<5.0	<5.0	<5.0	-	<5.0	7.1
Mercury	0.1	< 0.02	< 0.02	<0.02	<0.02	-	<0.02	< 0.02
Chromium VI	25	<5	<5	<5	<5	-	<5	<5
Cyanide	5	<2	<2	<2	<2	-	<2	<2
Sodium	490000	19200	19300	19700	11500	-	13300	11300
Chloride	790000	14500	13600	12800	14500	-	12000	11200

For Table Notes see Notes for Soil and Groundwater Summary

Tables, included at the end of this Section

Table 10: Summary of PHCs in Groundwater

Parameter		MW 17 - 1T	DUP-1	MW 17 - 3T	MW 1D - 17	MW 17 - 7R	MW17-2t
Date of Collection	МЕСР	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	2-Feb-18
Date Reported	Table # SCS	1-Feb-18	1-Feb-18	1-Feb-18	8-Feb-18	1-Feb-18	8-Feb-18
Screen Interval (mbgs)		2.8-4.3	2.8-4.3	1.4-2.9	3.8-5.3	2.0-3.5	1.8-3.4
Analytical Report Reference No.		9028692	9028698	9028693	9028694	9028695	9043569
Benzene	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	0.5	<0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10
Toluene	0.8	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (Total)	72	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
F1 (C6 to C10)	420	<25	<25	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	420	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	150	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	500	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	500	<100	<100	<100	<100	<100	<100

For Table Notes see **Notes for Soil and Groundwater Summary Tables,** included at the end of this Section

Table 11: Summary of VOCs in Groundwater

Parameter		MW 17 - 1T	DUP-1	MW 17 - 3T	MW 1D - 17	MW 17 - 7R	MW17-2t
Date of Collection	MECP	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	2-Feb-18
Date Reported	Table 1 SCS	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18
Screen Interval (mbgs)		2.8-4.3	2.0-3.5	1.4-2.9	3.8-5.3	2.0-3.5	1.8-3.4
Analytical Report Reference No.		9028692	9028698	9028693	9028694	9028695	9043569
Acetone	2700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	0.5	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Bromodichloromethane	2	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20
Bromoform	5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bromomethane	0.89	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Carbon Tetrachloride	0.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Chlorobenzene	0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chloroform	2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
cis- 1,2-Dichloroethylene	1.6	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dibromochloromethane	2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dichlorobenzene, 1,2-	0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dichlorobenzene, 1,3-	0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dichlorobenzene, 1,4-	0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dichlorodifluoromethane	590	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dichloroethane, 1,1-	0.5	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Dichloroethane, 1,2-	0.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dichloroethylene, 1,1-	0.5	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Dichloropropane, 1,2-	0.5	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20
Dichloropropene, 1,3-	0.5	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Ethylbenzene	0.5	<0.10	< 0.10	<0.10	< 0.10	<0.10	< 0.10
Ethylene Dibromide	0.2	< 0.10	< 0.10	<0.10	< 0.10	<0.10	< 0.10
Methyl Ethyl Ketone	400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Isobutyl Ketone	640	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl tert-butyl ether	15	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20
Methylene Chloride	5	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
n-Hexane	5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Styrene	0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Tetrachloroethane, 1,1,1,2-	1.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Tetrachloroethane, 1,1,2,2-	0.5	<0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10
Tetrachloroethylene	0.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Toluene	0.8	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
trans- 1,2-Dichloroethylene	1.6	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20
Trichloroethane, 1,1,1-	0.5	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Trichloroethane, 1,1,2-	0.5	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20
Trichloroethylene	0.5	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20
Trichlorofluoromethane	150	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Vinyl Chloride	0.5	<0.17	<0.17	<0.17	< 0.17	<0.17	< 0.17
Xylene Mixture	72	<0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20

For Table Notes see Notes for Soil and

Groundwater Summary Tables, included at

Table 11: Summary of VOCs in Groundwater

Parameter		Field Blank
Date of Collection	MECP	23-Jan-18
Date Reported	Table 1 SCS	1-Feb-18
Screen Interval (mbgs)	1	N/A
Analytical Report Reference No.	1	9028697
Acetone	2700	<1.0
Benzene	0.5	< 0.20
Bromodichloromethane	2	< 0.20
Bromoform	5	<0.10
Bromomethane	0.89	< 0.20
Carbon Tetrachloride	0.2	<0.20
Chlorobenzene	0.5	< 0.10
Chloroform	2	< 0.20
cis- 1,2-Dichloroethylene	1.6	< 0.20
Dibromochloromethane	2	< 0.10
Dichlorobenzene, 1,2-	0.5	< 0.10
Dichlorobenzene, 1,3-	0.5	< 0.10
Dichlorobenzene, 1,4-	0.5	< 0.10
Dichlorodifluoromethane	590	< 0.20
Dichloroethane, 1,1-	0.5	< 0.30
Dichloroethane, 1,2-	0.5	< 0.20
Dichloroethylene, 1,1-	0.5	< 0.30
Dichloropropane, 1,2-	0.5	< 0.20
Dichloropropene, 1,3-	0.5	< 0.30
Ethylbenzene	0.5	< 0.10
Ethylene Dibromide	0.2	< 0.10
Methyl Ethyl Ketone	400	<1.0
Methyl Isobutyl Ketone	640	<1.0
Methyl tert-butyl ether	15	< 0.20
Methylene Chloride	5	< 0.30
n-Hexane	5	<0.20
Styrene	0.5	< 0.10
Tetrachloroethane, 1,1,1,2-	1.1	<0.10
Tetrachloroethane, 1,1,2,2-	0.5	<0.10
Tetrachloroethylene	0.5	<0.20
Toluene	0.8	< 0.20
trans- 1,2-Dichloroethylene	1.6	<0.20
Trichloroethane, 1,1,1-	0.5	< 0.30
Trichloroethane, 1,1,2-	0.5	<0.20
Trichloroethylene	0.5	<0.20
Trichlorofluoromethane	150	< 0.40
Vinyl Chloride	0.5	<0.17
Xylene Mixture	72	<0.20

For Table Notes see Notes for Soil and

Groundwater Summary Tables, included at

Table 12: Summary of OCPs in Groundwater

Parameter		MW 17 - 1T	DUP-1	MW 1D - 17	MW 17 - 7R	MW 17 - 1R
Date of Collection	MEGE	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18	23-Jan-18
Date Reported	MECP Table 1 SCS	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18	1-Feb-18
Screen Interval (mbgs)		2.8-4.3	2.8-4.3	3.8-5.3	2.0-3.5	3.1-4.6
Analytical Report Reference No.		9028692	9028698	9028694	9028695	9028696
Gamma-Hexachlorocyclohexane	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05
Chlordane	0.06	< 0.04	< 0.04	< 0.04	<0.04	<0.04
DDE	10	< 0.01	<0.01	<0.01	<0.01	<0.01
DDD	1.8	< 0.05	<0.05	< 0.05	<0.05	<0.05
DDT	0.05	< 0.04	<0.04	<0.04	<0.04	<0.04
Dieldrin	0.05	< 0.02	<0.02	<0.02	<0.02	<0.02
Endrin	0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
Methoxychlor	0.05	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Hexachlorobenzene	0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Hexachlorobutadiene	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	0.01	< 0.01	<0.01	<0.01	<0.01	<0.01

For Table Notes see Notes for Soil and Groundwater Summary

Tables, included at the end of this Section

Table 13: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Antimony	1.3	1.2	TP8r GS2
	Arsenic	18	7	TP8r GS2
	Barium	220	163	BH-17-1T SS-3
	Beryllium	2.5	0.8	BH-17-4R SS-1
	Boron	36	16	BH-17-1T SS-3
	Boron (Hot Water Soluble)	NA	0.81	TP11r GS1
	Cadmium	1.2	1.2	BH-17-3T SS-2
	Chromium	70	29	BH-17-6R SS-1
	Cobalt	21	15.7	BH-17-2N SS-1
	Copper	92	37	BH-17-3R SS-3
RPs	Lead	120	61	TP8r GS2
10I	Molybdenum	2	1	BH-17-1T SS-3
Metals and ORPs	Nickel	82	35	BH-17-3N SS-1
tals	Selenium	1.5	0.9	BH-17-1T SS-3
Met	Silver	0.5	<0.2	All Samples
	Thallium	1	0.7	BH-17-1T SS-3
	Uranium	2.5	1.3	BH-17-2N SS-1
	Vanadium	86	37	BH-17-2N SS-1
	Zinc	290	274	TP8r GS2
	Chromium VI	0.66	<0.2	All Samples
	Cyanide	0.051	<0.040	All Samples
	Mercury	0.27	0.13	TP8r GS2
	Electrical Conductivity	0.57	0.382	BH-17-2N SS-1
	Sodium Adsorption Ratio	2.4	2.15	BH-17-2N SS-1
	pH, 2:1 CaCl2 Extraction	5-9	7.79	BH-17-3R SS-3
	Benzene	0.02	0.81	TP3r GS0Dup
	Toluene	0.2	4.6	TP3r GS0Dup
	Ethylbenzene	0.05	1.5	TP3r GS0Dup
PHCs	Xylene Mixture	0.05	9.5	TP3r GS0Dup
ΡH	F1 (C6 to C10)	25	79	TP3r GS0Dup
	F1 (C6 to C10) minus BTEX	25	63	TP3r GS0Dup
	F2 (C10 to C16)	10	30	TP3r GS0Dup
	F3 (C16 to C34)	240	300	TP3r GS0Dup

Table 13: Summary of Maximum Concentrations in Soil

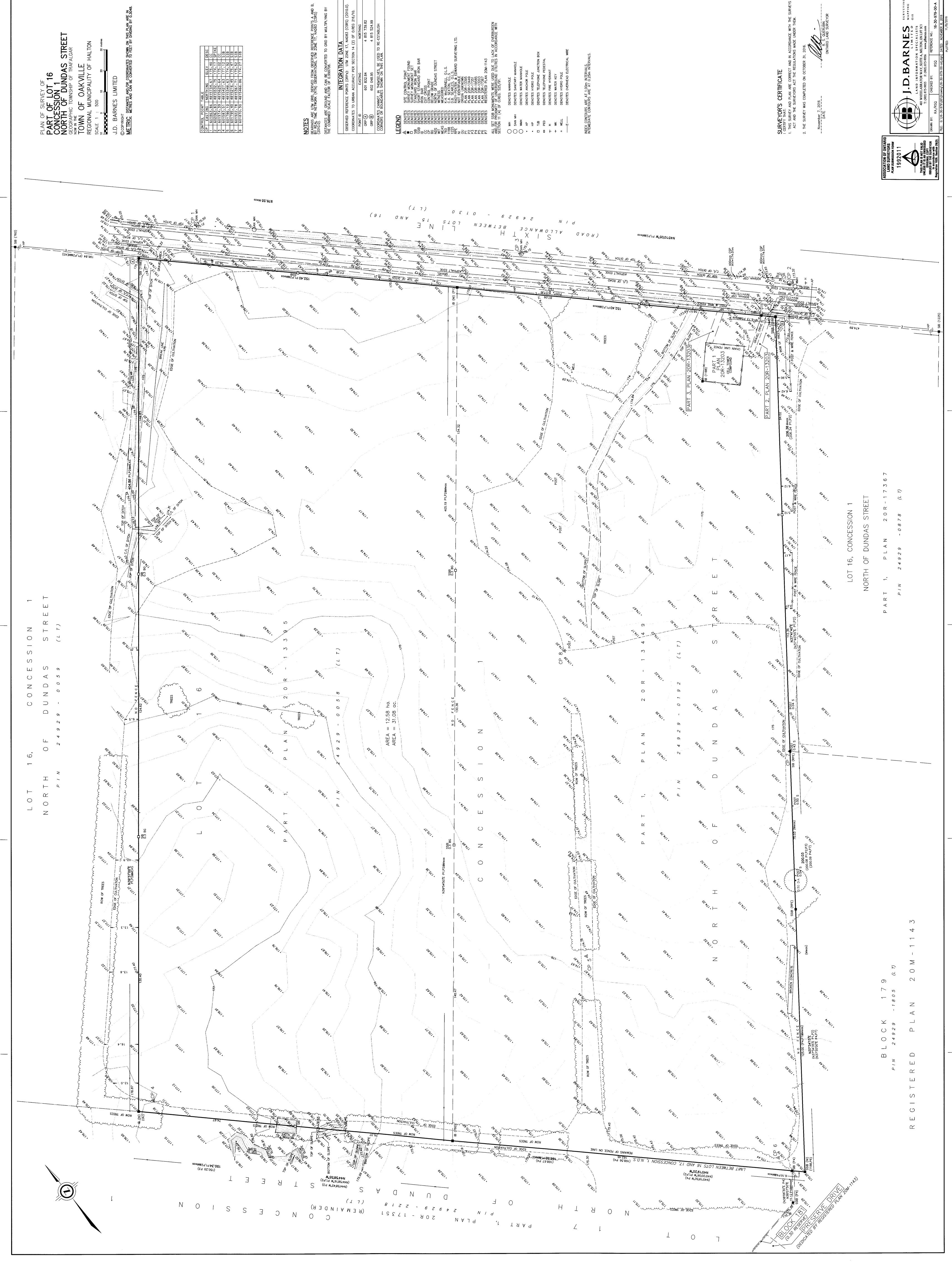
	Parameter	Standard	Maximum Concentration	Location
	Hexachloroethane	0.01	<0.01	All Samples
	Gamma-Hexachlorocyclohexane	0.01	<0.005	All Samples
	Heptachlor	0.05	<0.005	All Samples
	Aldrin	0.05	<0.005	All Samples
	Heptachlor Epoxide	0.05	<0.005	All Samples
	Endosulfan	0.04	<0.005	All Samples
s	Chlordane	0.05	<0.007	All Samples
OCP	DDE	0.05	<0.007	All Samples
0	DDD	0.05	<0.007	All Samples
	DDT	1.4	<0.007	All Samples
	Dieldrin	0.05	<0.005	All Samples
	Endrin	0.04	<0.005	All Samples
	Methoxychlor	0.05	<0.005	All Samples
	Hexachlorobenzene	0.01	<0.005	All Samples
	Hexachlorobutadiene	0.01	<0.01	All Samples

Table 14: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Antimony	1.5	<1.0	All Samples
	Arsenic	13	2	MW17-2t
	Barium	610	97.5	MW17-2t
	Beryllium	0.5	<0.5	All Samples
	Boron	1700	194	MW 1D - 17
	Cadmium	0.5	<0.2	All Samples
	Chromium	11	<2.0	All Samples
	Cobalt	3.8	0.5	MW17-2t
	Copper	5	5	MW17-2t
Ps	Lead	1.9	<0.5	All Samples
Metals and ORPs	Molybdenum	23	9.3	MW 1D - 17
and	Nickel	14	2	MW17-2t
etals	Selenium	5	3.1	MW 1D - 17
W	Silver	0.3	<0.2	All Samples
	Thallium	0.5	<0.3	All Samples
	Uranium	8.9	22.6*	MW1D-17
	Vanadium	3.9	1.5	MW17-2t
	Zinc	160	7.1	MW17-2t
	Mercury	0.1	<0.02	All Samples
	Chromium VI	25	<5	All Samples
	Cyanide	5	<2	All Samples
	Sodium	490000	19700	MW 17 - 3T
	Chloride	790000	14500	MW 17 - 1T
	Benzene	0.5	<0.20	All Samples
	Ethylbenzene	0.5	<0.10	All Samples
	Toluene	0.8	<0.20	All Samples
PHCs	Xylenes (Total)	72	<0.20	All Samples
Ηd	F1 (C6 to C10)	420	<25	All Samples
	F1 (C6 to C10) minus BTEX	420	<25	All Samples
	F2 (C10 to C16)	150	<100	All Samples
	F4 (C34 to C50)	500	<100	All Samples
	Acetone	2700	<1.0	All Samples
	Benzene	0.5	<0.20	All Samples
	Bromodichloromethane	2	<0.20	All Samples
	Bromoform	5	<0.10	All Samples
	Bromomethane	0.89	<0.20	All Samples
	Carbon Tetrachloride	0.2	<0.20	All Samples
VOCs	Chlorobenzene	0.5	<0.10	All Samples
VC	Chloroform	2	<0.20	All Samples
	cis- 1,2-Dichloroethylene	1.6	<0.20	All Samples
	Dibromochloromethane	2	<0.10	All Samples
	Dichlorobenzene, 1,2-	0.5	<0.10	All Samples
	Dichlorobenzene, 1,3-	0.5	<0.10	All Samples
	Dichlorobenzene, 1,4-	0.5	<0.10	All Samples
	Dichlorodifluoromethane	590	<0.20	All Samples

Table 14: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Dichloroethane, 1,1-	0.5	<0.30	All Samples
	Dichloroethane, 1,2-	0.5	<0.20	All Samples
	Dichloroethylene, 1,1-	0.5	<0.30	All Samples
	Dichloropropane, 1,2-	0.5	<0.20	All Samples
	Dichloropropene, 1,3-	0.5	<0.30	All Samples
	Ethylbenzene	0.5	<0.10	All Samples
	Ethylene Dibromide	0.2	<0.10	All Samples
	Methyl Ethyl Ketone	400	<1.0	All Samples
	Methyl Isobutyl Ketone	640	<1.0	All Samples
	Methyl tert-butyl ether	15	<0.20	All Samples
	Methylene Chloride	5	<0.30	All Samples
VOCs	n-Hexane	5	<0.20	All Samples
	Styrene	0.5	<0.10	All Samples
	Tetrachloroethane, 1,1,1,2-	1.1	<0.10	All Samples
	Tetrachloroethane, 1,1,2,2-	0.5	<0.10	All Samples
	Tetrachloroethylene	0.5	<0.20	All Samples
	Toluene	0.8	<0.20	All Samples
	trans- 1,2-Dichloroethylene	1.6	<0.20	All Samples
	Trichloroethane, 1,1,1-	0.5	<0.30	All Samples
	Trichloroethane, 1,1,2-	0.5	<0.20	All Samples
	Trichloroethylene	0.5	<0.20	All Samples
	Trichlorofluoromethane	150	<0.40	All Samples
	Vinyl Chloride	0.5	<0.17	All Samples
	Xylene Mixture	72	<0.20	All Samples
	Gamma-Hexachlorocyclohexane	0.01	<0.01	All Samples
	Heptachlor	0.01	<0.01	All Samples
	Aldrin	0.01	<0.01	All Samples
	Heptachlor Epoxide	0.01	<0.01	All Samples
	Endosulfan	0.05	< 0.05	All Samples
	Chlordane	0.06	<0.04	All Samples
10	DDE	10	<0.01	All Samples
OCPs	DDD	1.8	<0.05	All Samples
	DDT	0.05	<0.04	All Samples
	Dieldrin	0.05	<0.02	All Samples
	Endrin	0.05	<0.05	All Samples
	Methoxychlor	0.05	<0.04	All Samples
	Hexachlorobenzene	0.01	<0.01	All Samples
	Hexachlorobutadiene	0.01	<0.01	All Samples
	Hexachloroethane	0.01	<0.01	All Samples



Notes for Soil & Groundwater Summary Tables

1.	mbgs =	Meters below ground surface
2.	masl =	Meters above sea level
3.		Units for all soil analyses are in μ g/g (ppm) unless otherwise indicated
4.		Units for all groundwater analyses are in μ g/L (ppb) unless otherwise indicated
5.	MECP Table 1 SCS =	Full Depth Background Site Condition Standards as contained in Table 1 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MOECC on April 15, 2011
6.		For soil and groundwater analytical results, concentration exceeds the applicable Standards
7.	NM =	Not Monitored
8.	PHC =	Petroluem Hydrocarbon
9.	PAH =	Polyaromatic Hydrocarbon
10.	BTEX =	Benzene, Toluene, Ethylbenzene, Xylene
11.	OCPs =	Organochlorine Pesticides
12.	*	Considered by QP to be natural background conditions

Appendix A – Legal Survey

Appendix B – Sampling and Analysis Plan

Project Number: 17-508-20

November 10, 2017

Argo Development Corporation. 2173 Turnberry Road Burlington, ON, L7M 4P8

Attention: Mr. Kevin Singh Via Email: Kevin Sing <u>kevin@argoland.com</u>

RE: Sampling and Analysis Plan Phase Two Environmental Site Assessment 3270 Sixth Line, Oakville, ON

Dear: Mr. Singh

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of 3270 Sixth Line, Oakville, ON, (the Property). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed development of the Property.

The Phase Two ESA will involve intrusive investigation in the areas determined in the site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. <u>Background</u>

Based on the Phase One Environmental Site Assessment completed by DS, it is DS's understanding that the Property is a 12.58 hectare (31.08 acres) parcel of land which is currently used for Agricultural purposes. The first developed use of the Property is interpreted to be Agricultural. Based on the findings of the Phase One ESA, a total of 3 potentially contaminating activities were identified on the Phase One Property which are considered to be contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	On-site	PCA#40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications - Historical use of the Property for agricultural purposes	On Site	OC Pesticides	Soil and Ground water
APEC-2	Southeast portion of the Property	PCA#30 Importation of Fill Material of Unknown Quality - Inferred presence of fill material on-Site,	On Site	PHCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR	Soil
APEC-3	Within the vicinity of the historical communication tower on the southeast portion of the site.	PCA#28 Gasoline and Associated Products Storage in Fixed Tanks - Historical use of the portion of the Property for Roger Cell Tower	On Site	PHC (F1-F4), BTEX	Soil and Ground water

Notes:

1. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges

- 2. VOCs = Volatile Organic Compounds
- 3. PAHs = Polycyclic Aromatic Hydrocarbons
- 4. OC Pesticides = Organochlorine Pesticides

3. Site Investigation Program

he Site Investigation Program will be completed as follows:

- Public and private underground utilities and services will be cleared prior to commencement of intrusive investigation activities;
- A Health and Safety Plan will be prepared and all work will be executed safely;
- Thirteen (13) boreholes will be advanced on the Phase Two Property, to an approximate maximum depth of 5.0 mbgs or until sample refusal depth using a truck-mounted drill rig. The soil profile from each borehole will be logged in the field and samples will be screened

for total organic vapours (TOV) with both a photoionization detector (PID) and a combustible gas detector (CGD). The location of the boreholes will be selected to investigate any APECs identified during the Phase One ESA, as well as to delineate the horizontal and vertical extents of relevant parameters of concern; it is anticipated that bedrock will be first encountered at an approximate depth of 2 mbgs. Select boreholes will be cored into bedrock to further investigate potential groundwater impacts.

- Twelve (12) test pits were advanced on the Phase Two Property to a maximum depth of 2.0m using a truck-mounted excavator to further investigate the possible presence of fill materials.
- Groundwater monitoring wells will be installed within 6 of the 13 boreholes advanced in order to facilitate the collection of groundwater samples to assess the groundwater quality below the Property and to establish the direction of groundwater flow;
- Based on field screening and visual/olfactory observations, worst-case/representative soil samples from the boreholes will be submitted for laboratory testing of relevant parameters of concern;
- The groundwater levels in the wells will be measured at least 24 hours after well development has been completed, to determine the groundwater elevation. The wells will be surveyed to a geodetic benchmark to determine groundwater flow direction;
- The groundwater wells will be purged to remove stagnant water and sampled for laboratory testing of relevant parameters of concern;
- Both soil and groundwater samples will be submitted for chemical analysis by a CALA laboratory in accordance with the Ontario MECP standards and requirements of O.Reg. 153/04 under the Environmental Protection Act.

All field equipment is to be calibrated at the start of each field day, in accordance with DS's Standard Operating Procedures (SOPs). Clean, disposable Nitrile[™] gloves will be used at each sampling interval to reduce the risk of cross contamination. All non-dedicated equipment (e.g. split spoon sampler, interface probe, etc.) will be decontaminated between each borehole. The equipment will be brushed free of debris, washed with phosphate-free detergent, and then rinsed with analyte free water.

The proposed monitoring wells will be installed using 50 mm inner diameter Schedule 40 polyvinyl chloride (PVC), equipped with 50 mm inner diameter Schedule 40 PVC with #10 slot well screens. A silica sand filter pack will be placed around the well screen and up to 0.61 metres above the top of the well screen. The well annulus will be sealed with hydrated bentonite. All wells will be protected with either a flush mount well casing, or a locked monument style casing.

The proposed analytical program is outlined below (proposed program subject to change as a result of site observations/findings). All soil and groundwater sampling will be carried out in accordance with DS's SOPs.

<u>Soils:</u>

- Seventeen (17) soil samples for analysis of Metals and other regulated parameters (ORPs)
- Eleven (11) soil samples for analysis of Petroleum Hydrocarbons in the F1 to F4 fraction ranges (F1-F4);
- Three (11) soil samples for analysis of benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX), Volatile Organic Compounds (VOCs);
- One (1) soil sample for analysis of Polychlorinated Biphenyls (PCBs);
- Four (4) soil samples for analysis of OC Pesticides;
- Four (4) soil samples for grain size analysis (single sieve);

One quality control/quality assurance (QAQC) sample will be submitted for analysis per ten (10) samples analyzed in accordance with O.Reg. 153/04.

Groundwater:

- Six (6) groundwater samples for analysis of Metals and ORPs
- Six (6), groundwater samples for analysis of PHCs (F1 to F4) and BTEX;
- Seven (7), groundwater samples for analysis of VOCs;
- Four (4) groundwater samples for analysis of OC Pesticides;

One quality control/quality assurance (QAQC) sample will be submitted for analysis per ten (10) samples analyzed in accordance with O.Reg. 153/04. One laboratory supplied field and trip blank will be submitted as part of each sample submission event for analysis of volatile parameters (i.e. VOCs, BTEX, PHCs F1-BTEX).

Following receipt of all of the results, a report in accordance with O.Reg. 153/04 will be prepared.

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Property. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of 0.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Ficiarante

Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA} Manager – Environmental Services

Appendix C – Borehole Logs

LOG	OF	TEST	PIT	TP1n	
-----	----	------	-----	------	--

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DRILLING DATA Method: Excavator

Diameter:

Date: Jan/18/2018

REF. NO.: 17-508-100 ENCL NO.: 3

DATUM: Geodetic

	SOIL PROFILE		s	SAMPL	ES			DYNA RESIS	MIC CO	NE PEN PLOT		TION				JRAL		⊢	REMARK
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA 0 UI • QI	0 4 R STF	0 60 RENGT INED RIAXIAL	H (kP + ×	0 10 Pa) FIELD	VANE ANE	PLASTIC LIMIT W _P I WAT	v TER CC		POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m ³)	AND GRAIN SI DISTRIBUT (%) GR SA SI
0.0	SILTY SAND AND GRAVEL: with organics, rootlets, muck, dark brown, wet, loose		1	GS															
0.5	CLAYEY SILT: some gravel/ cobble, red shale pieces, some sand, brown, moist, very stiff		2	GS															
1.3	END OF TEST PIT																		

LOG	OF	TEST	PIT	TP1r	
-----	----	------	-----	------	--

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DRILLING DATA

Method: Excavator Diameter:

Date: Jan/18/2018

REF. NO.: 17-508-100 ENCL NO.: 2

DATUM: Geodetic

SOLL PROFILE SAMPLES	BH L	OCATION: See Drawing 4		_						oun/ i							-				
LEAT: DESCRIPTION Outcomments to balance to balance balance Self-AR STRENCT H (Pa) balance Main and balance Main ande Main and balance <t< td=""><td></td><td>SOIL PROFILE</td><td></td><td>s</td><td>AMPL</td><td>ES</td><td>Я</td><td></td><td>DYNAI RESIS</td><td>MIC CO TANCE</td><td>NE PE PLOT</td><td></td><td>TION</td><td>F</td><td>NATU</td><td>JRAL</td><td></td><td>ΥT</td><td></td><td></td><td>S</td></t<>		SOIL PROFILE		s	AMPL	ES	Я		DYNAI RESIS	MIC CO TANCE	NE PE PLOT		TION	F	NATU	JRAL		ΥT			S
0.0 CLAYEY SILT: with organics and none gravel, brown, most (isturbed) 1 GS II II GS II II II II III III III		DESCRIPTION	PLOT	~		SWS 8 m S	D WATE IONS	NOI	SHEA	R STF	RENG	TH (kF	Pa)			TURE TENT V	CKET PEN. u) (kPa)	RAL UNIT V KN/m ³)	GR/	AIN SIZ	
0.0 CLAYEY SILT: with organics and not proved, brown, most (disturbed) 0.3 CLAYEY SILT: some gravel, some send, brown, most, very stiff 2 GS 1.5 END OF TEST PIT	DEPTH	DESCRIPTION	STRATA	NUMBER	түре		GROUN CONDIT	ELEVAT	• QI	JICK TF	RIAXIAL	_ ×	LAB VAN	νE			90 00			(%)	
	0.0 - -	CLAYEY SILT: with organics and rootlets, some sand, some gravel, brown, moist (disturbed)																			
	-	CLAYEY SILT: some gravel, some sand, brown, moist, very stiff		2	GS																
		END OF TEST PIT																			

	CATION: See Drawing 4	1		AMPL	Ee			DYNA RESIS	VIC CO	NE PE	NETRA	TION								
(m) <u>ELEV</u> DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER		"N" <u>BLOWS</u> 6	GROUND WATER CONDITIONS	ELEVATION	2 SHEA 0 UI • QI		0 6 RENG ⁻ INED RIAXIAL	0 8 TH (kF + - ×	0 10 Pa) FIELD	VANE	PLASTIC LIMIT W _P I WAT	v CER CC	JRAL TURE TENT V ONTEN	LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
0.0	CLAYEY SILT: with organics and rootlets, some sand, some gravel, cobble, brown, moist (disturbed)		1	GS	-	00														
0.2	CLAYEY SILT: with gravel, red shale pieces, some sand, brown, moist, hard		2	GS																
1.3	END OF TEST PIT																			

LOG OF TEST PIT TP2r

DRILLING DATA

Method: Excavator

REF. NO.: 17-508-100

Diameter:

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

O ^{8=3%} Strain at Failure

LOG OF TEST PIT TP3	٢
---------------------	---

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DRILLING DATA Method: Excavator

Diameter:

Date: Jan/18/2018

REF. NO.: 17-508-100 ENCL NO.: 5

DATUM: Geodetic

	JM: Geodetic							Date:	Jan/1	8/2018	3					EN	ICL N	0.: 5		
BHLC	DCATION: See Drawing 4		_			-												_	_	
	SOIL PROFILE		5	SAMPL	.ES	Ř		DYNA RESIS						PLASTI		URAL TURE TENT	LIQUID LIMIT W _L T (%)		ΜT	REMARKS
(m)		5			ဖ	IN TE	7		0 4			0 10	00	LIMIT W _P		TENT	LIMIT	r PEN	UNIT 3)	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	APL	К		BLOWS 0.3 m		OL		R STF			Pa) FIELD '		••••				CKEI Cu) (k	NATURAL UNIT WT (kN/m ³)	DISTRIBUTION
DEPTH		STRATA PLOT	NUMBER	ТҮРЕ		GROUND WATER CONDITIONS	ELEVATION	• QI	JICK TR	RIAXIAI	_ ×	LAB VA	NE		TER CO	ONTEN	T (%)	800	NATI	(%)
	P11 1 14	LS V	ž	È	ż	50	Ē	2	0 4	06	0 8	0 10	00	1	0 2	20 3	30			GR SA SI CL
0.0	FILL: silty sand and gravel, with organics, rootlets, wood debris,	\bigotimes																		
	dark brown to black, moist, loose (faint odour)	\mathbb{X}	1	GS																
	()	\bigotimes																		
0.4	CLAYEY SILT: with gravel, some sand, cobble, brown, moist																			
	sand, cobble, brown, moist																			
-			1																	
-																				
-				GS																
-			2	65																
1																				
-																				
-																				
12	END OF TEST PIT																			
1.3	END OF TEST PIT																			
<u>n</u>																				
10-001-100.001 U.0.001-100-01																				
																		1		
Ś																				
																		1		
																		1		
07-																		1		
																		1		
3																				

	PROJ	ECT LOCATION: 3270 Sixth Line, Oak	ville,	ON					Diam	eter:							R	EF. NC	D.: 17	7-508	-100
		M: Geodetic							Date:	Jan/1	8/2018						E١	NCL N	O.: 6		
╞	BH LC	CATION: See Drawing 4		-								JETB V			-				-		
		SOIL PROFILE	-	s	AMPL	ES	ĸ		RESIS	TANCE		\geq			PLASTI	C NATI MOIS CON	URAL	LIQUID LIMIT		₽	REMARKS
	(m)		-01			S -	GROUND WATER CONDITIONS	z		L	0 60		0 10	00	LIMIT W _P	CON	TENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
Ī	ELEV DEPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m		ELEVATION		NCONF	RENGT		'a) FIELD	VANE	—			—	OCKE (Cu) (rural (kn/i	DISTRIBUTION (%)
			TRA	NUMBER	ТҮРЕ	r 2	SROU SOND	TEV	• Q	UICK T	RIAXIAL 0 60	×		ANE		TER CC		T (%) 30	۵.		
	0.0	FILL: silty sand and gravel, with organics, some brick and wood	s S	Z	-	F	00	ш				, 0			1						GR SA SI CL
-		debris, brown and black, moist, loose (faint odour)	\bigotimes																		
ł			\bigotimes	1	GS																
ŀ			\bigotimes																		
ŀ	-																				
f	0.6	CLAYEY SILT: with gravel, some sand, rootlets, brown, moist, very	ĤÛ																		
ľ		stiff																			
Ī																					
ſ	1			2	GS																
	_																				
ļ																					
	1.3	END OF TEST PIT																			
9/5/16																					
100																					
DS.(
GPJ																					
1-100																					
18-53																					
DS SOIL TEST PIT-2016 18-531-100.GPJ DS.GDT 9/5/19																					
PIT-2																					
EST																					
DS S																					

CLIENT: Argo Development Corporation O IECT I OCATION: 3270 Sixth Lin Oakville ON

DRILLING DATA

LOG OF TEST PIT TP4r

Method: Excavator

Diamete

DS SOIL TEST PIT-2016 18-531-100.GPJ DS.GDT 9/5/19

	JECT: Phase Two ESA							DRILL												
CLIE	NT: Argo Development Corporation							Metho	od: Exc	cavator										
PRO	JECT LOCATION: 3270 Sixth Line, Oak	ville,	ON					Diam	eter:							R	EF. NC	D.: 17	7-508	8-100
	UM: Geodetic							Date:	Jan/1	8/2018	3					E١	ICL N	0.: 7		
BH L	OCATION: See Drawing 4		-					152414			NETE	ATION								
	SOIL PROFILE		5	SAMPL	.ES	_ ~		RESIS	TANCE	DNE PE E PLOT		ATION -		PLASTI		URAL	LIQUID LIMIT W _L T (%)		ь	REMARKS
(m)		T				GROUND WATER CONDITIONS				0 6			00	LIMIT	MOIS CON	URAL STURE ITENT	LIQUID	EN.	NATURAL UNIT WT (kN/m ³)	AND
ELEV	DECODIDITION	STRATA PLOT	~		BLOWS 0.3 m		NO			RENG	TH (kl	Pa)		W _P	\	w 0	WL	(kPa	KAL U	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ATA	NUMBER	ш	<u>BLC</u> 0.3		ELEVATION					FIELD LAB V		WA	FER CO		Т (%)	0 DO DO	ATUR (F	(%)
		STR	NUN	ТҮРЕ	ż	GR0 CON				0 6			00				30		2	GR SA SI CL
0.0	FILL: silty sand and gravel, with organics, some wood debris, brown	\boxtimes																		
ł	to black, moist, loose	\otimes	1	GS																
-	, ,		1																	
0.3	FILL: clayey silt, with gravel,		}																	
0.3	cobble, brown, moist, very stiff	\otimes	2	GS																
		\mathbb{X}																		
0.5	END OF TEST PIT																			
2																				
30			1															1		
e																				
Ś																				
C Lo			1															1		
			1															1		
- 2																				
0			1															1		
0			1															1		
17-11																				
			1															1		
			1															1		
10 SOLL 1231 711-2010 10-331-100.013 123 123																				
ŝ			1															1		
- 	I	_																		

PROJECT: Phase Two ESA

LOG OF TEST PIT TP5r

DRILLING DATA

	ECT LOCATION: 3270 Sixth Line, Oak	vine, v						Diamo								EF. NC			5-100
	IM: Geodetic							Date:	Jan/1	8/2018	3				EN	ICL N	D.: 8		
BH LC	DCATION: See Drawing 4				<u> </u>			DYNA	MIC CC	DNE PE	NETRA	ATION					<u> </u>	<u> </u>	
(m) <u>ELEV</u> DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER	SAMPL 34	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION	2 SHEA 0 UI • QI	AR STI NCONF	RENG RENG RENG INED RIAXIAL	0 8 FH (kF + - ×	BO 10 Pa) FIELD LAB V/	VANE			LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI C
0.0 - -	FILL: silty sand and gravel, with organics, construction waste, some plastics and glass, brown to black, moist, loose		1	GS															
0.4 - - - -	CLAYEY SILT: with gravel, cobble, some sand, trace rootlets, brown, moist, very stiff		2	GS															
1.3	END OF TEST PIT																		

LOG OF TEST PIT TP6r

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DRILLING DATA Method: Excavator

Diameter:

REF. NO.: 17-508-100

	OCATION: See Drawing 4 SOIL PROFILE		S	SAMPL	ES			DYNA	MIC CO	NE PE	NETRA	ATION			N1471				REM	
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA 0 UI 0 QI) 6 RENG ⁻ NED RIAXIAI	0 8 TH (kF + ×	Pa)	VANE	PLASTIC LIMIT W _P I WAT		LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	A GRAI DISTRI (' GR SA	ND N SIZ IBUTI %)
0.0	FILL: silty sand and gravel, with organics, some wood debris and concrete chuncks, brown to black, moist, loose to compact (faint odour)		1	GS																
0.5	CLAYEY SILT: with gravel, some cobble, some sand, brown, moist, very stiff		2	GS																

LOG OF TEST PIT TP7r

DRILLING DATA

Method: Excavator

REF. NO.: 17-508-100

Diameter:

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

LOG	OF T	EST I	PIT	TP8r
-----	------	-------	-----	------

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DATUM: Geodetic

BH LOCATION: See Drawing 4

DRILLING DATA

Method: Excavator

Diameter: Date: Jan/18/2018 REF. NO.: 17-508-100 ENCL NO.: 10

BHLC	OCATION: See Drawing 4 SOIL PROFILE		5	SAMPL	ES			DYNA		DNE PE E PLOT	NETRA	ATION						<u> </u>		
(m)		⊢				GROUND WATER CONDITIONS						30 1	00	PLASTI LIMIT	C NATI MOIS CON	URAL TURE TENT	LIQUID LIMIT	EN	NATURAL UNIT WT (kN/m ³)	REMARKS AND
(m) ELEV	DECODIDITION	PLO	~		BLOWS 0.3 m	AW C	NO			RENG		1	<u> </u>	W _P	(v >	WL	KET P (kPa	taL UN tN/m³)	GRAIN SIZE DISTRIBUTION
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ЭС	<u>BLO</u>	OUNI	ELEVATION		NCONF			FIELD		WAT	ER CO	ONTEN	T (%)	DO DO	NATUF ((%)
			ΝN	ТҮРЕ	ŗ	GR CO	ELE			0 6			00	1	0 2	20 3	30			GR SA SI CL
0.0	FILL: 650mm burm pile above ground surface	\bigotimes																		
-		\bigotimes																		
-		\bigotimes																		
-		\bigotimes	1	GS																
-		\bigotimes																		
-		\boxtimes																		
0.7	FILL: clayey silt, some gravel, boulders, concrete chuncks,	X																		
-	organics, brown to black, moist, soft (faint odour)	\bigotimes																		
1		\bigotimes																		
		\bigotimes																		
		\boxtimes	2	GS																
-		\bigotimes																		
-		\bigotimes																		
-		\otimes																		
1.6	FILL: clayey silt, with concrete	\bigotimes																		
-	chunks, some pockets of black organic-rich silt, trace wood debris,	\bigotimes																		
-	brown, moist, soft (some odour)	\bigotimes																		
2		\bigotimes																		
		\bigotimes																		
		\bigotimes	3	GS																
-		\boxtimes																		
-		\bigotimes																		
-		\bigotimes																		
-		\bigotimes																		
2.7	END OF TEST PIT	\sim																		
1010																				
5.0																				
1-100																				
07-																				

DS SOIL TEST PIT-2016 18-531-100.GPJ DS.GDT 9/5/19

	OJECT: Phase Two ESA							DRILL												
	IENT: Argo Development Corporation									cavator										
	OJECT LOCATION: 3270 Sixth Line, Oak	ville,	ON					Diam			_						EF. NC			-100
	TUM: Geodetic							Date:	Jan/1	8/2018	3					EN	ICL NO	D.: 1	1	
ВН	LOCATION: See Drawing 4 SOIL PROFILE			SAMPL	ES			DYNA	MIC CC	DNE PE	NETRA	ATION								
			2	AIVIPL	E9	В				DNE PE E PLOT				PLASTI LIMIT	C NATI MOIS CON	URAL	LIQUID LIMIT		NATURAL UNIT WT (kN/m ³)	REMARKS AND
(m		STRATA PLOT			SNR	GROUND WATER CONDITIONS	z			RENG		30 10	00	W _P	CON	TENT N	WL	POCKET PEN. (Cu) (kPa)	L UNI	GRAIN SIZE
ELE DEP		TAP	BER		BLOWS 0.3 m		ELEVATION	IU O	NCONF	INED	+	FIELD		—		>		(CU)	TURA (kN	DISTRIBUTION (%)
		STRA	NUMBER	ТҮРЕ	ż	GROI	ELEV			RIAXIAI 10 6		LAB V/			TER CC		I (%) 30		₹	GR SA SI CL
- 0	.0 SANDY SILT: some gravel, some clay, organics, rootlets, brown to		-	-	-	00	В													
-	black, moist, loose																			
-				~~																
-			1	GS																
-																				
-																				
	.7 CLAYEY SILT: with gravel, some																			
ŀ	cobble, some sand, reddish brown,																			
-	moist, very stiff																			
1	grey below 1.0m		2	GS																
-																				
-																				
	.3 END OF TEST PIT	<u>FHI</u>																		
	.3 END OF TEST PIT																			
9/5/15																				
5																				
DS.G																				
L d s																				
100.0																				
-531-																				
6 18																				
-201																				
4																				
ES																				
DS SOIL IEST PII-2016 18-531-100.GPJ DS.GDT 9/6/19																				
2																				

PROJECT: Phase Two ESA

LOG OF TEST PIT TP9r

DRILLING DATA Method: Excavator

LOG OF TEST PIT TP	10r
--------------------	-----

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DATUM: Geodetic

BH LOCATION: See Drawing 4

DRILLING DATA

Method: Excavator

Diameter: Date: Jan/18/2018 REF. NO.: 17-508-100 ENCL NO.: 12

DHL	OCATION: See Drawing 4								MIC CC		NETR		r –						
	SOIL PROFILE		S	SAMPL	ES	к		RESIS	STANCE	PLOT	\geq		PLASTI	URAL STURE	LIQUID		¥	REMA	
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/ 0 UI • Q	20 4 AR STI NCONF UICK TI 20 4	INED RIAXIAI	L + L ×	ra) FIELD LAB V/		ITENT W O	LIMIT WL MT (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	ANI GRAIN DISTRIBI (%) GR SA	SIZE JTION
0.0	FILL gravel, some sand	\bigotimes	1	GS															
0.2	FILL: silty sand and gravel, with some construction debris, wood, concrete, brick, brown to black, moist, loose (slight odour)		2	GS															
1.5	CLAYEY SILT: with gravel, some sand, reddish brown to grey, moist, very stiff		3	GS															
2.0	END OF TEST PIT																		

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

LOG OF BOREHOLE BH17-1N

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm

Date: Nov/14/2017

REF. NO.: 17-508-100 ENCL NO.: 9

DATUM: Geodetic

PROJECT: Phase Two ESA

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation

ſ		SOIL PROFILE		5	Sampl	ES	~		DYNA RESIS	MIC CO STANCE	one pe E plot		ATION			o NATI	URAL			F	ME	THANE
ī	(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHE/ OU	AR STI	IO 6 RENG	50 8 H TH (ki	30 1 Pa) FIELD V & Sensit	00 ANE ivity	- w _P		TENT W D		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GRA DISTF	AND AIN SIZE RIBUTION (%)
	174.4			NUM	ТҮРЕ	ż	GRO CON	ELEV		UICKI	RIAXIA	LX	LAB V	ANE 00				30		Ż	GR S.	A SI CL
E	0.0 174.2	TOPSOIL: 200mm	<u>× 1//</u>						-													
-	0.2	CLAYEY SILT: some sand, reddish brown, moist, stiff (weathered/disturbed)		1	SS	5	-	174	- - -								0					
-	173.6 0.8	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, hard		2	SS	12	-	173	-							• F		-1	-		12 1 [°]	7 49 22
-	2			3	SS	50/ 100mr	- m -		-						o							
-	<u>172.1</u> 2.3	SHALE: Queenston Formation, reddish brown, weathered		4	SS	50/ 125mr	m	172	- - - -													
-	3			5	NR	50/	-		-													
ŀ	<u>1</u>				pe	n <u>etrat</u>	ion	171	- - - - - -										-			
DS SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19	170.1 4.3	auger refusal at 4.3m END OF BOREHOLE Notes: 1) Borehole dry and open upon completion.																				
_	GROUN	DWATER ELEVATIONS					<u>GRAPH</u> NOTES	+ 3,	× ³ :	Numbe to Sens	rs refer	C	8=3%	Strain	at Failu	re						

 $\begin{array}{c} \begin{array}{c} 1 \\ \text{Measurement} \end{array} \xrightarrow{1 \\ \underline{V} \end{array} \xrightarrow{2 \\ \underline{V} \end{array} \xrightarrow{2 \\ \underline{V} \end{array} \xrightarrow{3 \\ \underline{V} \end{array}} \xrightarrow{4 \\ \underline{V} \end{array} \xrightarrow{4 \\ \underline{V} \end{array}}$

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

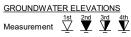
LOG OF BOREHOLE BH17-1R

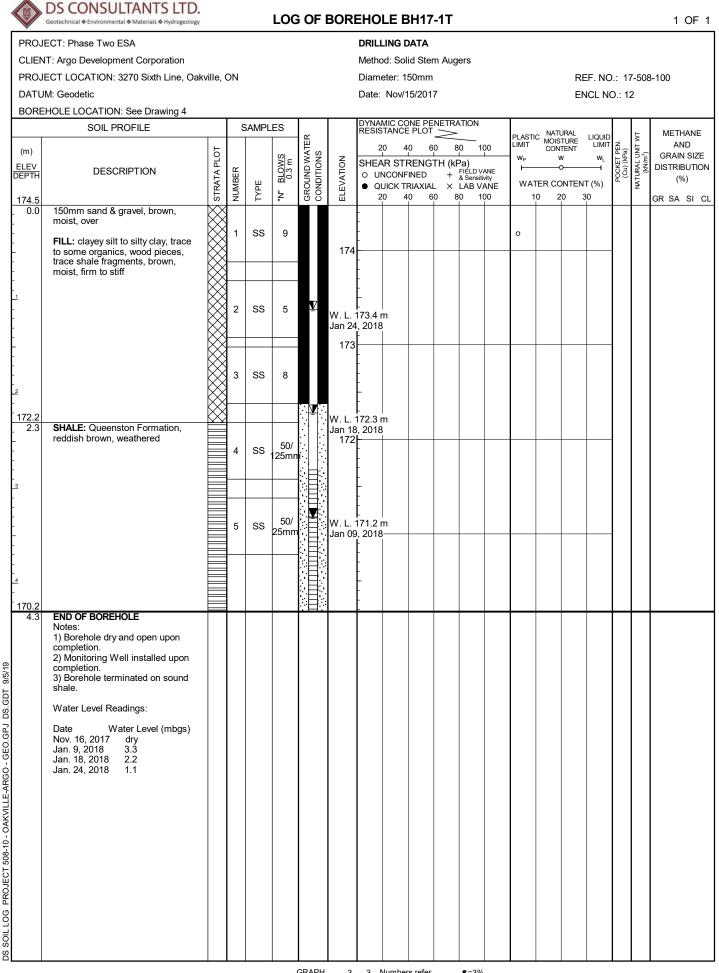
DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm Date: Nov/14/2017 REF. NO.: 17-508-100 ENCL NO.: 2

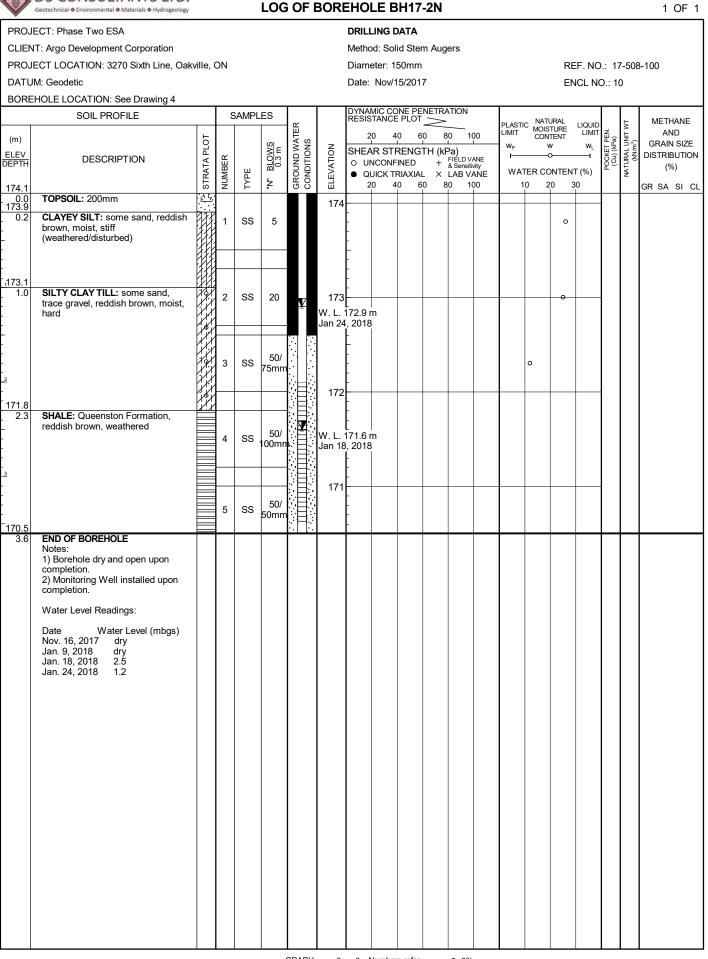
PROJECT LOCATION: 3270 Sixth Line, Oakville, ON


PROJECT: Phase Two ESA


DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation


20112	HOLE LOCATION: See Drawing 4 SOIL PROFILE		5	SAMPL	ES	~		DYNA RESIS	MIC CO	DNE PE E PLOT		ATION		DIACT	NAT	URAL	LIQUID		F	METHANE
(m) <u>ELEV</u> DEPTH 177.2	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u>	GROUND WATER CONDITIONS	ELEVATION	2 SHEA 0 U • Q	AR STI	RENG	0 8 TH (kl + - ×	B0 1 Pa) FIELD V & Sensiti LAB V	00 J WINE WITY ANE 00			ITENT w o ONTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
- 179.0 - 0.1 - -	TOPSOIL: 125mm CLAYEY SILT: some sand, reddish brown, moist, stiff (weathered/disturbed)		1	SS	10		177	- - - -							0					
<u>176.4</u> 0.8 - -	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, hard		2	SS	30		176	- - - -							• F			_		3 20 57 20
- - - - - -			3	SS	29			- - - -						 	0					
- - - - - - - -			4	SS	39		175	- - - -							o					
- - - - -			5	SS	50/ 100mr		174	- - - - -							0			_		
- - - - -							173	- - - - -										_		
172.6 4.6 172.3 5 4.9	SHALE: Queenston Formation, reddish brown, weathered END OF BOREHOLE		6	SS	50/ 125mr		W. L. Jan 18	[172.6 3, 2018	 m } 											
	END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 18, 2018 4.6 Jan. 24, 2018 4.6																			

SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19

O ^{8=3%} Strain at Failure

SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19

SD

DS CONSULTANTS LTD.

O ^{8=3%} Strain at Failure

LOG OF BOREHOLE BH17-2R

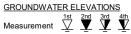
DRILLING DATA

Method: Solid Stem Augers

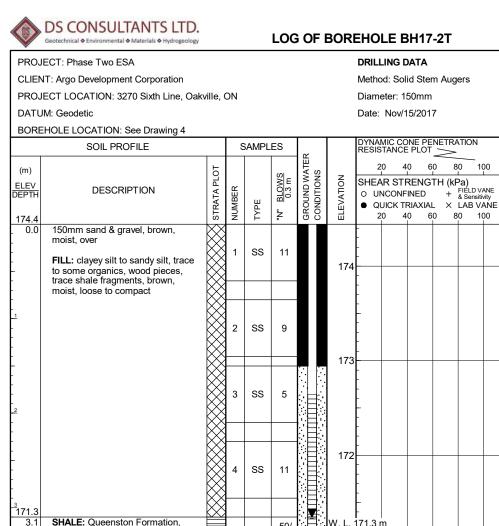
Diameter: 150mm Date: Nov/14/2017 REF. NO.: 17-508-100 ENCL NO.: 3

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

PROJECT: Phase Two ESA


DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4


CLIENT: Argo Development Corporation

	SOIL PROFILE		5	SAMPL	ES	~		DYNA RESIS	MIC CO	DNE PE		ATION		DIACTI	_ NAT	URAL			F	MET	HANE
(m)		рТ				GROUND WATER CONDITIONS		2	0 4	0 6	0 8	0 1	00	PLASTI LIMIT	MOIS CON	TURE	Liquid Limit	EN.	NATURAL UNIT WT (kN/m ³)	A	ND
	RECORDETION	STRATA PLOT	~		BLOWS 0.3 m		NO			RENG	TH (kf	Pa)		W _P		N 0	WL	(kP, H	SAL U	GRA DISTR	IN SIZE IBUTION
ELEV DEPTH	DESCRIPTION	ATA	1BEF	ш	<u>BLC</u> 0.3		ELEVATION				+	FIELD V & Sensit	ANE ivity		FER CO		т (%)	02 <u>0</u>	ATUR	51011	%)
176.2		STR	NUMBER	ТҮРЕ	ż	GRO CON	ELE ELE			RIAXIA 0 6			ANE 00				30		Z		SI CL
_ 0.0	TOPSOIL: 300mm	<u>x1 1/</u>		-	-			_													
175.9		<u>1/ · ·</u>	1	SS	16		176	-						0				-			
0.3	CLAYEY SILT: some sand, reddish brown, moist, stiff			33	10			-													
	(weathered/disturbed)		1					-													
175.4								-													
0.8	SILTY CLAY TILL: some sand,	19.1				1		-													
	trace gravel, occasional cobble/boulder, reddish brown,	il.	2	SS	34			L							0						
-	moist, hard	1 st	1	00	54		175								Ĕ						
		1	1					-													
-			┢			1		-													
-			1					-													
-			3	SS	34			-							o						
2			1					-													
-						1	174	-													
			┢					E .													
-			1.					-													
-			4	SS	38			-							o						
		K	1					-													
3		1 de						-													
							173	-													
-			1_	~~~	0		'''	-													
-			5	SS	60			-						0	1						
		1						-													
-		1 t	1					-													
4								-													
E I		[19.1	1				172	-													
-		ĥ	1				1/2	-													
-			1					-													
171.6 4.6	SHALE: Queenston Formation,	<u>r</u> r:	-			1		-													
F	reddish brown, weathered		6	SS	50/ 75mm			-													
₅ <u>171.2</u>					7 01111			-											┢		
5.0	END OF BOREHOLE Notes:																				
	 Borehole dry and open upon 																				
	completion.																				
			1																1		
			1														1		1		
<u> </u>		1										1					1	•			

DS SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19

O ^{8=3%} Strain at Failure

			2	SS	9		173	-										
<u>2</u>			3	SS	5		•	- - - -										
-			4	SS	11		172	-							o			
³ 171.3 3.1 171.0	SHALE: Queenston Formation, reddish brown, weathered	\otimes	5	SS	50/ 50mm		W. L. Nov 16	– 171.3 i 5, 2017	n 7									
3.4	END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 3.1 Jan. 9, 2018 3.1																	
GROUN	IDWATER ELEVATIONS				<u>(</u> 1	GRAPH NOTES	+ 3,	× ³ :	Number o Sens	rs refer itivity	0	8 =3%	Strain a	at Failu	re			

REF. NO.: 17-508-100 ENCL NO.: 13

5

POCKET PEN. (Cu) (kPa) NATURAL UNIT M (kN/m³)

LIQUID LIMIT

WL

-1

PLASTIC NATURAL MOISTURE CONTENT

10 20 30

WP

н

w

-0

WATER CONTENT (%)

100

100

METHANE

AND

GRAIN SIZE

DISTRIBUTION

(%)

GR SA SI CL

LOG OF BOREHOLE BH17-3N

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm

Date: Nov/15/2017

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

PROJECT: Phase Two ESA

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation

BORE	HOLE LOCATION: See Drawing 4		-								NETD							_			
	SOIL PROFILE		S	SAMPL	ES	с		RESIS	TANCE	DNE PE E PLOT	\geq	ATION		PLASTI LIMIT	C NAT	URAL	LIQUID		Ł	MET	HANE
(m)		ы			(0)	S	_	2	0 4	0 6	0 8	30 1 I	00		CON	ITENT	LIMIT	PEN.	UNIT (A GRA	ND IN SIZE
ELEV	DESCRIPTION	STRATA PLOT	Ř		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		AR STI		TH (kF	Pa) FIELD V. & Sensiti	ANE	₩ _P		w 0	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	DISTR	BUTION
DEPTH		RAT,	NUMBER	ТҮРЕ			.AVE			RIAXIAI	L X	& Sensiti LAB V	^{vity} ANE	WA	TER CO	ONTEN	IT (%)	d S	NATL	((%)
174.8			Ŋ	Ł	ż	с В С С В С	ELI	2	0 4	0 6	8 0	80 10	00	1	0 2	20 3	30			GR SA	SI CL
- 174:8	TOPSOIL: 150mm	<u>× 1</u> ,						-													
- 0.2	CLAYEY SILT: some sand, reddish brown, moist, stiff		1	SS	12			-							c	>					
	(weathered/disturbed)							-													
								F													
174.0	SILTY CLAY TILL: some sand,						174	-													
1	trace gravel, reddish brown, moist, hard							-													
-	naru		2	SS	34			-							∣∘⊢	1				3 19	53 25
								-													
			<u> </u>					-													
-			1		50/		173	-							-						
F.			3	SS	125mn	h		Ł							o						
-		H	<u> </u>					-													
t								-													
E			1					-													
-			4	SS	50/ 125mn			-						c							
					201111		172														
3,7,7			┣──					-													
³ 171.7 3.1	SHALE: Queenston Formation,	<u>1</u> ,1,1			50/			-													
171.4	reddish brown, weathered		5	SS	25mm			-													
3.4	END OF BOREHOLE Notes:																				
	1) Borehole dry and open upon																				
	completion.																				
2																					
ģ																					
5																					
ŝ																					
	DWATER ELEVATIONS					GRAPH	3	√3. I	Number	rs refer	_	8=3%		at Failu				_	_		

LOG OF BOREHOLE BH17-3R

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm

Date: Nov/14/2017

REF. NO.: 17-508-100 ENCL NO.: 4

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON DATUM: Geodetic

PROJECT: Phase Two ESA

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation

	SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CO	DNE PE E PLOT		ATION			- NATI	JRAL			F	MET	HANE
(m)		⊢				GROUND WATER CONDITIONS							00	PLASTI LIMIT	IC MOIS	TURE	LIQUID LIMIT	ż.	NATURAL UNIT WT (kN/m ³)	A	ND
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	NS	z	SHEA	R STI	RENG	50 8 TH (kl +	Pa)	1	WP		N	WL	POCKET PEN. (Cu) (kPa)	AL UN		N SIZE BUTION
DEPTH	DESCRIPTION	TAI	NUMBER		0.3 0.3		ELEVATION	O UI	NCONF	INED	+	FIELD \ & Sensi	/ANE tivity		(ζΩ ΟC	NUT (X)		30 HON 6)
		TRA	NM	ТҮРЕ	ż	NO NE	LE V						ANE 00		TER CC		T (%) 30	[⁻	¥		
174.7 - 17 4 :9	TOPSOIL: 150mm	0	z	-	÷	00	ш		4					'			50			GR SA	SI CL
- 174:5	CLAYEY SILT: some sand, reddish	111						-													
	brown, moist, stiff		1	SS	8			Ł							0						
-	(weathered/disturbed)							-													
			1—				174	-										1			
173.9 0.8	SILTY CLAY TILL: some sand,		1					-													
1	trace gravel, occasional	X						-													
-	cobble/boulder, reddish brown, moist, hard		2	SS	38			-							o						
-	moist, nara	1 th	1					-													
-		1						-													
-		121	1				170	-													
-			3	SS	43		173	-						0				1			
2								-													
F		1						-													
172.4								-													
2.3	SHALE: Queenston Formation, reddish brown, weathered							-													
-	reduisit brown, weathered		4	SS	50/			-													
-					75mm		172														
- E								-													
-								-													
-								-													
								-													
E I								-													
F							171											1			
								-													
_₄170.7 4.0	END OF BOREHOLE		<u> </u>					_													
	Notes:																				
	 Borehole dry and open upon completion. 																				
6																					
9/5/-																					
Б																					
S. S																					
0.GF																					
GEO																					
ò																					
ARG																					
- TE-																					
KVIL																					
OA																					
-10-																					
208																	1	1			
LO I																	1	1			
SOJE																	1	1			
Ч																	1	1			
00																		1			
OIL																	1	1			
DS SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19																	1	1			
		-		I	I	GRAPH	·			·	I	8=39		I		I	1		-		

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4

LOG OF BOREHOLE BH17-3T

DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm Date: Nov/15/2017 REF. NO.: 17-508-100 ENCL NO.: 14

	SOIL PROFILE		S	SAMPL	.ES			DY RE	NAN SIS	/IC CC TANCE	DNE PE E PLOT		ATION	1		, NAT	URAL			⊢	METHANE	_
(m)		OT			(0)	GROUND WATER CONDITIONS			20) 4	10 6	0 8	30	100	PLAST LIMIT	CON	URAL STURE NTENT	LIQUID LIMIT	PEN.	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE	
ELEV DEPT		A PL(ц.		BLOWS 0.3 m		NOIT			R STI		TH (k	Pa) FIELD & Sens	VANE	₩ _P		w o	WL	POCKET PEI (Cu) (kPa)	(kN/m)	DISTRIBUTIO	
		STRATA PLOT	NUMBER	ТҮРЕ	"N"		ELEVATION		QL	JICK T	RIAXIAI	LΧ	LAB	VANE			ONTEN		200	NATI	(%)	
174.		0 XX	Ī	Γ.	Z.	ចប័	Ξ	-	20) 4	10 6	8 0	30	100	1		20 :	30	-	-	GR SA SI C	Ľ
-	moist, over		1	SS	9			F														
F	FILL: clayey silt to sandy silt, trace			55	9		174	4														
F	to some organics, wood pieces, trace shale fragments, brown,		}			Ţ	W. L.	 173	 7 n	n												
F	moist, loose to compact		}				Jan 2	4, 20)18													
_ <u>173.</u> 1.					10			F														
	trace gravel, occasional cobble/boulder, reddish brown,		2	SS	40			È														
172.	moist hard		1—			: []	. 17: W. L.		9 n										1			
- 1.						目	Jan 1	8, 20)18													
F	reduisit brown, weathered		3	SS	50/ 100mr			F														
2						I:E		-														
-						目		F														
-					50/ 125mr		172	2														
-			4	SS	50/ 125mr		W.L.	171	.8 n	n												
171.4	4						·	10, 20														
2.																						_
	1) Borehole dry and open upon																					
	completion. 2) Monitoring Well installed upon																					
	completion. Water Level Readings:																					
	Date Water Level (mbgs)																					
	Nov. 16, 2017 2.5																					
	Jan. 9, 2018 dry Jan. 18, 2018 1.4																					
	Jan. 24, 2018 0.6																					
19																						
F 9/5																						
S.GDT 9/5/19																						
SOL																						
0.GP																						
Ü 9 -																						
RGO																						
LE-A																						
KVIL																						
- O																						
08-10																						
CT 5															1					1		
ROJE																						
D D																						
DS SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ D																						
s so																						
ă L			L	I							1							1		I		_

O^{8=3%} Strain at Failure

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

LOG OF BOREHOLE BH17-4R

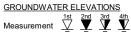
DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm

Date: Nov/14/2017

REF. NO.: 17-508-100 ENCL NO.: 5


DATUM: Geodetic

PROJECT: Phase Two ESA

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation

	SOIL PROFILE		5	SAMPL	ES	~		DYNA RESIS	MIC CO	DNE PE E PLOT		ATION		PLASTI	_ NAT	URAL	LIQUID		F	ME	THAI	NE
(m)		OT			S	GROUND WATER CONDITIONS	7		1	0 6		1	00		CON	STURE ITENT W		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)		AND AIN S	
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ËR		BLOWS 0.3 m		ELEVATION	οu	NCONF		+	FIELD V & Sensit	ANE	I		o		OCKE (Cu) (F	TURAL (kN/r	DIST	RIBU (%)	TION
174.7		STRA	NUMBER	ТҮРЕ	"Z	GROL	ELEV			RIAXIAL 10 61	. ×	LAB V	AŃE 00			ONTEN 20 :	T (%) 30	ľ	¥	GR S		I CL
0.0	TOPSOIL: 200mm	<u>x1 1/</u>	-		-		_	-														02
0.2	CLAYEY SILT: some sand, reddish brown, moist, stiff		1	SS	11										>							
- - 174.1	(weathered/disturbed)							-														
0.6	SILTY CLAY TILL: some sand, trace gravel, occasional cobble/boulder, reddish brown,						174	-														
- <u>1</u>	cobble/boulder, reddish brown, moist, hard							-														
-			2	SS	42			-							∘⊦		4			5 1	5 56	6 23
-								-														
-							173	-														
			3	SS	50/ 125mn	h	170	-						0								
2								-														
172.4	Older F. Oursenstern Formation		1					-														
. 2.3 -	SHALE: Queenston Formation, reddish brown, weathered				50/			-														
-			4	SS	25mm		172											1				
- - 3			<u> </u>					-														
-								-														
-			5	SS	50 / no			-														
-				pe	netrati	on	171	-														
-							171	-														
4								-														
170.4	END OF BOREHOLE							-														
4.3	Notes: 1) Borehole dry and open upon																					
	completion.																					
			1			GRAPH				rs refer		e -3%					1	<u> </u>	<u> </u>			

LOG OF BOREHOLE BH17-5R

DRILLING DATA

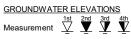
Diameter: 150mm

Date: Nov/14/2017

Method: Solid Stem Augers

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation


PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4

DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE LIMIT CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) NATURAL UNIT M (kN/m³) AND 40 60 100 20 80 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m Wp w WL SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE & Sensitivity ELEVATION ELEV DEPTH DISTRIBUTION -0 -1 DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE QUICK TRIAXIAL × LAB VANE z 20 40 60 80 100 10 20 30 GR SA SI CL 175.5 0.0 TOPSOIL: 300mm <u>۱</u>۲, 175.2 SS 6 1 0 CLAYEY SILT: some sand, reddish 0.3 brown, moist, stiff 175 (weathered/disturbed) 174.7 SILTY CLAY TILL: some sand, 0.8 trace gravel, occasional cobble/boulder, reddish brown, 2 SS 22 moist, hard 1 174 3 SS 37 173 50/ SS 4 25m SHALE: Queenston Formation, 3.1 reddish brown, weathered 50/ 5 SS 00m 172 <u>171.8</u> 3.7 END OF BOREHOLE Notes: 1) Borehole dry and open upon completion.

SOIL LOG PROJECT 508-10 - OAKVILLE-ARGO - GEO.GPJ DS.GDT 9/5/19 SD

O ^{8=3%} Strain at Failure

REF. NO.: 17-508-100

ENCL NO.: 6

PROJECT: Phase Two ESA

CLIENT: Argo Development Corporation

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

DATUM: Geodetic

BOREHOLE LOCATION: See Drawing 4

DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE LIMIT CONTENT METHANE GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) NATURAL UNIT M (kN/m³) AND 40 60 100 20 80 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m WL Wp w SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE & Sensitivity ELEVATION ELEV DEPTH DISTRIBUTION -0 -1 DESCRIPTION NUMBER (%) WATER CONTENT (%) ТҮРЕ QUICK TRIAXIAL × LAB VANE z 40 60 80 100 10 20 30 20 GR SA SI CL 174.8 TOPSOIL: 150mm <u>``</u>`*`*, 174:9 0.2 CLAYEY SILT: some sand, reddish SS 9 brown, moist, stiff 1 o (weathered/disturbed) 174.0 SILTY CLAY TILL: some sand, 174 0.8 trace gravel, reddish brown, moist, hard 2 SS 37 0 3 SS 42 173 172.3 2.5 SHALE: Queenston Formation, 50/ 4 SS reddish brown, weathered 25mr 172 ⁻⁻171.7 END OF BOREHOLE 3.1 Notes: 1) Borehole dry and open upon completion.

LOG OF BOREHOLE BH17-6R

DRILLING DATA

Diameter: 150mm

Date: Nov/14/2017

Method: Solid Stem Augers

REF. NO.: 17-508-100 ENCL NO.: 7

PROJECT LOCATION: 3270 Sixth Line, Oakville, ON

LOG OF BOREHOLE BH17-7R

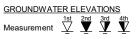
DRILLING DATA

Method: Solid Stem Augers

Diameter: 150mm

Date: Nov/15/2017

REF. NO.: 17-508-100 ENCL NO.: 8


DATUM: Geodetic

PROJECT: Phase Two ESA

BOREHOLE LOCATION: See Drawing 4

CLIENT: Argo Development Corporation

(m) DESCRIPTION Understand (m) (m) </th <th></th> <th>SOIL PROFILE</th> <th></th> <th>5</th> <th>SAMPL</th> <th>ES</th> <th></th> <th></th> <th>DYNA RESIS</th> <th>MIC CO STANCE</th> <th>DNE PEI E PLOT</th> <th></th> <th>ATION</th> <th></th> <th>DI AGT</th> <th>- NAT</th> <th>URAL</th> <th></th> <th></th> <th>⊢</th> <th>METHANE</th>		SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CO STANCE	DNE PEI E PLOT		ATION		DI AGT	- NAT	URAL			⊢	METHANE
174.9 TOPSOL: 150mm 2.5 0.2 CLVPSVBIT: some sand, reddish brown, moist, stiff (weathered/disturbed) 1 SS 8 173.8 0.8 SILTY CLAY TILL: some sand, trade grave, occasional coblectional coblect	(m)		Ц				ATER						_	00	LIMIT	C MOIS	TURE	LIMIT	lz	NTN (AND
174.9 TOPSOL: 150mm 2.5 0.2 CLVPSVBIT: some sand, reddish brown, moist, stiff (weathered/disturbed) 1 SS 8 173.8 0.8 SILTY CLAY TILL: some sand, trade grave, occasional coblectional coblect		DECODIDEION	PLO	~		MS E		NO				ΓH (kł	Pa)	····-		\	N 0	WL	L) (kPa	KAL U	
174.9 TOPSOL: 150mm 2.5 0.2 CLVPSVBIT: some sand, reddish brown, moist, stiff (weathered/disturbed) 1 SS 8 173.8 0.8 SILTY CLAY TILL: some sand, trade grave, occasional coblectional coblect	DEPTH	DESCRIPTION	ATA	1BEF	ш	<u>BLC</u>	INNC	VATI				+	FIELD V & Sensit	ANE ivity		TER CO		T (%)	00 00 00	NTUR 1	
174.9 TOPSOL: 150mm 2.5 0.2 CLVPSVBIT: some sand, reddish brown, moist, stiff (weathered/disturbed) 1 SS 8 173.8 0.8 SILTY CLAY TILL: some sand, trade grave, occasional coblectional coblect	174 6		STR	NN	ΤΥΡ	z	GRC													Ľ	GR SA SI CL
brown, moist, stiff (weathered/disturbed) 173.8 173.8 173.8 173.8 174 173.8 174 173.8 174 173.8 174 173 173 173 173 173 173 173 173	- 174:4		<u>×1 /</u>						-												
173.8 Image: SHLY CLAY TILL: some sand, transmit and transmit a	0.2			1	SS	8			-							,	•				
173.8 173.8 0.8 SILY CLAY TILL: some sand, including costional cost of the	E								-												
0.8 SILTY CLAY TILL: some sand, transmissional cobble/boulder, reddish brown, moist, hard 2 SS 36 2 SS 36 0 0 2 SS 36 0 0 2 SS 36 0 0 3 SHALE: Queenston Formation. 173 174 0 171.1 SHALE: Queenston Formation. 174 174 173.6 SHALE: Queenston Formation. 174 174 Pool of FOREHOLE 174 Notes: 100 of BOREHOLE 174 185.001 070 100 185.001 25 100	-							174													
1 trace gravel, occasional cobleboulder, reddish brown, moist, hard 2 SS 36 173 0 173 173 174 173 175 175 175 175 175 175 175 175 175 175									-												
moist, hard 1		trace gravel, occasional							-												
2 3 171.1 173.6 W. L. 172.5 m Jan 24, 2018 W. L. 172.5 m Jan 24, 2018 W. L. 172.1 m Jan 18, 2018 END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Nov. 16, 2017 dry Jan. 9, 2018 dry				2	SS	36			-							•					
2 3 4 171.1 173.6 SHALE: Queenston Formation. 3.6 Veddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. 2) Monitoring Well ins	-]					-												
2 3 4 171.1 173.6 SHALE: Queenston Formation. 3.6 Veddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. 2) Monitoring Well ins	-								-												
3 W. L. 172.5 m Jan 24, 2018 171.1 W. L. 172.1 m. Jan 18, 2018 173.6 SHALE: Oueenston Formation. 3.6 Yeddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018								173	-										1		
3 W. L. 172.5 m Jan 24, 2018 171.1 W. L. 172.1 m. Jan 18, 2018 173.6 SHALE: Oueenston Formation. 3.6 Yeddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018									-												
Jan 24, 2018 Jan 24, 2018 W. L. 172,1 m Jan 18, 2018 Jan 18, 2018	2			1					-												
3.6 Veddish brown, weathered FND OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Mater Level (mbgs) Nov. 16, 2017 dry Jan. 18, 2018	-			1				W.L.	172.5	m											
3 171.1 173.0 SHALE: Queenston Formation. 3.6 Yeddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5									, 2010 F	ĺ											
3.6 SHALE: Queenston Formation. 171.1 173.6 3.6 Yeddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 18, 2018 dry							[首:												1		
171.1 173.6 SHALE: Queenston Formation. 3.6 reddish brown, weathered 171 BND OF BOREHOLE Notes: 171 1) Borehole dry and open upon completion. 171 2) Monitoring Well installed upon completion. 171 Water Level Readings: 171 Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 18, 2018 Jan. 18, 2018 2,5								Jan 18	6, 2018 -	8											
171.1 173.6 SHALE: Queenston Formation. 3.6 reddish brown, weathered 171 BND OF BOREHOLE Notes: 171 1) Borehole dry and open upon completion. 171 2) Monitoring Well installed upon completion. 171 Water Level Readings: 171 Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 18, 2018 Jan. 18, 2018 2,5	- 3			1					-												
173.6 SHALE: Queenston Formation. 3.6 reddish brown, weathered BND OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 171 2) Monitoring Well installed upon completion. 171 Water Level Readings: 171 Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5	-								-												
173.6 SHALE: Queenston Formation. 3.6 reddish brown, weathered BND OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 171 2) Monitoring Well installed upon completion. 171 Water Level Readings: 171 Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5								•	-												
3.6 reddish brown, weathered END OF BOREHOLE Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5	171.1		121				に目い	1	-												
Notes: 1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5		eddish brown, weathered					<u>r. r.</u>	171													
1) Borehole dry and open upon completion. 2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5																					
2) Monitoring Well installed upon completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5		1) Borehole dry and open upon																			
completion. Water Level Readings: Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan, 18, 2018 2.5																					
Date Water Level (mbgs) Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5		completion.																			
Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5		Water Level Readings:																			
Nov. 16, 2017 dry Jan. 9, 2018 dry Jan. 18, 2018 2.5		Date Water Level (mbos)																			
Jan. 18. 2018 2.5		Nov. 16, 2017 dry																			
Jan. 24, 2018 2.1		Jan. 18. 2018 2.5																			
		Jan. 24, 2018 2.1																			
																			1	1	
																			1	1	
																				1	

Appendix D – Certificates of Analysis

CLIENT NAME: MISC AGAT CLIENT ON, ON ATTENTION TO: Scott Watson PROJECT: 508-26 AGAT WORK ORDER: 17T286307 SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor DATE REPORTED: Nov 30, 2017 PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>IOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T286307 PROJECT: 508-26 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Scott Watson SAMPLED BY:Scott Watson

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2017-11-20								I	DATE REPORTI	ED: 2017-11-30	
			SAMPLE DESCR	RIPTION: .E TYPE:	BH-17-1R-SS-1 Soil	BH-17-3R-SS-3 Soil	BH-17-4R-SS-1 Soil	BH-17-5R-SS-2 Soil	BH-17-AR-SS-2 Soil	BH-17-6R-SS-1 Soil	BH-17-1N-SS-2 Soil
			DATE SA		2017-11-15	2017-11-15	2017-11-15	2017-11-15	2017-11-15	2017-11-15	2017-11-15
Parameter	Unit	G / S: A	-	RDL	8924500	8924502	8924504	8924505	8924508	8924509	8924510
Antimony	µg/g	1.3	1.3	0.8	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<></td></a]<>	<0.8[<a]< td=""><td><0.8[<a]< td=""></a]<></td></a]<>	<0.8[<a]< td=""></a]<>
Arsenic	µg/g	18	18	1	6[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Barium	µg/g	220	220	2	80[<a]< td=""><td>109[<a]< td=""><td>90[<a]< td=""><td>93[<a]< td=""><td>89[<a]< td=""><td>100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	109[<a]< td=""><td>90[<a]< td=""><td>93[<a]< td=""><td>89[<a]< td=""><td>100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	90[<a]< td=""><td>93[<a]< td=""><td>89[<a]< td=""><td>100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	93[<a]< td=""><td>89[<a]< td=""><td>100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	89[<a]< td=""><td>100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<></td></a]<>	100[<a]< td=""><td>111[<a]< td=""></a]<></td></a]<>	111[<a]< td=""></a]<>
Beryllium	µg/g	2.5	2.5	0.5	0.7[<a]< td=""><td>0.6[<a]< td=""><td>0.8[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.8[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.8[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<>	0.7[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<>	0.6[<a]< td=""></a]<>
Boron	µg/g	36	36	5	6[<a]< td=""><td>11[<a]< td=""><td>6[<a]< td=""><td>10[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>6[<a]< td=""><td>10[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>10[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<>	8[<a]< td=""></a]<>
Boron (Hot Water Soluble)	µg/g	NA	1.5	0.10	0.12[<b]< td=""><td>0.68[<b]< td=""><td>0.16[<b]< td=""><td>0.12[<b]< td=""><td>0.12[<b]< td=""><td><0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	0.68[<b]< td=""><td>0.16[<b]< td=""><td>0.12[<b]< td=""><td>0.12[<b]< td=""><td><0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	0.16[<b]< td=""><td>0.12[<b]< td=""><td>0.12[<b]< td=""><td><0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<></td></b]<>	0.12[<b]< td=""><td>0.12[<b]< td=""><td><0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<></td></b]<></td></b]<>	0.12[<b]< td=""><td><0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<></td></b]<>	<0.10[<b]< td=""><td>0.15[<b]< td=""></b]<></td></b]<>	0.15[<b]< td=""></b]<>
Cadmium	µg/g	1.2	1.2	0.5	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td><0.5[<a]< td=""></a]<></td></a]<>	<0.5[<a]< td=""></a]<>
Chromium	µg/g	70	70	2	24[<a]< td=""><td>23[<a]< td=""><td>24[<a]< td=""><td>21[<a]< td=""><td>21[<a]< td=""><td>29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	23[<a]< td=""><td>24[<a]< td=""><td>21[<a]< td=""><td>21[<a]< td=""><td>29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	24[<a]< td=""><td>21[<a]< td=""><td>21[<a]< td=""><td>29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>21[<a]< td=""><td>29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<>	29[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<>	24[<a]< td=""></a]<>
Cobalt	µg/g	21	22	0.5	13.3[<a]< td=""><td>15.2[<a]< td=""><td>13.0[<a]< td=""><td>13.4[<a]< td=""><td>13.0[<a]< td=""><td>13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15.2[<a]< td=""><td>13.0[<a]< td=""><td>13.4[<a]< td=""><td>13.0[<a]< td=""><td>13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13.0[<a]< td=""><td>13.4[<a]< td=""><td>13.0[<a]< td=""><td>13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13.4[<a]< td=""><td>13.0[<a]< td=""><td>13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13.0[<a]< td=""><td>13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<></td></a]<>	13.7[<a]< td=""><td>13.7[<a]< td=""></a]<></td></a]<>	13.7[<a]< td=""></a]<>
Copper	µg/g	92	92	1	30[<a]< td=""><td>37[<a]< td=""><td>25[<a]< td=""><td>35[<a]< td=""><td>36[<a]< td=""><td>25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	37[<a]< td=""><td>25[<a]< td=""><td>35[<a]< td=""><td>36[<a]< td=""><td>25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>35[<a]< td=""><td>36[<a]< td=""><td>25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	35[<a]< td=""><td>36[<a]< td=""><td>25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	36[<a]< td=""><td>25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<>	27[<a]< td=""></a]<>
Lead	µg/g	120	120	1	16[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>13[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<>	22[<a]< td=""></a]<>
Molybdenum	µg/g	2	2	0.5	0.5[<a]< td=""><td>0.8[<a]< td=""><td><0.5[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.8[<a]< td=""><td><0.5[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.7[<a]< td=""><td>0.6[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.7[<a]< td=""><td>0.6[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<>	0.6[<a]< td=""></a]<>
Nickel	µg/g	82	82	1	27[<a]< td=""><td>29[<a]< td=""><td>29[<a]< td=""><td>26[<a]< td=""><td>24[<a]< td=""><td>28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	29[<a]< td=""><td>29[<a]< td=""><td>26[<a]< td=""><td>24[<a]< td=""><td>28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	29[<a]< td=""><td>26[<a]< td=""><td>24[<a]< td=""><td>28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td>24[<a]< td=""><td>28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	24[<a]< td=""><td>28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<></td></a]<>	28[<a]< td=""><td>28[<a]< td=""></a]<></td></a]<>	28[<a]< td=""></a]<>
Selenium	µg/g	1.5	1.5	0.4	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td>0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td>0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td>0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td>0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td>0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<></td></a]<>	0.5[<a]< td=""><td>0.4[<a]< td=""></a]<></td></a]<>	0.4[<a]< td=""></a]<>
Silver	µg/g	0.5	0.5	0.2	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<>	<0.2[<a]< td=""></a]<>
Thallium	µg/g	1	1	0.4	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<></td></a]<>	<0.4[<a]< td=""><td><0.4[<a]< td=""></a]<></td></a]<>	<0.4[<a]< td=""></a]<>
Uranium	µg/g	2.5	2.5	0.5	0.5[<a]< td=""><td>1.1[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	1.1[<a]< td=""><td><0.5[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.5[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<></td></a]<>	0.6[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<>	0.6[<a]< td=""></a]<>
Vanadium	µg/g	86	86	1	31[<a]< td=""><td>28[<a]< td=""><td>31[<a]< td=""><td>27[<a]< td=""><td>27[<a]< td=""><td>35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	28[<a]< td=""><td>31[<a]< td=""><td>27[<a]< td=""><td>27[<a]< td=""><td>35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	31[<a]< td=""><td>27[<a]< td=""><td>27[<a]< td=""><td>35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>27[<a]< td=""><td>35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<></td></a]<>	35[<a]< td=""><td>31[<a]< td=""></a]<></td></a]<>	31[<a]< td=""></a]<>
Zinc	µg/g	290	290	5	62[<a]< td=""><td>63[<a]< td=""><td>64[<a]< td=""><td>58[<a]< td=""><td>59[<a]< td=""><td>65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	63[<a]< td=""><td>64[<a]< td=""><td>58[<a]< td=""><td>59[<a]< td=""><td>65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	64[<a]< td=""><td>58[<a]< td=""><td>59[<a]< td=""><td>65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	58[<a]< td=""><td>59[<a]< td=""><td>65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	59[<a]< td=""><td>65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<></td></a]<>	65[<a]< td=""><td>63[<a]< td=""></a]<></td></a]<>	63[<a]< td=""></a]<>
Chromium VI	µg/g	0.66	0.66	0.2	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<></td></a]<>	<0.2[<a]< td=""><td><0.2[<a]< td=""></a]<></td></a]<>	<0.2[<a]< td=""></a]<>
Cyanide	hð\ð	0.051	0.051 (0.040	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<></td></a]<>	<0.040[<a]< td=""><td><0.040[<a]< td=""></a]<></td></a]<>	<0.040[<a]< td=""></a]<>
Mercury	hð/ð	0.27	0.27	0.10	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<></td></a]<>	<0.10[<a]< td=""><td><0.10[<a]< td=""></a]<></td></a]<>	<0.10[<a]< td=""></a]<>
Electrical Conductivity	mS/cm	0.57	0.7 (0.005	0.212[<a]< td=""><td>0.201[<a]< td=""><td>0.249[<a]< td=""><td>0.123[<a]< td=""><td>0.123[<a]< td=""><td>0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.201[<a]< td=""><td>0.249[<a]< td=""><td>0.123[<a]< td=""><td>0.123[<a]< td=""><td>0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.249[<a]< td=""><td>0.123[<a]< td=""><td>0.123[<a]< td=""><td>0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.123[<a]< td=""><td>0.123[<a]< td=""><td>0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	0.123[<a]< td=""><td>0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<></td></a]<>	0.331[<a]< td=""><td>0.280[<a]< td=""></a]<></td></a]<>	0.280[<a]< td=""></a]<>
Sodium Adsorption Ratio	NA	2.4	5	NA	0.095[<a]< td=""><td>0.581[<a]< td=""><td>0.207[<a]< td=""><td>0.087[<a]< td=""><td>0.084[<a]< td=""><td>0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.581[<a]< td=""><td>0.207[<a]< td=""><td>0.087[<a]< td=""><td>0.084[<a]< td=""><td>0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.207[<a]< td=""><td>0.087[<a]< td=""><td>0.084[<a]< td=""><td>0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	0.087[<a]< td=""><td>0.084[<a]< td=""><td>0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	0.084[<a]< td=""><td>0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<></td></a]<>	0.091[<a]< td=""><td>1.46[<a]< td=""></a]<></td></a]<>	1.46[<a]< td=""></a]<>
pH, 2:1 CaCl2 Extraction	pH Units			NA	7.59	7.79	7.36	7.67	7.62	7.07	7.57

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17T286307 PROJECT: 508-26 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Scott Watson SAMPLED BY:Scott Watson

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE REPORTED: 2017-11-30 DATE RECEIVED: 2017-11-20 SAMPLE DESCRIPTION: BH-17-2N-SS-1 BH-17-BR-SS-1 BH-17-1T-SS-3 BH-17-2T-SS-2 BH-17-3T-SS-2 BH-17-AT-SS-2 BH-17-3N-SS-1 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2017-11-15 2017-11-15 2017-11-15 2017-11-15 2017-11-15 2017-11-15 2017-11-15 G/S:A G/S:B RDL 8924511 8924516 8924521 8924522 8924738 8924745 8932678 Parameter Unit 1.3 1.3 0.8 <0.8[<A] <0.8[<A] <0.8[<A] <0.8 <0.8[<A] Antimonv µg/g <0.8[<A] <0.8[<A] Arsenic 18 18 6[<A] 6[<A] 6[<A] 5 5[<A] 4[<A] 5[<A] µg/g 1 220 220 2 90 Barium µg/g 120[<A] 77[<A] 163[<A] 105[<A] 109[<A] 89[<A] 2.5 Bervllium 2.5 0.5 0.7[<A] 0.6[<A] 0.7[<A] 0.6 0.6[<A] 0.7[<A] 0.7[<A] µg/g Boron 36 36 5 <5[<A] 8[<A] 16[<A] 14 10[<A] <5[<A] 5[<A] µg/g Boron (Hot Water Soluble) µg/g NA 1.5 0.10 0.23[<B] 0.15[<B] 0.22[<B] 0.40 0.34[<B] 0.26[<B] 0.12[<B] Cadmium µg/g 1.2 1.2 0.5 <0.5[<A] <0.5[<A] <0.5[<A] <0.5 1.2[A] <0.5[<A] <0.5[<A] Chromium µg/g 70 70 2 26[<A] 23[<A] 25[<A] 22 21[<A] 25[<A] 27[<A] Cobalt 21 22 0.5 11.9 µg/g 15.7[<A] 13.6[<A] 15.7[<A] 12.4[<A] 11.1[<A] 12.8[<A] Copper 92 92 14[<A] 23[<A] 8[<A] 18 13[<A] 35[<A] µg/g 1 21[<A] Lead µg/g 120 120 1 18[<A] 14[<A] 17[<A] 16 14[<A] 16[<A] 18[<A] Molybdenum 2 2 <0.5[<A] 0.8 0.6[<A] µg/g 0.5 0.5[<A] 1.0[<A] 0.6[<A] 0.7[<A] Nickel 82 82 24[<A] 30[<A] 23 25[<A] 22[<A] 35[<A] µg/g 1 22[<A] Selenium µg/g 1.5 1.5 0.4 0.8[<A] <0.4[<A] 0.9[<A] < 0.4 <0.4[<A] 0.5[<A] <0.4[<A] Silver 0.5 0.5 0.2 <0.2[<A] <0.2[<A] <0.2[<A] <0.2 <0.2[<A] <0.2[<A] <0.2[<A] µg/g Thallium µg/g 1 1 0.4 <0.4[<A] <0.4[<A] 0.7[<A] <0.4 <0.4[<A] <0.4[<A] <0.4[<A] Uranium µg/g 2.5 2.5 0.5 1.3[<A] 0.5[<A] 0.6[<A] <0.5 <0.5[<A] 1.1[<A] 0.5[<A] Vanadium 86 86 30[<A] 29[<A] 23 28[<A] 26[<A] µg/g 1 37[<A] 26[<A] 88 Zinc µg/g 290 290 5 76[<A] 61[<A] 63[<A] 232[<A] 75[<A] 81[<A] Chromium VI 0.66 0.66 0.2 <0.2[<A] <0.2[<A] <0.2[<A] <0.2 <0.2[<A] <0.2[<A] µg/g <0.2[<A] Cyanide µg/g 0.051 0.051 0.040 <0.040[<A] <0.040[<A] <0.040[<A] < 0.040 <0.040[<A] <0.040[<A] <0.040[<A] Mercury 0.27 0.27 0.10 <0.10[<A] < 0.10 <0.10[<A] µg/g <0.10[<A] <0.10[<A] <0.10[<A] <0.10[<A] Electrical Conductivity mS/cm 0.57 0.7 0.005 0.382[<A] 0.199[<A] 0.180[<A] 0.252 0.184[<A] 0.320[<A] 0.164[<A] Sodium Adsorption Ratio NA 2.4 5 NA 2.15[<A] 0.201[<A] 0.295[<A] 0.192 0.217[<A] 0.153[<A] 0.180[<A] pH, 2:1 CaCl2 Extraction pH Units NA 6.97 7.49 7.34 7.62 7.60 7.27 7.38

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, B Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8924500-8932678 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 17T286307 PROJECT: 508-26

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Scott Watson

SAMPLED BY:Scott Watson

DATE RECEIVED: 2017-11-20									DATE REPORTED: 2017-11-30
			SAMPLE DE	SCRIPTION:	BH-17-3R-SS-3	BH-17-5R-SS-2	BH-17-AR-SS-2	BH-17-1N-SS-2	2
			SA	MPLE TYPE:	Soil	Soil	Soil	Soil	
			DATE	SAMPLED:	2017-11-15	2017-11-15	2017-11-15	2017-11-15	
Parameter	Unit	G / S: A	G / S: B	RDL	8924502	8924505	8924508	8924510	
Hexachloroethane	µg/g	0.01	0.01	0.01	<0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<>	<0.01[<a]< td=""><td></td></a]<>	
Gamma-Hexachlorocyclohexane	µg/g	0.01	0.01	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Heptachlor	µg/g	0.05	0.05	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Aldrin	µg/g	0.05	0.05	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Heptachlor Epoxide	µg/g	0.05	0.05	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Endosulfan	µg/g	0.04	0.04	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Chlordane	µg/g	0.05	0.05	0.007	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<>	<0.007[<a]< td=""><td></td></a]<>	
DDE	µg/g	0.05	0.05	0.007	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<>	<0.007[<a]< td=""><td></td></a]<>	
DDD	µg/g	0.05	0.05	0.007	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<>	<0.007[<a]< td=""><td></td></a]<>	
DDT	µg/g	1.4	1.4	0.007	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.007[<a]< td=""><td><0.007[<a]< td=""><td></td></a]<></td></a]<>	<0.007[<a]< td=""><td></td></a]<>	
Dieldrin	µg/g	0.05	0.05	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Endrin	µg/g	0.04	0.04	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Methoxychlor	µg/g	0.05	0.05	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Hexachlorobenzene	µg/g	0.01	0.02	0.005	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.005[<a]< td=""><td><0.005[<a]< td=""><td></td></a]<></td></a]<>	<0.005[<a]< td=""><td></td></a]<>	
Hexachlorobutadiene	µg/g	0.01	0.01	0.01	<0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	<0.01[<a]< td=""><td><0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	<0.01[<a]< td=""><td><0.01[<a]< td=""><td></td></a]<></td></a]<>	<0.01[<a]< td=""><td></td></a]<>	
Moisture Content	%			0.1	10.8	11.8	11.9	18.9	
Surrogate	Unit	А	cceptable Limi	ts					
ТСМХ	%		50-140		60	64	66	56	
Decachlorobiphenyl	%		60-130		68	88	100	96	

O. Reg. 153(511) - OC Pesticides (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, B Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8924502-8924510 Results are based on the dry weight of the soil.

Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and pp'DDD and DDE applies to the total of op'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 17T286307 PROJECT: 508-26

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Scott Watson

DATE REPORTED: 2017-11-30

SAMPLED BY:Scott Watson

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2017-11-20

	;	SAMPLE DESCRIPTION:	BH-17-1T-SS-3
l		SAMPLE TYPE:	Soil
		DATE SAMPLED:	2017-11-15
Parameter	Unit	G/S RDL	8924521
Aroclor 1242	µg/g	0.1	<0.1
Aroclor 1248	µg/g	0.1	<0.1
Aroclor 1254	µg/g	0.1	<0.1
Aroclor 1260	µg/g	0.1	<0.1
Polychlorinated Biphenyls	µg/g	0.1	<0.1
Moisture Content	%	0.1	20.5
Surrogate	Unit	Acceptable Limits	
Decachlorobiphenyl	%	60-140	84

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8924521 Results are based on the dry weight of soil extracted.

Certified By:

Jung

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 17T286307 PROJECT: 508-26 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Scott Watson

SAMPLED BY:Scott Watson

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2017-11-20

DATE REPORTED: 2017-11-30

		SAMPLE DESCRIPTION:	BH-17-1T-SS-2	BH-17-2T-SS-3	BH-17-3T-SS-2	BH-17-BT-SS-2
		SAMPLE TYPE:	Soil	Soil	Soil	Soil
		DATE SAMPLED:	2017-11-15	2017-11-15	2017-11-15	2017-11-15
Parameter	Unit	G/S RDL	8924520	8924730	8924738	8924747
Benzene	µg/g	0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05
Xylene Mixture	µg/g	0.05	<0.05	<0.05	<0.05	<0.05
F1 (C6 to C10)	µg/g	5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	50	NA	NA	NA	NA
Moisture Content	%	0.1	19.6	13.0	6.9	21.5
Surrogate	Unit	Acceptable Limits				
Terphenyl	%	60-140	88	118	83	84

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8924520-8924747 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Certified By:

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: 508-26

SAMPLING SITE:

Molybdenum

Nickel

AGAT WORK ORDER: 17T286307 **ATTENTION TO: Scott Watson**

SAMPLED BY:Scott Watson

			Soi	I Ana	alysis	6								
RPT Date: Nov 30, 2017		1	DUPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SP	KE
PARAMETER	Batch Samp	le Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 1	eptable mits	Recovery	1 1 1	ptable nits
	Id Id					Value	Lower	Upper		Lower	Upper	,		Uppe
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	8924500 892450	0.0>	<0.8	NA	< 0.8	97%	70%	130%	100%	80%	120%	101%	70%	130%
Arsenic	8924500 892450	0 6	6	0.0%	< 1	98%	70%	130%	98%	80%	120%	88%	70%	130%
Barium	8924500 892450	08 0	83	3.7%	< 2	99%	70%	130%	100%	80%	120%	94%	70%	130%
Beryllium	8924500 892450	0.7	0.7	NA	< 0.5	102%	70%	130%	101%	80%	120%	78%	70%	130%
Boron	8924500 892450	0 6	7	NA	< 5	108%	70%	130%	108%	80%	120%	108%	70%	130%
Boron (Hot Water Soluble)	8924500 892450	0.12	0.12	NA	< 0.10	101%	60%	140%	97%	70%	130%	98%	60%	1409
Cadmium	8924500 892450) <0.5	<0.5	NA	< 0.5	99%	70%	130%	112%	80%	120%	97%	70%	130%
Chromium	8924500 892450	24	24	0.0%	< 2	105%	70%	130%	110%	80%	120%	107%	70%	130%
Cobalt	8924500 892450	0 13.3	13.4	0.7%	< 0.5	101%	70%	130%	102%	80%	120%	96%	70%	1309
Copper	8924500 892450	0 30	30	0.0%	< 1	103%	70%	130%	105%	80%	120%	105%	70%	130%
Lead	8924500 892450	0 16	16	0.0%	< 1	104%	70%	130%	109%	80%	120%	99%	70%	130%
Molybdenum	8924500 892450	0.5	0.6	NA	< 0.5	104%	70%	130%	104%	80%	120%	101%	70%	1309
Nickel	8924500 892450) 27	27	0.0%	< 1	100%	70%	130%	100%	80%	120%	92%	70%	1309
Selenium	8924500 892450	0 <0.4	<0.4	NA	< 0.4	97%	70%	130%	95%	80%	120%	95%	70%	1309
Silver	8924500 892450	0 <0.2	<0.2	NA	< 0.2	98%	70%	130%	109%	80%	120%	94%	70%	1309
Thallium	8924500 892450	0 <0.4	<0.4	NA	< 0.4	96%	70%	130%	101%	80%	120%	91%	70%	1309
Uranium	8924500 892450	0.5	0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	95%	70%	1309
Vanadium	8924500 892450) 31	31	0.0%	< 1	99%	70%	130%	100%	80%	120%	96%	70%	1309
Zinc	8924500 892450	0 62	63	1.6%	< 5	101%	70%	130%	103%	80%	120%	116%	70%	1309
Chromium VI	8924301	<0.2	<0.2	NA	< 0.2	95%	70%	130%	100%	80%	120%	97%	70%	130%
Cyanide	8924500 892450	0 <0.040	<0.040	NA	< 0.040	90%	70%	130%	92%	80%	120%	109%	70%	1309
Mercury	8924500 892450	0 <0.10	<0.10	NA	< 0.10	108%	70%	130%	99%	80%	120%	97%	70%	130%
Electrical Conductivity	8922337 892450	0.169	0.182	7.4%	< 0.005	97%	90%	110%	NA			NA		
Sodium Adsorption Ratio	8924500 892450	0.095	0.097	2.1%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	8925657	7.48	7.50	0.3%	NA	101%	80%	120%	NA			NA		
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	8922337	<0.8	<0.8	NA	< 0.8	90%	70%	130%	101%	80%	120%	104%	70%	130%
Arsenic	8922337	6	6	0.0%	< 1	97%	70%	130%	91%	80%	120%	95%	70%	1309
Barium	8922337	86	82	4.8%	< 2	103%	70%	130%	98%	80%	120%	100%	70%	1309
Beryllium	8922337	0.6	0.6	NA	< 0.5	77%	70%	130%	97%	80%	120%	100%	70%	1309
Boron	8922337	5	<5	NA	< 5	77%	70%	130%	99%	80%	120%	96%	70%	1309
Boron (Hot Water Soluble)	8928100	0.17	0.19	NA	< 0.10	114%	60%	140%	96%	70%	130%	99%	60%	140%
Cadmium	8922337	<0.5	<0.5	NA	< 0.5	98%	70%	130%	100%	80%	120%	102%	70%	1309
Chromium	8922337	25	24	4.1%	< 2	96%	70%	130%	108%	80%	120%	106%	70%	130%
Cobalt	8922337	13.1	12.8	2.3%	< 0.5	95%	70%	130%	102%	80%	120%	99%	70%	1309
Copper	8922337	40	39	2.5%	< 1	97%		130%		80%	120%	110%	70%	1309
Lead	8922337	18	17	5.7%	< 1	107%	70%	130%	103%	80%	120%	102%	70%	1309
Malyhdanum	0000007	0.5	0.5		0.5	1000/	700/	4000/	40.40/	0.00/	4000/	4050/	700/	1200

AGAT QUALITY ASSURANCE REPORT (V1)

8922337

8922337

<0.5

27

0.5

26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

NA

3.8%

< 0.5

< 1

103%

96%

70% 130%

70% 130%

104%

103%

80% 120%

80% 120%

105%

99%

70% 130%

70% 130%

Page 7 of 13

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: 508-26

SAMPLING SITE:

AGAT WORK ORDER: 17T286307 ATTENTION TO: Scott Watson SAMPLED BY:Scott Watson

Soil Analysis (Continued)

RPT Date: Nov 30, 2017			C	UPLICATE	Ξ		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.10	ptable nits	Recovery	1 1 1 1	ptable nits
		ld	•				Value	Lower	Upper		Lower	Upper	-		Upper
Selenium	8922337		<0.4	<0.4	NA	< 0.4	116%	70%	130%	97%	80%	120%	108%	70%	130%
Silver	8922337		<0.2	<0.2	NA	< 0.2	83%	70%	130%	107%	80%	120%	105%	70%	130%
Thallium	8922337		<0.4	<0.4	NA	< 0.4	93%	70%	130%	96%	80%	120%	97%	70%	130%
Uranium	8922337		0.5	<0.5	NA	< 0.5	102%	70%	130%	90%	80%	120%	93%	70%	130%
Vanadium	8922337		26	25	3.9%	< 1	87%	70%	130%	102%	80%	120%	100%	70%	130%
Zinc	8922337		112	111	0.9%	< 5	94%	70%	130%	104%	80%	120%	118%	70%	130%
Chromium VI	8928090		<0.2	<0.2	NA	< 0.2	72%	70%	130%	100%	80%	120%	98%	70%	130%
Cyanide	8927472		<0.040	<0.040	NA	< 0.040	97%	70%	130%	107%	80%	120%	83%	70%	130%
Mercury	8922337		<0.10	<0.10	NA	< 0.10	106%	70%	130%	97%	80%	120%	104%	70%	130%
Electrical Conductivity	8922337		0.169	0.182	7.4%	< 0.005	97%	90%	110%	NA			NA		
Sodium Adsorption Ratio	8922337		0.280	0.286	2.1%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	8928090		10.1	10.0	1.0%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: 508-26

SAMPLING SITE:

AGAT WORK ORDER: 17T286307 ATTENTION TO: Scott Watson SAMPLED BY:Scott Watson

Trace Organics Analysis

						,	-								
RPT Date: Nov 30, 2017			C	UPLICATE	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 10	ptable nits	Recovery	Lin	ptable nits
		Ia	-				value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	8922035		< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	86%	50%	140%	84%	50%	140%
Gamma-Hexachlorocyclohexane	8922035		< 0.005	< 0.005	NA	< 0.005	101%	50%	140%	80%	50%	140%	84%	50%	140%
Heptachlor	8922035		< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	84%	50%	140%	80%	50%	140%
Aldrin	8922035		< 0.005	< 0.005	NA	< 0.005	95%	50%	140%	94%	50%	140%	82%	50%	140%
Heptachlor Epoxide	8922035		< 0.005	< 0.005	NA	< 0.005	89%	50%	140%	102%	50%	140%	94%	50%	140%
Endosulfan	8922035		< 0.005	< 0.005	NA	< 0.005	85%	50%	140%	94%	50%	140%	88%	50%	140%
Chlordane	8922035		< 0.007	< 0.007	NA	< 0.007	87%	50%	140%	85%	50%	140%	86%	50%	140%
DDE	8922035		< 0.007	< 0.007	NA	< 0.007	90%	50%	140%	103%	50%	140%	92%	50%	140%
DDD	8922035		< 0.007	< 0.007	NA	< 0.007	93%	50%	140%	101%	50%	140%	80%	50%	140%
DDT	8922035		< 0.007	< 0.007	NA	< 0.007	95%	50%	140%	84%	50%	140%	78%	50%	140%
Dieldrin	8922035		< 0.005	< 0.005	NA	< 0.005	86%	50%	140%	104%	50%	140%	96%	50%	140%
Endrin	8922035		< 0.005	< 0.005	NA	< 0.005	85%	50%	140%	102%	50%	140%	96%	50%	140%
Methoxychlor	8922035		< 0.005	< 0.005	NA	< 0.005	89%	50%	140%	102%	50%	140%	102%	50%	140%
Hexachlorobenzene	8922035		< 0.005	< 0.005	NA	< 0.005	99%	50%	140%	96%	50%	140%	86%	50%	140%
Hexachlorobutadiene	8922035		< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	84%	50%	140%	74%	50%	140%
O. Reg. 153(511) - PCBs (Soil)															
Aroclor 1242	8927134		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	8927134		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	8927134		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	8927134		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	8927134		< 0.1	< 0.1	NA	< 0.1	97%	60%	140%	95%	60%	140%	95%	60%	140%
O. Reg. 153(511) - PHCs F1 - F4 ((Soil)														
Benzene	8922006		< 0.02	< 0.02	NA	< 0.02	114%	60%	130%	115%	60%	130%	112%	60%	130%
Toluene	8922006		< 0.08	< 0.08	NA	< 0.08	115%	60%	130%	117%	60%	130%	113%	60%	130%
Ethylbenzene	8922006		< 0.05	< 0.05	NA	< 0.05	111%	60%	130%	114%	60%	130%	118%	60%	130%
Xylene Mixture	8922006		< 0.05	< 0.05	NA	< 0.05	112%	60%	130%	116%	60%	130%	114%	60%	130%
F1 (C6 to C10)	8922006		< 5	< 5	NA	< 5	95%	60%	130%	93%	85%	115%	78%	70%	130%
F2 (C10 to C16)	8919530		< 10	< 10	NA	< 10	105%	60%	130%	100%	80%	120%	71%	70%	130%
F3 (C16 to C34)	8919530		< 50	< 50	NA	< 50	102%	60%	130%	93%	80%	120%	82%	70%	130%
F4 (C34 to C50)	8919530		< 50	< 50	NA	< 50	104%	60%	130%	99%	80%	120%	95%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

ung

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 13

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: 508-26

AGAT WORK ORDER: 17T286307 ATTENTION TO: Scott Watson

SAMPLING SITE:		SAMPLED BY:So	ott Watson
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
_ead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Jranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: 508-26

SAMPLING SITE:

AGAT WORK ORDER: 17T286307 ATTENTION TO: Scott Watson SAMPLED BY:Scott Watson

SAMPLING SITE:		SAMPLED BT:50	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
тсмх	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE
Aroclor 1242	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1248	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1254	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1260	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009		GC/FID

hain of Custody Record							5.712.5	iissaug 5100 web	35 Cooper ga, Ontario Fax: 905.7 earth.agati	L4Z 1Y2 12.5122 labs.com	2	Coo	k Orde ler Qua val Terr	antity:	_	FT	23		307 3 :	- 3'
Report Information:	I lifthis is	a Drinking Wa	ter sample, p	R	Drinking Water Chain of Custody Form (Regulatory Requirements: Please check all applicable bases)				ory Requ		nt		tody Se	eal Int	act:]Yes	1]No	□n/#
	ton Catal Fax -	Consult	14 CKS	8 	Regulation 153/04 Table Indicate One Ind/Com Res/Park Odd Texture (check one) Coarse Fine MISA	nitary rm ate One	_	□co □Pr	ov. Water Q ojectives (P)uality WQO)	ſ	Reg	naroi ular 1 n TAT J ^{3 B} Day	(Rush S Usine: /S	iurcharg SS	jes Appl	5 to 7 1/) 2 Busi Days			
Project Information: Project: 50% - Site Location: Sampled By: 500 +					Is this submission for a Record of Site Condition?			ficat	iuideline e of Ana	on		Fo	+ TAT	Please Lis éxi	e provi clusive	ide pr e of w	rlor noti /eekend	ification is and st	for rush TA tatutory ho t your AGA	NT lidays
Picase note: if quotation number is Invoice Information: Company: Contact: Address: Email:	not provided, client	Bill To Same:		B G O P S S	Ground Water O Oil Paint S Soll	Field Filtered - Metals, Hg, CrVI	Metals and Inorganics	is 📙 153 Metals (excl: Hydrides) Metals 🔲 153 Metals (Incl. Hydrides	ORPS: DB-HWS CC1 CCN CC4 CEC FOC DHg CDH CSAR	Full Metals Scan Regulation/Custom Metals	Nutrients: D TP D NH, D TKN D No, D No, D No,+No,	: OVOC OBTEX OTHM	- F4			Pesticides	□ M&i □ vocs □ ABNs □ B(a)P □PCBs ir Use			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals a	L All Meta		Full Meta Regulati	Nutrient	Volatiles:	PHCS F1 - I ABNS	PAHs	PCBs: []	Organochlorine	TCLP: D N			
13H17-1R-25-1	Nov 15	PM	1	sail	Table 1 & B		V						3							
BH-17-3R-55-3	1	1	d	_	standards	1.00	V	_			_		-	-		V		+	_	+ +
BH-17-4R-55-1 BH-17-5R-55-2			2				V							-		V		+ +		++
BH-17-AR-55-2			à		·	-	1		-							2	-			
BH-17-68 - 55-1			1	1			V			_				-						
BAANSPAARAAAAAAAAA			-		Smanled be blank		HAR		100											
BH+17-IN - 55-2	_	-	2				-									V		-91	0	1.219
BH-17-2N-55-1		5.0	Ĩ				V		2		-	AN						1.21		
BH-17-3N-55-1			İ	V			~		-			1								1000
BH- 17- BR - 52-1	V	V	2				1		1											
		1 Date		e	Samples Rectived By (Print Name and Sign):					Dat	°_/	1	Time	1.1	28	T		4		-
amples Relinquished By (Print Name and Bign):		.JO.V	2014	5. Pw	1 Sima Z	_				1.	7/11	120		4						
amples Relinquished By (Print Name and Hign): Show and a start of the		Date		5. Pu	Samples Received By (Print Name and Sign):					Dat	7/11	/20	Time	4		1	Pag	ge	_of	<u>L_</u>
amples Relinquished By (Print Name and Bign):		Date Nav Date	Tim	5. pu	1 Sima Z					Dat	e* *	/20	Time	4.		Nº:		se	_of	<u>L</u>

	A 1		abor	ato	ries	Ph: 90		ssissau 2 .5100	835 Coopera Iga, Ontario Fax: 905.7 bearth.agatl	L4Z 1Y 1 2.512	2 2	Wo	ork Or		y Us(
Chain of Custody Record	l If this is a	a Drinking Wat	ter sample, p	lease use	Drinking Water Chain of Custody Form	(potable 1	water c	onsume	d by humans)			Arı	ival T	emper	atures	9				1	
Report Information: DS Co	nsultar	ts L	t.J.		Regulatory Requirements: (Please check all opplicable baxes)		No R	egula	tory Requ	irem	ent		stody tes:	Seal I	ntact:	l	∐Yes)	□N/A
Phone: $905-264-936$	wy 7	Un	t 16 1440	[Regulation 153/04 Table 12 0 Ind/Com				Regulation 5	58				ouno r TAT		-		-	ulred:		
Phone: Reports to be sent to: 1. Email: 2. Email: AIKa. Sanga						ate One	_		Prov. Water Q Objectives (P Other					AT (Rue Busir Davs	h Surcha 1855	rgee Ap		Busines	is [□ Next Day	Business
2. Email: A/Ka. Sango	sadso	Consult	mts.C	is_		۱.		2	indicate On	,					te Reqi	uired			arges M):
Project Information: Project: 506-20 Site Location: Holton				_	Is this submission for a Record of Site Condition ?		Cer		Guideline te of Ana	ysis	1			TAT is i	exclusi	ve of	weeke	ends a	ition for Ind statue Intact you	tory holi	days
Sampled By: AGAT Quote #: Please note: If quotation number is					Sample Matrix Legend B Biota	Hg, CrWi	-	(des) O. Reg	.0			W					B(a)P DPCBs				
Invoice Information: Company: Contact: Address: Email:		Bill To Same:	Yes 29 No		GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg.	and Inorganics	☐ All Metals ☐ 153 Metals (excl. Hydrides) ☐ Hydride Metals ☐ 153 Metals (inc). Hydrides)	ORPS: DBHWS CCI CN CCr ⁶⁴ CEC CFOC CHg CD PH CSAR	Full Metals Scan Regulation/Custom Metals	Nutrients: DTP DNH, DTKN DNO ₃ DNO ₃ DNO ₃ +NO ₂	Volatiles: Uvoc DBTEX DTHM	1 - F4		C Total C Aroclors	Organochiorine Pesticides		Use			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metals	All Me	ORPs: DCf ⁶⁺ DPH C	Full Me Regula	Nutrier D No.	Volatile	PHCs F1 - F4	ABNs	PCBs: (Organo	TCLP: []	Sewer		iev.	es.e
3417-17-552	Nov 15	PM	2	Sau	100.00		100	_					4		8	,					HUMA -
BH17-17-253	1		1	1	Table 8 Standards		V	[-				_		V	1		_			1
131+17-27-552			1		crandards	1	10	-	1				V		14						
BH17-27 - 553			2		510.0		V							-							
BH17-37 - 552			3				V	1	-				V							1	
3417-AT - 552			2				V	1		-		-								1.10	
BH17-BT-552	V	V	2	4							-	7.0	~			-		_		111	
	100				26 Enthiners	-	F									-				2	
					in total				-			64								_	
Samples Relinquished By (Print Name and Sign)		Date) 17 "	1 14. Fr	Sampless Roceived By (Print Name and Sign)		<u></u>			D	~/n	. 10		me	0	T					
Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign)		Date	752017	4 pm	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):						ale	120		me				Page	20		=
Samples Relinguished By (Print Name and Sign):		Date	1 1	me	Samples Received By (Print Name and Sign):					0.	atC.		110	nig .		l la re		10	A A 4	099	1

CLIENT NAME: DS CONSULTING 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: Shafi Amdreta

PROJECT: 568-20

AGAT WORK ORDER: 18T304909

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 31, 2018

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8

Results relate only to the items tested and to all the items tested

AGAT WORK ORDER: 18T304909 PROJECT: 568-20

O. Reg. 153(511) - Metals & Inorganics (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: Shafi Amdreta

SAMPLED BY:

DATE REPORTED: 2018-01-31 DATE RECEIVED: 2018-01-24 SAMPLE DESCRIPTION: TP8r GS2 TP11r GS1 TP12r GS1 SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2018-01-22 2018-01-22 2018-01-22 G/S RDL 9028451 9028452 9028454 Parameter Unit 1.3 0.8 1.2 <0.8 <0.8 Antimony µg/g Arsenic 18 1 7 4 5 µg/g Barium 220 2 99 88 66 µg/g 2.5 0.5 0.7 0.8 0.6 Beryllium µg/g Boron 36 5 7 <5 6 µg/g 0.47 0.11 Boron (Hot Water Soluble) µg/g NA 0.10 0.81 Cadmium µg/g 1.2 0.5 0.8 <0.5 <0.5 Chromium µg/g 70 2 17 19 18 Cobalt 21 0.5 11.3 8.3 11.7 µg/g Copper 92 1 35 18 27 µg/g Lead µg/g 120 1 61 19 13 2 0.5 0.8 <0.5 <0.5 Molybdenum µg/g Nickel 20 25 82 1 19 µg/g 1.5 0.4 0.6 0.6 0.4 Selenium µg/g Silver 0.5 0.2 <0.2 <0.2 <0.2 µg/g Thallium µg/g 1 0.4 < 0.4 <0.4 <0.4 Uranium µg/g 2.5 0.5 0.7 1.0 <0.5 Vanadium 86 24 23 20 µg/g 1 62 Zinc µg/g 290 5 274 87 Chromium VI 0.66 0.2 <0.2 <0.2 <0.2 µg/g Cyanide µg/g 0.051 0.040 < 0.040 < 0.040 < 0.040 Mercury 0.27 0.10 0.13 <0.10 <0.10 µg/g Electrical Conductivity mS/cm 0.57 0.005 0.258 0.231 0.168 Sodium Adsorption Ratio NA 2.4 NA 0.116 1.82 0.115 pH, 2:1 CaCl2 Extraction pH Units NA 7.24 6.41 7.26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9028451-9028454 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Nivine Basily

AGAT WORK ORDER: 18T304909 PROJECT: 568-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: Shafi Amdreta

SAMPLED BY:

DATE RECEIVED: 2018-01-24								[DATE REPORT	ED: 2018-01-31	
		SAMPLE DESC	RIPTION:	TP10r GS1	TP10r GS0 Dup	TP9r GS2	TP3r GS1	TP4r GS1	TP6r GS1	TP3r GS0Dup	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2018-01-18	2018-01-18	2018-01-22	2018-01-18	2018-01-18	2018-01-18	2018-01-18	
Parameter	Unit	G/S	RDL	9028445	9028446	9028447	9028448	9028449	9028450	9028453	
Benzene	µg/g	0.02	0.02	<0.02	<0.02	<0.02	0.63	<0.02	<0.02	0.81	
Toluene	µg/g	0.2	0.08	<0.08	<0.08	<0.08	3.8	0.57	<0.08	4.6	
Ethylbenzene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	1.4	0.16	<0.05	1.5	
Kylene Mixture	µg/g	0.05	0.05	<0.05	<0.05	<0.05	7.7	1.6	<0.05	9.5	
⁼ 1 (C6 to C10)	µg/g	25	5	<5	<5	<5	61	32	<5	79	
F1 (C6 to C10) minus BTEX	µg/g	25	5	<5	<5	<5	47	30	<5	63	
F2 (C10 to C16)	µg/g	10	10	<10	<10	<10	27	<10	<10	30	
F3 (C16 to C34)	µg/g	240	50	<50	80	<50	270	<50	210	300	
F4 (C34 to C50)	µg/g	120	50	<50	<50	<50	52	<50	<50	51	
Gravimetric Heavy Hydrocarbons	µg/g	120	50	NA	NA	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	14.2	11.2	14.9	5.6	14.3	31.5	13.5	
Surrogate	Unit	Acceptable	Limits								
Terphenyl	%	60-14	0	73	88	75	96	94	76	88	

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9028445-9028453 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Certified By:

NPopukoloj

Guideline Violation

AGAT WORK ORDER: 18T304909 PROJECT: 568-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTING

ATTENTION TO: Shafi Amdreta

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Benzene	µg/g	0.02	0.63
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Ethylbenzene	µg/g	0.05	1.4
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10)	µg/g	25	61
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10) minus BTEX	µg/g	25	47
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F2 (C10 to C16)	µg/g	10	27
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F3 (C16 to C34)	µg/g	240	270
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Toluene	µg/g	0.2	3.8
9028448	TP3r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Xylene Mixture	µg/g	0.05	7.7
9028449	TP4r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Ethylbenzene	µg/g	0.05	0.16
9028449	TP4r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10)	µg/g	25	32
9028449	TP4r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10) minus BTEX	µg/g	25	30
9028449	TP4r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Toluene	µg/g	0.2	0.57
9028449	TP4r GS1	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Xylene Mixture	µg/g	0.05	1.6
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Benzene	µg/g	0.02	0.81
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Ethylbenzene	µg/g	0.05	1.5
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10)	µg/g	25	79
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F1 (C6 to C10) minus BTEX	µg/g	25	63
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F2 (C10 to C16)	µg/g	10	30
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	F3 (C16 to C34)	µg/g	240	300
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Toluene	µg/g	0.2	4.6
9028453	TP3r GS0Dup	ON T1 S RPI/ICC	O. Reg. 153(511) - PHCs F1 - F4 (Soil)	Xylene Mixture	µg/g	0.05	9.5

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 568-20

SAMPLING SITE:

AGAT WORK ORDER: 18T304909 ATTENTION TO: Shafi Amdreta SAMPLED BY:

Soil Analysis

RPT Date: Jan 31, 2018		C	UPLICATE	Ξ		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.10	ptable nits	Recovery		ptable nits
	I III					Value	Lower	Upper	_	Lower	Upper	_	Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	9028452 9028452	<0.8	<0.8	NA	< 0.8	95%	70%	130%	98%	80%	120%	75%	70%	130%
Arsenic	9028452 9028452	4	4	NA	< 1	98%	70%	130%	100%	80%	120%	97%	70%	130%
Barium	9028452 9028452	88	87	1.1%	< 2	99%	70%	130%	90%	80%	120%	88%	70%	130%
Beryllium	9028452 9028452	0.8	0.7	NA	< 0.5	74%	70%	130%	114%	80%	120%	91%	70%	130%
Boron	9028452 9028452	<5	<5	NA	< 5	92%	70%	130%	109%	80%	120%	85%	70%	130%
Boron (Hot Water Soluble)	9028452 9028452	0.81	0.84	3.6%	< 0.10	99%	60%	140%	91%	70%	130%	91%	60%	140%
Cadmium	9028452 9028452	<0.5	<0.5	NA	< 0.5	93%	70%	130%	96%	80%	120%	97%	70%	130%
Chromium	9028452 9028452	19	19	0.0%	< 2	78%	70%	130%	103%	80%	120%	90%	70%	130%
Cobalt	9028452 9028452	8.3	8.3	0.0%	< 0.5	85%	70%	130%	90%	80%	120%	86%	70%	130%
Copper	9028452 9028452	18	18	0.0%	< 1	87%	70%	130%	99%	80%	120%	88%	70%	130%
Lead	9028452 9028452	19	19	0.0%	< 1	98%	70%	130%	92%	80%	120%	93%	70%	130%
Molybdenum	9028452 9028452	<0.5	<0.5	NA	< 0.5	86%	70%	130%	92%	80%	120%	92%	70%	130%
Nickel	9028452 9028452	20	20	0.0%	< 1	87%	70%	130%	92%	80%	120%	90%	70%	130%
Selenium	9028452 9028452	0.6	0.6	NA	< 0.4	99%	70%	130%	100%	80%	120%	101%	70%	130%
Silver	9028452 9028452	<0.2	<0.2	NA	< 0.2	90%	70%	130%	97%	80%	120%	85%	70%	130%
Thallium	9028452 9028452	<0.4	<0.4	NA	< 0.4	80%	70%	130%	101%	80%	120%	94%	70%	130%
Uranium	9028452 9028452	1.0	1.0	NA	< 0.5	84%	70%	130%	105%	80%	120%	101%	70%	130%
Vanadium	9028452 9028452	23	23	0.0%	< 1	73%	70%	130%	91%	80%	120%	78%	70%	130%
Zinc	9028452 9028452	87	86	1.2%	< 5	96%	70%	130%	100%	80%	120%	90%	70%	130%
Chromium VI	9027444	<0.2	<0.2	NA	< 0.2	77%	70%	130%	93%	80%	120%	101%	70%	130%
Cyanide	9027374	<0.040	<0.040	NA	< 0.040	90%	70%	130%	97%	80%	120%	94%	70%	130%
Mercury	9028452 9028452	<0.10	<0.10	NA	< 0.10	95%	70%	130%	92%	80%	120%	92%	70%	130%
Electrical Conductivity	9028452 9028452	0.231	0.238	3.0%	< 0.005	99%	90%	110%						
Sodium Adsorption Ratio	9028452 9028452	1.82	1.84	1.1%	NA									
pH, 2:1 CaCl2 Extraction	9028644	9.21	9.28	0.8%	NA	101%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 8

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 568-20

SAMPLING SITE:

AGAT WORK ORDER: 18T304909 ATTENTION TO: Shafi Amdreta SAMPLED BY:

Trace Organics Analysis

				5		, , , , , , , , , , , , , , , , , , ,	-							
RPT Date: Jan 31, 2018			OUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits
	Id					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - I	F4 (Soil)													
Benzene	9025779	< 0.02	< 0.02	NA	< 0.02	90%	60%	130%	88%	60%	130%	80%	60%	130%
Toluene	9025779	< 0.08	< 0.08	NA	< 0.08	92%	60%	130%	85%	60%	130%	85%	60%	130%
Ethylbenzene	9025779	< 0.05	< 0.05	NA	< 0.05	95%	60%	130%	90%	60%	130%	80%	60%	130%
Xylene Mixture	9025779	< 0.05	< 0.05	NA	< 0.05	98%	60%	130%	92%	60%	130%	82%	60%	130%
F1 (C6 to C10)	9025779	< 5	< 5	NA	< 5	89%	60%	130%	87%	85%	115%	76%	70%	130%
F2 (C10 to C16)	9028453 9028453	30	30	NA	< 10	102%	60%	130%	96%	80%	120%	91%	70%	130%
F3 (C16 to C34)	9028453 9028453	300	300	0.0%	< 50	102%	60%	130%	98%	80%	120%	106%	70%	130%
F4 (C34 to C50)	9028453 9028453	51	54	NA	< 50	86%	60%	130%	94%	80%	120%	94%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: DS CONSULTING

PROJECT: 568-20

SAMPLING SITE:

AGAT WORK ORDER: 18T304909 **ATTENTION TO: Shafi Amdreta**

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Soil Analysis											
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES								
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER								
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER								
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	ECMETER								
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES								
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER								
Trace Organics Analysis											
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS								
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS								
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS								
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS								
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID								
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID								
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID								
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE								
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE								
Terphenyl	VOL-91-5009		GC/FID								

	A 1		abor	ato	ries		Ph: 90		sissau .5100	335 Coop ga, Ontar Fax: 905 earth.ag	io L4Z	1Y2 122	v	abor Vork Or	der #:	.18		1y 30		09		-
Chain of Custody Record Report Information: Company: Ds Cons	L		ter sample, p		Drinking Water Chain of C Regulatory Requin Please check all applicable boxes)					l by humar		nent]	rrival T Sustody				3 (]Yes	<u>e</u>		47	
Contact: Contact: Address: 3hafi: Amd 622-1 HWY Vaughan Phone: 905-2&4-93 Reports to be sent to: 1. Email: 2. Email: Project: Information: Project: Soc 8-20 Site Location: Sampled By: SW	7, UC 7, UC 0N 93 Fax:	nit 16 24 H	DKE	کے میں دو	Regulation 153/04 Table	dition?	tary m to One	Cert		rov. Wate bjectives ther Indicate	r Qualir (PWQC One) 	Tu Re	egula Ish T/ C C L K	r TAT AT (Russ) B Busir Days DR Dat DR Dat Plea TAT is e	h Surcha ness te Req ise pro exclusi	uired of the of	(Rush S Prior not weeken	Busin iness urchar ification ds and	ess Days	Next B Day Apply): sh TAT ry holida	ays
AGAT Quote #: Please note: If quotation number its Involce Information: Company:		Sill To Same:			- Forme	Ind	Field Filtered - Metals, Hg, CrVI	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) 0 □ Hydride Metals □ 153 Metals (Incl. Hydrides) 30	0RPS: DB+WS DC: DCN DCr ⁶⁺ DEC DF0C DHg DeH DSAR	Full Metals Scan	Regulation/Custom Metals	I UUS UNUSTINUS	L-F4		Total DAroclors	Organochlorine Pesticides	IM&I UVOCS DABNS DB(a)P DPCBS		1. 19 1. 19		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix			Y/N	Metals	D All Met	ORPs: [DCr ⁴ D	Full Met	Regulation/Cust	Volatiles:	PHCs F1 - F4	ABNS	PCBs: Total	Organoc	TCLP: CIM&I Sever Use		ые		
$\frac{TPIOF}{TPIOF} \frac{GSP}{GSD} \frac{D_{P}P}{D_{P}P}$ $\frac{TP9F}{GSD} \frac{GSD}{TP3F} \frac{GSD}{GSD}$	Jan 18,008 Jan 22, 2018 Jan 22, 2018		599		1P10+-C-S	O Dut	(ball) bash	1 2 2 2					××									
TP4r GSI TP6r GSI TP8r GS2 TP1IN GSI TP3r GSODUP	5 22,2018		2-1-2		TP3r CS	O Dup		× ×					×	× ×				20				
TPDF GS Sumples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	Jan 22 Jons	Date Son Date	· 2.3 Tim		Sample Received By (Print Sample Received By (Print Samples Received By (Print	Name and Sign):		×				Date	B/1		16	:9:	/		ge	of		
Oucument ID: DIV-78 1512 014			11	_				-		Pink	CODV .	lient (Vellow						<u>U6</u>	21	01	22 2017

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT Date Education Page 8 of 8

CLIENT NAME: DS CONSULTING 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: shafi amdreta

PROJECT: 508-30

AGAT WORK ORDER: 18T304912

TRACE ORGANICS REVIEWED BY: Gyulhan Yalamova, Report Reviewer

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: Feb 01, 2018

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18T304912 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi amdreta

SAMPLED BY:

				5. Neg. 15.	5(311) - 00	i esticides	(Mater)		
DATE RECEIVED: 2018-01-24									DATE REPORTED: 2018-02-01
Parameter	Unit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	MW 17 - 1T Water 2018-01-23 9028692	MW 1D - 17 Water 2018-01-23 9028694	MW 17 - 7R Water 2018-01-23 9028695	MW 17 - 1R Water 2018-01-23 9028696	DUP-1 Water 2018-01-23 9028698	
Gamma-Hexachlorocyclohexane	µg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Heptachlor	µg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Aldrin	µg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Heptachlor Epoxide	µg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Endosulfan	µg/L	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Chlordane	µg/L	0.06	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
DDE	µg/L	10	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
DDD	µg/L	1.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
DDT	µg/L	0.05	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	
Dieldrin	µg/L	0.05	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Endrin	µg/L	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methoxychlor	µg/L	0.05	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	
Hexachlorobenzene	ug/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Hexachlorobutadiene	ug/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Hexachloroethane	ug/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Surrogate	Unit	Acceptab	le Limits						
ТСМХ	%	50-1	140	107	94	100	101	98	
Decachlorobiphenyl	%	60-1	140	113	106	108	99	104	

O. Reg. 153(511) - OC Pesticides (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9028692-9028698 Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE and pp'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Certified By:

AGAT WORK ORDER: 18T304912 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi amdreta

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2018-01-24

								-	
		SAMPLE DESCRI	IPTION:	MW 17 - 1T	MW 17 - 3T	MW 1D - 17	MW 17 - 7R	DUP-1	
		SAMPLE	E TYPE:	Water	Water	Water	Water	Water	
		DATE SAM	MPLED:	2018-01-23	2018-01-23	2018-01-23	2018-01-23	2018-01-23	
Parameter	Unit	G/S	RDL	9028692	9028693	9028694	9028695	9028698	
F1 (C6 to C10)	µg/L	420	25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA	NA	NA	NA	
Surrogate	Unit	Acceptable L	imits						
Terphenyl	%	60-140		79	90	80	104	78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9028692-9028698 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

DATE REPORTED: 2018-02-01

AGAT WORK ORDER: 18T304912 PROJECT: 508-30

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi amdreta

SAMPLED BY:

				O. Key	. 155(511) -		.er)			
DATE RECEIVED: 2018-01-24								[DATE REPORTED: 201	8-02-01
		SAMPLE DES		MW 17 - 1T	MW 17 - 3T	MW 1D - 17	MW 17 - 7R	Field Blank	DUP-1	
			PLE TYPE:	Water	Water	Water	Water	Water	Water	
			SAMPLED:	2018-01-23	2018-01-23	2018-01-23	2018-01-23	2018-01-23	2018-01-23	
Parameter	Unit	G/S	RDL	9028692	9028693	9028694	9028695	9028697	9028698	
Dichlorodifluoromethane	µg/L	590	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	150	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methylene Chloride	µg/L	5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	400	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	µg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	640	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	0.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	µg/L	2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

AGAT WORK ORDER: 18T304912 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi amdreta

SAMPLED BY:

				j						
DATE RECEIVED: 2018-01-24								[DATE REPORTE	D: 2018-02-01
	S	-	CRIPTION: PLE TYPE: SAMPLED:	MW 17 - 1T Water 2018-01-23	MW 17 - 3T Water 2018-01-23	MW 1D - 17 Water 2018-01-23	MW 17 - 7R Water 2018-01-23	Field Blank Water 2018-01-23	DUP-1 Water 2018-01-23	
Parameter	Unit	G/S	RDL	9028692	9028693	9028694	9028695	9028697	9028698	
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Xylene Mixture	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptat	ole Limits							
Toluene-d8	% Recovery	50-	140	92	93	92	91	83	89	
4-Bromofluorobenzene	% Recovery	50-	140	88	85	86	87	85	95	

O. Reg. 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 18T304912 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi amdreta

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water) **DATE REPORTED: 2018-02-01** DATE RECEIVED: 2018-01-24 SAMPLE DESCRIPTION: MW 17 - 1T MW 17 - 3T MW 1D - 17 MW 17 - 7R DUP-1 SAMPLE TYPE: Water Water Water Water Water DATE SAMPLED: 2018-01-23 2018-01-23 2018-01-23 2018-01-23 2018-01-23 G/S RDL 9028692 RDL 9028693 RDL 9028694 9028695 RDL 9028698 Parameter Unit µg/L 1.5 1.0 1.0 <1.0 1.0 <1.0 1.0 <1.0 Antimony <1.0 <1.0 Arsenic µg/L 13 1.0 <1.0 1.0 <1.0 1.0 <1.0 <1.0 1.0 <1.0 Barium µg/L 610 2.0 39.4 78.0 2.0 2.0 60.0 2.0 88.9 59.0 µg/L 0.5 < 0.5 0.5 Beryllium 0.5 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5 Boron µg/L 1700 10.0 51.6 10.0 123 10.0 194 42.4 10.0 55.2 <0.2 Cadmium µg/L 0.5 0.2 < 0.2 0.2 0.2 <0.2 <0.2 0.2 < 0.2 Chromium µg/L 11 2.0 <2.0 2.0 <2.0 2.0 <2.0 <2.0 2.0 <2.0 Cobalt µg/L 3.8 0.5 <0.5 0.5 < 0.5 0.5 < 0.5 <0.5 0.5 < 0.5 5 1.9 1.0 1.6 1.0 <1.0 1.0 Copper µg/L 1.0 1.2 1.8 µg/L 1.9 0.5 <0.5 0.5 <0.5 0.5 <0.5 <0.5 0.5 Lead < 0.5 Molybdenum µg/L 23 0.5 1.2 0.5 1.3 0.5 9.3 2.4 0.5 1.2 Nickel µg/L 14 1.1 <1.0 <1.0 1.0 1.0 1.0 1.0 <1.0 1.0 1.0 Selenium µg/L 5 1.0 <1.0 1.0 <1.0 1.0 3.1 1.2 <1.0 µg/L 0.3 0.2 <0.2 0.2 <0.2 0.2 <0.2 0.2 < 0.2 Silver < 0.2 Thallium µg/L 0.5 0.3 <0.3 0.3 < 0.3 0.3 <0.3 <0.3 0.3 < 0.3 Uranium µg/L 8.9 0.5 4.4 0.5 2.7 0.5 21.4 1.9 0.5 4.6 Vanadium µg/L 3.9 0.4 0.9 0.4 <0.4 0.4 0.8 0.6 0.4 1.0 Zinc µg/L 160 5.0 <5.0 5.0 <5.0 5.0 <5.0 <5.0 5.0 <5.0 Mercury µg/L 0.1 0.02 < 0.02 0.02 < 0.02 0.02 < 0.02 < 0.02 0.02 < 0.02 Chromium VI µq/L 25 5 <5 5 <5 5 <5 <5 5 <5 Cyanide µg/L 5 2 <2 2 <2 2 <2 <2 2 <2 Sodium µg/L 490000 1000 19200 500 19700 500 11500 13300 1000 19300 Chloride µg/L 790000 500 14500 500 12800 200 14500 12000 500 13600 Electrical Conductivity uS/cm 2 1170 2 868 2 704 617 2 1180 pН pH Units NA 8.00 NA 7.95 NA 8.05 8.06 NA 7.97

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9028692-9028698 Elevated RDLs indicate the degree of sample dilutions prior to analyses to keep analytes within the calibration range, reduce matrix interference and to avoid contaminating the instrument.

	aga1	Laborator		Guideline Violation AGAT WORK ORDER: 18T304912 PROJECT: 508-30						
CLIENT NAME	E: DS CONSULTING			ATTENTION TO: shafi	amdreta	т.р./	/www.agatlabs.com			
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT			
9028694	MW 1D - 17	ON T1 GW	O. Reg. 153(511) - Metals & Inorganics (Water)	Uranium	µg/L	8.9	21.4			

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T304912 ATTENTION TO: shafi amdreta SAMPLED BY:

Trace Organics Analysis

			Irac	e Or	ganio	cs An	laiys	IS							
RPT Date: Feb 01, 2018			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLAN		MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lir	ptable nits	Recovery	Lin	ptable nits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	9026678		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	80%	50%	140%	103%	50%	140%
Vinyl Chloride	9026678		< 0.17	< 0.17	NA	< 0.17	88%	50%	140%	74%	50%	140%	83%	50%	140%
Bromomethane	9026678		< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	128%	50%	140%	93%	50%	140%
Trichlorofluoromethane	9026678		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	116%	50%	140%	100%	50%	140%
Acetone	9026678		< 1.0	< 1.0	NA	< 1.0	103%	50%	140%	111%	50%	140%	113%	50%	140%
1,1-Dichloroethylene	9026678		< 0.30	< 0.30	NA	< 0.30	84%	50%	140%	92%	60%	130%	101%	50%	140%
Methylene Chloride	9026678		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	88%	60%	130%	104%	50%	140%
trans- 1,2-Dichloroethylene	9026678		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	87%	60%	130%	112%	50%	140%
Methyl tert-butyl ether	9026678		< 0.20	< 0.20	NA	< 0.20	104%	50%	140%	112%	60%	130%	103%	50%	140%
1,1-Dichloroethane	9026678		< 0.30	< 0.30	NA	< 0.30	100%	50%	140%	102%	60%	130%	98%	50%	140%
Methyl Ethyl Ketone	9026678		< 1.0	< 1.0	NA	< 1.0	98%	50%	140%	97%	50%	140%	80%	50%	140%
cis- 1,2-Dichloroethylene	9026678		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	91%	60%	130%	71%	50%	140%
Chloroform	9026678		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	107%	60%	130%	81%	50%	140%
1,2-Dichloroethane	9026678		< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	100%	60%	130%	82%	50%	140%
1,1,1-Trichloroethane	9026678		< 0.30	< 0.30	NA	< 0.30	87%	50%	140%	107%	60%	130%	84%	50%	140%
Carbon Tetrachloride	9026678		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	96%	60%	130%	79%	50%	140%
Benzene	9026678		< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	86%	60%	130%	80%	50%	140%
1,2-Dichloropropane	9026678		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	96%	60%	130%	75%	50%	140%
Trichloroethylene	9026678		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	88%	60%	130%	79%	50%	140%
Bromodichloromethane	9026678		< 0.20	< 0.20	NA	< 0.20	115%	50%	140%	104%	60%	130%	87%	50%	140%
Methyl Isobutyl Ketone	9026678		< 1.0	< 1.0	NA	< 1.0	105%	50%	140%	103%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	9026678		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	99%	60%	130%	100%	50%	140%
Toluene	9026678		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	105%	60%	130%	91%	50%	140%
Dibromochloromethane	9026678		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	102%	60%	130%	94%	50%	140%
Ethylene Dibromide	9026678		< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	109%	60%	130%	88%	50%	140%
Tetrachloroethylene	9026678		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	111%	60%	130%	84%	50%	140%
1,1,1,2-Tetrachloroethane	9026678		< 0.10	< 0.10	NA	< 0.10	113%	50%	140%	117%	60%	130%	98%	50%	140%
Chlorobenzene	9026678		< 0.10	< 0.10	NA	< 0.10	102%	50%	140%	113%	60%	130%	92%	50%	140%
Ethylbenzene	9026678		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	93%	60%	130%	80%	50%	140%
m & p-Xylene	9026678		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	107%	60%	130%	82%	50%	140%
Bromoform	9026678		< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	92%	60%	130%	97%	50%	140%
Styrene	9026678		< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	84%	60%	130%	79%	50%	140%
1,1,2,2-Tetrachloroethane	9026678		< 0.10	< 0.10	NA	< 0.10	83%	50%	140%	82%	60%	130%	116%	50%	140%
o-Xylene	9026678		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	109%	60%	130%	84%	50%	140%
1,3-Dichlorobenzene	9026678		< 0.10	< 0.10	NA	< 0.10	102%	50%	140%	92%	60%	130%	75%	50%	140%
1,4-Dichlorobenzene	9026678		< 0.10	< 0.10	NA	< 0.10	94%	50%	140%	104%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	9026678		< 0.10	< 0.10	NA	< 0.10	108%	50%	140%	92%	60%	130%	77%	50%	140%
1,3-Dichloropropene	9026678		< 0.30	< 0.30	NA	< 0.30	101%	50%	140%	92%	60%	130%	98%	50%	140%
n-Hexane	9026678		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	92%	60%	130%	115%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 13

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T304912 ATTENTION TO: shafi amdreta SAMPLED BY:

Trace Organics Analysis (Continued)

	-		- 3				(
RPT Date: Feb 01, 2018	PT Date: Feb 01, 2018						REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 1 1 1	ptable nits	Recovery	1.10	eptable mits
		Ia					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 ((-BTEX) (Wa	iter)													
F1 (C6 to C10)	9025020		< 25	< 25	NA	< 25	85%	60%	140%	90%	60%	140%	77%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	110%	60%	140%	60%	60%	140%	62%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	110%	60%	140%	65%	60%	140%	64%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	97%	60%	140%	73%	60%	140%	79%	60%	140%
O. Reg. 153(511) - OC Pesticides	(Water)														
Gamma-Hexachlorocyclohexane		TW	< 0.01	< 0.01	NA	< 0.01	117%	50%	140%	95%	50%	140%	94%	50%	140%
Heptachlor		TW	< 0.01	< 0.01	NA	< 0.01	106%	50%	140%	87%	50%	140%	87%	50%	140%
Aldrin		TW	< 0.01	< 0.01	NA	< 0.01	95%	50%	140%	87%	50%	140%	88%	50%	140%
Heptachlor Epoxide		TW	< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	89%	50%	140%	89%	50%	140%
Endosulfan		TW	< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	79%	50%	140%	78%	50%	140%
Chlordane		TW	< 0.04	< 0.04	NA	< 0.04	91%	50%	140%	87%	50%	140%	86%	50%	140%
DDE		TW	< 0.01	< 0.01	NA	< 0.01	101%	50%	140%	94%	50%	140%	95%	50%	140%
DDD		TW	< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	98%	50%	140%	99%	50%	140%
DDT		TW	< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	89%	50%	140%	86%	50%	140%
Dieldrin		TW	< 0.02	< 0.02	NA	< 0.02	96%	50%	140%	93%	50%	140%	92%	50%	140%
Endrin		TW	< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	108%	50%	140%	108%	50%	140%
Methoxychlor		TW	< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	50%	140%	112%	50%	
Hexachlorobenzene		TW	< 0.01	< 0.01	NA	< 0.01	90%	50%	140%	82%	50%	140%	82%	50%	140%
Hexachlorobutadiene		TW	< 0.01	< 0.01	NA	< 0.01	104%	50%	140%	66%	50%	140%	67%	50%	140%
Hexachloroethane		TW	< 0.01	< 0.01	NA	< 0.01	112%	50%	140%	65%	50%	140%	66%	50%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 13

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T304912 ATTENTION TO: shafi amdreta SAMPLED BY:

Water Analysis

				matt	/ / \l	laryo									
RPT Date: Feb 01, 2018			D	UPLICATE	Ξ		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	ample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		iu	-	-			value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Ir	norganics (Water)														
Antimony	9028692 9028	8692	<1.0	<1.0	NA	< 1.0	101%	70%	130%	100%	80%	120%	103%	70%	130%
Arsenic	9028692 9028	8692	<1.0	<1.0	NA	< 1.0	108%	70%	130%	108%	80%	120%	110%	70%	130%
Barium	9028692 9028	8692	60.0	59.9	0.2%	< 2.0	99%	70%	130%	99%	80%	120%	96%	70%	130%
Beryllium	9028692 9028	8692	<0.5	<0.5	NA	< 0.5	93%	70%	130%	96%	80%	120%	95%	70%	130%
Boron	9028692 9028	8692	51.6	54.2	4.9%	< 10.0	94%	70%	130%	99%	80%	120%	91%	70%	130%
Cadmium	9028692 9028	8692	<0.2	<0.2	NA	< 0.2	101%	70%	130%	105%	80%	120%	101%	70%	130%
Chromium	9028692 9028	8692	<2.0	<2.0	NA	< 2.0	104%	70%	130%	104%	80%	120%	100%	70%	130%
Cobalt	9028692 9028	8692	<0.5	<0.5	NA	< 0.5	107%	70%	130%	102%	80%	120%	103%	70%	130%
Copper	9028692 9028	8692	1.9	1.8	NA	< 1.0	105%	70%	130%	103%	80%	120%	97%	70%	130%
Lead	9028692 9028	8692	<0.5	<0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	95%	70%	130%
Molybdenum	9028692 9028	8692	1.2	1.3	NA	< 0.5	100%	70%	130%	98%	80%	120%	96%	70%	130%
Nickel	9028692 9028	8692	1.1	<1.0	NA	< 1.0	104%	70%	130%	102%	80%	120%	99%	70%	130%
Selenium	9028692 9028	8692	<1.0	<1.0	NA	< 1.0	108%	70%	130%	110%	80%	120%	111%	70%	130%
Silver	9028692 9028	8692	<0.2	<0.2	NA	< 0.2	105%	70%	130%	111%	80%	120%	111%	70%	130%
Thallium	9028692 9028	8692	<0.3	<0.3	NA	< 0.3	105%	70%	130%	104%	80%	120%	102%	70%	130%
Uranium	9028692 9028	8692	4.4	4.6	4.4%	< 0.5	102%	70%	130%	102%	80%	120%	99%	70%	130%
Vanadium	9028692 9028	8692	0.9	1.0	NA	< 0.4	103%	70%	130%	99%	80%	120%	103%	70%	130%
Zinc	9028692 9028	8692	<5.0	<5.0	NA	< 5.0	104%	70%	130%	107%	80%	120%	105%	70%	130%
Mercury	9028692 9028	8692	<0.02	<0.02	NA	< 0.02	101%	70%	130%	99%	80%	120%	99%	70%	130%
Chromium VI	9028692 9028	8692	<5	<5	NA	< 5	95%	70%	130%	93%	80%	120%	96%	70%	130%
Cyanide	9028692 9028	8692	<2	<2	NA	< 2	90%	70%	130%	97%	80%	120%	85%	70%	130%
Sodium	9028693 9028	8693	19700	19700	0.0%	< 500	95%	70%	130%	95%	80%	120%	97%	70%	130%
Chloride	9028693 9028	8693	12800	12500	2.4%	< 100	91%	70%	130%	102%	70%	130%	104%	70%	130%
Electrical Conductivity	9028692 9028	8692	1170	1180	0.9%	< 2	102%	90%	110%						
рН	9028692 9028	8692	8.00	7.91	1.1%	NA	99%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the Reporting Limit (RL), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 10 of 13

Method Summary

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

AGAT WORK ORDER: 18T304912 ATTENTION TO: shafi amdreta

SAMPLING SITE:	SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis		· · ·	- !								
Gamma-Hexachlorocyclohexane	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Heptachlor	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Aldrin	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Heptachlor Epoxide	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Endosulfan	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Chlordane	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
DDE	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
DDD	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
DDT	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Dieldrin	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Endrin	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Methoxychlor	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Hexachlorobenzene	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Hexachlorobutadiene	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Hexachloroethane	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
тсмх	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8081	GC/ECD								
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID								
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID								
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID								
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE								
Terphenyl	VOL-91-5010		GC/FID								
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS								
		217.017.040.0000.00200	(

Method Summary

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T304912 ATTENTION TO: shafi amdreta SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS				
Water Analysis							
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS				
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS				
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER				
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER				
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES				
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH				
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE				
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE				

Chain of Custody Record					ies Drinking Water Chain of Custody Form	_	Mi 5.71	ssissau 2.5100 we	835 Coop Jga, Ontari Fax: 905 bearth.ag	712.51 itlabs.c	.22	w	ork Or ooler (der # Quanti		31	30		A12	
Report Information: Company:	suttant	5 Ltd			Regulatory Requirements: lease check of applicable baxes)	- I F	No R	egula	tory Red	luiren	nent	Ľ	ustody otes:_	Seal	Intact:	Ę	Yes			DN/
Contact: Address: Address: 6221 Vaught $905 - 264 - 93Reports to be sent to:1. Email:2. Email:$	3	Image: Park Image: Storm Image: Prov. Water Quality Agriculture Objectives (PWQ0) Soil Texture (Check One) Region Image: Prov. Water Quality Objectives (PWQ0) Image: Objective Prov. Prov. Water Quality Objectives (PWQ0) Objectives (PWQ0) Image: Objective Prov. Prov.						Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days OR Date Required (Rush Surcharges May Apply):												
Project Information: Project: 508-2 Site Location: Sampled By: PP	, O ahove	Hat	ton		Is this submission for a Record of Site Condition?	i e	Cer		Indicate Guidelin te of An	e on			*	Ple TAT is	ase pro exclus	ovide p ive of t	orior no weeker	otificatio nds and	on for rush statutory l	TAT holidays
AGAT Quote #: Please note: If quotellon number Invoice Information: Company: Contact: Address: Email:	PO: ris not provided, clicnt t	will be bliled full price	-	В	W Ground Water Oil Paint Soil D Sediment	Field Filtered - Metals, Hg, CrVI	and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) ○ □ Hydrides) ○ □ Hydride Metals □ 153 Metals (Incl. Hydrides)	DCI DCN DFOC DHg	Full Metals Scan Beaulation/Oustorn Matals		IS: UVOC DETEX DTHM	1 - F4		PAHs PCBs:		□ M&I □ VOCs □ ABNS □ B(a)P □ PCBS	2		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	D Hydri	ORPs: DCr	Full Mi	Nutrie	Volatiles:	PHCs F1 -	ABNS	PAHs PCBs:	Organo	TCLP:	Sewel	1.7-17	
MW17-1T	Jan 23,1	18	13	C-W		4	V					V	V			V	-			
MW 17-31		f	12	1		Ý	V					V	V						111.00	PHO.
MW10-17			13			Y	1					V	1			V				_
MW 17-7R			13			Y	1					1	1			V				
MW 17-1R			1													V	-			
Field Blank			4				1			-	-	V	1,							
DUP-1	V		13	1		Y	V					V	1			1			14	1
	1 1 1 1 1	1.		-														- P-O	110	ball to
		1.000	1000			-			-								2			
												-								10
						-							-				-			
									221						1 I I I I I I I I I I I I I I I I I I I	1 I.				
acath		Date	23/18		Samples Received By (Print Name and Sp):	2				0	2018	l. le	24	72	45	2				
Samples Relinquished By (Print Name and Sign); Samples Relinquished By (Print Name and Jogn);		Date Jan	23/18		Samples Received By (Print Name and Sign):	2				0	26)8	ļi		1/2	45	2	Pa	age)	

CLIENT NAME: DS CONSULTING 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: shafi and seta

PROJECT: 508-30

AGAT WORK ORDER: 18T307984

TRACE ORGANICS REVIEWED BY: Gyulhan Yalamova, Report Reviewer

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Feb 08, 2018

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 13

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18T307984 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi andseta

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2018-02-02

	5	SAMPLE DESCR	IPTION:	MW17-2t
		SAMPLE	E TYPE:	Water
		DATE SA	DATE SAMPLED:	
Parameter	Unit	G/S	RDL	9043569
F1 (C6 to C10)	µg/L	420	25	<25
F1 (C6 to C10) minus BTEX	µg/L	420	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable I	Limits	
Terphenyl	%	60-140		72

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9043569 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Some sediment was observed in the sample. The whole bottle extraction was performed.

DATE REPORTED: 2018-02-08

AGAT WORK ORDER: 18T307984 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi andseta

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water) DATE RECEIVED: 2018-02-02 **DATE REPORTED: 2018-02-08** SAMPLE DESCRIPTION: MW17-2t SAMPLE TYPE: Water DATE SAMPLED: 2018-02-02 Unit G/S RDL 9043569 Parameter Dichlorodifluoromethane µg/L 590 0.20 < 0.20 Vinyl Chloride µg/L 0.5 0.17 < 0.17 Bromomethane µg/L 0.89 0.20 <0.20 Trichlorofluoromethane µg/L 150 0.40 < 0.40 Acetone µg/L 2700 1.0 <1.0 1,1-Dichloroethylene µg/L 0.5 0.30 < 0.30 Methylene Chloride µg/L 5 0.30 < 0.30 trans- 1,2-Dichloroethylene µg/L 1.6 0.20 <0.20 Methyl tert-butyl ether µg/L 15 0.20 <0.20 1,1-Dichloroethane µg/L 0.5 0.30 < 0.30 400 Methyl Ethyl Ketone µg/L 1.0 <1.0 cis- 1,2-Dichloroethylene µg/L 1.6 0.20 <0.20 Chloroform 2 µg/L 0.20 <0.20 0.5 0.20 1.2-Dichloroethane µg/L < 0.20 1,1,1-Trichloroethane µg/L 0.5 0.30 < 0.30 Carbon Tetrachloride µg/L 0.2 0.20 <0.20 Benzene µg/L 0.5 0.20 <0.20 1,2-Dichloropropane µg/L 0.5 0.20 <0.20 Trichloroethylene µg/L 0.5 0.20 < 0.20 Bromodichloromethane µg/L 2 0.20 <0.20 Methyl Isobutyl Ketone 640 µg/L 1.0 <1.0 1,1,2-Trichloroethane µg/L 0.5 0.20 <0.20 Toluene µg/L 0.8 0.20 <0.20 Dibromochloromethane µg/L 2 0.10 < 0.10 Ethylene Dibromide µg/L 0.2 0.10 <0.10 Tetrachloroethylene 0.5 0.20 µg/L <0.20 1,1,1,2-Tetrachloroethane µg/L 1.1 0.10 < 0.10 Chlorobenzene µg/L 0.5 0.10 < 0.10 0.5 0.10 Ethylbenzene µg/L <0.10

Certified By:

µg/L

0.20

<0.20

m & p-Xylene

AGAT WORK ORDER: 18T307984 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi andseta

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2018-02-02

	-			
	SA	AMPLE DES	CRIPTION:	MW17-2t
		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	2018-02-02
Parameter	Unit	G/S	RDL	9043569
Bromoform	µg/L	5	0.10	<0.10
Styrene	µg/L	0.5	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	0.5	0.10	<0.10
o-Xylene	µg/L		0.10	<0.10
1,3-Dichlorobenzene	µg/L	0.5	0.10	<0.10
1,4-Dichlorobenzene	µg/L	0.5	0.10	<0.10
1,2-Dichlorobenzene	µg/L	0.5	0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30
Xylene Mixture	µg/L	72	0.20	<0.20
n-Hexane	µg/L	5	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-	140	99
4-Bromofluorobenzene	% Recovery	50-	140	74

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

DATE REPORTED: 2018-02-08

Certified By:

AGAT WORK ORDER: 18T307984 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi andseta

SAMPLED BY:

O. Reg. 153(511) - All Metals (Water)

DATE RECEIVED: 2018-02-02	2				DATE REPORTED: 2018-02-08
	S	AMPLE DES	CRIPTION:	MW1D-17	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2018-02-02	
Parameter	Unit	G/S	RDL	9043568	
Uranium	μg/L	8.9	0.5	22.6	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Nivine Basily

AGAT WORK ORDER: 18T307984 PROJECT: 508-30 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTING

SAMPLING SITE:

ATTENTION TO: shafi andseta

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2018-02-02

DATE RECEIVED: 2018-02-02					DATE REPORTED: 2018-02-08
	S	AMPLE DESC		MW17-2t	
			LE TYPE:	Water	
			AMPLED:	2018-02-02	
Parameter	Unit	G/S	RDL	9043569	
Antimony	μg/L	1.5	1.0	<1.0	
Arsenic	µg/L	13	1.0	2.0	
Barium	µg/L	610	2.0	97.5	
Beryllium	µg/L	0.5	0.5	<0.5	
Boron	µg/L	1700	10.0	65.4	
Cadmium	µg/L	0.5	0.2	<0.2	
Chromium	µg/L	11	2.0	<2.0	
Cobalt	µg/L	3.8	0.5	0.5	
Copper	µg/L	5	1.0	5.0	
_ead	µg/L	1.9	0.5	<0.5	
Molybdenum	µg/L	23	0.5	4.1	
Nickel	µg/L	14	1.0	2.0	
Selenium	µg/L	5	1.0	1.5	
Silver	µg/L	0.3	0.2	<0.2	
Thallium	µg/L	0.5	0.3	<0.3	
Uranium	µg/L	8.9	0.5	2.1	
Vanadium	µg/L	3.9	0.4	1.5	
Zinc	µg/L	160	5.0	7.1	
Mercury	µg/L	0.1	0.02	<0.02	
Chromium VI	µg/L	25	5	<5	
Cyanide	µg/L	5	2	<2	
Sodium	µg/L	490000	500	11300	
Chloride	µg/L	790000	200	11200	
Electrical Conductivity	uS/cm		2	861	
рН	pH Units		NA	8.08	

Comments: 9043569

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Elevated RDLs indicate the degree of sample dilutions prior to analyses to keep analytes within the calibration range, reduce matrix interference and to avoid contaminating the instrument.

Certified By:

Nivine Basily

DATE REPORTED: 2018-02-08

	aca1	Laboratories	AGAT WORK ORDER: 18T307 PROJECT: 508-30			MISSIS	COOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 //www.agatlabs.com
CLIENT NAME	E: DS CONSULTING			ATTENTION TO: shafi	andseta		,aganasereem
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9043568	MW1D-17	ON T1 GW	O. Reg. 153(511) - All Metals (Water)	Uranium	µg/L	8.9	22.6

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T307984 ATTENTION TO: shafi andseta SAMPLED BY:

Trace Organics Analysis

			mau	e Olí	yann	cs An	laiyəl	3							
RPT Date: Feb 08, 2018			D	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN		MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 10	ptable nits	Recovery		ptable nits
				-			value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	9043569		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	92%	50%	140%	86%	50%	140%
Vinyl Chloride	9043569		< 0.17	< 0.17	NA	< 0.17	121%	50%	140%	105%	50%	140%	112%	50%	140%
Bromomethane	9043569		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	93%	50%	140%	127%	50%	140%
Trichlorofluoromethane	9043569		< 0.40	< 0.40	NA	< 0.40	118%	50%	140%	106%	50%	140%	113%	50%	140%
Acetone	9043569		< 1.0	< 1.0	NA	< 1.0	114%	50%	140%	109%	50%	140%	96%	50%	140%
1,1-Dichloroethylene	9043569		< 0.30	< 0.30	NA	< 0.30	72%	50%	140%	78%	60%	130%	94%	50%	140%
Methylene Chloride	9043569		< 0.30	< 0.30	NA	< 0.30	103%	50%	140%	88%	60%	130%	92%	50%	140%
trans- 1,2-Dichloroethylene	9043569		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	100%	60%	130%	115%	50%	140%
Methyl tert-butyl ether	9043569		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	80%	60%	130%	117%	50%	140%
1,1-Dichloroethane	9043569		< 0.30	< 0.30	NA	< 0.30	74%	50%	140%	97%	60%	130%	117%	50%	140%
Methyl Ethyl Ketone	9043569		< 1.0	< 1.0	NA	< 1.0	99%	50%	140%	99%	50%	140%	113%	50%	140%
cis- 1,2-Dichloroethylene	9043569		< 0.20	< 0.20	NA	< 0.20	72%	50%	140%	76%	60%	130%	119%	50%	140%
Chloroform	9043569		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	100%	60%	130%	93%	50%	140%
1,2-Dichloroethane	9043569		< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	90%	60%	130%	94%	50%	140%
1,1,1-Trichloroethane	9043569		< 0.30	< 0.30	NA	< 0.30	85%	50%	140%	83%	60%	130%	75%	50%	140%
Carbon Tetrachloride	9043569		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	79%	60%	130%	73%	50%	140%
Benzene	9043569		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	74%	60%	130%	72%	50%	140%
1,2-Dichloropropane	9043569		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	93%	60%	130%	91%	50%	140%
Trichloroethylene	9043569		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	71%	60%	130%	113%	50%	140%
Bromodichloromethane	9043569		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	99%	60%	130%	81%	50%	140%
Methyl Isobutyl Ketone	9043569		< 1.0	< 1.0	NA	< 1.0	117%	50%	140%	111%	50%	140%	113%	50%	140%
1,1,2-Trichloroethane	9043569		< 0.20	< 0.20	NA	< 0.20	104%	50%	140%	86%	60%	130%	79%	50%	140%
Toluene	9043569		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	103%	60%	130%	116%	50%	140%
Dibromochloromethane	9043569		< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	114%	60%	130%	93%	50%	140%
Ethylene Dibromide	9043569		< 0.10	< 0.10	NA	< 0.10	84%	50%	140%	105%	60%	130%	89%	50%	140%
Tetrachloroethylene	9043569		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	95%	60%	130%	96%	50%	140%
1,1,1,2-Tetrachloroethane	9043569		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	109%	60%	130%	79%	50%	140%
Chlorobenzene	9043569		< 0.10	< 0.10	NA	< 0.10	99%	50%	140%	109%	60%	130%	113%	50%	140%
Ethylbenzene	9043569		< 0.10	< 0.10	NA	< 0.10	98%	50%	140%	86%	60%	130%	85%	50%	140%
m & p-Xylene	9043569		< 0.20	< 0.20	NA	< 0.20	110%	50%	140%	102%	60%	130%	107%	50%	140%
Bromoform	9043569		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	111%	60%	130%	70%	50%	140%
Styrene	9043569		< 0.10	< 0.10	NA	< 0.10	73%	50%	140%	78%	60%	130%	74%	50%	140%
1,1,2,2-Tetrachloroethane	9043569		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	73%	60%	130%	79%	50%	140%
o-Xylene	9043569		< 0.10	< 0.10	NA	< 0.10	108%	50%	140%	107%	60%	130%	107%	50%	140%
1,3-Dichlorobenzene	9043569		< 0.10	< 0.10	NA	< 0.10	117%	50%	140%	90%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	9043569		< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	109%	60%	130%	118%	50%	140%
1,2-Dichlorobenzene	9043569		< 0.10	< 0.10	NA	< 0.10	98%	50%	140%	93%	60%	130%	99%	50%	140%
1,3-Dichloropropene	9043569		< 0.30	< 0.30	NA	< 0.30	94%	50%	140%	87%	60%	130%	95%	50%	140%
n-Hexane	9043569		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	116%	60%	130%	103%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 13

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T307984 ATTENTION TO: shafi andseta

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Feb 08, 2018 DUPLICATE					REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

	()(), (), (), (), (), (), (), (
F1 (C6 to C10)	9025020	< 25	< 25	NA	< 25	85%	60% 140%	90%	60% 140%	77%	60% 140%
F2 (C10 to C16)	TW	< 100	< 100	NA	< 100	97%	60% 140%	63%	60% 140%	75%	60% 140%
F3 (C16 to C34)	TW	< 100	< 100	NA	< 100	102%	60% 140%	91%	60% 140%	106%	60% 140%
F4 (C34 to C50)	TW	< 100	< 100	NA	< 100	82%	60% 140%	85%	60% 140%	85%	60% 140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 13

Quality Assurance

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T307984 ATTENTION TO: shafi andseta

SAMPLED BY:

C. Reg. 153(511) - All Metals (Water) Uranium 9042913 0.7 0.8 NA < 0.5				Wate	er Ar	nalys	is								
PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Blank Meacure Value Limits Lower Recovery Limits Lower Recovery Limits Lower Recovery Limits Lower Recovery Limits Lower Recovery Limits 0. Reg. 153(511) - All Metals & Inorganics (Water) 9042913 <1.0 <1.0 NA <0.5 98% 70% 130% 100% 80% 120% 105% 70% 130 O. Reg. 153(511) - Metals & Inorganics (Water) <1.0 NA <1.0 100% 70% 130% 90% 80% 120% 105% 70% 130 Barlum 9042913 <1.0 <1.0 NA <1.0 99% 70% 130% 90% 80% 120% 103% 70% 130 Barlum 9042913 <0.5 <0.5 NA <0.2 101% 70% 130% 105% 80% 120% 104% 70% 130 Cobalt 9042913	RPT Date: Feb 08, 2018		C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		
C. Reg. 153(511) - All Metals (Water) Uranium 9042913 0.7 0.8 NA < 0.5	PARAMETER		Dup #1	Dup #2	RPD					Recovery			Recovery		
Uranium 9042913 0.7 0.8 NA < 0.5		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (Water) Animony 9042913 <1.0	O. Reg. 153(511) - All Metals (W	ater)													
Antimony 9042913 <1.0 <1.0 NA <1.0 100% 70% 130% 100% 80% 120% 105% 70% 130 Arsenic 9042913 3.0.1 28.6 5.1% <2.0	Uranium	9042913	0.7	0.8	NA	< 0.5	98%	70%	130%	101%	80%	120%	109%	70%	130%
Antimony 9042913 <1.0 <1.0 NA <1.0 100% 70% 130% 100% 80% 120% 105% 70% 130 Arsenic 9042913 3.0.1 28.6 5.1% <2.0	O. Reg. 153(511) - Metals & Inor	ganics (Water)													
Barium 9042913 30.1 28.6 5.1% < 2.0 99% 70% 130% 97% 80% 120% 100% 70% 1308 Beryllium 9042913 -0.5 -6.5 NA <0.5	• • •	,	<1.0	<1.0	NA	< 1.0	100%	70%	130%	100%	80%	120%	105%	70%	130%
Beryllium Boron 9042913 <0.5 <0.5 NA <0.5 97% 70% 130% 100% 80% 120% 103% 70% 130 Boron 9042913 <0.2	Arsenic	9042913	<1.0	<1.0	NA	< 1.0	102%	70%	130%	99%	80%	120%	103%	70%	130%
Born 9042913 56.6 56.6 0.0% <100 99% 70% 130% 106% 80% 120% 106% 70% 130 Cadmium 9042913 2.4 2.8 NA <0.2	Barium	9042913	30.1	28.6	5.1%	< 2.0	99%	70%	130%	97%	80%	120%	100%	70%	130%
Cadmium 9042913 <0.2 <0.2 NA <0.2 101% 70% 130% 105% 80% 120% 114% 70% 130 Chromium 9042913 2.4 2.8 NA <2.0 101% 70% 130% 105% 80% 120% 104% 70% 130 Cobalt 9042913 2.34 2.34 2.34 0.0% <1.0 100% 70% 130% 105% 80% 120% 100% 70% 130 Copper 9042913 2.4 2.4 0.5 0.5 102% 70% 130% 105% 80% 120% 84% 70% 130 Lead 9042913 <0.5 <0.5 NA <0.5 100% 70% 130% 105% 80% 120% 91% 70% 130 Nickel 9042913 <0.5 <0.5 NA <0.5 100% 70% 130% 101% 80% 120% 91% 70% 130 Silver 9042913 <0.2 <0.2 97% <td>Beryllium</td> <td>9042913</td> <td><0.5</td> <td><0.5</td> <td>NA</td> <td>< 0.5</td> <td>97%</td> <td>70%</td> <td>130%</td> <td>100%</td> <td>80%</td> <td>120%</td> <td>103%</td> <td>70%</td> <td>130%</td>	Beryllium	9042913	<0.5	<0.5	NA	< 0.5	97%	70%	130%	100%	80%	120%	103%	70%	130%
Chromium 9042913 2.4 2.8 NA < 2.0 101% 70% 130% 105% 80% 120% 104% 70% 130 Cobalt 9042913 <0.5	Boron	9042913	56.6	56.6	0.0%	< 10.0	99%	70%	130%	106%	80%	120%	106%	70%	130%
Cobalt 9042913 <0.5 <0.5 NA <0.5 101% 70% 130% 105% 80% 120% 100% 70% 130 Copper 9042913 234 234 0.0% <1.0	Cadmium	9042913	<0.2	<0.2	NA	< 0.2	101%	70%	130%	105%	80%	120%	114%	70%	130%
Copper 9042913 234 234 0.0% <1.0 100% 70% 130% 105% 80% 120% 84% 70% 130 Lead 9042913 2.4 2.4 NA <0.5	Chromium	9042913	2.4	2.8	NA	< 2.0	101%	70%	130%	105%	80%	120%	104%	70%	130%
Lead 9042913 2.4 2.4 NA < 0.5 102% 70% 130% 105% 80% 120% 98% 70% 130 Molybdenum 9042913 <0.5	Cobalt	9042913	<0.5	<0.5	NA	< 0.5	101%	70%	130%	105%	80%	120%	100%	70%	130%
Molybdenum 9042913 <0.5 <0.5 NA <0.5 100% 70% 130% 101% 80% 120% 111% 70% 130% Nickel 9042913 3.6 3.5 NA <1.0	Copper	9042913	234	234	0.0%	< 1.0	100%	70%	130%	105%	80%	120%	84%	70%	130%
Nickel 9042913 3.6 3.5 NA < 1.0 102% 70% 130% 103% 80% 120% 95% 70% 130 Selenium 9042913 <1.0	Lead	9042913	2.4	2.4	NA	< 0.5	102%	70%	130%	105%	80%	120%	98%	70%	130%
Selenium 9042913 <1.0 <1.0 NA <1.0 100% 70% 130% 101% 80% 120% 77% 70% 130 Silver 9042913 <0.2	Molybdenum	9042913	<0.5	<0.5	NA	< 0.5	100%	70%	130%	101%	80%	120%	111%	70%	130%
Silver 9042913 <0.2 <0.2 NA <0.2 97% 70% 130% 105% 80% 120% 94% 70% 130 Thallium 9042913 <0.3	Nickel	9042913	3.6	3.5	NA	< 1.0	102%	70%	130%	103%	80%	120%	95%	70%	130%
Internation 0012010 1012 1012 1012 1013 1006<	Selenium	9042913	<1.0	<1.0	NA	< 1.0	100%	70%	130%	101%	80%	120%	77%	70%	130%
Uranium 9042913 0.7 0.8 NA < 0.5 98% 70% 130% 101% 80% 120% 109% 70% 130 Vanadium 9042913 <0.4	Silver	9042913	<0.2	<0.2	NA	< 0.2	97%	70%	130%	105%	80%	120%	94%	70%	130%
Vanadium 9042913 <0.4 <0.4 NA <0.4 98% 70% 130% 102% 80% 120% 104% 70% 130 Zinc 9042913 78.8 77.7 1.4% <5.0	Thallium	9042913	<0.3	<0.3	NA	< 0.3	99%	70%	130%	99%	80%	120%	95%	70%	130%
Zinc 9042913 78.8 77.7 1.4% < 5.0 103% 70% 130% 104% 80% 120% 96% 70% 130% 104% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 130% 100% 80% 120% 96% 70% 130% 100% 80% 120% 96% 70% 130% 91% 80% 120% 90% 70% 130% 91% 80% 120% 90% 70% 130% 91% 80% 120% 90% 70% 130% 91% 80% 120% 90	Uranium	9042913	0.7	0.8	NA	< 0.5	98%	70%	130%	101%	80%	120%	109%	70%	130%
Mercury 9043642 <0.02 <0.02 NA <0.02 104% 70% 130% 100% 80% 120% 96% 70% 130 Chromium VI 9042427 <5	Vanadium	9042913	<0.4	<0.4	NA	< 0.4	98%	70%	130%	102%	80%	120%	104%	70%	130%
Chromium VI 9042427 <5 <5 NA <5 102% 70% 130% 99% 80% 120% 99% 70% 130 Cyanide 9043569 9043569 <2 <2 NA <2 104% 70% 130% 99% 80% 120% 90% 70% 130 Sodium 9043569 9043569 11300 11400 0.9% <500 102% 70% 130% 91% 80% 120% 90% 70% 130 Chloride 9040505 132000 132000 0.0% <100 91% 70% 130% 102% 80% 120% 95% 70% 130 Electrical Conductivity 9043122 920 921 0.1% <2 105% 90% 110%	Zinc	9042913	78.8	77.7	1.4%	< 5.0	103%	70%	130%	104%	80%	120%	96%	70%	130%
Cyanide 9043569 9043569 <2 <2 NA <2 104% 70% 130% 91% 80% 120% 90% 70% 130 Sodium 9043569 9043569 11300 11400 0.9% <500	Mercury	9043642	<0.02	<0.02	NA	< 0.02	104%	70%	130%	100%	80%	120%	96%	70%	130%
Sodium 9043569 9043569 11300 11400 0.9% < 500 102% 70% 130% 102% 80% 120% 95% 70% 130 Chloride 9040505 132000 132000 0.0% < 100	Chromium VI	9042427	<5	<5	NA	< 5	102%	70%	130%	99%	80%	120%	99%	70%	130%
Chloride 9040505 132000 132000 0.0% < 100 91% 70% 130% 107% 70% 130% 95% 70% 130 Electrical Conductivity 9043122 920 921 0.1% < 2	Cyanide	9043569 9043569	<2	<2	NA	< 2	104%	70%	130%	91%	80%	120%	90%	70%	130%
Electrical Conductivity 9043122 920 921 0.1% < 2 105% 90% 110%	Sodium	9043569 9043569	11300	11400	0.9%	< 500	102%	70%	130%	102%	80%	120%	95%	70%	130%
· · · · · · · · · · · · · · · · · · ·	Chloride	9040505	132000	132000	0.0%	< 100	91%	70%	130%	107%	70%	130%	95%	70%	130%
	Electrical Conductivity	9043122	920	921	0.1%	< 2	105%	90%	110%						
PTT 3043122 0.23 0.20 1.1% NA 33% 30% 110%	рН	9043122	8.29	8.20	1.1%	NA	99%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 10 of 13

Method Summary

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T307984 ATTENTION TO: shafi andseta SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·		
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260 EPA SW-846 5030 & 8260	(P&T)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001 VOL-91-5001		
Tetrachloroethylene 1,1,1,2-Tetrachloroethane		EPA SW-846 5030 & 8260	(P&T)GC/MS
	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	
	VOL-91-5001	EPA SW-846 5030 & 8260	
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS

Method Summary

CLIENT NAME: DS CONSULTING

PROJECT: 508-30

SAMPLING SITE:

AGAT WORK ORDER: 18T307984 **ATTENTION TO: shafi andseta**

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE

Laborat	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	Laboratory Use Only Work Order #: 18で36つ气客 24
	se Drinking Water Chain of Custody Form (potable water consumed by humans)	Cooler Quantity: Arrival Temperatures: 21 23 25
Company: DS Consultant Ltd.	Regulatory Requirements: No Regulatory Requirement (Please chack all applicable bacs)	Custody Seal Intact: Yes INo N/A Notes:
Contact: Address: <u>6221</u> <u>Highway</u> 7 <u>,</u> <u>Unit1b</u> <u>Vaughan</u> 0ad Phone: <u>905-264-9393</u> <u>Fax:</u> <u>Reports to be sent to:</u> <u>1. Email:</u> <u>2. Email:</u> <u>Project Information:</u> <u>Project:</u> <u>508-30</u> <u>Site Location:</u> <u>51244-9393</u> <u>Fax:</u> <u>Consultants.</u> <u>Project Information:</u> <u>Site Location:</u> <u>51244-9393</u> <u>Fax:</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultants.</u> <u>Consultant</u>	Regulation 153/04 Sewer Use Regulation 558 Table Indicate One Sanitary Indicate One Storm Prov. Water Quality Agriculture Storm Objectives (PWQO) Soil Texture (chock one) Indicate One Other Fine MISA Indicate One Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis	Turnaround Time (TAT) Required: Regular TAT Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Next Business Days 0R Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays
Site Location: Bixth line, Dakville Sampled By: Pradleg Patel AGAT Quote #: PO:	Yes □ No Yes □ No 0. Reg 153	For 'Same Day' analysis, please contact your AGAT CPM
Invoice Information: Bill To Same: Yes I No I Company: Contact: Address:	B Biota CW Ground Water O OII P Daint Solid Solid Solid Daint Swatcher Metals Metals 145 Muthents 145 Muthents 145 Muthents 170 Movit No.1	Volatiles:
Sample Identification Sampled Sampled Containers Ma		Volatiles: PHCs F1 - 1 ABNS PAHS PCBS: DTC Organocht TCLP: DM& Sewer Use
Samples Rolinguished By (Print Name and Sign): PRADIZIEPPRATEL PRALEL Preb3/2018	Samples Becorved By (Print Name and Sign):	/™25
Samples reinquished by (Print Name and Sign): <u>PRADICIES</u> PATEL PABLOT Feb 3/2018 Samples Relinquished By (Print Name and Sign): Date Time	Samples Received By (Print Name and Sign): 18/2/2 Date	Time Page of
Samples Relinquished By (Print Name and Sign): Date Time	Samples Received By (Print Name and Sign): Data Pink Copy - Client Ye	Tume No: T 066813 ellow Copy - AGAT I White Copy- AGAT المجاوبة المحافظ المحاف

Appendix E – Remediation Report

Remediation Report

3270 Sixth Line Oakville, Ontario

Prepared For:

Argo (West Morrison Creek) Limited 2173 Turnberry Road Burlington, Ontario L7M 4P8

DS Project No.: 17-508-100

Date: 2019-09-06

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

TABLE OF CONTENTS

1.0	Introduction	. 3
2.0	Remedial Actions	. 3
2.1	Soil Excavation and Soil Treatment Activities	3
	2.1.1 Soil Excavation	4
3.0	Confirmatory Sampling	. 5
3.1	Confirmatory Sampling Activities	5
3.2	Confirmatory Sampling Results	
	3.2.1 TP1	6
	3.2.2 TP2	7
3.3	Imported Backfill Material	7
3.4	Quality Control and Quality Assurance	7
4.0	Conclusions	. 8
4.1	Signatures	8
4.2	Limitations	9

FIGURES (Appended in Phase Two ESA Report)

Figure 8A- TP1 Confirmatory Soil Sample Location Plan

Figure 8B- TP2 Confirmatory Soil Sample Location Plan

Figure 9A - Cross Section A-A' with PHCs and BTEX Impacts in soil (Pre-Remediation)

Figure 9B - Cross Section A-A' with PHCs and BTEX Impacts in soil (Post-Remediation)

Figure 10A – Cross Section B-B' with PHCs and BTEX Impacts in soil (Pre-Remediation)

Figure 10B - Cross Section B-B' with PHCs and BTEX Impacts in soil (Post-Remediation)

Figure 11A- Pathways and Receptors (Pre-Remediation)

Figure 11B- Pathways and Receptors (Post-Remediation)

TABLES

Table R1 – Summary of Excavations

- Table R2 Summary of Soil Samples Submitted for Chemical Analysis
- Table R3 Summary of Soil Samples Submitted for Chemical Analysis (Import Fill)
- Table R4 Summary of Metals and Inorganics in Soil
- Table R5 Summary of PHCs and BTEX in Soil
- Table R6 Summary of OCPs in Soil

1.0 Introduction

This report provides a summary of the remedial activity which has been completed in order to reduce the concentrations of contaminants on, in or under the Property located at 3270 Sixth Line in the Town of Oakville, Ontario (herein referred to as the "Site" or "Property").

The Property is a 12.58-hectare (31.08 acres) parcel of land situated within a mixed residential and agricultural neighbourhood in the Town of Oakville, Ontario. The Phase One Property is located approximately 1km north of the intersection of Dundas Street West and Sixth Line and was vacant at the time of this investigation.

The property was undeveloped and included no structures at the time of this investigation. The Property was previously developed with a residential house, three (3) detached storage sheds, and a cellular communication tower, all of which were located in the southeast corner of the Property and have been demolished.

The Phase Two ESA completed between 2017-2018 identified concentrations of petroleumhydrocarbons (PHCs) and benzene, toluene, ethylbenzene and xylenes (BTEX) in soil in twotest pits (TP3r and TP4r) in excess of the applicable "Table 1: Full Depth Background SiteCondition Standards" provided in the MECP document entitled, "Soil, Ground Water andSediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April15,2011(Table1SCS)forresidential/parkland/institutional/industrial/commercial/community property use.

The following sections detail the remedial actions, the presence/absence of free-flowing product, the results of the confirmatory sampling and laboratory analysis, the results of the quality assurance/quality control (QA/QC) samples and conclusions.

The objection of the remediation program was to remediate the soil impacts identified in the Phase Two Environmental Site Assessment completed by DS Consultants, dated September 6, 2019.

2.0 Remedial Actions

2.1 Soil Excavation and Soil Treatment Activities

The soil remediation activities at the Property consisted of the following:

- Excavation and off-side disposal of soil impacted with PHC and BTEX, within the vicinity of Tp3r.
- Excavation and off-side disposal of soil impacted with PHC and BTEX, within the vicinity of Tp4r.

The soil remediation activities are detailed in the following subsections.

2.1.1 Soil Excavation

The Phase Two ESA identified concentrations of PHCs and BTEX in excess of the applicable MECP Table 8 SCS as follows:

- TP3r (0-0.4 mbgs)
- TP4r (0-0.6 mbgs)

A total of two (2) remedial excavations were completed on the Property and were designated as TP1 (TP4r) and TP2 (TP3r). The approximate locations of these remedial excavations are presented on Figures 8A and 8B. Details regarding the locations, dimensions, and dates in which the excavations were conducted are provided below.

<u>TP1</u>

Remedial Excavation TP1 was completed on November 26, 2018 under the supervision of DS personnel. The objective of TP1 was to facilitate the removal and off-site disposal of the soils impacted with PHCs and BTEX which were identified in test pit TP4r at an approximate depth of 0-0.6 mbgs. The excavation was completed using an excavator supplied by the Client. The final dimensions of the remedial excavation were approximately 2.25 metres x 2.0 metres and extended to an approximate depth of 2.0 mbgs.

Approximately 9 cubic metres of soils were excavated and disposed of at a licensed MECP receiving facility. A visual representation of the approximate extent of the remedial excavation is provided in Figure 8A. Confirmatory sampling in accordance with O.Reg. 153/04 (as amended) was conducted upon completion of the remedial excavation. Additional details are provided in Section 3.1 below. The void of TP1 was backfilled using imported fill material sourced from a nearby property. Details regarding the chemical testing associated with the fill material is provided in Section 3.3 below.

<u>TP2</u>

Remedial Excavation TP2 was completed on November 26, 2018 under the supervision of DS personnel. The objective of TP2 was to facilitate the removal and off-site disposal of the soils impacted with PHCs and BTEX which were identified in test pit TP3r at an approximate depth of 0-0.4 mbgs. The excavation was completed using an excavator supplied by the Client. The final dimensions of the remedial excavation were approximately 2.25 metres x 2.0 metres and extended to an approximate depth of 2.0 mbgs.

4

Approximately 9 cubic metres of soils were excavated and disposed of at a licensed MECP receiving facility. A visual representation of the approximate extent of the remedial excavation is provided in Figure 8B. Confirmatory sampling in accordance with O.Reg. 153/04 (as amended) was conducted upon completion of the remedial excavation. Additional details are provided in Section 3.1 below. The void of TP2 was backfilled using imported fill material sourced from a nearby property. Details regarding the chemical testing associated with the fill material is provided in Section 3.3 below.

3.0 Confirmatory Sampling

3.1 Confirmatory Sampling Activities

Confirmatory samples were collected upon completion of the remedial excavation. Per the requirements of O.Reg 153/04 (as amended), soil samples were collected from the remedial excavation for the purposes of field screening at a minimum frequency of one sample per every 5 square metres (m²) from the excavation sidewalls, and one sample per every 10m² from the excavation floor.

The screening samples collected were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. Organic vapour screening was conducted using a calibrated RKI Eagle 2 (Model 5101-P2).

A summary of the remedial excavation dimensions, depth, and number of soil samples collected for screening purposes as well as for laboratory analysis are shown on Table 1 and 2 and is presented in the table below:

Location	Excavation ID	Horizontal Extent/Dimensions (metres)	Excavation Depth (metres)	Field Screening Samples	Sidewall Samples Submitted For Chemical Analysis	Floor Samples Submitted For Chemical Analysis
TP4r	TP1	2.25 x 2.0	2.0	20	2	2
TP3r	TP2	2.25 x 2.00	2.0	20	2	2

Table 3-1: Summary of Remedial	Excavation Sampling
--------------------------------	----------------------------

3.2 Confirmatory Sampling Results

Confirmatory soil sampling was conducted in accordance with O.Reg. 153/04 (as amended) in order to assess the efficacy of the remedial excavation activities. The minimum confirmation sampling requirements per Table 3 of Schedule E, Part V of O.Reg. 153/04 (as amended) is summarized in Table 3-2 below:

Table 3-2: Minimum Confirmation Sampling Requirements for Excavation

Floor Area (m²)	Minimum No. Floor Samples	Minimum No. Sidewall Samples	
<25	2	2	

The approximate floor area for TP1 and TP2 was 4.5 m². A summary of the confirmatory sampling results for each remedial excavation is provided below.

3.2.1 TP1

A total of twenty (20) field screening samples were collected from the remedial excavation (12 sidewall, 8 floor samples). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings ranged between 0 and 3 ppm. The CGD readings remained 0 ppm for all samples. The approximate floor area of EX-1 was 4.5 m², as such a total of two (2) sidewall and two (2) floor samples are required per O.Reg. 153/04 (as amended). A total of two (2) sidewall and two (2) floor samples were submitted for chemical analysis of PHCs and BTEX. One (1) field duplicate sample was also submitted for Quality Assurance/Quality Control (QA/QC) purposes. The locations of the confirmatory samples are presented on Figure 8A and projected on cross-section view in Figures 10A and 10B.

The results of the chemical analyses indicated all of the confirmatory samples met the applicable MECP Table 1 SCS.

3.2.2 TP2

A total of twenty (20) field screening samples were collected from the remedial excavation (12 sidewall, 8 floor samples). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings ranged between 0 and 2 ppm. The CGD readings ranged between 0 and 5 ppm. The approximate floor area of TP2 was 4.5 m², as such a total of two (2) sidewall and two (2) floor samples are required per O.Reg. 153/04 (as amended). A total of two (2) sidewall and two (2) floor samples were submitted for chemical analysis of PHCs and BTEX. One (1) field duplicate sample was also submitted for Quality Assurance/Quality Control (QA/QC) purposes. The locations of the confirmatory samples are presented on Figure 8B and projected on cross-section view in Figures 9A and 9B.

The results of the chemical analyses indicated all of the confirmatory samples met the applicable MECP Table 1 SCS.

3.3 Imported Backfill Material

Approximately 20 cubic metres of fill material was imported to backfill remedial excavations TP1 and TP2. The imported soil was sourced from the pile of fill material located on the east neighbouring residential development property (east side of Sixth Line).

DS visited the site on November 27, 2018. A total of 3 soil samples were collected from the above noted location for metals and ORPs, PHCs and OC Pesticides. The results of the chemical analyses indicated that all three (3) samples met the MECP Table 1 SCS. Based on this results the fill material was considered suitable for import to the Phase Two Property. The certificates of analysis for the verification sampling has been appended to this report.

3.4 Quality Control and Quality Assurance

The field QA/QC program involved the collection of field duplicate soil samples. In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 3-3: Summary of QA/QC Results					
Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result	
NW2	SW2	Soil	PHCs, BTEX	All results were within the analytical protocol criteria for RPD	
WW1	WW2	Soil	PHCs, BTEX	All results were within the analytical protocol criteria for RPD	

4.0 Conclusions

The results of the post-remediation confirmatory sampling indicated that the remedial efforts were successful in reducing the concentrations of contaminants in soil to levels below the MECP Table 1 SCS. Approximately 18 cubic metres of soil was excavated and removed from the Property on November 28, 2018, and approximately 20 cubic metres of soil was imported to the Property for the purposes of backfilling the remedial excavation. The results of the verification sampling conducted on the import material indicated that the soil met the MECP Table 1 SCS, and therefore is suitable for placement.

Based on these findings no further remedial work is required to meet the requirements of 0.Reg. 153/04 (as amended).

4.1 Signatures

This Phase Two ESA was conducted under the supervision of Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

thoseos

Aphrodite Koseos, B.Sc., EPt. Environmental Technician

horangel

Patrick Fioravanti, B.Sc., P.Geo., Environmental Project Manager

4.2 Limitations

This report was prepared for the sole use of Argo (West Morrison Creek) Limited and is intended to provide an assessment of the environmental condition on the property located at 3270 Sixth Line, Oakville, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

Remediation Tables

Project No.: 17-508-100 Soil Remediation Report 3270 Sixth Line, Oakville, ON

Table R1: Summary of Remedial Excavations

Phase Two E	TP3r	TP4r	
	TP2	TP1	
Da	28-Nov-18	28-Nov-18	
Length:	m	2.25	2.25
Width:	m	2.00	2.00
Depth: mbgs		2.00	2.00

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table R2: Summary of Soil Samples Submitted for Chemical Analysis

Excavation	Borehole Vicinity	Horizontal Extent/Dimensions (metres)	Excavation Depth	Field Screening Samples	Samples Submitted for Chemical Analysis	Sidewall or Floor Sample	Sample Depth (mbgs)	Parameters Analysed
					Base 3	Floor Sample	1.5	PHCs and BTEX
TP1 TP4r	2.25x2.0	2	20	Base 4	Floor Sample	1.5	PHCs and BTEX	
				NW2	Southwall Sample	0.3-0.45	PHCs and BTEX	
				SW2	Dup NW2	0.3-0.45	PHCs and BTEX	
				EW3	Eastwall Sample	0.3-0.45	PHCs and BTEX	
TP2 TP3r	2.25x2.0	2	20	Base 1	Floor Sample	1.5	PHCs and BTEX	
				Base 4	Floor Sample	1.5	PHCs and BTEX	
				WW1	Eastwall Sample	0.5-1.0	PHCs and BTEX	
				WW2	Dup WW1	0.5-1.0	PHCs and BTEX	
				EW3	Northwall Sample	0.0-0.6	PHCs and BTEX	

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table R3: Summary of Soil Samples Submitted for Chemical Analysis (Import Fill)

Sample ID	Date	Parameter Analysed	Rationale
GS1	27-Nov-18	PHCs and BTEX	Assess quality of import fill
GS2	27-Nov-18	OC Pesticides	Assess quality of import fill
GS2	27-Nov-18	Metals and Inorganics	Assess quality of import fill

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Parameter		GS3
Date of Collection		27-Nov-2018
Date Reported	MECP Table 1 SCS	28-Nov-2017
Sampling Depth (mbgs)	14010 1 505	0.3-0.6
Analytical Report Reference No.		9741445
Antimony	1.3	<0.8
Arsenic	18	5
Barium	220	92
Beryllium	2.5	0.8
Boron	36	11
Boron (Hot Water Soluble)	NA	0.3
Cadmium	1.2	<0.5
Chromium	70	20
Cobalt	21	10.5
Copper	92	22
Lead	120	27
Molybdenum	2	0.6
Nickel	82	22
Selenium	1.5	<0.4
Silver	0.5	<0.2
Thallium	1	<0.4
Uranium	2.5	0.7
Vanadium	86	31
Zinc	290	78
Chromium VI	0.66	<0.2
Cyanide	0.051	< 0.040
Mercury	0.27	<0.10
Electrical Conductivity	0.57	0.165
Sodium Adsorption Ratio	2.4	0.841
pH, 2:1 CaCl2 Extraction		7.83

Table R4: Summary of Metals and Inorganics in Soil

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table R5: Summary of PHCs and BTEX in Soil

Parameter		TP1 Base 1	TP1 Base 4	TP1 NW2	TP! SW2 (Dup NW2)	TP1 WW1	TP2 Base 3	TP2 Base 4
Borehole Vicinity		Tp4r	Tp4r	Tp4r	Tp4r	Tp4r	TP3r	TP3r
Excavation	MECP	TP1	TP1	TP1	TP1	TP1	TP2	TP2
Date of Collection	Table 8 SCS	26-Nov-18	26-Nov-18	26-Nov-18	26-Nov-18	26-Nov-18	26-Nov-18	26-Nov-18
Date Reported		29-Nov-18	29-Nov-18	29-Nov-18	29-Nov-18	29-Nov-18	29-Nov-18	29-Nov-18
Sample Depth (mbgs)		1.50	1.50	0.5-1.0	0.5-1.0	0.5-1.0	1.50	1.50
Analytical Report Reference No.		9743771	9743776	9743777	9743778	9743779	9743885	9743894
Benzene	0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02
Toluene	0.2	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Ethylbenzene	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Xylenes (total)	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
PHCs F1-BTEX	25	<5	<5	<5	<5	<5	<5	<5
PHCs F2	10	<10	<10	<10	<10	<10	<10	<10
PHCs F3	240	<50	<50	<50	<50	<50	<50	<50
PHCs F4	120	<50	<50	<50	<50	<50	<50	<50

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section

Table R5: Summary of PHCs and BTEX in Soil

Parameter		TP2 WW1	TP2 WW2 (Dup WW1)	TP2 EW3	GS1
Borehole Vicinity		TP3r	TP3r	TP3r	Import Fill
Excavation	MECP	TP2	TP2	TP2	Testing
Date of Collection	Table 8 SCS	26-Nov-18	26-Nov-18	26-Nov-18	27-Nov-18
Date Reported	505	29-Nov-18	29-Nov-18	29-Nov-18	28-Nov-17
Sample Depth (mbgs)		0.3-0.45	0.3-0.45	0.3-0.45	0.3-0.6
Analytical Report Reference No.		9743897	9743895	9743896	9741398
Benzene	0.02	<0.02	<0.02	< 0.02	<0.02
Toluene	0.2	< 0.05	<0.05	< 0.05	< 0.05
Ethylbenzene	0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (total)	0.05	<0.05	<0.05	<0.05	<0.05
PHCs F1-BTEX	25	<5	<5	<5	<5
PHCs F2	10	<10	<10	<10	<10
PHCs F3	240	<50	<50	<50	<50
PHCs F4	120	<50	<50	<50	<50

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section Project No.: 17-508-100 Soil Remediation Report 3270 Sixth Line, Oakville, ON

Table R6: Summary of OCPs in Soil

Parameter		GS2
Date of Collection	меср	27-Nov-2018
Date Reported	Table 1	28-Nov-2017
Sampling Depth (mbgs)	SCS	0.3-0.6
Analytical Report Reference No.		9741403
Aldrin	0.05	< 0.005
Chlordane	0.05	< 0.007
DDD	0.05	< 0.007
DDE	0.05	< 0.007
DDT	1.4	< 0.007
Dieldrin	0.05	< 0.005
Endosulfan	0.04	< 0.005
Endrin	0.04	< 0.005
Gamma-Hexachlorocyclohexane	0.01	< 0.005
Heptachlor	0.05	< 0.005
Heptachlor Epoxide	0.05	< 0.005
Hexachlorobenzene	0.01	< 0.005
Hexachlorobutadiene	0.01	<0.01
Hexachloroethane	0.01	<0.01
Methoxychlor	0.05	< 0.005

For Table Notes see **Notes for Soil Summary Tables**, included at the end of this Section

Notes for Soil Summary Tables

Result	Concentration exceeds site conditions standards
Result	Detection limit exceeds site condition standards
Units	Units for all soil analyses are in μ g/g (ppb) unless otherwise indicated
mm	Milimeters
m	Meters
mbgs	Meters below ground surface
masl	Meters above sea level
SCS	Site Condition Standards
NA	Not Applicable
ORPs	Other Regulated Parameters
PHCs	Petroleum Hydrocarbons
BTEX	Benzene, toluene, ethylbenzene, xylenes (total)
OCPs	Organochlorine pesticides
MECP	Full Depth Background Site Condition Standards as contained in Table 1 of the "Soil, Ground Water and
Table 1	Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP
SCS	on April 15, 2011
*	Not considard to be contamination based on the results of the forensic analysis

Certificates of Analysis – Confirmatory Sampling

CLIENT NAME: DS CONSULTANTS LTD. 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: Shafi Andseta

PROJECT: 17-508-20

AGAT WORK ORDER: 18T414274

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 30, 2018

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 9

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18T414274 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2018-11-28

		SAMPLE DESC	RIPTION:	TP1 Base 1	TP1 Base 4	TP1 NW2	TP1 SW2	TP1 WW1
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil
		DATE S	AMPLED:	2018-11-26	2018-11-26	2018-11-26	2018-11-26	2018-11-26
Parameter	Unit	G/S	RDL	9743771	9743776	9743777	9743778	9743779
F1 (C6 to C10)	µg/g	25	5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	25	5	<5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	10	10	<10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	240	50	<50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	120	50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	120	50	NA	NA	NA	NA	NA
Moisture Content	%		0.1	20.8	8.7	13.3	13.2	12.4
Surrogate	Unit	Acceptabl	e Limits					
Terphenyl	%	60-14	40	78	102	77	65	80

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9743771-9743779 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 18T414274 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2018-11-28								DATE REPORTED: 2018-11-29
		SAMPLE DESCRIPTIC SAMPLE TYP DATE SAMPLE	E: Soil	TP1 Base 4 Soil 2018-11-26	TP1 NW2 Soil 2018-11-26	TP1 SW2 Soil 2018-11-26	TP1 WW1 Soil 2018-11-26	
Parameter	Unit	G/S RDL	9743771	9743776	9743777	9743778	9743779	
Dichlorodifluoromethane	µg/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	0.25 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	0.5 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	0.05 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05 0.04	<0.04	<0.04	< 0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05 0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.02 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05 0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.05 0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	
Bromodichloromethane	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	
Toluene	ug/g	0.2 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05 0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

ATTENTION TO: Shafi Andseta

AGAT WORK ORDER: 18T414274 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

SAMPLED BY:Tanner Leonhardt O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2018-11-28									DATE REPORTED: 2018-11-29
	S	AMPLE DES	CRIPTION:	TP1 Base 1	TP1 Base 4	TP1 NW2	TP1 SW2	TP1 WW1	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2018-11-26	2018-11-26	2018-11-26	2018-11-26	2018-11-26	
Parameter	Unit	G/S	RDL	9743771	9743776	9743777	9743778	9743779	
Bromoform	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylene Mixture	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	
n-Hexane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits						
Toluene-d8	% Recovery	50-	140	96	94	97	95	96	
4-Bromofluorobenzene	% Recovery	50-	140	100	97	103	98	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9743771-9743779 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Analysis performed at AGAT Toronto (unless marked by *)

Jinkal Joita

Page 5 of 9

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414274 ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

Trace Organics Analysis

			mac		gann	cs Ar	iary 3	13							
RPT Date:			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		eptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	9732671		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	81%	50%	140%	90%	50%	140%
Vinyl Chloride	9732671		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	85%	50%	140%	84%	50%	140%
Bromomethane	9732671		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	95%	50%	140%	83%	50%	140%
Trichlorofluoromethane	9732671		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	108%	50%	140%	88%	50%	140%
Acetone	9732671		< 0.50	< 0.50	NA	< 0.50	103%	50%	140%	117%	50%	140%	88%	50%	140%
1,1-Dichloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	85%	60%	130%	93%	50%	140%
Methylene Chloride	9732671		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	107%	60%	130%	100%	50%	140%
Trans- 1,2-Dichloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	103%	60%	130%	93%	50%	140%
Methyl tert-butyl Ether	9732671		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	109%	60%	130%	99%	50%	140%
1,1-Dichloroethane	9732671		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	95%	60%	130%	82%	50%	140%
Methyl Ethyl Ketone	9732671		< 0.50	< 0.50	NA	< 0.50	99%	50%	140%	94%	50%	140%	84%	50%	140%
Cis- 1,2-Dichloroethylene	9732671		< 0.02	< 0.02	NA	< 0.02	92%	50%	140%	93%	60%	130%	93%	50%	140%
Chloroform	9732671		< 0.04	< 0.04	NA	< 0.04	97%	50%	140%	100%	60%	130%	86%	50%	140%
1,2-Dichloroethane	9732671		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	89%	60%	130%	87%	50%	140%
1,1,1-Trichloroethane	9732671		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	93%	60%	130%	80%	50%	140%
Carbon Tetrachloride	9732671		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	97%	60%	130%	83%	50%	140%
Benzene	9732671		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	89%	60%	130%	99%	50%	140%
1,2-Dichloropropane	9732671		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	89%	60%	130%	94%		140%
Trichloroethylene	9732671		< 0.03	< 0.03	NA	< 0.03	86%	50%	140%	93%	60%	130%	104%	50%	140%
Bromodichloromethane	9732671		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	96%	60%	130%	74%	50%	140%
Methyl Isobutyl Ketone	9732671		< 0.50	< 0.50	NA	< 0.50	98%	50%	140%	88%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	9732671		< 0.04	< 0.04	NA	< 0.04	111%	50%	140%	107%	60%	130%	106%	50%	140%
Toluene	9732671		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	118%	60%	130%	116%	50%	140%
Dibromochloromethane	9732671		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	111%	60%	130%	104%		140%
Ethylene Dibromide	9732671		< 0.04	< 0.04	NA	< 0.04	99%	50%	140%	100%	60%	130%	94%	50%	140%
Tetrachloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	98%	60%	130%	111%	50%	140%
1,1,1,2-Tetrachloroethane	9732671		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	112%	60%	130%	109%	50%	140%
Chlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	116%	60%	130%	110%	50%	140%
Ethylbenzene	9732671		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	114%	60%	130%	114%	50%	140%
m & p-Xylene	9732671		< 0.05	< 0.05	NA	< 0.05	126%	50%	140%	122%	60%	130%	113%	50%	140%
Bromoform	9732671		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	111%	60%	130%	84%	50%	140%
Styrene	9732671		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	101%	60%	130%	96%		140%
1,1,2,2-Tetrachloroethane	9732671		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	118%	60%	130%	109%		140%
o-Xylene	9732671		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	101%	60%	130%	115%		140%
1,3-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	114%		140%	108%		130%	108%		140%
1,4-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	118%	60%	130%	107%	50%	140%
1,2-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	106%	60%	130%	112%		140%
1,3-Dichloropropene	9732671		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	95%	60%	130%	92%		140%
n-Hexane	9732671		< 0.05	< 0.05	NA	< 0.05	90%		140%	100%		130%	80%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414274 ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

Trace Organics Analysis (Continued)

RPT Date: DUPLICATE				E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Blank Measured			leasured Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper		
O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)																	
F1 (C6 to C10)	9732425	,	< 5	< 5	NA	< 5	82%	60%	130%	89%	85%	115%	79%	70%	130%		
F2 (C10 to C16)	9731944		< 10	< 10	NA	< 10	94%	60%	130%	87%	80%	120%	92%	70%	130%		
F3 (C16 to C34)	9731944		< 50	< 50	NA	< 50	104%	60%	130%	104%	80%	120%	85%	70%	130%		
F4 (C34 to C50)	9731944		< 50	< 50	NA	< 50	89%	60%	130%	99%	80%	120%	90%	70%	130%		

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 9

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414274 ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

SAMPLING SITE:		SAMPLED BY:Tanner Leonhardt					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis		·					
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID				
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P & T GC / FID				
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID				
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID				
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance				
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE				
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID				
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1.2-Dichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260 EPA SW-846 5035 & 8260	(P&T)GC/MS (P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260 EPA SW-846 5035 & 8260	(P&T)GC/MS (P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260 EPA SW-846 5035 & 8260	()				
			(P&T)GC/MS				
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS				

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414274 ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

AL ODIA						and the second se			1	101414274
	AC	ia'	Γı	abo	rate	ories	Ph: 908	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 5.712.5100 Fax: 905.712.5122	Laboratory Work Order #:	
Chain of	Custody Rec	ord #mis	is a Drinking W					webearth.agatlabs.com	Cooler Quantity:	0.0 10 00
Report Info	rmation:	1.		rater sample	, please u	iso Drinking Water Chain of Custody Form			Arrival Temperat	STISSIST
Company:	LANS	sultant				Regulatory Requirements: (Please check all applicable boxes)	N	o Regulatory Requirement	Custody Seal Int Notes:	act: Yes INO DMA
Contact: Address:		And set	unt vnt	+16,	_	Table Indicate One		Regulation 558		Time (TAT) Required:
Phone:	416 529	5454 Fax:				Ind/Com			Regular TAT	5 to 7 Business Days
Reports to be sent to 1. Email:			deman.	tanti	10		rm	Prov. Water Quality Objectives (PWQ0)	Rush TAT (Rush Se	
2. Email:	isanc, Fenge	2 dreon	sultant	s. (C	COL		ate One	- Other	Busines Days	s Days Next Business
Project Infor	12			51	=	Fine MISA	NAME OF ADDRESS OF AD	Indicate One	OR Date F	Required (Rush Surcharges May Apply):
Project:	17-508	-20				Is this submission for a Record of Site Condition?		Report Guideline on Certificate of Analysis	Please	provide prior notification for rush TAT
Site Location: Sampled By:	Tanner	I.a.	hordt		$\equiv \parallel$	Yes I No	ANT SAL	Ves I No	*TAT is excl	usive of weekends and statutory holidays
AGAT Quote #:	Please note: If quetation num	P0;			— ^u	Sample Matrix Legend	-	0. Reg 153	For 'Same Day'	analysis, please contact your AGAT CPM
Company: Contact: Address: Email:	rmation:		Bill To Same:	Yes 🗹 Ni		Biota Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CM	Metals and Inorganics Au Metals 153 Metals (excl. hydrides) Dhydride Metals 153 Metals (incl. hydrides) ORPs: DB:HWS CICP CICN COPPS: DB:HWS CICP CICN COPPS: DB:HWS CICP CICN DPH CICPS CICP CICN Phil Metals Scari Regulation/Custom Metals Nutrients: DTP CIVIT, DNN Nutrients: DTP CIVIT, DNN		Prose: Li lotal Li Anocions Organochionne Pesticidaes TicLe: Li Mai Li Viocs Li Alans Li Braje Lipcas Sewen Lise
Samp	ble Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	I hydrid I hydrid RPs: I I pH D I pH I pH D I pH D D D D D D D D D D D D D D D D D D	Votatiles: PHCs F1 - ABNs PAHs	Pubs: U Io Diganochio TCLP: D Mar Sewer Use
TPI	Bapel	26/11/18		3	5011					<u>το μα</u>
TPI	Base 4 NWZ			3		a			44	
	SW2		4	7	1.1		1		47	
	1 St . / 1						STREAM BOA	03 (2.0.020m)03PC (00000) FR		
Tri	wwl	i V		3					141	2
5 C	WWI	· V ·		3	V					
5 C	WW1			3						
5 C				3						
5 C				3						
	nt Name and Stoply (4 2		(Samples/Received By (Print Name and Sign)				
TFI umples Refinquished By (Prim TSaac	nt Name and Stoply (ery -	Nov 21	5, 2018 Time		Samples Received By (Print Name and Sign):		Date 200. 20	Time	
TFI umples Refinquished By (Prim TSaac	nt Name and Sign): Any Kuyth Y			5, 2018 Time	1	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):		Date		Page of

CLIENT NAME: DS CONSULTANTS LTD. 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: Shafi Andseta

PROJECT: 17-508-20

AGAT WORK ORDER: 18T414276

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 29, 2018

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 9

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18T414276 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2018-11-28

		SAMPLE DES	CRIPTION:	TP2 Base 3	TP2 Base 4	TP2 WW2	TP2 EW3	TP2 WW1
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	2018-11-26	2018-11-26	2018-11-26	2018-11-26	2018-11-26
Parameter	Unit	G/S	RDL	9743885	9743894	9743895	9743896	9743897
F1 (C6 to C10)	µg/g	25	5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	25	5	<5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	10	10	<10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	240	50	<50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	120	50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	120	50	NA	NA	NA	NA	NA
Moisture Content	%		0.1	12.1	12.5	11.9	12.2	18.7
Surrogate	Unit	Acceptab	le Limits					
Terphenyl	%	60-1	40	92	101	122	121	105

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9743885-9743897 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 18T414276 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2018-11-28									DATE REPORTED: 2018-11-29
		SAMPLE DESC	CRIPTION:	TP2 Base 3	TP2 Base 4	TP2 WW2	TP2 EW3	TP2 WW1	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2018-11-26	2018-11-26	2018-11-26	2018-11-26	2018-11-26	
Parameter	Unit	G/S	RDL	9743885	9743894	9743895	9743896	9743897	
Dichlorodifluoromethane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	0.25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	0.05	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	
Toluene	ug/g	0.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

Jonnal Jorta

AGAT WORK ORDER: 18T414276 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

DATE RECEIVED: 2018-11-28									DATE REPORTED: 2018-11-29
	S	AMPLE DESC	RIPTION:	TP2 Base 3	TP2 Base 4	TP2 WW2	TP2 EW3	TP2 WW1	
		SAMF	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2018-11-26	2018-11-26	2018-11-26	2018-11-26	2018-11-26	
Parameter	Unit	G/S	RDL	9743885	9743894	9743895	9743896	9743897	
Bromoform	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
I,3-Dichlorobenzene	ug/g	0.05	0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
I,4-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Kylene Mixture	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	
n-Hexane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Surrogate	Unit	Acceptabl	e Limits						
Foluene-d8	% Recovery	50-1	40	95	95	98	99	96	
4-Bromofluorobenzene	% Recovery	50-1	40	98	96	84	84	87	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9743885-9743897 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Analysis performed at AGAT Toronto (unless marked by *)

Imkal Jata

Page 4 of 9

Page 5 of 9

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414276 ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

Trace Organics Analysis

			IIau		yann	5 AI	iary 5	13							
RPT Date:			D	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery		ptable nits
FARAMETER	Batch	ld	Dup #1	Dup #2	RFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - VOCs (Soil)		•													
Dichlorodifluoromethane	9732671		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	81%	50%	140%	90%	50%	140%
Vinyl Chloride	9732671		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	85%	50%	140%	84%	50%	140%
Bromomethane	9732671		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	95%	50%	140%	83%	50%	140%
Trichlorofluoromethane	9732671		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	108%	50%	140%	88%	50%	140%
Acetone	9732671		< 0.50	< 0.50	NA	< 0.50	103%	50%	140%	117%	50%	140%	88%	50%	140%
1,1-Dichloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	85%	60%	130%	93%	50%	140%
Methylene Chloride	9732671		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	107%	60%	130%	100%	50%	140%
Trans- 1,2-Dichloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	103%	60%	130%	93%	50%	140%
Methyl tert-butyl Ether	9732671		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	109%	60%	130%	99%	50%	140%
1,1-Dichloroethane	9732671		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	95%	60%	130%	82%	50%	140%
Methyl Ethyl Ketone	9732671		< 0.50	< 0.50	NA	< 0.50	99%	50%	140%	94%	50%	140%	84%	50%	140%
Cis- 1,2-Dichloroethylene	9732671		< 0.02	< 0.02	NA	< 0.02	92%	50%	140%	93%	60%	130%	93%	50%	140%
Chloroform	9732671		< 0.04	< 0.04	NA	< 0.04	97%	50%	140%	100%	60%	130%	86%	50%	140%
1,2-Dichloroethane	9732671		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	89%	60%	130%	87%	50%	140%
1,1,1-Trichloroethane	9732671		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	93%	60%	130%	80%	50%	140%
Carbon Tetrachloride	9732671		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	97%	60%	130%	83%	50%	140%
Benzene	9732671		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	89%	60%	130%	99%	50%	140%
1,2-Dichloropropane	9732671		< 0.03	< 0.03	NA	< 0.03	88%	50%	140%	89%	60%	130%	94%	50%	140%
Trichloroethylene	9732671		< 0.03	< 0.03	NA	< 0.03	86%	50%	140%	93%	60%	130%	104%	50%	140%
Bromodichloromethane	9732671		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	96%	60%	130%	74%	50%	140%
Methyl Isobutyl Ketone	9732671		< 0.50	< 0.50	NA	< 0.50	98%	50%	140%	88%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	9732671		< 0.04	< 0.04	NA	< 0.04	111%	50%	140%	107%	60%	130%	106%	50%	140%
Toluene	9732671		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	118%	60%	130%	116%	50%	140%
Dibromochloromethane	9732671		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	111%	60%	130%	104%	50%	140%
Ethylene Dibromide	9732671		< 0.04	< 0.04	NA	< 0.04	99%	50%	140%	100%	60%	130%	94%	50%	140%
Tetrachloroethylene	9732671		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	98%	60%	130%	111%	50%	140%
1,1,1,2-Tetrachloroethane	9732671		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	112%	60%	130%	109%	50%	140%
Chlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	116%	60%	130%	110%	50%	140%
Ethylbenzene	9732671		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	114%	60%	130%	114%	50%	140%
m & p-Xylene	9732671		< 0.05	< 0.05	NA	< 0.05	126%	50%	140%	122%	60%	130%	113%	50%	140%
Bromoform	9732671		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	111%	60%	130%	84%	50%	140%
Styrene	9732671		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	101%	60%	130%	96%	50%	140%
1,1,2,2-Tetrachloroethane	9732671		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	118%	60%	130%	109%	50%	140%
o-Xylene	9732671		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	101%	60%	130%	115%	50%	140%
1,3-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	108%	60%	130%	108%	50%	140%
1,4-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	118%	60%	130%	107%	50%	140%
1,2-Dichlorobenzene	9732671		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	106%	60%	130%	112%	50%	140%
1,3-Dichloropropene	9732671		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	95%	60%	130%	92%	50%	140%
n-Hexane	9732671		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	100%	60%	130%	80%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414276 ATTENTION TO: Shafi Andseta

SAMPLED BY:Tanner Leonhardt

Trace Organics Analysis (Continued)

RPT Date:				DUPLICATE REFERENCE MATER					TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lie	ptable nits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (So	il)														
F1 (C6 to C10)	9732425	,	< 5	< 5	NA	< 5	82%	60%	130%	89%	85%	115%	79%	70%	130%	
F2 (C10 to C16)	9731944		< 10	< 10	NA	< 10	94%	60%	130%	87%	80%	120%	92%	70%	130%	
F3 (C16 to C34)	9731944		< 50	< 50	NA	< 50	104%	60%	130%	104%	80%	120%	85%	70%	130%	
F4 (C34 to C50)	9731944		< 50	< 50	NA	< 50	89%	60%	130%	99%	80%	120%	90%	70%	130%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jinkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 9

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414276 ATTENTION TO: Shafi Andseta SAMPLED BY:Tanner Leonhardt

PARAMETER	AGAT S.O.P	ANALYTICAL TECHNIQUE							
	AGAT 5.0.1	LITERATURE REFERENCE	ANALI TICAL TECHNIQUE						
Trace Organics Analysis		COME Tion 1 Mathad SW046 5025							
F1 (C6 to C10) F1 (C6 to C10) minus BTEX	VOL-91-5009 VOL-91-5009	CCME Tier 1 Method, SW846 5035 CCME Tier 1 Method, SW846 5035	P &T GC / FID P & T GC / FID						
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method							
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID						
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	Balance						
Moisture Content	VOL-91-5009	CCME Tier 1 Method, SW846 5035,8015	BALANCE						
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID						
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						
Xylene Mixture	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260 EPA SW-846 5035 & 8260	(P&T)GC/MS						
1,3-Dichloropropene	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260 EPA SW-846 5035 & 8260	(P&T)GC/MS						
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS						

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T414276 **ATTENTION TO: Shafi Andseta**

SAMPLING SITE:		SAMPLED BY:Tanner Leonhardt									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS								
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS								

Chain of C	State State St												Laboratory Use Only Work Order #: 18 T 414 276 Cooler Quantity: Arrival Temperatures: T 419 91 7-9												
Report Inform Company: Contact: Address:	Contact: Shafi Andseta Address: 6221 High way 7 Unit 16, Woodbadge, ON						Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Regulation 153/04 Regulation 153/04 Sewer Use Table Regulation 558 Sanitary CCME					Turnaround Time (TAT) Required:										/A			
Phone: Reports to be sent to: 1. Email: 2. Email:	416 529 Shafi, and A Isanci, Fenge		and a second sec		ca						Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days OR Date Required (Rush Surcharges May Apply):								055						
Project Inform Project: Site Location: Sampled By:	Tanaka	-20 Leonha	d7			Is this submission for a Report Guideline on Certificate of Analysis							Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM												
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation numb		ll be billed full price		» 🗆	Sample Matrix LetBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	gend	Field Fittered - Metals, Hg, CrVI	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides)	CIBHWS CICH CICH DEC CIFOC CIHg SAR	Full Metals Scan	Regulation/Custom Metals Nutrients: DTP DAH, DTXN	NO, DMO, +NO2		F1-F4		DCRet [] Trital [] Accolore	ordanochlorine Peatickies	OM&I OVOCS OABNS OB(a)P OPCBS					
Sampl	e Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr		the second s	Y/N	Vietals] All Me	ORPS: UBH DCr* DEC DeH DSAR	ult Me	legular Iutrien	NO	Volatiles:	PHCs F	PAHs	CRe-	ndano	TCLP: D	Sewer I	1			
TP2	Base 3	Nov26/18		3	50:	Contract of the local division of the local division of the	1 174 1	4	1.0	0					1	-		8			00		1	1127	-
TP2	Base 4			3							1				V	1	and a state	1000							
TP7	EW2			3 3				(10.15) (10.15)	1.00		1 19			-	Y	3		1	li ven	1.00			215	Nee-	_
TP2	WW91			2		i l			No.						1	4		10	8 (2)	12.2			200	123	-
		-						215					3					11-10		54-4			(IN)	NEW.	-
														1000		500 A		and and a	101-22				4.4		
1 24		36-1 5		-	300	Contraction of the								1		1	1	Sec.				23			
		1										10.00		-		000							1251	1574	_
							0		4					100	12	12	0			31			100	1000	-
Samples Relinquished By (Prin	t Name and Sign):	Wiper	NoJ 2	5200	10	Samples Received By (P	tint Name and Sign):		-				Date		Shi	Time	<u> </u>	C El	1	12.3%	1f			2.538	
Samples Relinguished By (Rec	Nameana Sign		Date NOV		11 m	Samples Received By (P	nint Name and Sign):	2	e.				No) Date	32	8/K	Time	2:		4		Parte		of		-
Samples Rellinguished By(Prin	: Name and Sigh):	x 1.	Date		10	Sumplec Received By (P	rint Name and Sign):						Dale	-		Time	-		-		Page		of	_	4
Portument ID: DIV.78.1511 (FLA		1.4			- 202			_	-			_	_	1	i 10				^		U	66	<u>4U</u>	2	

승규는 동네가 그렇게 물건을 가 물건을 들었다. 동네가 물건을 들었다. 동네가 물건을 들었다.

^{100.78-15}H COV

Certificates of Analysis – Import Fill

CLIENT NAME: DS CONSULTANTS LTD. 6221 HIGHWAY 7 WEST, UNIT #16 VAUGHAN, ON L4H 0K8 905-264-9393

ATTENTION TO: Shafi Andseta

PROJECT: 17-508-20

AGAT WORK ORDER: 18T413943

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 28, 2018

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 9

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18T413943 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Isaac Feng

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2018-11-27

DATE RECEIVED: 2018-11-2	1				DATE REPORTED: 2018-11-2
	S	AMPLE DES		GS3	
			PLE TYPE:	Soil	
			SAMPLED:	2018-11-27	
Parameter	Unit	G/S	RDL	9741445	
Antimony	µg/g	1.3	0.8	<0.8	
Arsenic	µg/g	18	1	5	
Barium	µg/g	220	2	92	
Beryllium	µg/g	2.5	0.5	0.8	
Boron	µg/g	36	5	11	
Boron (Hot Water Soluble)	µg/g	NA	0.10	0.30	
Cadmium	µg/g	1.2	0.5	<0.5	
Chromium	µg/g	70	2	20	
Cobalt	µg/g	21	0.5	10.5	
Copper	µg/g	92	1	22	
Lead	µg/g	120	1	27	
Molybdenum	µg/g	2	0.5	0.6	
Nickel	µg/g	82	1	22	
Selenium	µg/g	1.5	0.4	<0.4	
Silver	µg/g	0.5	0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	
Uranium	µg/g	2.5	0.5	0.7	
Vanadium	µg/g	86	1	31	
Zinc	µg/g	290	5	78	
Chromium VI	µg/g	0.66	0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	
Electrical Conductivity	mS/cm	0.57	0.005	0.165	
Sodium Adsorption Ratio	NA	2.4	NA	0.841	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.83	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9741445 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 18T413943 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Isaac Feng

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2018-11-27

DATE RECEIVED. 2010-11-27					DATE REPORTED. 2010-11-20
	;	SAMPLE DES	CRIPTION:	GS2	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2018-11-27	
Parameter	Unit	G/S	RDL	9741403	
Hexachloroethane	µg/g	0.01	0.01	<0.01	
Gamma-Hexachlorocyclohexane	µg/g	0.01	0.005	<0.005	
Heptachlor	µg/g	0.05	0.005	<0.005	
Aldrin	µg/g	0.05	0.005	<0.005	
Heptachlor Epoxide	µg/g	0.05	0.005	<0.005	
Endosulfan	µg/g	0.04	0.005	<0.005	
Chlordane	µg/g	0.05	0.007	<0.007	
DDE	µg/g	0.05	0.007	<0.007	
DDD	µg/g	0.05	0.007	<0.007	
DDT	µg/g	1.4	0.007	<0.007	
Dieldrin	µg/g	0.05	0.005	<0.005	
Endrin	µg/g	0.04	0.005	<0.005	
Methoxychlor	µg/g	0.05	0.005	<0.005	
Hexachlorobenzene	µg/g	0.01	0.005	<0.005	
Hexachlorobutadiene	µg/g	0.01	0.01	<0.01	
Moisture Content	%		0.1	19.8	
Surrogate	Unit	Acceptab	le Limits		
ТСМХ	%	50-1	40	70	
Decachlorobiphenyl	%	60-1	30	96	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of the soil.

9741403 Results are based on the dry weight of the soil. Note: DDT applies to the total of op'DDT and pp'DDT, DDD applies to the total of op'DDD and DDE applies to the total of op'DDE. Endosulfan applies to the total of Endosulfan I and Endosulfan II.

Chlordane applies to the total of Alpha-Chlordane and Gamma-Chlordane.

Analysis performed at AGAT Toronto (unless marked by *)

Amkal Jata

Certified By:

AGAT WORK ORDER: 18T413943 PROJECT: 17-508-20 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DS CONSULTANTS LTD.

SAMPLING SITE:

ATTENTION TO: Shafi Andseta

SAMPLED BY:Isaac Feng

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2018-11-27

	S	SAMPLE DESC	RIPTION:	GS1
		SAMF	LE TYPE:	Soil
		DATE S	AMPLED:	2018-11-27
Parameter	Unit	G/S	RDL	9741398
Benzene	µg/g	0.02	0.02	<0.02
Toluene	µg/g	0.2	0.05	<0.05
Ethylbenzene	µg/g	0.05	0.05	<0.05
Xylene Mixture	µg/g	0.05	0.05	<0.05
F1 (C6 to C10)	µg/g	25	5	<5
F1 (C6 to C10) minus BTEX	µg/g	25	5	<5
F2 (C10 to C16)	µg/g	10	10	<10
F3 (C16 to C34)	µg/g	240	50	<50
F4 (C34 to C50)	µg/g	120	50	<50
Gravimetric Heavy Hydrocarbons	µg/g	120	50	NA
Moisture Content	%		0.1	24.3
Surrogate	Unit	Acceptabl	e Limits	
Terphenyl	%	60-1	40	87

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9741398 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T413943 ATTENTION TO: Shafi Andseta SAMPLED BY:Isaac Feng

Soil Analysis

					aryon									
RPT Date:			DUPLICATE			REFERE		TERIAL	METHOD	BLAN		MAT	ATRIX SPIKE Acceptable Limits	
PARAMETER	Batch San	nple Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	1 1 10	eptable nits	Recovery	1.10	
		^				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Soil)													
Antimony	9741257	<0.8	<0.8	NA	< 0.8	98%	70%	130%	94%	80%	120%	73%	70%	130%
Arsenic	9741257	2	3	NA	< 1	102%	70%	130%	103%	80%	120%	106%	70%	130%
Barium	9741257	39	40	2.5%	< 2	99%	70%	130%	101%	80%	120%	112%	70%	130%
Beryllium	9741257	<0.5	<0.5	NA	< 0.5	94%	70%	130%	97%	80%	120%	96%	70%	130%
Boron	9741257	7	6	NA	< 5	102%	70%	130%	101%	80%	120%	96%	70%	130%
Boron (Hot Water Soluble)	9741257	0.22	0.23	NA	< 0.10	107%	60%	140%	102%	70%	130%	98%	60%	140%
Cadmium	9741257	<0.5	<0.5	NA	< 0.5	104%	70%	130%	107%	80%	120%	104%	70%	130%
Chromium	9741257	15	15	0.0%	< 2	99%	70%	130%	103%	80%	120%	102%	70%	130%
Cobalt	9741257	6.1	6.1	0.0%	< 0.5	102%	70%	130%	102%	80%	120%	97%	70%	130%
Copper	9741257	15	15	0.0%	< 1	99%	70%	130%	103%	80%	120%	91%	70%	130%
Lead	9741257	10	10	0.0%	< 1	96%	70%	130%	101%	80%	120%	100%	70%	130%
Molybdenum	9741257	<0.5	<0.5	NA	< 0.5	101%	70%	130%	107%	80%	120%	112%	70%	130%
Nickel	9741257	12	12	0.0%	< 1	99%	70%	130%	100%	80%	120%	97%	70%	130%
Selenium	9741257	<0.4	1.0	NA	< 0.4	102%	70%	130%	103%	80%	120%	104%	70%	130%
Silver	9741257	<0.2	<0.2	NA	< 0.2	95%	70%	130%	113%	80%	120%	98%	70%	130%
Thallium	9741257	<0.4	<0.4	NA	< 0.4	96%	70%	130%	106%	80%	120%	108%	70%	130%
Uranium	9741257	<0.5	<0.5	NA	< 0.5	97%	70%	130%	90%	80%	120%	90%	70%	130%
Vanadium	9741257	24	26	8.0%	< 1	103%	70%	130%	107%	80%	120%	108%	70%	130%
Zinc	9741257	50	51	2.0%	< 5	101%	70%	130%	106%	80%	120%	109%	70%	130%
Chromium VI	9738368	<0.2	<0.2	NA	< 0.2	83%	70%	130%	105%	80%	120%	128%	70%	130%
Cyanide	9737961	<0.040	<0.040	NA	< 0.040	104%	70%	130%	110%	80%	120%	104%	70%	130%
Mercury	9741257	<0.10	<0.10	NA	< 0.10	110%	70%	130%	99%	80%	120%	100%	70%	130%
Electrical Conductivity	9741257	0.350	0.380	8.2%	< 0.005	95%	90%	110%	NA			NA		
Sodium Adsorption Ratio	9741257	3.91	3.88	0.8%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	9737961	7.12	7.17	0.7%	NA	101%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T413943 ATTENTION TO: Shafi Andseta SAMPLED BY:Isaac Feng

Trace Organics Analysis

							-									
RPT Date:			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	Acceptable Limits		Recovery	1 :	eptable mits	
		Ia					value	Lower	Upper	-	Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PHCs F1 - F4 ((Soil)															
Benzene	9732671		< 0.02	< 0.02	NA	< 0.02	84%	60%	130%	90%	60%	130%	92%	60%	130%	
Toluene	9732671		< 0.05	< 0.05	NA	< 0.05	87%	60%	130%	84%	60%	130%	90%	60%	130%	
Ethylbenzene	9732671		< 0.05	< 0.05	NA	< 0.05	83%	60%	130%	89%	60%	130%	87%	60%	130%	
Xylene Mixture	9732671		< 0.05	< 0.05	NA	< 0.05	86%	60%	130%	98%	60%	130%	84%	60%	130%	
F1 (C6 to C10)	9732671		< 5	< 5	NA	< 5	80%	60%	130%	88%	85%	115%	76%	70%	130%	
F2 (C10 to C16)	9724834		< 10	< 10	NA	< 10	80%	60%	130%	92%	80%	120%	84%	70%	130%	
F3 (C16 to C34)	9724834		< 50	< 50	NA	< 50	98%	60%	130%	108%	80%	120%	89%	70%	130%	
F4 (C34 to C50)	9724834		< 50	< 50	NA	< 50	86%	60%	130%	102%	80%	120%	108%	70%	130%	
O. Reg. 153(511) - OC Pesticides	(Soil)															
Hexachloroethane	9733630		< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	94%	50%	140%	82%	50%	140%	
Gamma-Hexachlorocyclohexane	9733630		< 0.005	< 0.005	NA	< 0.005	104%	50%	140%	82%	50%	140%	74%	50%	140%	
Heptachlor	9733630		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	92%	50%	140%	82%	50%	140%	
Aldrin	9733630		< 0.005	< 0.005	NA	< 0.005	104%	50%	140%	89%	50%	140%	80%	50%	140%	
Heptachlor Epoxide	9733630		< 0.005	< 0.005	NA	< 0.005	101%	50%	140%	88%	50%	140%	84%	50%	140%	
Endosulfan	9733630		< 0.005	< 0.005	NA	< 0.005	103%	50%	140%	98%	50%	140%	86%	50%	140%	
Chlordane	9733630		< 0.007	< 0.007	NA	< 0.007	103%	50%	140%	92%	50%	140%	82%	50%	140%	
DDE	9733630		< 0.007	< 0.007	NA	< 0.007	99%	50%	140%	95%	50%	140%	94%	50%	140%	
DDD	9733630		< 0.007	< 0.007	NA	< 0.007	101%	50%	140%	91%	50%	140%	92%	50%	140%	
DDT	9733630		< 0.007	< 0.007	NA	< 0.007	99%	50%	140%	87%	50%	140%	81%	50%	140%	
Dieldrin	9733630		< 0.005	< 0.005	NA	< 0.005	102%	50%	140%	94%	50%	140%	81%	50%	140%	
Endrin	9733630		< 0.005	< 0.005	NA	< 0.005	100%	50%	140%	93%	50%	140%	82%	50%	140%	
Methoxychlor	9733630		< 0.005	< 0.005	NA	< 0.005	97%	50%	140%	86%	50%	140%	85%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imral Jata

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 9

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T413943 ATTENTION TO: Shafi Andseta SAMPI ED BY:Isaac Feng

SAMPLING SITE:		SAMPLED BY:Isaac Feng									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Soil Analysis	·	·	•								
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES								
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER								
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER								
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS								
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER								
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES								
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER								

Method Summary

CLIENT NAME: DS CONSULTANTS LTD.

PROJECT: 17-508-20

SAMPLING SITE:

AGAT WORK ORDER: 18T413943 ATTENTION TO: Shafi Andseta SAMPLED BY:Isaac Feng

SAMPLING SITE:		SAWFLED DT IS	aacieng					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis		I						
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
ТСМХ	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD					
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD					
Moisture Content		MOE E3139	BALANCE					
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260D	P & T GC/MS					
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260D	P & T GC/MS					
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260D	P & T GC/MS					
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260D	P & T GC/MS					
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID					
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE					
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE					
Terphenyl	VOL-91-5009		GC/FID					

	the second se	the second se	Г.	abo	orate	1 larre Ories	Ph: 9	05.712.5:	5835 Ca ssauga, On 100 Fax: 9 webearth	itario L 905.71	4Z 1Y2 2.5122		Work	Order :	#: _/	Use (1 g -			942	5
	ustody Reco		s is a Drinking \	Vater sample	e, picase u	use Drinking Water Chain of Custody For	1 (potable	water consi	umed by hun	nans)			Arriva	r Quan I Temp		res:	6.	61	5.6	126
Company: Contact:	ation: PS (2951) Shafi I	taddel	U			Regulatory Requirements (Please check all applicable boxes)		ii i	ulatory R				Custo Notes		il Intac PC		Yes] ,	⊡No	
Reports to be sent to: 1. Email:	6721 Hyl Woodbadg	1 11/04 1 2, 0 N 4 54 Fax: ta @	drunsu	Hants	.(9	Table Indicate One Is Ind/Com Is Res/Park Isi Agriculture Soll Texture (Check One) Region	atę One		Regulati CCME Prov. Wa Objective Other	ter Qua Is (PWQ	lity	F	tegui; tush 1	Br TA AT (Ru 3 Busi Days	T wh Surci (ness	harges Al	5 to unnin) 2 Bu Days	o 7 Busi Iusiness /s		Next Business Day
Project Informa Project: Site Location: Sampled By: AGAT Quote #:	17-508	r-20 rg				Is this submission for a Record of Site Condition?		Certific	t Guidel ate of A S [ine or	Is		:+ *	Plea TAT is	ase pr exclus	ovide p sive of t	prior na weeker	otificati ends and	orges May A Ion for rush d statutory i act your AG	holidays
Invoice Informa Company: Contact: Address: Email:	Please note: # quoteion number	is not provided, ciler	at will be billed full priv		•	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg. Crvi	Inorganics 1153 Metals (excl. Hydrides) 153 Metals (incl. Hydrides)	INS CC DHg	Full Metels Scan	Regulation/Custom Metals Nutrients: DTP DNH, DTMN	Volatiles: D VOC DBTEX DTHM	.F4		otal 🗆 Arociors	e Pesticides	ki 🗆 VOCs 🗆 ABNS 🗂 B(a)P 🗇 CBS			
	lentification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metals and All Metals E Chydride Mete	ORPs: 084 0cre 060	Full Met	Vutrients No. C	/olatiles	PHCs F1 - F4	PAHS	PCBs; D Total	Inganoch	TCLP: DM&I			
G52		Nov27/	0	3	500)			4	北方市	1000		12	1			100	0 1	217.4	1000	
653		Nov 27/	0		500	-		V		1 The second se	8 00 00 00 00 00 00 00 00 00 00 00 00 00	語の		Contraction of the second		J	and a			
		• • •								- 10		100 C	1000	-		10 212		1000	ないの	A COMP A COMP SNOT
					201				N	10000		10		14 ·		範囲		22.04	- 552 842	25 Sile
					А. А. А.			28				日本							調	
		×	4	2 B	alle all					の問題		turdi at se				部福		100		
										and the second		100	日本							
imples Relinquished By (Print Nan	e and Sign):	a	Date	Time		Sumpler Parallel P. INC. 20				1000	1000							14	CONTRACTOR -	
FSAAC HC Imples Relinquished By (Print Nam	B My W (M-	γ	NoV2.	7/18 Time		Samples Received By (Print Name and Sign); Samples Received By (Print Name and Sign);	m	dus	2	0	ate ZHV ate	118	Time	110,	m			*	1 a.'	
amples Rolinquished By (Print Nam	a and Sign):	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Qato	Time	110.0	Samples Received By (Print Name and Sign):				D	ato .		Time	2.4	-		Page		of	
ment ID: NV.78.1511 014	1 ⁻¹						<u> </u>		1		an a		1			Nº:		166	5402 Page 9	

and the second of the second o

the second second second second

- -

and the second second

Appendix F – Phase Two Conceptual Site Model

Phase Two Conceptual Site Model

Introduction

The Phase Two Conceptual Site Model (CSM) has been prepared for the Site based on the Phase One ESA, Phase Two ESA, and remediation activities. This Phase Two CSM is comprised of the following figures and text:

- Figure 1 Site Location Plan
- Figure 2 Phase One Property Site Plan
- Figure 3A Phase One Study Area
- Figure 4 Borehole Location Plan with APECs
- Figure 5 Groundwater Elevation Contours and Flow Direction
- Figure 6A Soil Characterization Metals and ORPs
- Figure 6B Soil Characterization PHCs
- Figure 6C Soil Characterization OCPs and PCBs
- Figure 7A Groundwater Characterization Metals and ORPs
- Figure 7B Groundwater Characterization PHCs
- Figure 7C Groundwater Characterization VOCs
- Figure 7D Groundwater Characterization OCPs
- Figure 8A- TP1 Confirmatory Soil Sample Location Plan
- Figure 8B- TP2 Confirmatory Soil Sample Location Plan
- Figure 9 Cross Section A-A'
- Figure 9A Cross Section A-A' with PHCs and BTEX Impacts in soil (Pre-Remediation)
- Figure 9B Cross Section A-A' with PHCs and BTEX Impacts in soil (Post-Remediation)
- Figure 10 Cross Section B-B'
- Figure 10A Cross Section B-B' with PHCs and BTEX Impacts in soil (Pre-Remediation)
- Figure 10B Cross Section B-B' with PHCs and BTEX Impacts in soil (Post-Remediation)
- Figure 11A- Pathways and Receptors (Pre-Remediation)
- Figure 11B- Pathways and Receptors (Post-Remediation)

The Property is a 12.58-hectare (31.08 acres) parcel of land situated within mixed residential and agricultural neighbourhood in the Town of Oakville, Ontario. The Property is located approximately 1-kilometre (km) north of the intersection of Dundas Street West and Sixth Line. The Property was undeveloped and included no structures at the time of this investigation. The Property was previously developed with a residential house, three (3) detached storage sheds and a cellular communication tower, all of which were located in the southeast corner of the Property and have been demolished.

Based on a review of the Halton Region Official Plan and the Town of Oakville Official Plan, the Site is located within an area of natural significance (Natural Heritage Area).

The Property was historically operated as an agricultural field with a residential dwelling, from the late 1800s to the late 1900s. The southeast corner of the Property has been occupied by cellular communication tower (commercial use) from the early 2000s until approximately 2017 when the tower was demolished. A total of three (3) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to three (3) APECs on the Property. The PCAs were associated with the importation of fill material of unknown quality in the southeast corner of the Site, the inferred application of pesticides and the inferred presence of a backup generator servicing the former cellular communication tower.

The Phase Two ESA involved the advancement of thirteen (13) boreholes and twelve (12) test pits, which was completed between November 2017 and January 2018. The boreholes were advanced to a maximum depth of 5.0 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in six (6) of the boreholes to facilitate the collection of groundwater samples and the assessment of groundwater flow direction. Soil and groundwater samples were collected and submitted for analysis of all PCOCs, including metals and ORPs, PHCs, BTEX and OCPs.

Soil Quality

Fill material impacted with PHCs and BTEX was identified in two (2) of the test pits (TP3r and TP4r) advanced within the southeast corner of the Site at depths ranging between 0-0.6 mbgs. Remedial excavation was conducted on November 26, 2018. The details of the remedial excavations are presented below. All of the soil samples submitted for analysis of metals and ORPs and OCPs met the MECP Table 1 SCS.

Remedial Excavation TP1

Remedial Excavation TP1 was completed on November 26, 2018. The objective of TP1 was to facilitate the removal and off-site disposal of the soils impacted with PHCs and BTEX which were identified in test pit TP4r at an approximate depth of 0-0.6 mbgs. The final dimensions of the remedial excavation were approximately 2.25 metres x 2.0 metres and extended to an approximate depth of 2.0 mbgs. Approximately 9 cubic metres of soils were excavated and disposed of at a licensed MECP receiving facility. Two (2) sidewall and two (2) floor samples were submitted for analysis of PHCs and BTEX, the results of which indicated concentrations below the MECP Table 1 SCS.

Remedial Excavation TP2

Remedial Excavation TP2 was completed on November 26, 2018. The objective of TP2 was to facilitate the removal and off-site disposal of the soils impacted with PHCs and BTEX which were identified in test pit TP3r at an approximate depth of 0-0.4 mbgs. The final dimensions of the remedial excavation were approximately 2.25 metres x 2.0 metres and extended to an approximate depth of 2.0 mbgs. Approximately 9 cubic metres of soils were excavated and disposed of at a licensed MECP receiving facility. Two (2) sidewall and two (2) floor samples were submitted for analysis of PHCs and BTEX, the results of which indicated concentrations below the MECP Table 1 SCS.

Approximately 20 cubic metres of fill material was imported to backfill remedial excavations TP1 and TP2. The imported soil was sourced from the pile of fill material located on the east neighbouring residential development property (east side of Sixth Line). DS visited the site on November 27, 2018. A total of 3 soil samples were collected from the above noted location for metals and ORPs, PHCs and OC Pesticides. The results of the chemical analyses indicated that all three (3) samples met the MECP Table 1 SCS.

Groundwater Quality

All of the groundwater samples analysed as part of the Phase Two ESA met the MECP Table 1 SCS for all of the parameters analysed, with the exception of MW1D-17, which exceeded the Table 1 SCS for uranium.

This monitoring well is situated in an agricultural field, and fill material was not identified any of the boreholes advanced in the vicinity of MW1D-17 (BH17-1N and BH17-3R). The monitoring well screen is situated across the Queenston formation shale and the silty clay till. No potential source of uranium was identified in the Phase One ESA in the vicinity of MW1D-17. Furthermore, any anthropogenic source would involve activity at the ground surface, acting as a contaminant source leaching uranium into the underlying soils and eventually percolating into groundwater.

The silty clay till present on-Site is of low hydraulic conductivity and is anticipated to retard downward contaminant migration. The uranium concentration in the soil sample submitted from the boreholes BH17-1N and BH17-3R were both 0.6 μ g/g, which is 0.1 μ g/g above the laboratory detection limit, indicating that there is not a significant contaminant source present in the soil, and there is no indication of an anthropogenic source of uranium in this area.Uranium is naturally occurring in soils and bedrock. Based on the lack of a potential source of contamination (no PCA identified relevant to uranium), the lack of contaminant

mass in soil, and the low permeability soils on-site, it is the opinion of the QP_{ESA} that the elevated concentration of uranium in groundwater in MW1D-17 is naturally occurring, and not contamination, as defined under the Environmental Protection Act.

Based on these considerations, it is the opinion of the QP_{ESA} that as of the certification date of November 27, 2018, the soil and groundwater site condition standards for the remaining soil and groundwater on-Site have been met.

I. Description and Assessment of:

A. Areas where potentially contaminating activity has occurred

A total of four (4) PCAs were identified in the Phase One ESA. A summary of the PCAs considered to be contributing to APECs on the Property is provided in the table below.

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Contributing to APEC (Y/N)
1	PCA#40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	Historical use of the Property for agricultural purposes	Yes – APEC1
2	PCA#30: Importation of Fill Material of Unknown Quality	Fill material is anticipated in the vicinity of the historical residential home, storage buildings, and communication tower.	Yes – APEC 2
3	PCA#28: Gasoline and Associated Products Storage in Fixed Tanks	Historical presence of a generator used to service the historical communication tower.	Yes – APEC 3

Summary of PCAs Contributing to APECs

B. Areas of potential environmental concern

A total of three (3) APECs were identified to be present on the Phase Two Property through the completion of the Phase One ESA. A summary of the APECs identified, and the associated PCOCs is provided in the table below.

Summary	of APECs	identified	on the	Property
<u> </u>	01111 200		011 011 0	

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	On-site	PCA#40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents)	On Site	OC Pesticides	Soil and Ground water

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
		Manufacturing, Processing, Bulk Storage and Large-Scale Applications - Historical use of the Property for agricultural purposes			
APEC-2	Southeast portion of the Property	PCA#30 Importation of Fill Material of Unknown Quality - Inferred presence of fill material on-Site,	On Site	PHCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR	Soil
APEC-3	Within the vicinity of the historical communication tower on the southeast portion of the site.	PCA#28 Gasoline and Associated Products Storage in Fixed Tanks - Historical use of the portion of the Property for Roger Cell Tower	On Site	PHC (F1-F4), BTEX	Soil and Ground water

The following soil and groundwater samples were submitted for chemical analysis to assess the APECs identified on the Property,.

Summary of APEC Investigation

APEC	Description	PCOCs	Media	Borehole Within APEC	Samples Analysed	Parameter Analyzed
				BH17-3R	SS-3	OCPs
			Soil	BH17-5R	SS-2	OCPs
	PCA#40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications	OC Pesticides	5011	BH17-AR	SS-2	OCPs
				BH17-1T	SS-3	OCPs
APEC-1			Groundwater	MW17-1T	-	OCPs
				DUP-1	-	OCPs
				MW 1D-17	-	OCPs
				MW17-7R	-	OCPs
				MW17-1R	-	OCPs
	PCA# 30 - Importation of Fill Material of Unknown Quality	Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high	Soil	BH17-1T	SS-2	PHCs and BTEX
APEC-2					SS-3	M&I
					SS-2	M&I
				BH17-2T	SS-3	PHCs and BTEX

APEC	Description	PCOCs	Media	Borehole Within APEC	Samples Analysed	Parameter Analyzed
		pH, SAR,		BH17-AT	SS-2	M&I
		PHCs, BTEX		BH17-3T	SS-2	M&I, PHCs and BTEX
				BH17-BT	SS-2	PHCs and BTEX
				TP3r	GS1	PHCs and BTEX
				11.51	GS0Dup	PHCs and BTEX
				TP4r	GS1	PHCs and BTEX
				TP6r	GS1	PHCs and BTEX
				TP8r	GS2	M&I
				TP9r	GS2	PHCs and BTEX
				TP10r	GS1	PHCs and BTEX
				IPIOr	GS0Dup	PHCs and BTEX
				TP11r	GS1	M&I
				TP12r	GS1	M&I
				BH17-1T	SS2	PHCs and BTEX
			Soil	BH17-2T	SS3	PHCs and BTEX
				BH17-3T	SS-2	PHCs and BTEX
				BH17-BT	SS-2	PHCs and BTEX
				TP3r	GS1	PHCs and BTEX
				1151	GS0Dup	PHCs and BTEX
APEC-3	Historical use of the Property for a	PHCs and		TP4r	GS1	PHCs and BTEX
APEC-3	Rogers Communication Tower with backup generator	BTEX		TP6r	GS1	PHCs and BTEX
				TP9r	GS2	PHCs and BTEX
				TP10r	GS1	PHCs and BTEX
					GS0Dup	PHCs and BTEX
				BH17-1T	-	PHCs and VOCs
			Groundwater	BH17-2T	-	PHCs and VOCs
				BH17-3T	-	PHCs and VOCs

C. <u>Any subsurface structures and utilities on, in or under the Phase Two</u> <u>Property that may affect contaminant distribution and transport</u>

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Underground utilities were not identified at the Property, all of the former structures had been demolished prior to this assessment. It is anticipated that the historical house was serviced by a septic system. It is not anticipated that any historical utilities present would have acted as preferential pathways for contaminant transport based on the location of the soil impacts identified relative to the location of the former house. The soil impacts were determined to be localized shallow soil impacts, there is no indication of contaminant migration.

- II. Description of, and as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including:
 - A. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard</u> <u>investigated</u>

A surficial layer of topsoil approximately 125 to 300 mm thick was encountered in boreholes BH17-1R to BH17-7R and BH17-1N to BH17-3N. Underlaying this was a fill layer in boreholes BH17-1T, BH17-2T, and BH17-3T extending approximately 1.5 to 3.1 mbgs or, in the remaining boreholes, a weathered/disturbed layer of native clayey silt approximately 0.4 to 0.8 mbgs. This was underlain by a silty clay till which was found in all the boreholes, except BH17-1T & BH17-2T. This layer extended until bedrock. Shale bedrock was encountered in all boreholes and range between 1.5 to 4.6mbgs with corresponding elevations of 171.1 and 172.8 masl.

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Topsoil	0.13-0.30	177.2	173.09	
Fill Material	0.79-3.1	174.87	171.3	Clayey silt to silty clay, trace to some organics, wood pieces, trace shale fragments
Clayey Silt	0.6-1.0	177.1	173.1	Some sand, reddish brown.
Silty Clay Till	0.5-3.8	176.4	171.1	Water bearing formation, some

Summary of Geologic Units Investigated

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
				sand, trace gravel, occasional cobble/boulder
Shale Bedrock	-	172.8	-	Queenston Formation

A visual representation of the stratigraphy investigated is presented on the cross-sections provided in Figures 9 and 10.

B. <u>Hydrogeological Characteristics, including aquifers, aquitards and, in</u> <u>each hydrostratigraphic unit where one or more contaminants is present</u> <u>at concentrations above the applicable site condition standards, lateral</u> <u>and vertical gradients</u>

The groundwater table was generally encountered within the silty clay till and weathered bedrock. This groundwater unit is considered to be an unconfined aquifer.

Based on the groundwater elevations calculated, the groundwater flow direction is interpreted to be southeasterly towards a tributary of Sixteen Mile Creek. The groundwater elevation contours and flow direction are presented on Figure 5.

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on July 31, 2018.

Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Overburden – (silty clay till)	Minimum:0.0060
	Average: 0.0061
	Maximum:0.0066

The vertical hydraulic gradient was calculated based on the groundwater levels recorded on July 31, 2018.

Summary of Vertical Hydraulic Gradient Calculations

Monitoring Well Nest	Calculated Vertical Hydraulic Gradient
MW1S-17	0.7546 (downward)
MW1D-17	

C. Depth to bedrock

Shale bedrock was encountered in all boreholes and range between 1.5 to 4.6mbgs with corresponding elevations of 171.1 and 172.8 masl.

D. Approximate depth to water table

A total of ten (10) groundwater monitoring events were completed between July 2017 and July 2018. The depth to groundwater was found to range between 2.75 to 5.08 mbgs on January 9, 2018, and between 2.18 to 3.75 mbgs on July 31, 2018.

E. <u>Any respect in which section 41 or 43.1 of the regulation applies to the</u> <u>property</u>

The pH values measured between 6.41 and 7.79, which are within the acceptable limits for non-sensitive sites. A natural heritage feature was identified on the Property, as such the Site is considered to be environmentally sensitive.

F. <u>Areas where soil has been brought from another property and placed on</u>, <u>in or under the Phase Two Property</u>

Approximately 20 cubic metres of soil was imported to the Property on November 28, 2018 to backfill remedial excavations TP1 and TP2. The chemical quality of the fill material was assessed on November 27, 2018 through the collection of three (3) soil samples which were analysed for metals and ORPs, PHCs, BTEX and OC Pesticides. All of the samples met the MECP Table 1 SCS. The imported soil was placed within the footprints of the remedial excavations, which is presented on Figures 8A and 8B.

G. <u>Approximate locations, if known, of any proposed buildings and other</u> <u>structures</u>

Redevelopment of the Property for residential purposes has been proposed. It is DS' understanding that the development will consist of a residential subdivision. Additional details regarding the location of the homes were not available at this time.

III. Where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of

A. <u>Each area where a contaminant is present on, in or under the Phase Two</u> <u>Property at a concentration greater than the applicable SCS</u>

Soil impacted with PHCs (incl. BTEX) were identified in test pit TP3R GS1 (benzene, toluene, ethylbenzene, xylene, PHC F1, PHC F2, and PHC F3) at a depth ranging from 0.0-0.4 mbgs. Impacts were also identified in test pit TP4r GS1 (toluene, ethylbenzene, xylene, PHC F1 and F2) from 0.0-0.6 mbgs. The horizontal and vertical extent of the PHC impacts in soil was determined at the time of remedial excavation, completed on November 26, 2018. The horizontal extent of the PHC impacts in soil is depicted on Figures 8A and 8B. The vertical extent of the PHC impacts in soil is depicted on Figures 9A and 10A. The horizontal extent of the PHC impacts in soil was found to be contained within a 2-metre radius of TP3r and TP4r and found to extend to a maximum depth of 1.5 mbgs.

B. The contaminants associated with each of the areas

A visual representation of the location of the impacts identified, including the individual contaminants associated with the impacted areas, and the remedial activities in the vicinity of impacted areas is presented in Figures 6B, 8A, and 8B.

<u> TP3r – Remedial Excavation TP2</u>

The contaminants identified at concentrations greater than the applicable SCS included: benzene, toluene, ethylbenzene, xylenes (total), PHC F1-BTEX, PHC F2 and PHC F3.

<u> TP4r – Remedial Excavation TP1</u>

The contaminants identified at concentrations greater than the applicable SCS included: toluene, ethylbenzene, xylenes (total) and PHCs F1-BTEX.

C. Medium that contaminants were identified in

Contaminants were identified at concentrations in excess of the MECP Table 1 SCS in soil. All of the groundwater samples analysed met the MECP Table 1 SCS.

D. Description and assessment of what is know about each of the areas

PHC impacts were identified in the shallow fill material located in the southeastern portion of the Site in test pits TP3r and TP4r. Mixed fill material was identified within this portion of the site and is inferred to have been placed to raise the grade of the ground surface. The PHC impacts were limited both in the horizontal and vertical extent. The results of the confirmatory sampling verified that the vertical extent of the impacts was 1.5 mbgs, and the horizontal extent was found to be limited within a 4.5 m² area. The results of the groundwater sampling conducted in the nearby downgradient monitoring wells BH17-3T and BH17-2T indicated non-detectable concentrations of PHCs and BTEX, thereby confirming that the contaminants have not affected the groundwater quality on the Property.

E. Distribution in which the areas of each contaminant is present in the area at a concentration greater than the applicable SCS, for each medium in which the contaminant is present, together with figures showing the distribution

The horizontal extent of the PHC impacts in soil is depicted on Figures 6B, 8A, and 8B. The vertical extent of the PHC impacts in soil is depicted on Figures 9A, 9B, 10A and 10B. In general, the PHC impacts were determine to be contained within a 4.5 m² area around TP3r and TP4r, and extended to a maximum depth of 1.5 mbgs.

F. Anything known about the reason for the discharge of the contaminants present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

Fill material was historically imported to the Property. The fill material was observed to contain brick, wood, and other deleterious materials. The PHC impacts identified are attributed to the placement of fill material of unknown quality. It is possible that the surficial impacts identified were the result of minor isolated spills of gasoline/diesel from jerry-cans used to refuel small equipment on-Site.

G. <u>Anything known about migration of the contaminants present on, in or</u> <u>under the phase two property at a concentration greater than the</u> <u>applicable SCS away from any area of potential environmental concern,</u> <u>including the identification of any preferential pathways</u>

The native soils on the Property are of low permeability and will tend to inhibit the migration of contaminants.

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Underground utilities were not identified at the Property. It is anticipated that underground utilities including a septic system and domestic water service were previously present in the southeastern corner of the Property, in the vicinity of the former house (refer to Figure 2). It is not anticipated that any historical utilities present would have the potential to act as preferential pathways for contaminant transport.

No exceedances of the Table 1 SCS for PHCs were identified in groundwater, as such there is no indication of the migration of the PHC impacts identified in TP3r and TP4r. The results of the confirmatory sampling conducted verified that there is no indication of migration of contaminants.

H. <u>Climatic or meteorological conditions that may have influenced</u> <u>distribution and migration of the contaminants, such as temporal</u> <u>fluctuations in groundwater levels</u>

The groundwater levels on-Site were found to fluctuate up to 1.33 mbgs between winter and summer groundwater monitoring events. The soil impacts were identified within the upper 0.6 m of soil (unsaturated zone), as such it is unlikely that seasonal fluctuations in groundwater levels have affected contaminant distribution. Based on the results of the confirmatory soil samples there is no indication of contaminant migration.

I. <u>Information concerning soil vapour intrusion of the contaminants into</u> <u>buildings</u>

All of the impacted soils have been remediated through excavation and off-site disposal. Vapour intrusion is not considered to be of concern at this time.

- IV. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable SCS, one or more cross-sections showing
 - A. <u>The lateral and vertical distribution of a contaminant in each area where</u> <u>the contaminants are present at concentrations greater than the</u> <u>applicable SCS in soil, groundwater and sediment</u>
 - B. <u>Approximate depth to water table</u>
 - C. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard</u> <u>investigated</u>
 - D. <u>Any subsurface structures and utilities that may affect contaminants</u> <u>distribution and transport</u>

Cross-sections depicting this content have been prepared, refer to Figures 9, 9A, 9B, 10, 10A, and 10B.

- V. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable SCS for the contaminant, a diagram identifying, with narrative explanatory notes
 - A. The release mechanisms
 - **B.** Contaminant transport pathway
 - C. The human and ecological receptors located on, in or under the phase two property
 - D. Receptor exposure points
 - E. Routes of exposure

Figures depicting this content have been prepared. A summary of the pre-remediation conditions is provided in Figure 11A. A summary of the post-remediation conditions is provided in Figure 11B.