

Neyagawa Boulevard, Oakville, Ontario

Phase Two Environmental Site Assessment

Client:

Sky Property Group Inc.
1 Steeles Avenue East
Toronto, ON M2M 3Y2

Type of Document:

Final

Project Name:

Phase Two Environmental Site Assessment

Project Number:

GTR-23012833-A0

EXP Services Inc.
1595 Clark Boulevard
Brampton, ON, L6T 4V1
t: 905.793.9800
f: 905.793.0641

Date Submitted:

December 6, 2023

Table of Contents

1	Executive Summary	4
2	Introduction	6
2.1	Site Description	6
2.2	Legal Description and Property Ownership	6
2.3	Current and Proposed future Uses	7
2.4	Applicable Site Condition Standards	7
3	Background Information.....	9
3.1	Physical Setting	9
3.2	Previous Environmental Investigations.....	9
4	Scope of Investigation.....	10
4.1	Overview of Site Investigation	10
4.1.1	Scope of Work.....	10
4.2	Media Investigated	10
4.3	Phase Two Conceptual Site Model.....	10
4.4	Deviations from Sampling and Analysis Plan	10
4.5	Impediments	11
5	Investigation Method	12
5.1	General.....	12
5.2	Underground Utilities	12
5.3	Borehole Drilling	12
5.4	Soil: Sampling	12
5.5	Soil: Field Screening Measurements	13
5.6	Groundwater: Monitoring Well Installation	13
5.7	Groundwater: Monitoring Well Development.....	14
5.8	Groundwater: Purging and Field Measurements of Water Quality Parameters	14
5.9	Groundwater: Sampling	15
5.10	Sediment Sampling	15

5.11	Analytical Testing	15
5.12	Residue Management Procedures	15
5.13	Elevation Survey	15
5.14	Quality Assurance and Quality Control Measures	16
6	Review and Evaluation	17
6.1	Geology	17
6.1.1	Surface Material	17
6.1.2	Topsoil Material	17
6.1.3	Native Material	17
6.1.4	Bedrock	17
6.2	Groundwater: Elevations and Flow Direction	18
6.2.1	Groundwater: Horizontal Hydraulic Gradients	18
6.3	Soil Texture	18
6.4	Soil: Field Screening	18
6.5	Soil Quality	19
6.5.1	Petroleum Hydrocarbons including BTEX	19
6.5.2	Volatile Organic Compounds	19
6.5.3	Metals, Hydride Forming Metals and Other Regulated Parameters (ORPs)	19
6.5.5	Electrical Conductivity and Sodium Adsorption Ratio	19
6.5.5	Organochlorine Pesticides	19
6.5.6	Soil pH	20
6.5.6	Chemical Transformation and Soil Contaminant Source	20
6.5.6	Evidence of Non-Aqueous Phase Liquid	20
6.6	Groundwater Quality	20
6.6.1	Petroleum Hydrocarbons including BTEX	20
6.6.2	Volatile Organic Compounds	20
6.6.3	Polycyclic Aromatic Hydrocarbons	20
6.6.4	Metals, Hydride Forming Metals and Other Regulated Parameters	21

6.6.5	Organochlorine Pesticides	21
6.6.6	Chemical Transformation and Groundwater Contaminant Source	21
6.6.7	Evidence of Non-Aqueous Phase Liquid (NAPL).....	21
6.7	Sediment Quality.....	21
6.8	Quality Assurance and Quality Control Measures	21
6.9	Phase Two Conceptual Site Model.....	22
7	Conclusions	23
8	General Limitations.....	24
9	Closure	25
10	References	26

Appendices

Figures

Tables

Appendix A – Sampling and Analysis Plan

Appendix B – Survey Plan

Appendix C – Borehole Logs

Appendix D – Analytical Results

Appendix E – Laboratory Certificates of Analysis

Appendix F – Phase Two Conceptual Site Model

1 Executive Summary

EXP Services Inc. (EXP) was retained by Sky Property Group Inc. ("Client") to complete a Phase Two Environmental Site Assessment (ESA) for the property located at the northeast side of Neyagawa Boulevard and Burnhamthorpe Road West, between Burnhamthorpe Road West and Highway 407, in Oakville Ontario (hereinafter referred to as the "Site", "Phase One Property"). The Site had no municipal address at the time of the Phase Two investigation. The Site comprises of a total area of approximately 2.63 hectares (6.5 acres) and is currently vacant.

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04, as amended (O.Reg.153/04); and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by EXP, dated November 13, 2023.

The APECs identified in the Phase One ESA are outlined in Table 1, below:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Site	Potentially Contaminating Activity	Location of the PCA (On-Site/Off-Site)	Contaminants of Potential Concern (Soil)	Media of Concern Soil /Groundwater
APEC 1	Western portion of Site	(PCA 1) #NA - Application of De-icing Salts	Off-site	EC, SAR	Soil
APEC 2	Northwestern portion of Site	(PCA 2) #N/A - Application of De-icing Salts	Off-site	EC, SAR	Soil
APEC 3	Southwestern portion of Site	(PCA 3) #N/A – Application of De-icing Salts	Off-site	EC, SAR	Soil
APEC 3	Southwestern portion of Site	(PCA 4) #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr (VI), Hg, CN-	Groundwater
APEC 4	Entire Site	(PCA 5) #40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-site	OCs	Soil and Groundwater

EC - Electrical Conductivity, SAR - Sodium adsorption Ratio, Na - Sodium, Cl - Chloride, PHCs - Petroleum Hydrocarbons, BTEX - Benzene, Toluene, Ethylbenzene, Toluene, VOC - Volatile Organic Compounds, PAHs - Polycyclic Aromatic Hydrocarbons, Metals – Includes barium, beryllium, boron (total), cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, silver, thallium, uranium, vanadium, zinc; As – Arsenic; Sb – Antimony; Se – Selenium; HWS-B – Hot Water Soluble Boron; Cr(VI) – Hexavalent Chromium; Hg – Mercury; CN - Free Cyanide; OCs – Organochlorine Pesticides

Based on the findings of the Phase One ESA and conclusions, a Phase Two ESA was recommended to assess the soil and groundwater conditions at the Site.

The scope of the Phase Two ESA was designed to assess soil and groundwater quality associated with the identified APECs. The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

1. Between November 6 to 10, 2023, a total of eight (8) boreholes (BH1S, BH1D, BH2S, BH2D, BH3S, BH3D, BH4S, and BH5S) were advanced as part of a combined geotechnical/hydrogeological/environmental investigation to a maximum depth of 18.29 metres below ground surface (mbgs). Only five boreholes (BH1S to BH5S) were completed for environmental purposes and were advanced to a maximum depth of 8.97 mbgs. The remaining three (3) boreholes (BH1D to BH3D) were completed solely for geotechnical and hydrogeological purposes and no soil or groundwater sampling was completed at these locations.
2. All five (5) environmental boreholes were completed as monitoring wells for groundwater analysis and/or groundwater level measurement.
3. The general stratigraphy at the Site, as observed in the boreholes, generally consisted of topsoil followed by a layer of native sandy silt to silty clay till. The top of the shale bedrock stratigraphy was identified between 8.7 and 15.3 mbgs.
4. The Phase Two ESA monitoring well network comprised of five (5) newly installed monitoring wells. The groundwater levels were measured on November 17, 2023 and were found to range from 0.661 (BH3S) to 7.708 mbgs (BH1S). Monitoring well BH5S had a water level above grade, within the monument casing, at 0.486 metres above grade. The calculated groundwater elevations ranged from 180.93 metres above sea level (masl) (BH3S) and 183.28 masl (BH4S), which were used to prepare a groundwater contour. Based on the groundwater contour map for the Site, the groundwater is anticipated to be multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site.
5. Soil samples were submitted for the analysis of petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), organochlorine pesticides (OCs), metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including boron hot water soluble (HWS-B), hexavalent chromium (Cr(VI)), mercury (Hg), electrical conductivity (EC), sodium adsorption ratio (SAR), cyanide (CN) and/or pH).
6. The analytical results of the tested parameters in the soil samples were either not detected or detected below the Table 2 SCS, in all soil sample analyzed.
7. Groundwater samples were submitted for the analysis of PHCs, VOCs, polycyclic aromatic hydrocarbons (PAHs), OCs, metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including sodium, mercury and/or pH).
8. The analytical results of the tested parameters in the groundwater samples were either not detected or detected below the Table 2 SCS.
9. Free product (i.e. visible film or sheen) and petroleum odours were not observed during groundwater purging and groundwater sampling activities.

Based on the results of the soil and groundwater analysis, no further environmental investigation is recommended.

2 Introduction

EXP Services Inc. (EXP) was retained by Sky Property Group Inc. ("Client") to complete a Phase Two Environmental Site Assessment (ESA) for the property located on the northeast side of Neyagawa Boulevard and Burnhamthorpe Road West, between Burnhamthorpe Road West and Highway 407, in Oakville Ontario (hereinafter referred to as the "Site"). The Site currently has no municipal address but is described with the legal address Part of Lot 20, Concession 2, Traf NDS, Parts 1&2 20R16345, Except Part 4 20R19373, Part 2 HR1788345. The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by EXP, dated November 13, 2023.

This report has been prepared to support the future residential development of the Site. Given that the proposed change in land use is not from a less to more sensitive land use (i.e., the proposed change is from agricultural and/or other to residential), no Record of Site Condition (RSC) will be required for the Site as set out in Ontario Regulation (O.Reg.) 153/04. However, an O.Reg 153/04 report is required as part of the Site Plan Application (SPA) to the Town of Oakville, to support future redevelopment plans.

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04, as amended (O.Reg.153/04); and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

2.1 Site Description

The Site is situated at the northeastern corner of the intersection of Neyagawa Boulevard and Burnhamthorpe Road West, as shown on Figure 1. The Site measures approximately 2.63 hectares (6.5 acres) in area and is currently vacant with some soybean crops.

2.2 Legal Description and Property Ownership

Details of the Site are outlined in the tables below. It is noted that the legal description is to be reconfirmed via a legal letter prepared by the Owner's lawyer, prior to any Record of Site Condition filings or the Site Plan Application, if required.

Municipal Address	N/A
Current Land Use	Agricultural and/or Other Use
Proposed Land Use	Residential
Legal Description	Part of Lot 20, Concession 2, Traf NDS, Parts 1&2 20R16345, Except Part 4 20R19373, Part 2 HR1788345
Property Identification Number (PIN)	24929-6891 (LT)
Approximate Universal Transverse Mercator (UTM) coordinates	NAD83 17T- 4815149 m N 600070 m E
Accuracy Estimate of UTM	10-15 m
Site Area	2.63 hectares (6.5 acres)
Property Owner	Burnhamthorpe/Oakville Holdings Inc.

2.3 Current and Proposed future Uses

At the time of the Phase Two ESA, the Site was vacant with soybean crops throughout. No permanent structures were located on-Site.

Reportedly, the Site is intended to be redeveloped for residential use.

2.4 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", ("SGWS" Standards), (MECP, 2011a). Tabulated background SCS (Table 1) applicable to environmentally sensitive Sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive Sites are provided in MECP (2011a). The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP (2011a) are summarized as follows:

- Table 1 – applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2 – applicable to sites with potable groundwater and full depth restoration;
- Table 3 – applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 – applicable to sites with potable groundwater and stratified restoration;
- Table 5 – applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 – applicable to sites with potable groundwater and shallow soils;
- Table 7 – applicable to sites with non-potable groundwater and shallow soils;
- Table 8 – applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9 – applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e. surface and subsurface soil), thickness and extent of overburden material, (i.e. shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the MECP (2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and fine-textured soil. The selection of this category was based on the following factors:

- As per the requirements of Section 43.1 of O. Reg. 153/04, a property is considered to be a "shallow soil property" if 1/3 or more of the property consists of soil equal to or less than 2 m in depth beneath the soil surface. More than 1/3 of the boreholes advanced at the Site indicated an overburden thickness greater than 2 m, and as such, the Site is not considered as a "shallow soil property".
- The Site is not located within 30 metres of a water body.
- The soil at the Site has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.

Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023

- The property is not located within an area of natural significance; does not include, nor is it adjacent to an area of natural significance as defined in O. Reg. 153/04, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance as defined in O. Reg. 153/04, nor is it part of such an area.
- Given that Halton region receives its water from both Lake Ontario and groundwater sources, and because of the nearby potable well, potable groundwater conditions are applicable to the Site.
- Native soils at the site, including the soils where the water table is present, are determined to be sandy silt to clayey silt tills. As such the soils on-site are classified as medium to fine grained. Additional details on soil texture are provided in the Geotechnical report completed by EXP.
- The Site is currently Agricultural and/or Other Use and the proposed land use is Residential.
- There is no intention to carry out a stratified restoration at the Site.

3 Background Information

3.1 Physical Setting

The following physiographic, geological and soil maps were reviewed:

- "Toporama"; Natural Resources Canada. Map 30M11. Scale 1:15,000. 2008.
- Surficial Geology of Southern Ontario - geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.
- Bedrock Geology of Ontario - geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.

Based on the review of the above maps, the following information was obtained:

- The Site and surrounding areas are generally located within the South Slope.
- The geology of the Site and surrounding area is comprised of till moraines and till plains, which comprises of silty to clayey deposits.
- The bedrock in the general area consists of shale, limestone, dolostone, and siltstone belonging to the Queenston Formation, Georgian Bay, Blue Mountain and Billings Formations and Collingwood and Eastview Members.
- Based on the topographic map, the Site slopes gently towards the south in the southern portion and north in the northern portion of the Site. East Sixteen Mile Creek is located approximately 385 m north of the Site. Groundwater flow within the Phase One Study Area is anticipated to be towards the north to northwest. Based on the groundwater contours for the Site, groundwater has been calculated to be multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site.

3.2 Previous Environmental Investigations

The following environmental report was available for review at the time of this Phase Two ESA.

EXP Services Inc., Phase One Environmental Site Assessment, Neyagawa Boulevard, Oakville, Ontario, dated November 13, 2023.

Based on the Phase One ESA (EXP, 2023), the Site has never been developed, and has historically been vacant since prior to 1954. Based on the findings of the Phase One ESA (EXP, 2023), four (4) APECs were identified at the Site:

APEC 1: Southwestern portion of the Site, due to the potential use of de-icing salts from Neyagawa Boulevard

APEC 2: Northeastern portion of the Site, due to the potential use of de-icing salts from Highway 407

APEC 3: Southern and Southwestern portion of the Site, due to the potential use of de-icing salts from Burnhamthorpe Road West and a large landfill.

APEC 4: Entire Site, potential application of pesticides to grow on-Site soybean crops

A Phase Two ESA was recommended to address the APECs.

4 Scope of Investigation

4.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the APECs identified in EXP's 2023 Phase One ESA and evaluate the subsurface conditions at the Site.

4.1.1 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Request local utility locating companies (e.g. cable, telephone, gas, hydro, water, sewer and storm water) to mark any underground utilities present at the Site;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the proposed borehole locations and to clear the individual borehole locations;
- Oversee a licensed drilling company to advance a total of five (5) environmental boreholes across the Site. It should be noted that the environmental work was completed concurrently with the hydrogeology and geotechnical programs and three additional boreholes (BH1D, BH2D and BH3D) were advanced at the Site. This Phase Two ESA does not discuss these in detail, as they were not completed for environmental purposes;
- Instrument all five (5) environmental boreholes (BH1S to BH5D) as groundwater monitoring wells for environmental purposes.
- Collect representative soil samples from the boreholes for laboratory analysis of PHCs, VOCs, metals, OCs, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including boron hot water soluble, hexavalent chromium, mercury, electrical conductivity, sodium adsorption ratio and/or pH);
- Develop all newly installed groundwater monitoring wells;
- Collect groundwater samples from the newly installed monitoring wells for laboratory analysis of PHCs, BTEX, VOCs, PAHs, OCs, metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including sodium and mercury);
- Complete an elevation survey of the newly installed monitoring well to determine the groundwater flow direction in the groundwater unit(s) identified beneath the Site; and,
- Analyze the data and prepare a report of the findings, in accordance with O.Reg.153/04.

4.2 Media Investigated

The Phase Two ESA included the investigation of the Site soil and groundwater. As there were no surface water bodies on the Site, sediment sampling was not required.

4.3 Phase Two Conceptual Site Model

The Phase One Conceptual Site Model (CSM) is incorporated into the Phase Two CSM, presented in Appendix F.

4.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (SAAP) presented in Appendix A. No significant deviations from the SAAP were reported, that could affect the sampling and data quality objectives for the Site.

4.5 Impediments

No impediments to the work were encountered during the Phase Two ESA.

5 Investigation Method

5.1 General

The Site investigative activities consisted of the following:

- Borehole drilling to facilitate the collection of soil samples for geologic characterization and/or chemical analysis; and,
- Monitoring well installation for hydrogeologic characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the overburden soils and bedrock by a licensed drilling company under the full-time supervision of EXP staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities.

Monitoring wells were installed in the boreholes by an MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg. 903) using manufactured well components (i.e. riser pipes and screens) and materials (i.e. sand pack and grout) from documented sources.

The approximate locations of the boreholes and monitoring wells are shown on Figure 5.

5.2 Underground Utilities

Prior to the commencement of drilling activities, the locations of underground utilities including but not limited to cable, telephone, natural gas, electrical lines, water, sewer and storm water conduits were marked out by public locating companies. In addition, private utility locating services Premier Locates were retained to clear individual borehole locations.

5.3 Borehole Drilling

The fieldwork for the soil investigative portion of the Phase Two ESA was carried out between November 6 and 10, 2023. All boreholes were advanced under the full-time supervision of EXP staff and are listed in Table 2.

Eight (8) boreholes (BH1S to BH5S, BH1D to BH3D), five (5) of which were used for environmental purposes, were advanced by 3D Drilling to a maximum depth of 18.29 metres below ground surface (m bgs) as part of the environmental, geotechnical and hydrogeological investigations. Only five (5) boreholes (BH1S to BH5S) were completed for environmental purposes and were advanced to a maximum depth of 8.97 mbgs. Given that BH1D to BH3D were completed solely for geotechnical and hydrogeological purposes, they are not discussed in detail within this Phase two ESA. Please refer to EXP's 2023 Geotechnical and Hydrogeological Reports for more information pertaining to BH1D to BH3D.

EXP continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered from the boreholes continuously using split-spoon samplers or acetate liners.

All soil cuttings were stored in drums and placed on the Site.

5.4 Soil: Sampling

The soil sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAAP presented in Appendix A, to ensure that soil quality in each of the APECs identified in the EXP's 2023 Phase One ESA was characterized in accordance with O.Reg.153/04.

Soil samples for geologic characterization and chemical analysis were collected on a discrete basis in the overburden materials using conventional split spoon sampling equipment advanced into the subsurface using a track-mounted drill rig. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by EXP field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. Samples intended for PHC fractions F1 and VOCs were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined lids.

Soil samples selected for laboratory analysis were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory AGAT Laboratories (AGAT) of Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to AGAT Labs following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. The sampling equipment (i.e. split spoons) was decontaminated between borehole locations by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water and de-ionized water. Wash and rinse waters were collected in sealed, labeled containers. Drill cuttings were placed in labeled, sealed drums upon completion of sampling.

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, TOV readings, sample location and/or depth interval. The rationale for soil sample submission is presented in Table 3.

Appropriate quality assurance/quality control (QA/QC) samples were collected during soil sampling, including field duplicate samples, as presented in Section 5.14 and Table 3.

5.5 Soil: Field Screening Measurements

Where required for the characterization of volatile parameters, a portion of each soil core was placed in a sealed plastic bag and allowed to reach ambient temperature prior to field screening, using an RKI Eagle II (RKI) device equipped with a Photoionization Detection (PID) instrument, calibrated with isobutylene and hexane gases. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of volatile parameter contamination and the selection of soil samples for analysis.

It should be noted that field measurements are for screening purposes only and the presence/absence of contamination is determined by laboratory analysis.

Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling.

5.6 Groundwater: Monitoring Well Installation

All five (5) environmental boreholes and three (3) geotechnical/hydrogeological boreholes advanced at the Site were instrumented with monitoring wells. The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03, and was installed by licensed well contractors.

The monitoring well consisted of 1.5 to 3 m length, 51 mm diameter number 10 slot size (0.25 mm) PVC well screen and Schedule 40 PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the wells was backfilled with silica sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with monument / flush well casings.

EXP continuously monitored the well installation activities. Well installation details are summarized in Table 4 and on the borehole logs provided in Appendix C.

The screened intervals in the shallow groundwater monitoring wells (BH1S to BH5S), from 5.2 to 8.2 mbgs at BH1S, 5.8 to 8.8 mbgs at BH2S, 5.7 to 8.7 mbgs at BH3S, 6.0 to 9.0 mbgs at BH4S, and 4.8 to 7.8 mbgs at BH5S, were selected given the soil moisture characteristics observed in the split spoon samples.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g. riser pipe and well screens) with factory machined threaded flush coupling joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at borehole insertion to prevent contact with the ground and other surfaces; and,
- Cleaning of augers between sampling locations.

5.7 Groundwater: Monitoring Well Development

Following the installation of the monitoring wells, they were developed to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The monitoring well was developed using dedicated low-density polyethylene (LDPE) tubing, equipped with an inertial foot-valve to disturb the water column and recover groundwater containing dislodged sediment particles. The wells were developed until approximately 3 to 5 well volumes of water were removed and/or until purged dry.

5.8 Groundwater: Purging and Field Measurements of Water Quality Parameters

The depth to groundwater at each monitoring well was measured utilizing an electronic water level meter obtained from Spectra Scientific Inc. (Spectra) of Brampton, ON. The water level measurements were recorded on log sheets or in a bound field book. The water level meter was decontaminated between monitoring well locations.

Prior to collecting groundwater samples, field measurements of water quality parameters were recorded from the monitoring wells utilizing low-flow purging and sampling methodologies. Groundwater was purged from each location using a Bladder Pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels were recorded at three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Groundwater was considered to be chemically stable when the pH measurements of three (3) successive readings agreed to within ± 0.1 pH units, the specific conductance within $\pm 10\%$, and the temperature within $\pm 10\%$. The multi-meter electrodes were calibrated prior to receipt of the meter by the supplier using in-house reference standards.

All development and purged water was collected and stored on Site in labeled, sealed containers, until properly managed or disposed off-Site.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were recorded on log sheets or in a bound field book.

5.9 Groundwater: Sampling

The groundwater sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAAP presented in Appendix A, to ensure that the APECs identified in the EXP's 2023 Phase One ESA were properly characterized, in accordance with O.Reg.153/04.

Upon completion of purging activities, groundwater samples were collected from all five (5) environmental monitoring wells (BH1S to BH5S). Recommended groundwater sample volumes were collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. Samples for VOCs and/or PHC F1 analysis were collected in triplicate vials prepared with concentrated sodium bisulphite as a preservative. Each VOC/PHC vial was inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space was present in the samples.

All groundwater samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, AGAT Labs. The samples were transported/submitted following appropriate holding time requirements following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used at each monitoring well location.

Groundwater samples submitted for specific chemical analysis were selected on the basis of sample location and/or depth interval. The rationale for groundwater sample submission is presented in Table 5.

5.10 Sediment Sampling

As no water body was present at the Site, sediment sampling was not completed as part of the Phase Two ESA.

5.11 Analytical Testing

The contractual laboratory selected to perform the chemical analyses was AGAT Labs, of Mississauga, Ontario. AGAT Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories in accordance with ISO/IEC 17025:2005 – “General Requirements for the Competence of Testing and Calibration Laboratories”.

5.12 Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of soil cuttings from drilling activities, decontamination fluids from equipment cleaning, and waters from well development and purging. All soil cuttings were stored in drums on the Site for future disposal. All development and purged water were collected and stored on-Site in labeled, sealed containers for future disposal.

5.13 Elevation Survey

An elevation survey was conducted during the Phase Two ESA investigative activities, with the purpose of obtaining relative vertical control of the monitoring well locations. The ground surface elevations of the boreholes/monitoring wells were measured on November 10, 2023.

5.14 Quality Assurance and Quality Control Measures

Quality Control/Quality Assurance measures, as set out in the Sampling and Analysis Plan, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon and dual tube samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of PHC F1 (BTEX) and VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory. Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision to evaluate the potential for sample cross-contamination during handling and transport.

A total of four (4) duplicate soil samples (BH2-SS50, BH3-DUP1, BH4-DUP2, BH1-DUP3) were collected during the Site investigation. A total of one (1) duplicate groundwater sample, and one (1) trip blank groundwater sample were collected during the Site investigation. A list of the QA/QC samples are presented in Tables 3 and 5.

6 Review and Evaluation

6.1 Geology

The soil investigation conducted at the Site consisted of the advancement of five (5) environmental boreholes into the overburden and/or bedrock materials to a maximum depth of 8.97 mbgs. The borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix C. The borehole logs for the deep geotechnical/hydrogeological boreholes (BH1D to BH3D) are provided for transparency. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in the boreholes, generally consisted of topsoil followed by a layer of native sandy silt to silty clay till. The top of the shale bedrock stratigraphy was identified between 8.7 and 15.3 mbgs.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. Refer to borehole logs provided in Appendix C for details of soil stratigraphy.

6.1.1 Surface Material

No pavement or asphalt were present on-Site. Soil was exposed across the entirety of the Site.

6.1.2 Topsoil Material

Topsoil was present at all borehole locations. The topsoil extends to depths of approximately 0.1 to 0.18 mbgs. The topsoil consists of brown silt and organic material.

6.1.3 Native Material

Sandy Silt Till

The sandy silt till extends to a depth of approximately 3.5 to 6.4 mbgs. The silt is brown, becoming grey around the water table depth.

Clayey Silt Till

A clayey silt till deposit was intersected below the sandy silt till or silt till in BH1S to BH4S. The clayey silt till extends to depths of approximately 7.3 to 10.2 mbgs. The clayey silt till is brown to grey in colour and contains trace sand and gravel at some depths and locations.

Silt Till

A silt till deposit was intersected below the clayey silt till in BH1S to BH4S. The silt till extends to the top of the shale bedrock, to depth of approximately 8.7 and 15.3 mbgs. The silt till is grey in colour with trace clay, sand, and/or gravel.

6.1.4 Bedrock

Shale bedrock was encountered below the silt till at BH1D to BH3D. Depths of bedrock ranged from approximately 8.7 and 15.3 mbgs. BH1S to BH5S were terminated prior to hitting bedrock. The detailed findings from the rock cores are presented in the geotechnical report, under separate cover.

All five (5) environmental boreholes were terminated within the silt or clayey silt till.

6.2 Groundwater: Elevations and Flow Direction

The monitoring well network comprised of five (5) newly installed monitoring wells (BH1S to BH5S) installed in the shallow aquifer. Monitoring wells BH1D to BH3D were installed to 15 mbgs but were completed for hydrogeological purposes only and thus are not discussed in this section. They were installed with 3 m long screen intercepting the clayey silt or silt till, where the shallow water table aquifer is expected, extending to a maximum depth of 8.97 m bgs. The groundwater levels of the shallow monitoring wells were measured on November 17, 2023. Boreholes logs are provided in Appendix C.

A groundwater contour map for the shallow monitoring wells was prepared for the Site as part of the current environmental investigation, based on the groundwater levels measured on November 17, 2023. Groundwater levels ranged from 0.661 (BH3S) to 7.708 mbgs (BH1S) on November 17, 2023. Monitoring well BH5S had a water level above grade, within the monument casing, at 0.486 metres above grade. The calculated groundwater elevations ranged from 180.93 metres above sea level (masl) (BH3S) and 183.28 masl (BH4S).

Based on the groundwater contour map for the Site, the groundwater is multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site. The groundwater contour map is presented in Figure 6.

Based the absence of fill material or utilities currently on-Site (Section 6.1 and 5.2), groundwater is unlikely to be influenced by disturbed soil (fill), underground utilities and/or underground building structures in the area. However, given the minimum depth to groundwater identified 0.486 m above grade, any utility conduits or building structures, if constructed in the future, are likely to provide a preferential flow path for groundwater.

6.2.1 Groundwater: Horizontal Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

$$i = \Delta h / \Delta s$$

Where,

i = horizontal hydraulic gradient;

Δh (m) = groundwater elevation difference; and,

Δs (m) = separation distance.

The horizontal hydraulic gradient on-Site was 0.003 m/m (between monitoring well pair BH1S and BH5S).

6.3 Soil Texture

Native soils at the Site, including the soils where the water table is present, are determined to be sandy silt to clayey silt tills. As such the soils on-Site are classified as medium to fine grained. Additional details on soil texture are provided in the Geotechnical report completed by EXP.

6.4 Soil: Field Screening

TOV readings from each sample interval were measured for soil samples selected for BTEX/PHC and VOC analysis from all boreholes within the APECs where BTEX/PHCs and VOCs were identified as COCs. Vapour concentrations readings collected during subsurface drilling were measured using the RKI Eagle 2 in ppm calibrated with isobutylene and hexane or equivalent. The vapour readings, in ppm, are provided on the borehole logs in Appendix C.

Soil samples submitted for chemical analysis were selected based on visual inspection of the recovered cores, TOV readings, sample location and/or depth interval. Both hexane and isobutylene readings indicate that there are insignificant volatile particles in the soil vapours. Measured vapour readings were non-detectable for all samples.

6.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative “worst case” soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix E. A summary of the analytical results for the soil samples, including the locations and depths of each sample, a comparison of concentrations against applicable SCS, and the identification of the potential contaminants of concern, are provided in Appendix D, Table I to Table IV. The maximum concentrations detected for each of the parameters analyzed during the Phase Two investigation are provided in Tables 8A and 8D.

6.5.1 Petroleum Hydrocarbons including BTEX

Five (5) soil samples and one (1) duplicate were analyzed for PHCs including BTEX. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table I.

PHCs including BTEX were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.5.2 Volatile Organic Compounds

Five (5) soil samples and one (1) duplicate were submitted for VOCs. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table II.

VOCs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.5.3 Metals, Hydride Forming Metals and Other Regulated Parameters (ORPs)

Five (5) soil samples and one (1) duplicate were submitted for metals, hydride forming metals (including arsenic, antimony and selenium) and ORPs including hot water soluble boron (HWS-B), hexavalent chromium (Cr(VI)), mercury (Hg) and cyanide (CN). The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table III.

Metals, hydride forming metals and ORPs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.5.5 Electrical Conductivity and Sodium Adsorption Ratio

Five (5) soil samples and one (1) duplicate were submitted for EC/SAR. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table III.

EC and / or SAR were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.5.5 Organochlorine Pesticides

Five (5) soil samples and one (1) duplicate were submitted for OCs. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table IV.

OCs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.5.6 Soil pH

The Table 2 SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The reported pH value was 6.74 to 7.53 for surface soils and 7.77 to 7.96 for subsurface soils, which are within the acceptable range to use the Table 2 SCS.

Refer to Appendix D, Table II for a summary of the soil samples analyzed for pH.

6.5.5 Chemical Transformation and Soil Contaminant Source

No chemical constituents were detected in the soil samples, and thus no chemical transformations or contaminants sources are anticipated.

6.5.6 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining, or sheen at the time of the Phase Two ESA.

6.6 Groundwater Quality

In accordance with the scope of work, chemical analyses were performed on groundwater samples recovered from five (5) environmental monitoring wells (BH1S to BH5S). The selection of groundwater samples was based on location and/or screen depth. Copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix E. A summary of the analytical results for the groundwater samples, including the locations of each sample, well screen interval depth, a comparison of parameter concentrations against applicable SCS, and the identification of the PCOCs, are provided in Appendix D, Tables V to IX. The maximum concentrations detected for each of the parameters analyzed during the Phase Two investigation are provided in Tables 9A to 9E.

6.6.1 Petroleum Hydrocarbons including BTEX

Two (2) groundwater samples and one (1) duplicate QA/QC sample were analyzed for PHCs including BTEX. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table V.

PHCs including BTEX were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.6.2 Volatile Organic Compounds

Two (2) groundwater samples and one (1) duplicate QA/QC sample and one (1) trip blank samples were analyzed for VOCs. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table VI.

VOCs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.6.3 Polycyclic Aromatic Hydrocarbons

Two (2) groundwater samples and one (1) duplicate QA/QC sample were analyzed for PAHs. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table VII.

PAHs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.6.4 Metals, Hydride Forming Metals and Other Regulated Parameters

Two (2) groundwater samples and one (1) duplicate QA/QC sample were analyzed for metals, hydride forming metals (including arsenic, antimony and selenium) and other regulated parameters (including sodium). The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table VIII.

Metals, hydride forming metals, other regulated parameters and /or mercury were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.6.5 Organochlorine Pesticides

Five (5) groundwater samples and one (1) duplicate QA/QC sample were analyzed for OCs. The results of the analysis together with the applicable Table 2 SCS are presented in Appendix D, Table IX.

OCs were either not detected or detected below the applicable Table 2 SCS. The laboratory RDLs were below the Table 2 SCS.

6.6.6 Chemical Transformation and Groundwater Contaminant Source

No COC were identified in groundwater on the Site. As such no chemical transformations or groundwater contaminant sources are anticipated.

6.6.7 Evidence of Non-Aqueous Phase Liquid (NAPL)

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour.

6.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA did not include sediment sampling.

6.8 Quality Assurance and Quality Control Measures

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the overburden and bedrock materials, and water table units at the Site.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (MECP, 2004). Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during soil and groundwater sampling events. A total of four (4) soil and one (1) groundwater duplicate, and one (1) trip blank samples were collected to evaluate sampling precision. Refer to Tables 3 and 5 for a summary of the QA/QC samples collected and submitted for chemical analysis.

The precision of the analytical results can be expressed by the relative percent difference (RPD) between the original sample and the duplicate sample. The equation used to determine the RPD is provided below.

$$\text{RPD} = 2 \times (|(S-D)|/(S+D)) \times 100$$

Where, S = concentration of the original sample
 D = concentration of the duplicate sample

RPDs can only be calculated if the concentration of both the duplicate sample and the original sample are above the analytical RDL and the average of the two sample concentrations are greater than 5x the RDL.

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil and groundwater sample showed that the results generally met analytical test group specific acceptance criteria.

The overall assessment indicates that the soil and groundwater samples were collected with an acceptable level of precision, and the data is acceptable quality for meeting the objectives of the Phase Two ESA.

The contractual laboratory selected to perform the chemical analyses was AGAT labs, of Mississauga, ON. AGAT Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association of Laboratory Accreditation in accordance with ISO/IEC 17025:2005 – “General Requirements for the Competence of Testing and Calibration Laboratories”. Certificates of Analysis were received from AGAT Labs reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Certificates of Analysis are provided in Appendix E. Review of the Certificates of Analysis, prepared by AGAT Labs, indicates that they were in compliance with the requirements set out under subsection 47(3) of O. Reg. 153/04.

The analytical program conducted by AGAT Labs included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks. The QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT Labs indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported are of acceptable quality and data qualifications are not required.

6.9 Phase Two Conceptual Site Model

This section presents a Phase Two Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. The Phase Two CSM was completed in accordance with O. Reg.153/04 as defined by the MECP and is presented in Appendix F.

7 Conclusions

The scope of the Phase Two ESA was designed to assess soil and groundwater quality associated with the identified APECs. The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

1. Between November 6 to 10, 2023, a total of eight (8) boreholes (BH1S, BH1D, BH2S, BH2D, BH3S, BH3D, BH4S, and BH5S) were advanced as part of a combined geotechnical/hydrogeological/environmental investigation to a maximum depth of 18.29 metres below ground surface (mbgs). Only five boreholes (BH1S to BH5S) were completed for environmental purposes and were advanced to a maximum depth of 8.97 mbgs. The remaining three (3) boreholes (BH1D to BH3D) were completed solely for geotechnical and hydrogeological purposes and no soil or groundwater sampling was completed at these locations.
2. All five (5) environmental boreholes were completed as monitoring wells for groundwater analysis and/or groundwater level measurement.
3. The general stratigraphy at the Site, as observed in the boreholes, generally consisted of topsoil followed by a layer of native sandy silt to silty clay till. The top of the shale bedrock stratigraphy was identified between 8.7 and 15.3 mbgs.
4. The Phase Two ESA monitoring well network comprised of five (5) newly installed monitoring wells. The groundwater levels were measured on November 17, 2023 and were found to range from 0.661 (BH3S) to 7.708 mbgs (BH1S). Monitoring well BH5S had a water level above grade, within the monument casing, at 0.486 metres above grade. The calculated groundwater elevations ranged from 180.93 metres above sea level (masl) (BH3S) and 183.28 masl (BH4S), which were used to prepare a groundwater contour. Based on the groundwater contour map for the Site, the groundwater is anticipated to be multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site.
5. Soil samples were submitted for the analysis of petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), organochlorine pesticides (OCs), metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including boron hot water soluble (HWS-B), hexavalent chromium (Cr(VI)), mercury (Hg), electrical conductivity (EC), sodium adsorption ratio (SAR), cyanide (CN) and/or pH).
6. The analytical results of the tested parameters in the soil samples were either not detected or detected below the Table 2 SCS, in all soil sample analyzed.
7. Groundwater samples were submitted for the analysis of PHCs, VOCs, polycyclic aromatic hydrocarbons (PAHs), OCs, metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (including sodium, mercury and/or pH).
8. The analytical results of the tested parameters in the groundwater samples were either not detected or detected below the Table 2 SCS.
9. Free product (i.e. visible film or sheen) and petroleum odours were not observed during groundwater purging and groundwater sampling activities.

Based on the results of the soil and groundwater analysis, no further environmental investigation is recommended.

8 General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment and Climate Change. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing information obtained and in the formulation of the conclusions. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Sky Property Group Inc. (Client) and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

9 Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

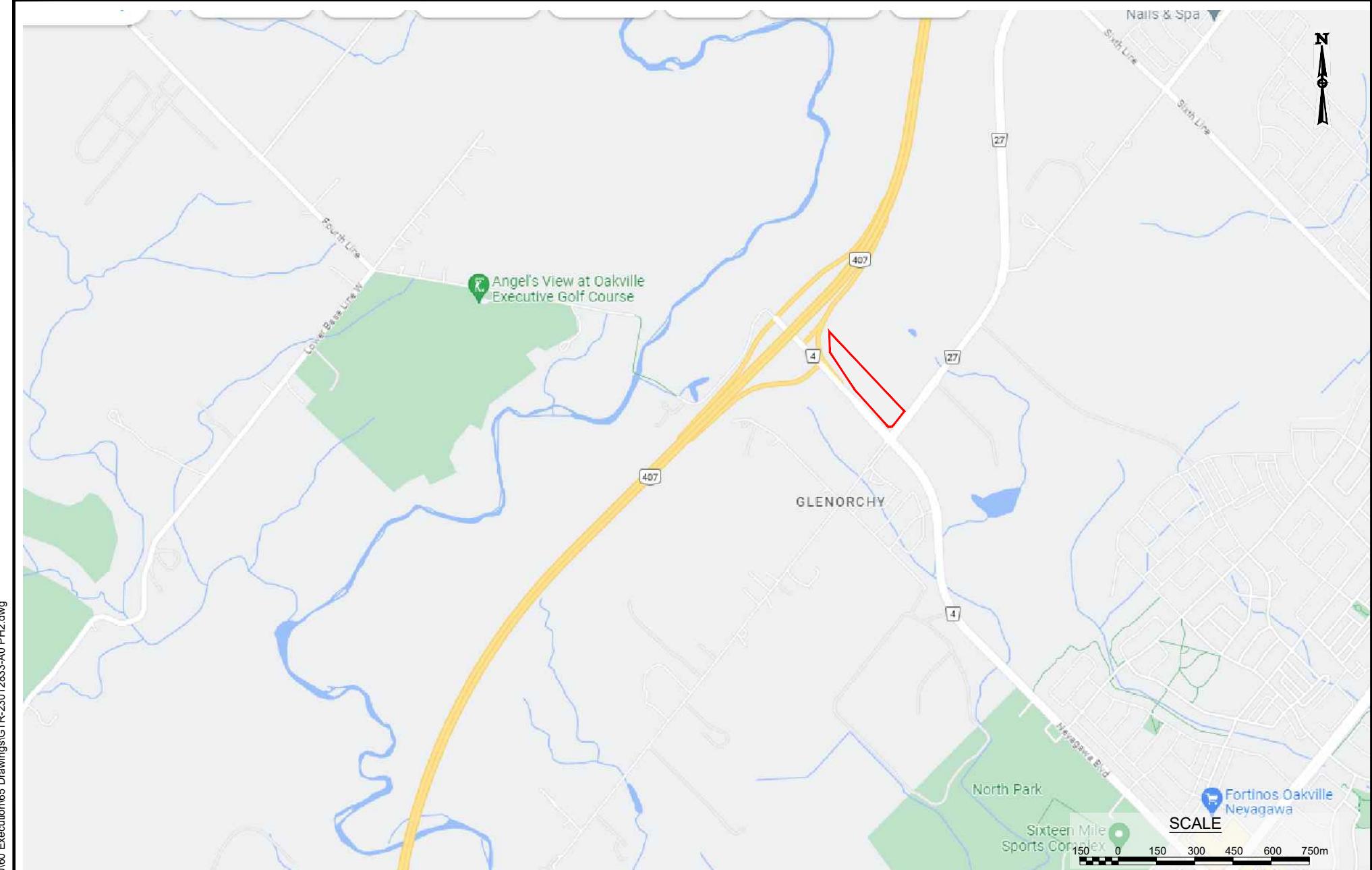
Yours truly,

EXP Services Inc.

Victoria Sadowska, B.Sc.
Project Manager
Environmental Services

Amanda Catenaro, M.E.Sc., P.Geo. QP_{ESA}
Senior Project Manager
Environmental Services

10 References


This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- Canadian Standards Association [CSA] (2000) Z769-00, Phase II Environmental Site Assessment. Canadian Standards Association, March 2000.
- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- EXP Services Inc., Phase One Environmental Site Assessment, Neyagawa Boulevard, Oakville, Ontario, dated November 13 2023.
- Ministry of the Environment [MECP] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, December 1996.
- MECP (2011a) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended as of July 1, 2011.
- MECP (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 2011.
- Occupational Health and Safety Act - Ministry of Labour (MOL).
- Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, amended.
- Ontario Water Resources Act – R.R.O. 1990, Regulation 903, amended.
- Ontario Geological Survey (1991) Bedrock geology of Ontario, southern sheet; Ontario Geological Survey, Map 2544, scale 1:1,000,000.
- Ontario Geological Survey (2010a) Physiography of Southern Ontario (Scale 1:22,000).
- Ontario Geological Survey (1980) Quaternary geology Toronto and surrounding area; Ontario Geological Survey, Map 2204, scale 1:100,000.
- The Atlas of Canada – Toporama; Natural Resources Canada website, map created by Canadian Center Mapping and Earth Observation Group, modified January 26, 2021 (<https://www.atlas.gc.ca/toporama/en/index.html>)

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Figures

exp\data\BRM\GTR-23012833-A0\60 Execution\65 Drawings\GTR-23012833-A0 PH2.dwg
exp Services Inc.
 t: +1.905.793.9800 f: +1.905.793.0641
 1595 Clark Boulevard
 Brampton, ON L6T 4V1
 Canada

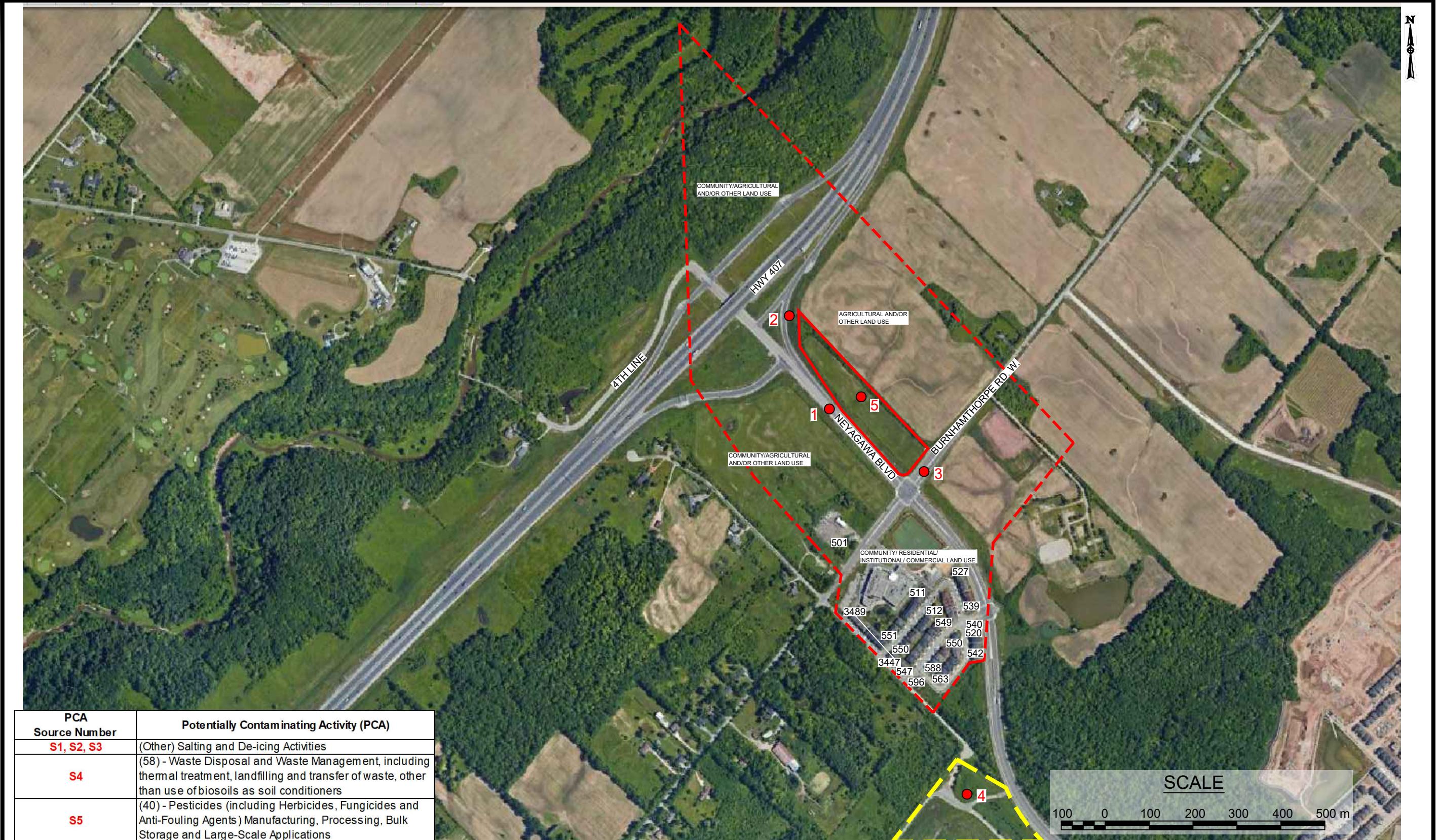
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
 • INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

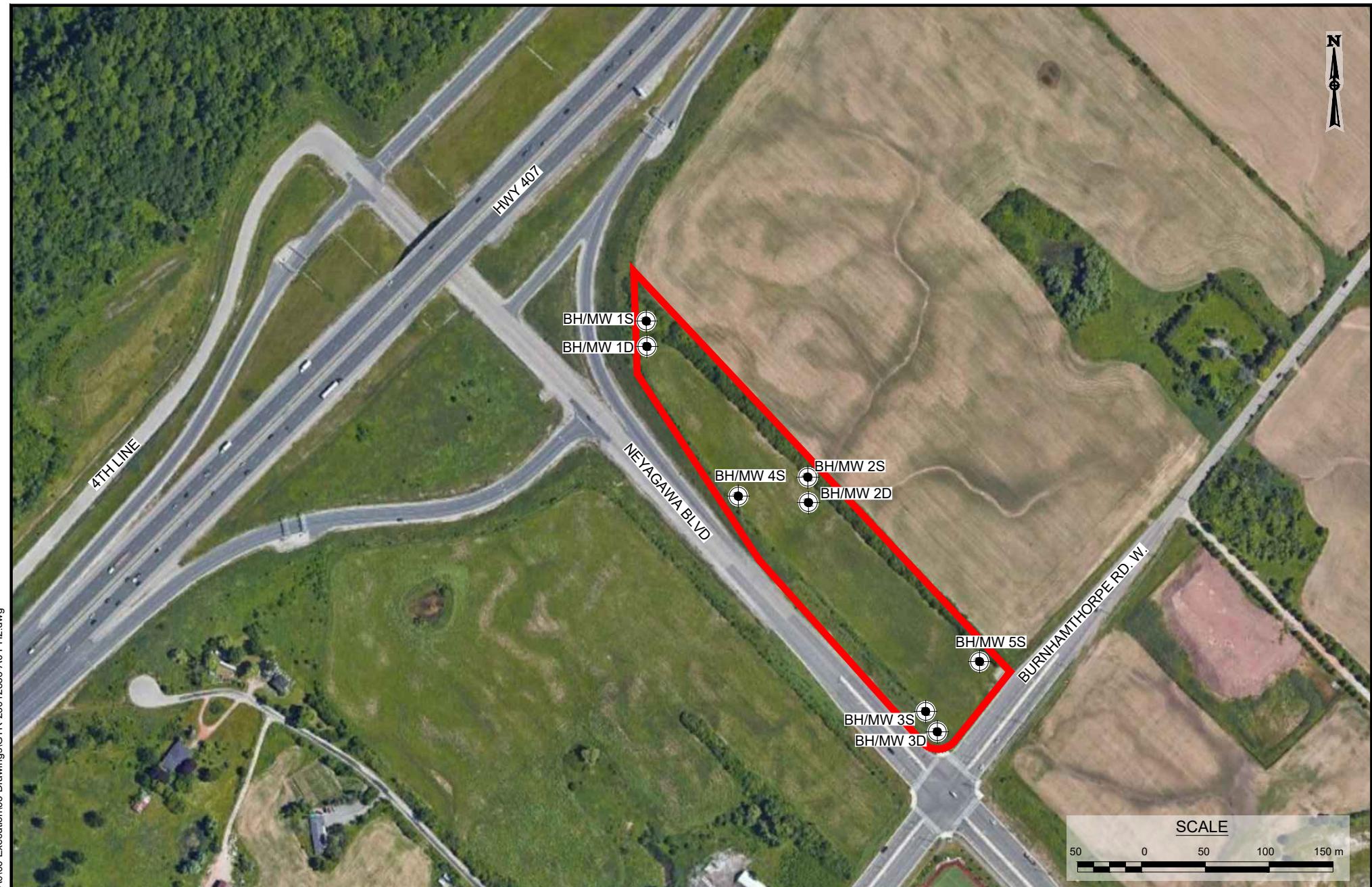
LEGEND:

— APPROXIMATE SITE BOUNDARY

SCALE

50 0 50 100 150 m


TITLE AND LOCATION:


SITE LOCATION PLAN
 NEYAGAWA BOULEVARD,
 OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0 **DWN.:** K.G.

SCALE: AS NOTED **CK.:** A.C.

DATE: NOVEMBER 2023 **FIG. NO.:** 1

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

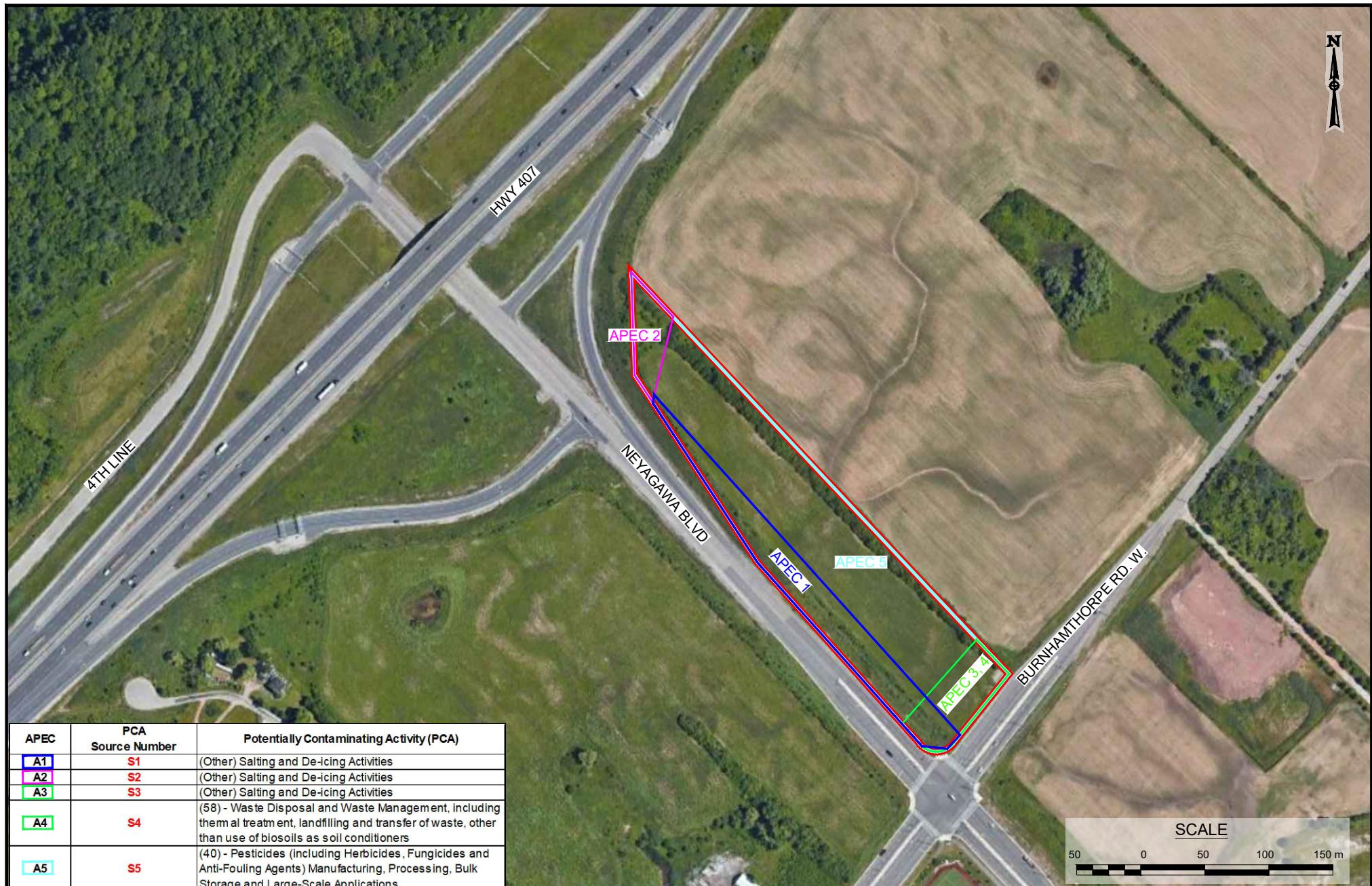
APPROXIMATE SITE BOUNDARY

TEST HOLE WITH MONITORING WELL
(EXP, 2023)

TITLE AND LOCATION:

SITE PLAN
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0


DWN.: K.G.

SCALE: AS NOTED

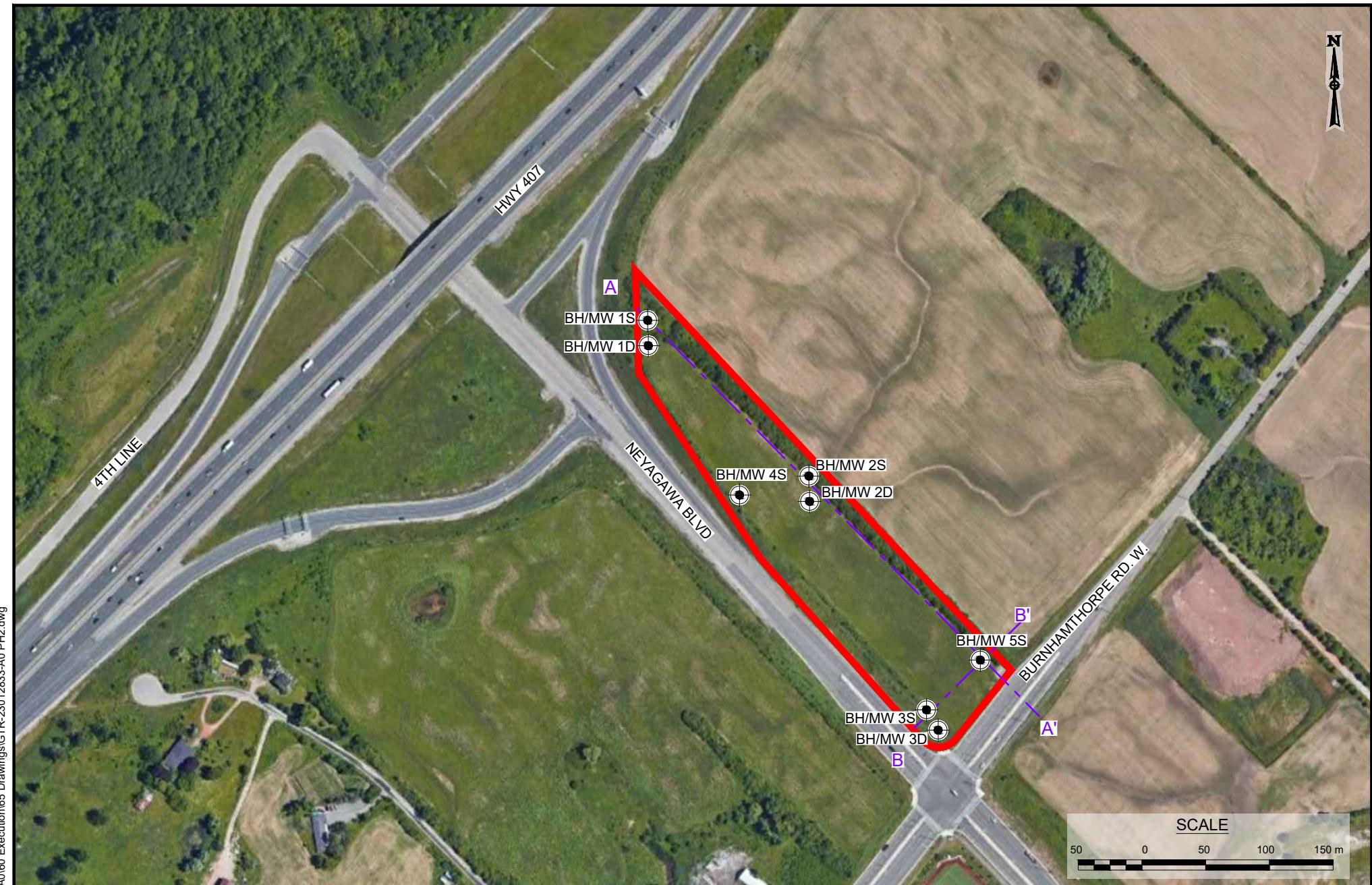
CK: A.C.

DATE: NOVEMBER 2023

FIG. NO.: 3

APEC	PCA Source Number	Potentially Contaminating Activity (PCA)
A1	S1	(Other) Salting and De-icing Activities
A2	S2	(Other) Salting and De-icing Activities
A3	S3	(Other) Salting and De-icing Activities
A4	S4	(58) - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners
A5	S5	(40) - Pesticides (Including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •


LEGEND:

- APPROXIMATE SITE BOUNDARY
- APEC - AREAS OF POTENTIAL ENVIRONMENTAL CONCERN
- PCA - POTENTIALLY CONTAMINATING ACTIVITY
- (28) - INDICATES ITEM NUMBER OF O. REG. 153/04 SCHEDULE D, TABLE 2

TITLE AND LOCATION:

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	4

exp\data\BRM\GTR-23012833-A0\60\Execution\65 Drawings\GTR-23012833-A0 PH2.dwg

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

exp

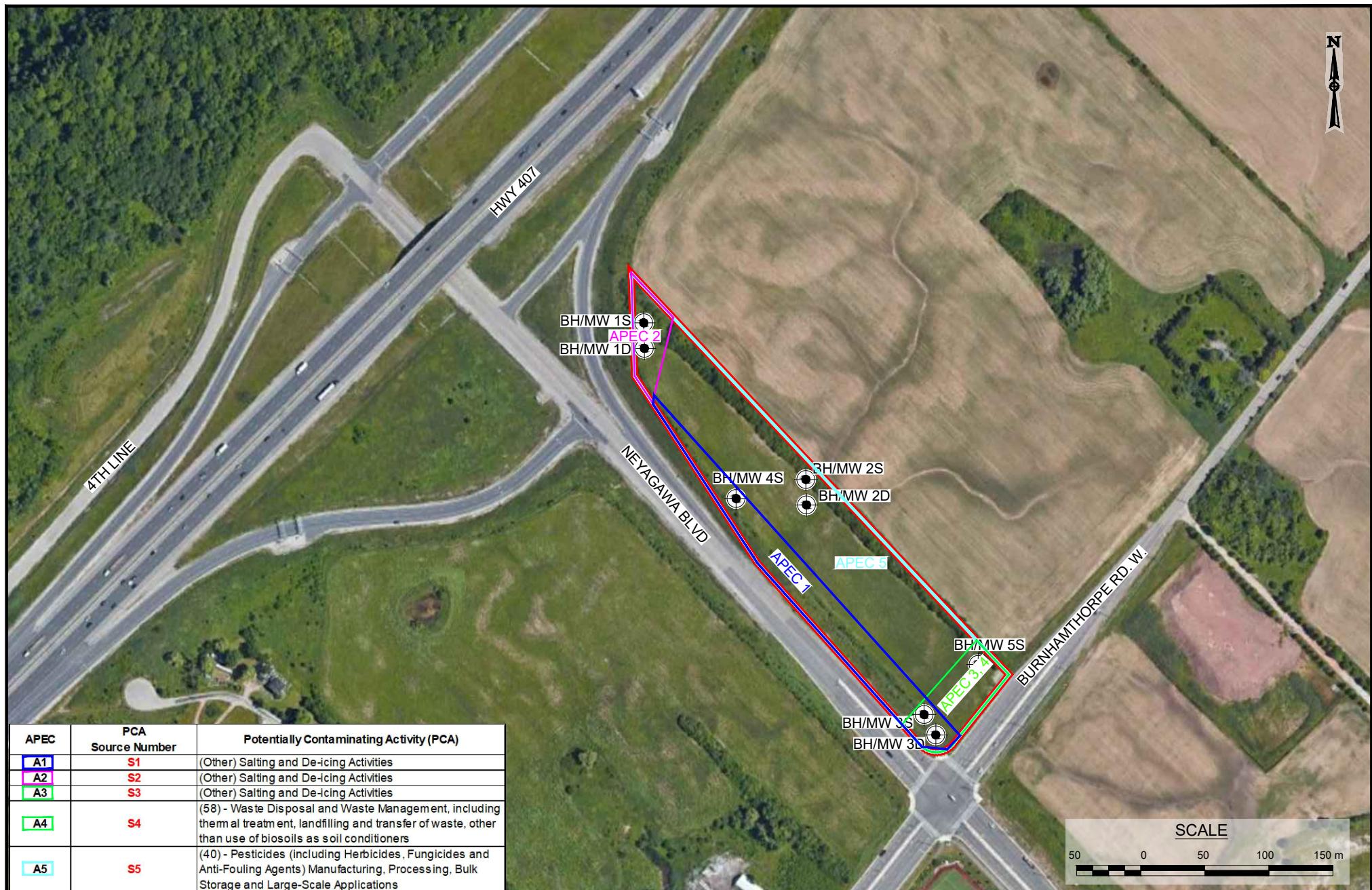
LEGEND:

- APPROXIMATE SITE BOUNDARY
- TEST HOLE WITH MONITORING WELL (EXP, 2023)

TITLE AND LOCATION:

BOREHOLE/MONITORING
WELL LOCATION PLAN
AND CROSS SECTION PLAN
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0


DWN.: K.G.

SCALE: AS NOTED

CK: A.C.

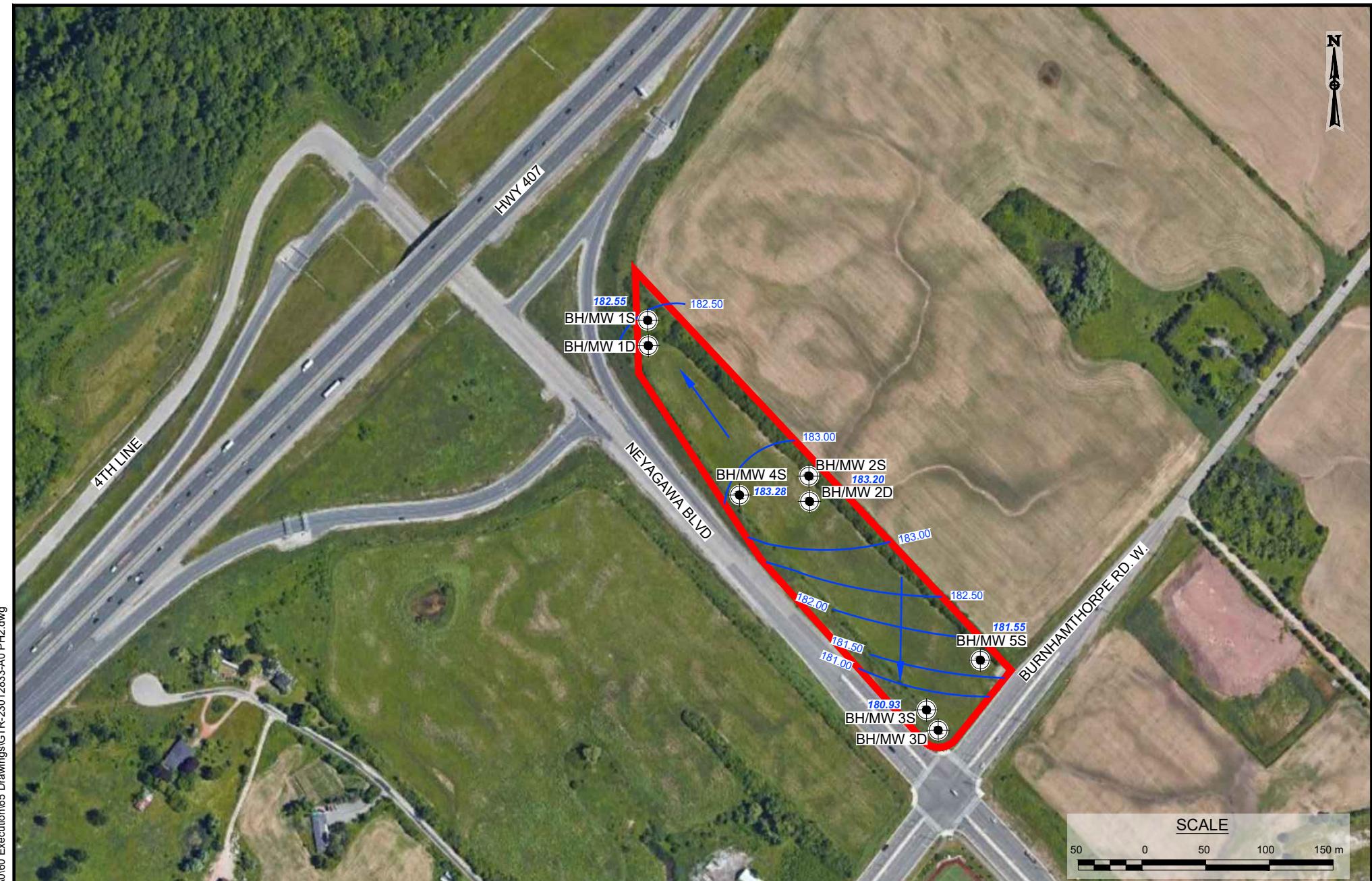
DATE: NOVEMBER 2023

FIG. NO.: 5A

APEC	PCA Source Number	Potentially Contaminating Activity (PCA)
A1	S1	(Other) Salting and De-icing Activities
A2	S2	(Other) Salting and De-icing Activities
A3	S3	(Other) Salting and De-icing Activities
A4	S4	(58) - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners
A5	S5	(40) - Pesticides (Including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •


LEGEND:

- APPROXIMATE SITE BOUNDARY
- TEST HOLE WITH MONITORING WELL (EXP, 2023)
- APEC - AREAS OF POTENTIAL ENVIRONMENTAL CONCERN
- PCA - POTENTIALLY CONTAMINATING ACTIVITY
- (28) - INDICATES ITEM NUMBER OF O. REG. 153/04 SCHEDULE D, TABLE 2

TITLE AND LOCATION:

BOREHOLE/MONITORING
WELL LOCATION PLAN
AND APEC
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	5B

exp Services Inc.
t: +1.905.793.9800 f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

APPROXIMATE SITE BOUNDARY

TEST HOLE WITH MONITORING WELL
(EXP, 2023)

180.93 GROUND WATER ELEVATION (m)

180.93 GROUND WATER ELEVATION CONTOUR (m)

GROUND WATER FLOW DIRECTION

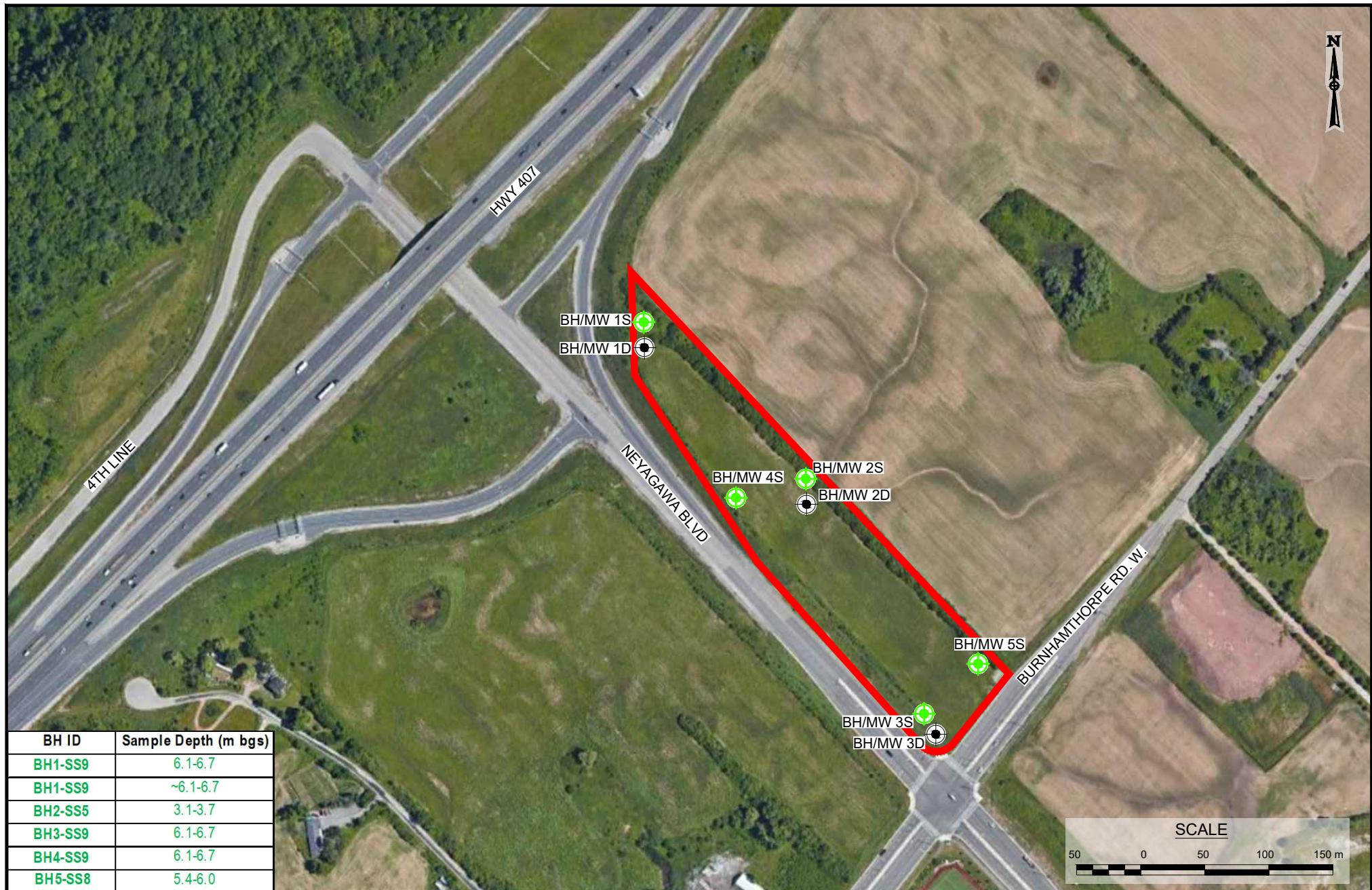

TITLE AND LOCATION:

GROUNDWATER
CONTOUR PLAN
(NOVEMBER 2, 2023)
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0 DWN.: K.G.

SCALE: AS NOTED CK: A.C.

DATE: NOVEMBER 2023 FIG. NO.: 6



BH ID	Sample Depth (m bgs)
BH1-SS9	6.1-6.7
BH2-SS5	3.1-3.7
BH2-SS5	~3.1-3.7
BH3-SS9	6.1-6.7
BH4-SS9	6.1-6.7
BH5-SS8	5.4-6.0

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

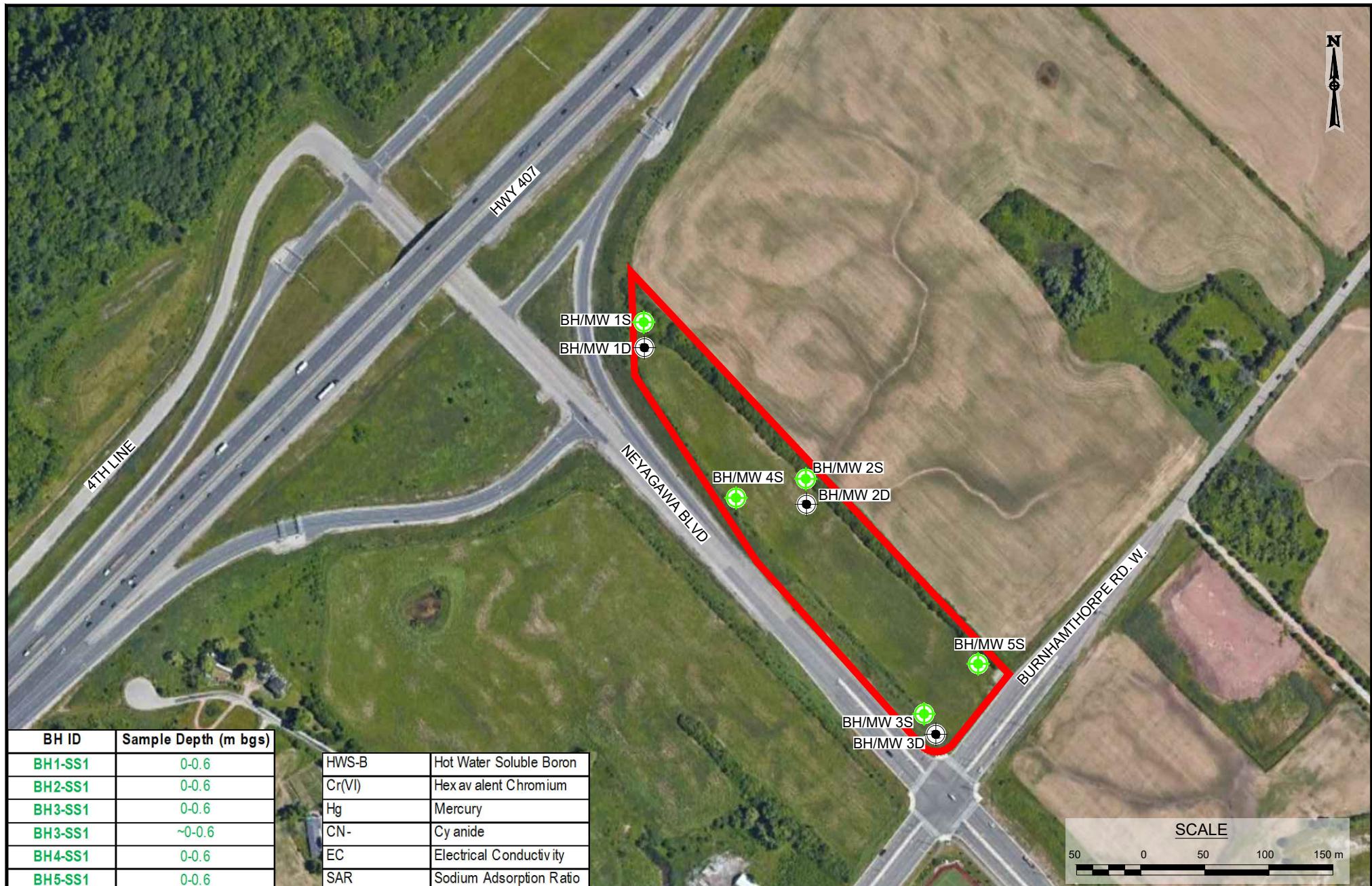
LEGEND:	<p>— APPROXIMATE SITE BOUNDARY</p> <p>● TEST HOLE WITH MONITORING WELL (EXP, 2023)</p>	<p>*STANDARDS SHOWN ARE FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE WITH FINE TEXTURED SOILS.</p> <p>~ INDICATES FIELD DUPLICATE SAMPLE.</p> <p>mbs - METRES BELOW GROUND SURFACE.</p> <p>ALL RESULTS IN UNITS OF $\mu\text{g/g}$, UNLESS OTHERWISE NOTED.</p> <p>LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2 STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN</p>	<p>TITLE AND LOCATION:</p> <p>SOIL ANALYTICAL RESULTS – PETROLEUM HYDROCARBONS INCLUDING BTEX</p> <p>NEYAGAWA BOULEVARD, OAKVILLE, ONTARIO</p>	<p>PROJECT NO.: GTR-23012833-A0</p> <p>DWN.: K.G.</p>
SCALE:				<p>SCALE: CK: A.C.</p> <p>AS NOTED</p>
DATE:				<p>DATE: FIG. NO.: NOVEMBER 2023 7A</p>

BH ID	Sample Depth (m bgs)
BH1-SS9	6.1-6.7
BH1-SS9	~6.1-6.7
BH2-SS5	3.1-3.7
BH3-SS9	6.1-6.7
BH4-SS9	6.1-6.7
BH5-SS8	5.4-6.0

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:
— APPROXIMATE SITE BOUNDARY
● TEST HOLE WITH MONITORING WELL (EXP, 2023)


*STANDARDS SHOWN ARE FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF $\mu\text{g/g}$, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2 STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:
SOIL ANALYTICAL RESULTS – VOLATILE ORGANIC COMPOUNDS NEYAGAWA BOULEVARD, OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	7B

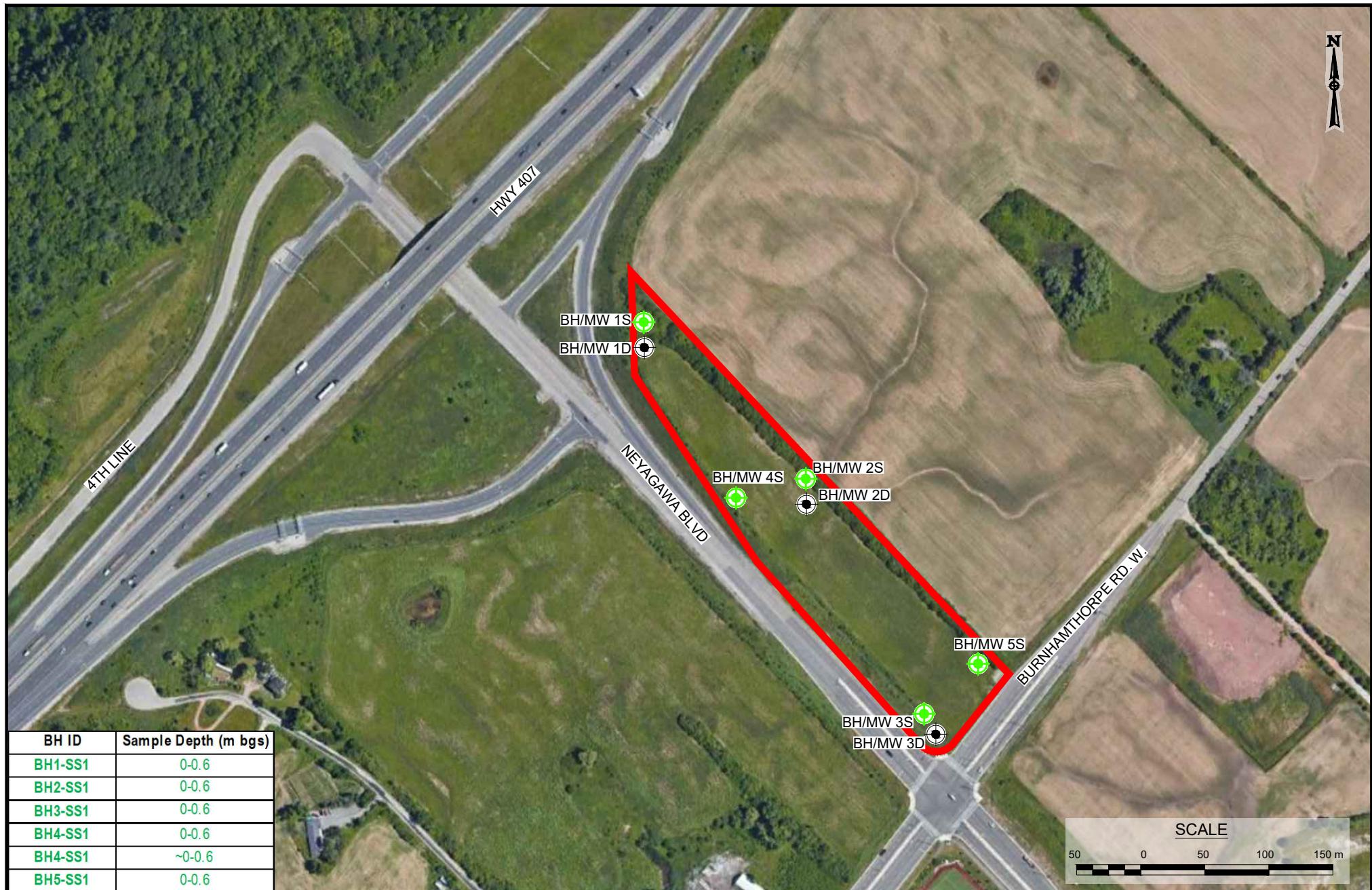
BH ID	Sample Depth (m bgs)
BH1-SS1	0-0.6
BH2-SS1	0-0.6
BH3-SS1	0-0.6
BH3-SS1	~0-0.6
BH4-SS1	0-0.6
BH5-SS1	0-0.6

HWS-B	Hot Water Soluble Boron
Cr(VI)	Hexavalent Chromium
Hg	Mercury
CN-	Cyanide
EC	Electrical Conductivity
SAR	Sodium Adsorption Ratio

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:


APPROXIMATE SITE BOUNDARY
TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF $\mu\text{g/g}$, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2 STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

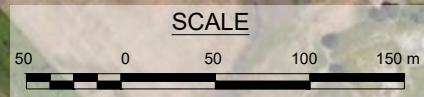
TITLE AND LOCATION:
SOIL ANALYTICAL RESULTS – METALS (INCLUDING HYDRIDE FORMING METALS) AND ORPs (Cr(VI), CN-, Hg, HWS-B, EC, SAR, pH)
NEYAGAWA BOULEVARD, OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	7C

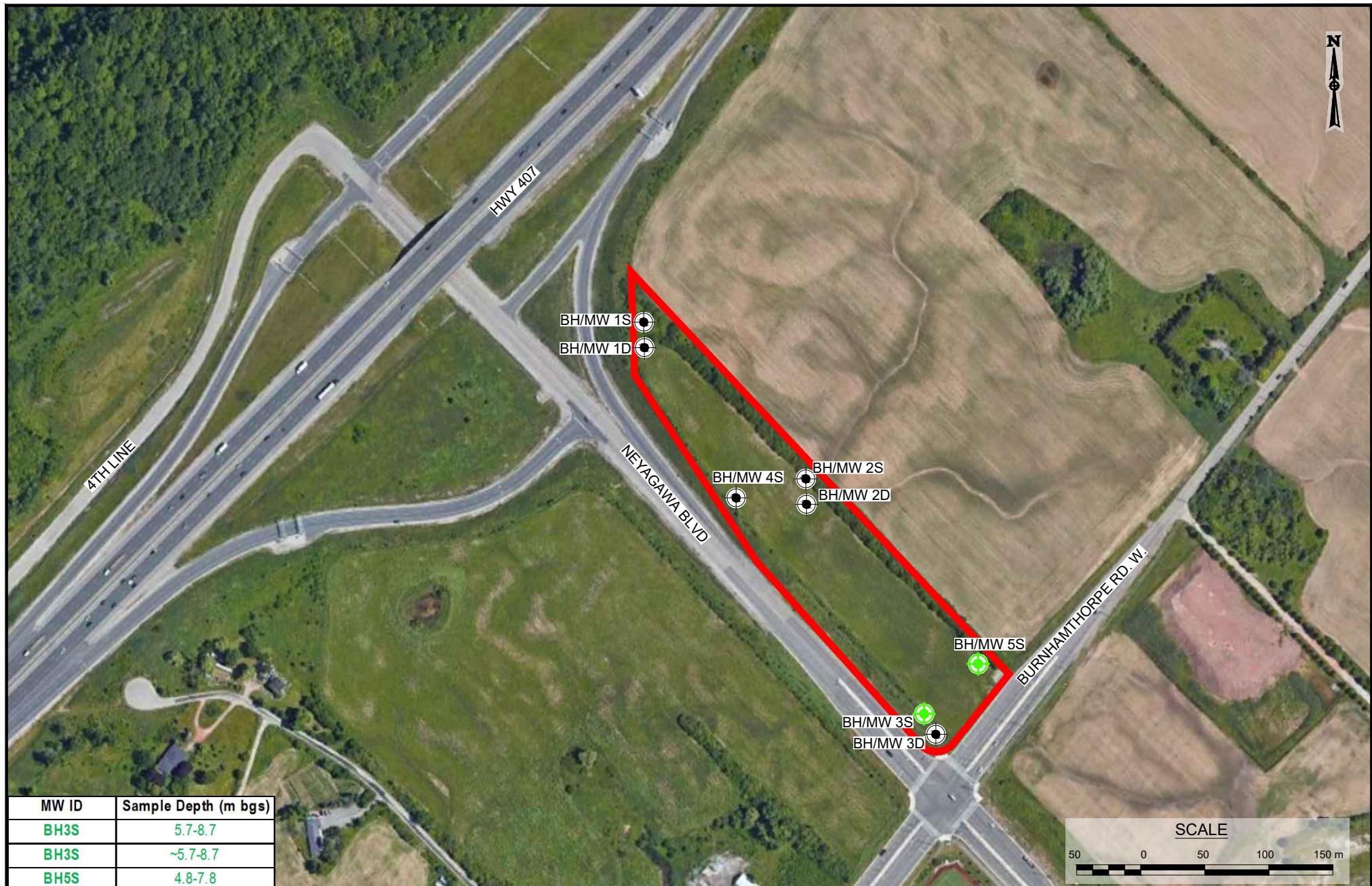
BH ID	Sample Depth (m bgs)
BH1-SS1	0-0.6
BH2-SS1	0-0.6
BH3-SS1	0-0.6
BH4-SS1	0-0.6
BH4-SS1	~0-0.6
BH5-SS1	0-0.6

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •



LEGEND:


— APPROXIMATE SITE BOUNDARY
● TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF $\mu\text{g/g}$, UNLESS OTHERWISE NOTED.
LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2 STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:

SOIL ANALYTICAL RESULTS
– OCs
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.:
DWN.:
GTR-23012833-A0
K.G.
SCALE:
CK:
AS NOTED
A.C.
DATE:
FIG. NO.:
NOVEMBER 2023
7D

MW ID	Sample Depth (m bgs)
BH3S	5.7-8.7
BH3S	~5.7-8.7
BH5S	4.8-7.8

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

— APPROXIMATE SITE BOUNDARY
● TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR ALL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF $\mu\text{g/L}$, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2
STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:
GROUNDWATER ANALYTICAL RESULTS – PETROLEUM HYDROCARBONS INCLUDING BTEX
NEYAGAWA BOULEVARD, OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	8A

MW ID	Sample Depth (m bgs)
BH3S	5.7-8.7
BH3S	~5.7-8.7
BH5S	4.8-7.8

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

APPROXIMATE SITE BOUNDARY
 TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR ALL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF μ g/L, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2
STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:

**GROUNDWATER
ANALYTICAL RESULTS –
VOLATILE ORGANIC
COMPOUNDS**
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	8B

MW ID	Sample Depth (m bgs)
BH3S	5.7-8.7
BH3S	~5.7-8.7
BH5S	4.8-7.8

exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

www.exp.com
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:

APPROXIMATE SITE BOUNDARY
TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR ALL PROPERTY USE WITH FINE TEXTURED SOILS.

~ INDICATES FIELD DUPLICATE SAMPLE.

m bgs - METRES BELOW GROUND SURFACE.

ALL RESULTS IN UNITS OF $\mu\text{g/L}$, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2
STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:

GROUNDWATER
ANALYTICAL RESULTS –
POLYCYCLIC AROMATIC
HYDROCARBONS
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0 DWN.: K.G.

SCALE: AS NOTED CK: A.C.

DATE: NOVEMBER 2023 FIG. NO.: 8C

Na	Sodium
Cr(VI)	Hexavalent Chromium
Hg	Mercury

MW ID	Sample Depth (m bgs)
BH3S	5.7-8.7
BH3S	~5.7-8.7
BH5S	4.8-7.8

exp Services Inc.
t: +1.905.793.9800 f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada
www.exp.com

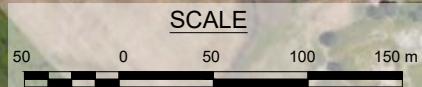
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

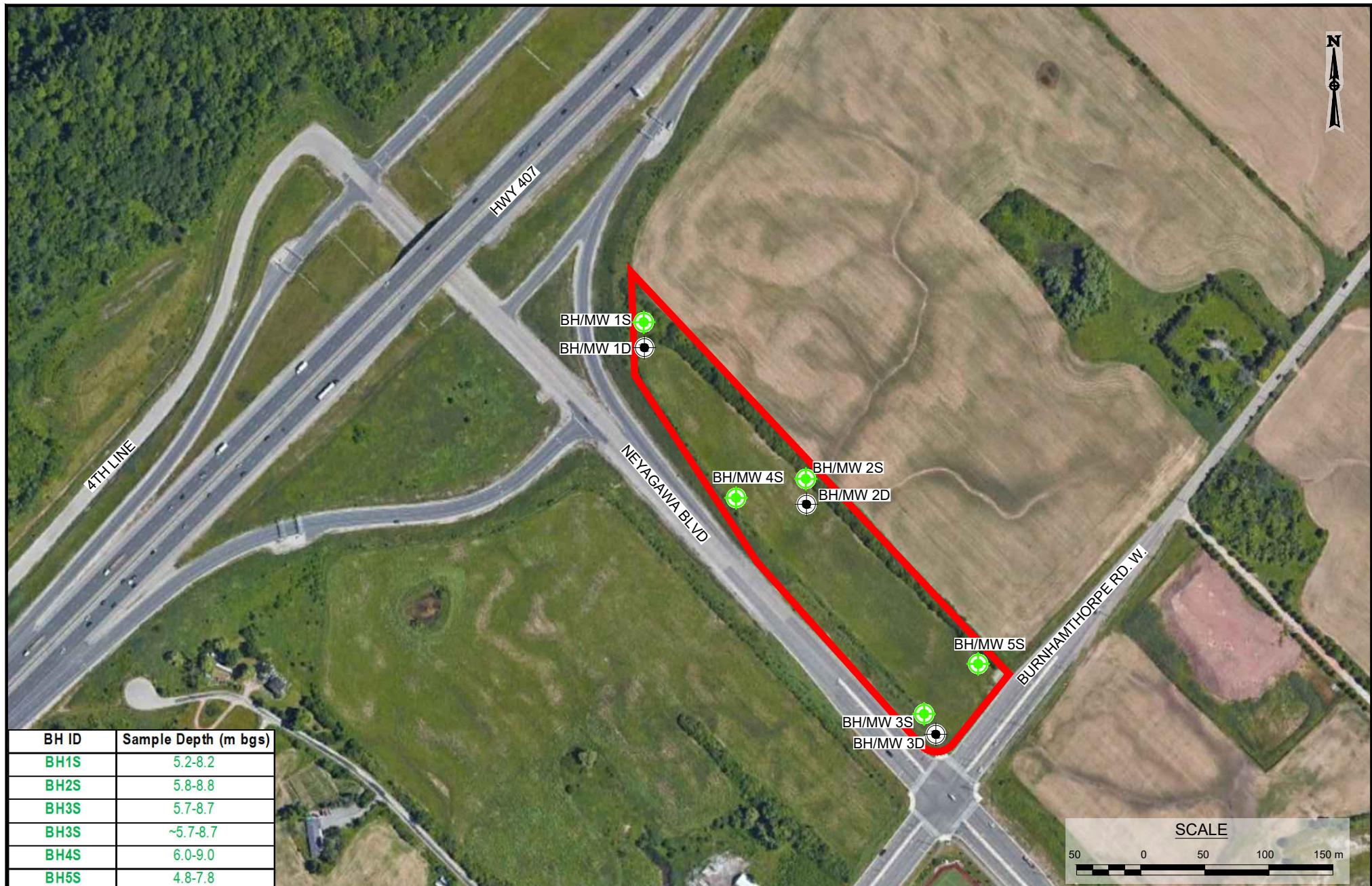
LEGEND:

APPROXIMATE SITE BOUNDARY
TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR ALL PROPERTY USE WITH FINE TEXTURED SOILS.

~ INDICATES FIELD DUPLICATE SAMPLE.


m bgs - METRES BELOW GROUND SURFACE.


ALL RESULTS IN UNITS OF $\mu\text{g/L}$, UNLESS OTHERWISE NOTED.

LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2
STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN

TITLE AND LOCATION:
GROUNDWATER ANALYTICAL RESULTS – METALS (INCLUDING HYDRIDE FORMING METALS) AND ORPs (Cr(VI), CN-, Hg, Na, Cl)
NEYAGAWA BOULEVARD, OAKVILLE, ONTARIO

PROJECT NO.:	GTR-23012833-A0	DWN.:	K.G.
SCALE:	AS NOTED	CK:	A.C.
DATE:	NOVEMBER 2023	FIG. NO.:	8D

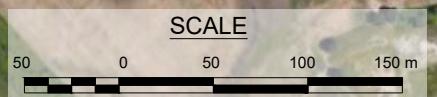
BH ID	Sample Depth (m bgs)
BH1S	5.2-8.2
BH2S	5.8-8.8
BH3S	5.7-8.7
BH3S	~5.7-8.7
BH4S	6.0-9.0
BH5S	4.8-7.8

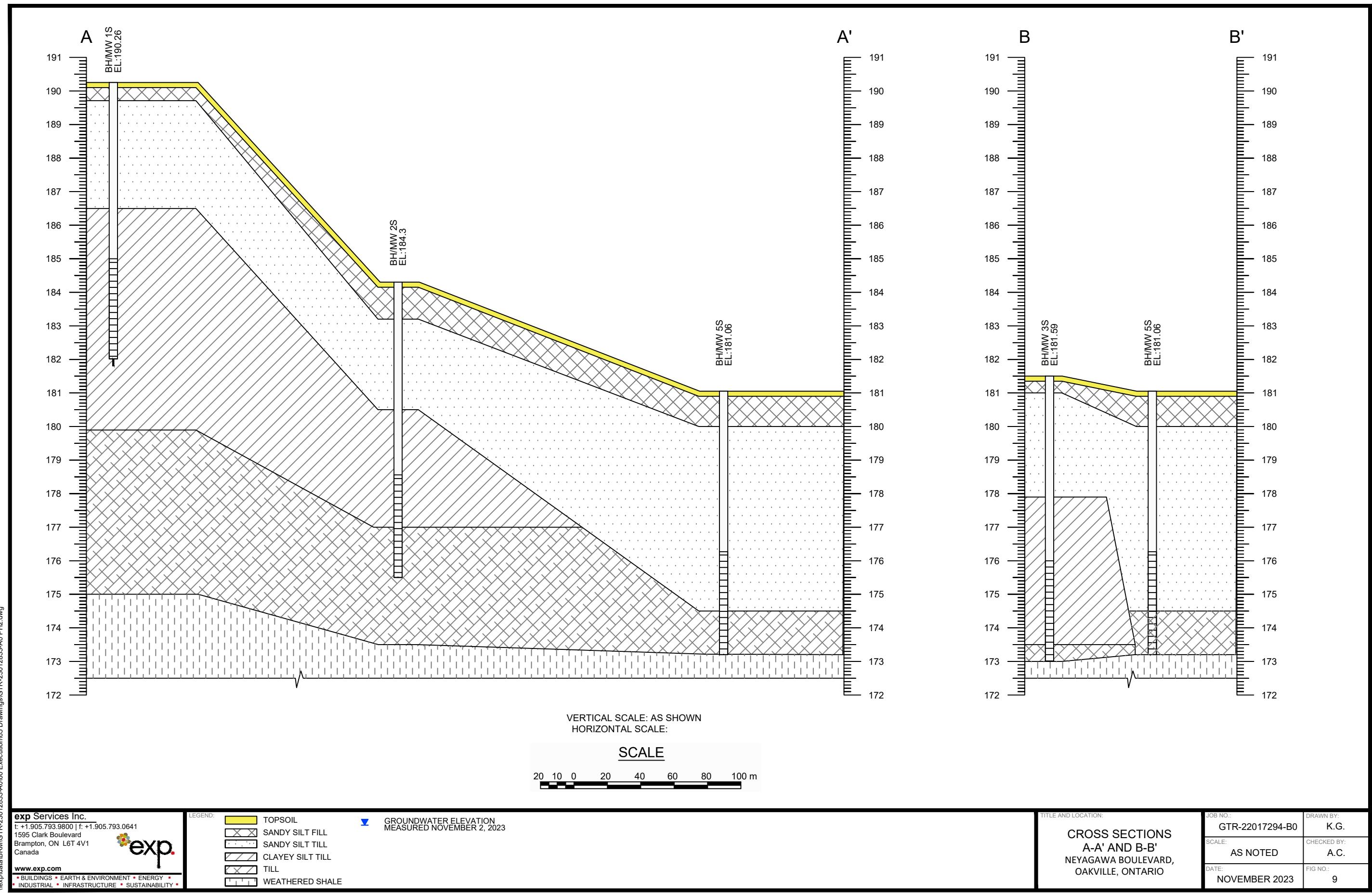
exp Services Inc.
t: +1.905.793.9800 | f: +1.905.793.0641
1595 Clark Boulevard
Brampton, ON L6T 4V1
Canada

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •
INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

LEGEND:
— APPROXIMATE SITE BOUNDARY
● TEST HOLE WITH MONITORING WELL (EXP, 2023)

*STANDARDS SHOWN ARE FOR ALL PROPERTY USE WITH FINE TEXTURED SOILS.
~ INDICATES FIELD DUPLICATE SAMPLE.
mbgs - METRES BELOW GROUND SURFACE.
ALL RESULTS IN UNITS OF $\mu\text{g}/\text{L}$, UNLESS OTHERWISE NOTED.
LOCATION WHERE SAMPLE IS WITHIN O. REG. 153/04 TABLE 2
STANDARDS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN


TITLE AND LOCATION:


GROUNDWATER
ANALYTICAL RESULTS – OCs
NEYAGAWA BOULEVARD,
OAKVILLE, ONTARIO

PROJECT NO.: GTR-23012833-A0 DWN.: K.G.

SCALE: AS NOTED CK: A.C.

DATE: NOVEMBER 2023 FIG. NO.: 8E

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Tables

TABLE 1 - Areas of Potential Environmental Concern (APECs)

GTR-23012833-A0 - Phase Two Environmental Site Assessment

Neyagawa Boulevard, Oakville, Ontario

Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: Salting activites along Neyagawa Boulevard	Western portion of Site	(PCA 1) #NA - Application of De-icing Salts	Off-Site	EC, SAR	Soil
APEC 2: Salting activites along Highway 407	Northeastern portion of Site	(PCA 2) #N/A - Application of De-icing Salts	On-Site	EC, SAR	Soil
APEC 3: Salting activites along Burnhamthorpe Road W and historic landfill	Southwestern portion of Site	(PCA 3) #N/A – Application of De-icing Salts	On-Site	EC, SAR	Soil
		(PCA 4) #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners	Off-Site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr (VI), Hg, CN-	Groundwater
APEC 4: soy bean crop across Site	Entire Site	(PCA 5) #40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site	OCs	Soil and Groundwater

(1) Area of Potential Environmental Concern means the area on, in or under a phase one study area where one or more contaminants are potentially present, as determined through the Phase One ESA, including through,

- (a) identification of past or present uses on, in or under the phase one property, and
- (b) identification of potentially contaminating activities.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area

3. When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011, as specified below:

ABNs	PCBs	PCBs	Metals	Electrical Conductivity	SAR
CPs	PAHs	PAHs	As, Sb, Se	Cr (VI)	
1,4- Dioxane	THMs	THMs	Na	Hg	
Dioxins/Furans, PCDDs/PCIVOCs		VOCs	B-HWS	Methyl Mercury	
Ocs	BTEX	BTEX	Cl-	high pH	
PHCs	Ca, Mg	Ca, Mg	CN-	low pH	

4. When submitting a record of site condition for filing, a copy of this table must be attached

**Cette publication hautement spécialisée n'est disponible qu'en anglais en vertu du règlement 671/92, qui en exempte l'application de la Loi sur les services en français. Pour obtenir de l'aide en français, veuillez communiquer avec le ministère de l'Environnement au 1-800-461-6290

TABLE 2 - Borehole Log Information

*GTR-23012833-A0 - Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario*

Location ID	Ground Elevation (m)	Depth of BH (m bgs)	Bottom Elevation (m bgs)	Date Drilled	Drilling Contractor
BH1S	190.26	8.22	182.04	8-Nov-23	3D Drilling
BH2S	184.3	8.80	175.50	9-Nov-23	3D Drilling
BH3S	181.59	8.66	172.930	6-Nov-23	3D Drilling
BH4S	186.12	8.97	177.15	7-Nov-23	3D Drilling
BH5S	181.06	7.84	173.22	6-Nov-23	3D Drilling

Elevation based on geodetic benchmark.

TABLE 3 - Summary of Soil Samples Submitted for Chemical Analysis*GTR-23012833-A0 - Phase Two Environmental Site Assessment**Neyagawa Boulevard, Oakville, Ontario*

Soil Sample ID	Sample Depth Interval (m)	Rationale	Analysis
BH1 SS1	0 to 0.6	APEC 2, 4	OCs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH1 SS9	6.1 to 6.7	Excess Soils	PHCs, VOCs
BH2 SS1	0 to 0.6	APEC 4	OCs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH2 SS5	3.1 to 3.7	Excess Soils	PHCs, VOCs
BH3 SS1	0 to 0.6	APEC 3,4	OCs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH3 SS9	6.1 to 6.7	Excess Soils	PHCs, VOCs
BH4 SS1	0 to 0.6	APEC 1, 4	OCs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH4 SS9	6.1 to 6.7	Excess Soils	PHCs, VOCs
BH5 SS1	0 to 0.6	APEC 3,4	OCs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH5 SS8	5.4 to 6.0	Excess Soils	PHCs, VOCs

QA/QC Samples:

BH2-SS50	3.1 to 3.7	Duplicate of BH3-SS5	PHCs
BH3-DUP1	0 to 0.6	Duplicate of BH3 SS-1	Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, EC, SAR, pH
BH4-DUP2	0 to 0.6	Duplicate of BH4 SS-1	OCs
BH1-DUP3	6.1 to 6.7	Duplicate of BH1 SS9	VOCs

As - Arsenic; Sb - Antimony; Se - Selenium

HWS-B - Boron Hot Water Soluble; Cr(VI) - Hexavalent Chromium; CN - Cyanide; Hg - Mercury

EC - Electrical Conductivity; SAR - Sodium Adsorption Ratio

PHC - Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

OCs - Organochlorine Pesticides

TABLE 4 - Monitoring Well Installation Details

*GTR-23012833-A0 - Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario*

Location ID	Ground Elevation (masl)	Depth of MW (m bgs)	Screen Length (m)	Top of Screen (Measured)	Bottom of Screen (Measured)	Geologic Units Intercepted by Well Screen	Well Condition
BH1S	190.26	8.22	3.05	185.09	182.04	clayey silt till	Intact
BH2S	184.3	8.80	3.05	178.55	175.5	clayey silt to silt till	Intact
BH3S	181.59	8.66	3.05	175.98	172.93	clayey silt to silt till	Intact
BH4S	186.12	8.97	3.05	180.2	177.15	clayey silt to silt till	Intact
BH5S	181.06	7.84	3.05	176.27	173.22	sandy silt to silt till	Intact

Elevation based on geodetic benchmark.

TABLE 5 - Summary of Groundwater Samples Submitted for Chemical Analysis

*GTR-23012833-A0 - Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario*

GW Sample ID	Sampling Date	Rationale	Analysis
BH1S	17-Nov-23	APEC 4	OCs
BH2S	17-Nov-23	APEC 4	OCs
BH3S	17-Nov-23	APEC 3, 4	PHCs, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, Na, Cl, OCs
BH4S	17-Nov-23	APEC 4	OCs
BH5S	17-Nov-23	APEC 3, 4	PHCs, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, Na, Cl, OCs
QA/QC Samples:			
BH30S	17-Nov-23	Duplicate of BH3S	PHCs, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr(VI), CN, Hg, Na, Cl, OCs
VOC TRIP BLANK	17-Nov-23	QA/QC	VOCs
PAHs - Polyaromatic Hydrocarbons OCs- Organochlorine Pesticides As - Arsenic; Sb - Antimony; Se - Selenium Hg - Mercury PHCs - Petroleum Hydrocarbons BTEX - Benzene, Toluene, Ethylbenzene and Xylenes VOCs - Volatile Organic Compound			

TABLE 6 - Water Level Depths and Elevations*GTR-23012833-A0 - Phase Two Environmental Site Assessment**Neyagawa Boulevard, Oakville, Ontario*

Location ID	Ground Elevation (masl)	Water Level Depth (mbgs)	Water Level Elevation (m asl)	Date
BH1S	190.26	7.708	182.55	2-Nov-23
BH2S	184.3	1.096	183.20	2-Nov-23
BH3S	181.59	0.661	180.93	2-Nov-23
BH4S	186.12	2.838	183.28	2-Nov-23
BH5S	181.06	-0.486	181.55	2-Nov-23

mbgs = metres below ground surface

TABLE 7 - Summary of Horizontal Hydraulic Gradients*GTR-23012833-A0 - Phase Two Environmental Site Assessment**Neyagawa Boulevard, Oakville, Ontario*

Well Pair	Separation Distance (m)	Groundwater Elevations (m)	Elevation Difference (m)	Hydraulic Gradient* (m/m)
BH1S	385.0	182.55		
BH5S		181.55	1.00	0.003

*The horizontal hydraulic gradient between monitoring well pair is calculated from $i = \Delta h / \Delta s$, where i is the horizontal hydraulic gradient, Δh (m) is the groundwater elevation difference and Δs (m) is the distance apart.

Groundwater elevations measured on November 17, 2023 by EXP.

Table 8A: MAXIMUM SOIL CONCENTRATION DATA - Petroleum Hydrocarbons

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Minimum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Sampling Depth (mbgs)
Benzene	0.02	<0.02	0.17	Various Date	Various Samples	Various Depths
Toluene	0.05	<0.05	6	Various Date	Various Samples	Various Depths
Ethylbenzene	0.05	<0.05	1.6	Various Date	Various Samples	Various Depths
Total Xylenes	0.05	<0.05	25	Various Date	Various Samples	Various Depths
F1 (C6-C10)	5	<5	65	Various Date	Various Samples	Various Depths
F1 (C6-C10) - BTEX	5	<5	65	Various Date	Various Samples	Various Depths
F2 (C10-C16)	10	<10	150	Various Date	Various Samples	Various Depths
F3 (C16-C34)	50	<50	1300	Various Date	Various Samples	Various Depths
F4 (C34-C50)	50	<50	5600	Various Date	Various Samples	Various Depths

NOTES:

Analysis by AGAT

All results in ppm (ug/g) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for R/P/I property use and medium to fine textured soils

Exceedances of Table 2 Standards are shown in bold, red and shaded.

23012833

Table 8B: MAXIMUM SOIL CONCENTRATION DATA - Metals and Other Regulated Parameters

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Sampling Depth (mbgs)
Antimony	0.8	<0.8	7.5	Various Dates	Various Samples	Various Depths
Arsenic	1	8	18	06-Nov-2023	BH3-SS1	0.0 to 0.76
Barium	2	144	390	08-Nov-2023	BH2-SS1	0.0 to 0.76
Beryllium	0.5	1.4	5	08-Nov-2023	BH2-SS1	0.0 to 0.76
Boron (Hot Water Soluble)	0.1	0.44	1.5	08-Nov-2023	BH2-SS1	0.0 to 0.76
Cadmium	0.5	<0.5	1.2	Various Dates	Various Samples	Various Depths
Chromium	5	38	160	08-Nov-2023	BH2-SS1	0.0 to 0.76
Chromium VI	0.2	<0.2	10	Various Dates	Various Samples	Various Depths
Cobalt	0.8	16.3	22	06-Nov-2023	BH3-SS1	0.0 to 0.76
Copper	1	33	180	06-Nov-2023	BH3-SS1	0.0 to 0.76
Lead	1	19	120	08-Nov-2023	BH2-SS1	0.0 to 0.76
Mercury	0.1	<0.10	1.8	Various Dates	Various Samples	Various Depths
Molybdenum	0.5	0.8	6.9	08-Nov-2023	BH2-SS1	0.0 to 0.76
Nickel	1	37	130	06-Nov-2023	BH3-SS1	0.0 to 0.76
Selenium	0.8	<0.80	2.4	Various Dates	Various Samples	Various Depths
Silver	0.5	<0.5	25	Various Dates	Various Samples	Various Depths
Thallium	0.5	<0.5	1	Various Dates	Various Samples	Various Depths
Vanadium	2	59.7	86	08-Nov-2023	BH2-SS1	0.0 to 0.76
Zinc	5	121	340	08-Nov-2023	BH2-SS1	0.0 to 0.76
Conductivity (ms/cm)	0.005	0.378	0.7	07-Nov-2023	BH1-SS1	0.0 to 0.76
Sodium Adsorption Ratio	NA	1.01	5	08-Nov-2023	BH2-SS1	0.0 to 0.76
Cyanide, Free	0.04	<0.040	0.051	Various Dates	Various Samples	Various Depths
Boron (Total)	5	14	120	06-Nov-2023	BH3-DUP1	0.0 to 0.76
Uranium	0.5	1.26	23	08-Nov-2023	BH2-SS1	0.0 to 0.76

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/g) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for R/P/I property use and medium to fine textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

Exceedances of Table 2 Standards but is considered to meet Table 2 SCS per Section 49.1(1) of O. Reg. 153/04 are shown in bold, purple and shaded.

NA - Not Analyzed

Table 8C: MAXIMUM SOIL CONCENTRATION DATA - Volatile Organic Compounds

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Minimum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Sampling Depth (mbgs)
Acetone	0.5	<0.50	28	Various Dates	Various Samples	Various Depths
Benzene	0.02	<0.02	0.17	Various Dates	Various Samples	Various Depths
Bromodichloromethane	0.05	<0.05	1.9	Various Dates	Various Samples	Various Depths
Bromoform	0.05	<0.05	0.26	Various Dates	Various Samples	Various Depths
Bromomethane	0.05	<0.05	0.05	Various Dates	Various Samples	Various Depths
Carbon Tetrachloride	0.05	<0.05	0.12	Various Dates	Various Samples	Various Depths
Chlorobenzene	0.05	<0.05	2.7	Various Dates	Various Samples	Various Depths
Chloroform	0.04	<0.04	0.18	Various Dates	Various Samples	Various Depths
Dibromochloromethane	0.05	<0.05	2.9	Various Dates	Various Samples	Various Depths
1,2-Dichlorobenzene	0.05	<0.05	1.7	Various Dates	Various Samples	Various Depths
1,3-Dichlorobenzene	0.05	<0.05	6	Various Dates	Various Samples	Various Depths
1,4-Dichlorobenzene	0.05	<0.05	0.097	Various Dates	Various Samples	Various Depths
Dichlorodifluoromethane	0.05	<0.05	25	Various Dates	Various Samples	Various Depths
1,1-Dichloroethane	0.02	<0.02	0.6	Various Dates	Various Samples	Various Depths
1,2-Dichloroethane	0.03	<0.03	0.05	Various Dates	Various Samples	Various Depths
1,1-Dichloroethylene	0.05	<0.05	0.05	Various Dates	Various Samples	Various Depths
cis-1,2-Dichloroethylene	0.02	<0.02	2.5	Various Dates	Various Samples	Various Depths
trans-1,2-Dichloroethylene	0.05	<0.05	0.75	Various Dates	Various Samples	Various Depths
1,2-Dichloropropane	0.03	<0.03	0.085	Various Dates	Various Samples	Various Depths
cis- & trans-1,3-Dichloropropane	0.05	<0.05	0.081	Various Dates	Various Samples	Various Depths
Ethylbenzene	0.05	<0.05	1.6	Various Dates	Various Samples	Various Depths
Ethylene Dibromide (1,2-Dibromoethane)	0.04	<0.04	0.05	Various Dates	Various Samples	Various Depths
Hexane (n)	0.05	<0.05	34	Various Dates	Various Samples	Various Depths
Methylene chloride (Dichloromethane)	0.05	<0.05	0.96	Various Dates	Various Samples	Various Depths
Methyl ethyl ketone (2-Butanone)	0.5	<0.50	44	Various Dates	Various Samples	Various Depths
Methyl Isobutyl Ketone	0.5	<0.50	4.3	Various Dates	Various Samples	Various Depths
Methyl t-butyl ether (MTBE)	0.05	<0.05	1.4	Various Dates	Various Samples	Various Depths
Styrene	0.05	<0.05	2.2	Various Dates	Various Samples	Various Depths
1,1,1,2-Tetrachloroethane	0.04	<0.04	0.05	Various Dates	Various Samples	Various Depths
1,1,2,2-Tetrachloroethane	0.05	<0.05	0.05	Various Dates	Various Samples	Various Depths
Tetrachloroethylene	0.05	<0.05	2.3	Various Dates	Various Samples	Various Depths
Toluene	0.05	<0.05	6	Various Dates	Various Samples	Various Depths
1,1,1-Trichloroethane	0.05	<0.05	3.4	Various Dates	Various Samples	Various Depths
1,1,2-Trichloroethane	0.04	<0.04	0.05	Various Dates	Various Samples	Various Depths
Trichloroethylene	0.03	<0.03	0.52	Various Dates	Various Samples	Various Depths
Trichlorofluoromethane	0.05	<0.05	5.8	Various Dates	Various Samples	Various Depths
Vinyl Chloride	0.02	<0.02	0.022	Various Dates	Various Samples	Various Depths
m-Xylene + p-Xylene	0.05	<0.05	NV	Various Dates	Various Samples	Various Depths
o-Xylene	0.05	<0.05	NV	Various Dates	Various Samples	Various Depths
Xylenes (total)	0.05	<0.05	25	Various Dates	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/g) and based on dry weight basis.

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for a Residential/Parkland/Institutional property use and coarse-textured soils.

NV - no value

23012833

Table 8D: MAXIMUM GROUNDWATER CONCENTRATION DATA - Organochlorine Pesticides

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Sampling Depth (mbgs)
Hexachloroethane	0.005	<0.005	0.07	Various Dates	Various Samples	Various Depths
Gamma-Hexachlorocyclohexane	0.005	<0.005	0.063	Various Dates	Various Samples	Various Depths
Heptachlor	0.005	<0.005	0.15	Various Dates	Various Samples	Various Depths
Aldrin	0.005	<0.005	0.05	Various Dates	Various Samples	Various Depths
Heptachlor Epoxide	0.005	<0.005	0.05	Various Dates	Various Samples	Various Depths
Endosulfan	0.005	<0.005	0.04	Various Dates	Various Samples	Various Depths
Alpha-Chlordane	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
gamma-Chlordane	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
Chlordane	0.007	<0.007	0.05	Various Dates	Various Samples	Various Depths
op'-DDE	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
pp'-DDE	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
DDE	0.007	<0.007	0.33	Various Dates	Various Samples	Various Depths
op'-DDD	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
pp'-DDD	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
DDD	0.007	<0.007	3.3	Various Dates	Various Samples	Various Depths
op'-DDT	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
pp'-DDT	0.005	<0.005	NV	Various Dates	Various Samples	Various Depths
DDT (Total)	0.007	<0.007	1.4	Various Dates	Various Samples	Various Depths
Dieldrin	0.005	<0.005	0.05	Various Dates	Various Samples	Various Depths
Endrin	0.005	<0.005	0.04	Various Dates	Various Samples	Various Depths
Methoxychlor	0.005	<0.005	0.13	Various Dates	Various Samples	Various Depths
Hexachlorobenzene	0.005	<0.005	0.52	Various Dates	Various Samples	Various Depths
Hexachlorobutadiene	0.01	<0.01	0.014	Various Dates	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for R/P/I property use and medium to fine-textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

NV - no value

23012833

Table 9A: MAXIMUM GROUNDWATER CONCENTRATION DATA - Petroleum Hydrocarbons

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Screen Interval (mbgs)
F1 (C6-C10)	25	<25	750	17-Nov-2023	Various Samples	Various Depths
F1 (C6-C10) - BTEX	25	<25	750	17-Nov-2023	Various Samples	Various Depths
F2 (C10-C16)	100	<100	150	17-Nov-2023	Various Samples	Various Depths
F3 (C16-C34)	100	<200	500	17-Nov-2023	Various Samples	Various Depths
F4 (C34-C50)	100	<200	500	17-Nov-2023	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for all types of property use and medium to fine-textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

23012833

Table 9B: MAXIMUM GROUNDWATER CONCENTRATION DATA - Volatile Organic Compounds

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Screen Interval (mbgs)
Acetone	1	<1	2700	17-Nov-2023	Various Samples	Various Depths
Benzene	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
Bromodichloromethane	0.2	<0.2	16	17-Nov-2023	Various Samples	Various Depths
Bromoform	0.1	<0.1	25	17-Nov-2023	Various Samples	Various Depths
Bromomethane	0.2	<0.2	0.89	17-Nov-2023	Various Samples	Various Depths
Carbon Tetrachloride	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
Chlorobenzene	0.1	<0.1	30	17-Nov-2023	Various Samples	Various Depths
Chloroform	0.2	<0.2	22	17-Nov-2023	Various Samples	Various Depths
Dibromochloromethane	0.1	<0.1	25	17-Nov-2023	Various Samples	Various Depths
1,2-Dichlorobenzene	0.1	<0.1	3	17-Nov-2023	Various Samples	Various Depths
1,3-Dichlorobenzene	0.1	<0.1	59	17-Nov-2023	Various Samples	Various Depths
1,4-Dichlorobenzene	0.1	<0.1	1	17-Nov-2023	Various Samples	Various Depths
1,1-Dichloroethane	0.3	<0.3	5	17-Nov-2023	Various Samples	Various Depths
1,2-Dichloroethane	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
1,1-Dichloroethylene	0.3	<0.3	14	17-Nov-2023	Various Samples	Various Depths
Cis-1,2-Dichloroethylene	0.2	<0.2	17	17-Nov-2023	Various Samples	Various Depths
Trans-1,2-Dichloroethylene	0.2	<0.2	17	17-Nov-2023	Various Samples	Various Depths
1,2-Dichloropropane	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
Ethylbenzene	0.1	<0.1	2.4	17-Nov-2023	Various Samples	Various Depths
Ethylene Dibromide	0.1	<0.1	0.2	17-Nov-2023	Various Samples	Various Depths
Methyl Ethyl Ketone	1	<1	1800	17-Nov-2023	Various Samples	Various Depths
Methylene Chloride	0.3	<0.3	50	17-Nov-2023	Various Samples	Various Depths
Methyl Isobutyl Ketone	1	<1	640	17-Nov-2023	Various Samples	Various Depths
Methyl-t-Butyl Ether	0.2	<0.2	15	17-Nov-2023	Various Samples	Various Depths
Styrene	0.1	<0.1	5.4	17-Nov-2023	Various Samples	Various Depths
1,1,1,2-Tetrachloroethane	0.1	<0.1	1.1	17-Nov-2023	Various Samples	Various Depths
1,1,2,2-Tetrachloroethane	0.1	<0.1	1	17-Nov-2023	Various Samples	Various Depths
Toluene	0.2	<0.2	24	17-Nov-2023	Various Samples	Various Depths
Tetrachloroethylene	0.2	<0.2	17	17-Nov-2023	Various Samples	Various Depths
1,1,1-Trichloroethane	0.3	<0.3	200	17-Nov-2023	Various Samples	Various Depths
1,1,2-Trichloroethane	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
Trichloroethylene	0.2	<0.2	5	17-Nov-2023	Various Samples	Various Depths
Vinyl Chloride	0.17	<0.17	1.7	17-Nov-2023	Various Samples	Various Depths
m-Xylene & p-Xylene	0.2	<0.2	NV	17-Nov-2023	Various Samples	Various Depths
o-Xylene	0.1	<0.1	NV	17-Nov-2023	Various Samples	Various Depths
Total Xylenes	0.2	<0.2	300	17-Nov-2023	Various Samples	Various Depths
Dichlorodifluoromethane	0.4	<0.4	590	17-Nov-2023	Various Samples	Various Depths
Hexane(n)	0.2	<0.2	520	17-Nov-2023	Various Samples	Various Depths
Trichlorofluoromethane	0.4	<0.4	150	17-Nov-2023	Various Samples	Various Depths
1,3-Dichloropropene (cis + trans)	0.3	<0.3	0.5	17-Nov-2023	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for all property use and medium to fine-textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

NV - No value

23012833

Table 9C: MAXIMUM GROUNDWATER CONCENTRATION DATA - Polycyclic Aromatic Hydrocarbons

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Screen Interval (mbgs)
Acenaphthene	0.2	<0.20	4.1	17-Nov-2023	Various Samples	Various Depths
Acenaphthylene	0.2	<0.20	1	17-Nov-2023	Various Samples	Various Depths
Anthracene	0.1	<0.1	2.4	17-Nov-2023	Various Samples	Various Depths
Benzo(a)anthracene	0.2	<0.2	1	17-Nov-2023	Various Samples	Various Depths
Benzo(a)pyrene	0.01	<0.01	0.01	17-Nov-2023	Various Samples	Various Depths
Benzo(b/j)fluoranthene	0.1	<0.1	0.1	17-Nov-2023	Various Samples	Various Depths
Benzo(ghi)perylene	0.2	<0.2	0.2	17-Nov-2023	Various Samples	Various Depths
Benzo(k)fluoranthene	0.1	<0.1	0.1	17-Nov-2023	Various Samples	Various Depths
Chrysene	0.1	<0.1	0.1	17-Nov-2023	Various Samples	Various Depths
Dibenzo(a,h)anthracene	0.2	<0.2	0.2	17-Nov-2023	Various Samples	Various Depths
Fluoranthene	0.2	<0.2	0.41	17-Nov-2023	Various Samples	Various Depths
Fluorene	0.2	<0.2	120	17-Nov-2023	Various Samples	Various Depths
Indeno(1,2,3-cd)pyrene	0.2	<0.2	0.2	17-Nov-2023	Various Samples	Various Depths
Naphthalene	0.2	<0.2	11	17-Nov-2023	Various Samples	Various Depths
Phenanthrene	0.1	<0.1	1	17-Nov-2023	Various Samples	Various Depths
Pyrene	0.2	<0.2	4.1	17-Nov-2023	Various Samples	Various Depths
Methylnaphthalene, 2-(1-)	0.2	<0.2	3.2	17-Nov-2023	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for all property use and medium-fine textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

23012833

Table 9D: MAXIMUM GROUNDWATER CONCENTRATION DATA - Metals and Other Regulated Parameters

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Screen Interval (mbgs)
Antimony	1	<1.0	6	17-Nov-2023	Various Samples	Various Depths
Arsenic	1	3	25	17-Nov-2023	BH5S	4.79 to 7.84
Barium	2	38.6	1000	17-Nov-2023	BH3S	5.61 to 8.66
Beryllium	0.5	<0.50	4	17-Nov-2023	Various Samples	Various Depths
Boron	10	1070	5000	17-Nov-2023	BH5S	4.79 to 7.84
Cadmium	0.2	<0.20	2.7	17-Nov-2023	Various Samples	Various Depths
Chloride	100	21700	790000	17-Nov-2023	BH3S	5.61 to 8.66
Chromium	2	<2.0	50	17-Nov-2023	Various Samples	Various Depths
Chromium VI	2	<2.0	25	17-Nov-2023	Various Samples	Various Depths
Cobalt	0.5	0.53	3.8	17-Nov-2023	BH30S	5.61 to 8.66
Copper	1	5.4	87	17-Nov-2023	BH5S	4.79 to 7.84
Cyanide, WAD	2	<2.0	66	17-Nov-2023	Various Samples	Various Depths
Lead	0.5	<0.50	10	17-Nov-2023	Various Samples	Various Depths
Mercury	0.02	<0.02	1	17-Nov-2023	Various Samples	Various Depths
Molybdenum	0.5	10.5	70	17-Nov-2023	BH3S	5.61 to 8.66
Nickel	1	<1.0	100	17-Nov-2023	Various Samples	Various Depths
Sodium	50	80500	490000	17-Nov-2023	BH3S	5.61 to 8.66
Selenium	1	<1.0	10	17-Nov-2023	Various Samples	Various Depths
Silver	0.2	<0.20	1.5	17-Nov-2023	Various Samples	Various Depths
Thallium	0.3	<0.30	2	17-Nov-2023	Various Samples	Various Depths
Uranium	0.5	1.39	20	17-Nov-2023	BH3S	5.61 to 8.66
Vanadium	0.4	<0.40	6.2	17-Nov-2023	Various Samples	Various Depths
Zinc	5	<5.0	1100	17-Nov-2023	Various Samples	Various Depths
Electrical Conductivity	2	1090	NV	17-Nov-2023	BH3S	5.61 to 8.66
pH	NV	7.76	5 to 9	17-Nov-2023	BH3S	5.61 to 8.66

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for all property use and medium to fine- textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

NV - no value

23012833

Table 9E: MAXIMUM GROUNDWATER CONCENTRATION DATA - Organochlorine Pesticides

Neyagawa Boulevard, Oakville, Ontario

Contaminant Name	Maximum RDL*	Maximum Measured Concentration	Ontario Regulation 153/04 Table 2 Soil Standards**	Date of Sampling	Sample ID	Screen Interval (mbgs)
Gamma-Hexachlorocyclohexane	0.01	<0.01	1.2	17-Nov-23	Various Samples	Various Depths
Heptachlor	0.01	<0.01	1.5	17-Nov-23	Various Samples	Various Depths
Aldrin	0.01	<0.01	0.35	17-Nov-23	Various Samples	Various Depths
Heptachlor Epoxide	0.01	<0.01	0.048	17-Nov-23	Various Samples	Various Depths
Endosulfan I	0.05	<0.05	NV	17-Nov-23	Various Samples	Various Depths
Endosulfan II	0.05	<0.05	NV	17-Nov-23	Various Samples	Various Depths
Endosulfan	0.05	<0.05	1.5	17-Nov-23	Various Samples	Various Depths
alpha-chlordane	0.04	<0.04	NV	17-Nov-23	Various Samples	Various Depths
gamma-Chlordane	0.04	<0.04	NV	17-Nov-23	Various Samples	Various Depths
Chlordane	0.04	<0.04	7	17-Nov-23	Various Samples	Various Depths
op ^l -DDE	0.01	<0.01	NV	17-Nov-23	Various Samples	Various Depths
pp ^l -DDE	0.01	<0.01	NV	17-Nov-23	Various Samples	Various Depths
DDE	0.01	<0.01	10	17-Nov-23	Various Samples	Various Depths
op ^l -DDD	0.05	<0.05	NV	17-Nov-23	Various Samples	Various Depths
pp ^l -DDD	0.05	<0.05	NV	17-Nov-23	Various Samples	Various Depths
DDD	0.05	<0.05	10	17-Nov-23	Various Samples	Various Depths
op ^l -DDT	0.04	<0.04	NV	17-Nov-23	Various Samples	Various Depths
pp ^l -DDT	0.05	<0.05	NV	17-Nov-23	Various Samples	Various Depths
DDT	0.04	<0.04	2.8	17-Nov-23	Various Samples	Various Depths
Dieldrin	0.02	<0.02	0.35	17-Nov-23	Various Samples	Various Depths
Endrin	0.05	<0.05	0.48	17-Nov-23	Various Samples	Various Depths
Methoxychlor	0.04	<0.04	6.5	17-Nov-23	Various Samples	Various Depths
Hexachlorobenzene	0.01	<0.01	1	17-Nov-23	Various Samples	Various Depths
Hexachlorobutadiene	0.01	<0.01	0.6	17-Nov-23	Various Samples	Various Depths
Hexachloroethane	0.01	<0.01	2.1	17-Nov-23	Various Samples	Various Depths

NOTES:

Analysis by AGAT Labs.

All results in ppm (ug/L) and based on dry weight basis.

* Maximum RDL below MECP (2011) SCS. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for all property use and medium to fine-textured soils.

Exceedances of Table 2 Standards are shown in bold, red and shaded.

NV - no value

23012833

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix A – Sampling and Analysis Plan

Phase Two Environmental Site Assessment

1. Introduction

This Appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Assessment Work (ESA) for the property located at located on the northeast side of Neyagawa Boulevard, between Burnhamthorpe Road West and Highway 407, in Oakville Ontario. The property currently has no municipal address and is hereinafter referred to as the 'Site'. The Site comprises of a total area of approximately 2.63 hectares (6.5 acres) and is located at the northern corner of the intersection of Neyagawa Boulevard and Burnhamthorpe Road West. The Site is currently vacant land.

The Phase Two ESA will be conducted to provide further characterization of the Site subsurface conditions and address the Areas of Potential Environmental Concerns (APECs) outlined in EXP's November 2023 Phase One ESA and delineate any areas of contamination identified to support the Site Plan Application (SPA) with the Town of Oakville. Given that the proposed change in land use is not from a less to more sensitive land use (i.e., the proposed change is from vacant to residential), no Record of Site Condition (RSC) will be required for the site as set out in Ontario Regulation (O.Reg.) 153/04. However, an O.Reg 153/04 report is required as part of the SPA to the Town of Oakville, to support the future redevelopment plans. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control measures that will be undertaken to provide for the collection of accurate, reproducible and representative data.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples for chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (collectively known as 'BTEX'), volatile organic compounds (VOCs), organochlorine pesticides (OCs), and metals, hydride forming metals (including arsenic, antimony and selenium) and/or other regulated parameters (ORPs) (including boron hot water soluble, hexavalent chromium, mercury and/or pH) in soil and for the analysis of PHCs, BTEX, VOCs, polycyclic aromatic hydrocarbons (PAHs), OCs, metals (including arsenic, antimony and selenium) and/or ORPs (including hexavalent chromium and mercury) in groundwater.

The soil sampling will be location-specific to assess for the potential presence of metals (including hydride forming metals) and ORPs, OCs, PHCs and VOCs, based on the identification of areas of potential environmental concern (APECs), and subsequently, areas of contamination. Vapour readings will also be collected in the field to determine samples to be submitted for BTEX and PHC F1-F2 analysis.

The groundwater sampling will be location-specific to assess for the potential presence of PHCs, BTEX, VOCs, PAHs, OCs, metals (including hydride forming metals) and ORPs (including mercury), based on the identification of APECs, and subsequently, areas of contamination. The monitoring well network will be comprised of five (5) newly installed monitoring wells.

Vertical control of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a local structure with a known geodetic elevation. Groundwater flow and direction in the water table aquifer will also be determined through groundwater level measurements and the elevations established from the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;
- Monitoring Well Installation;
- Monitoring Well Development;
- Groundwater Level Measurements;
- Elevation Survey; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in EXP's standard operating procedures and are outlined below:

3.1 Borehole Drilling

Boreholes will be advanced at the Site concurrently with the geotechnical and hydrogeological programs, to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of groundwater monitoring wells. A total of five (5) boreholes are proposed to be advanced at the Site, up to a maximum depth of approximately 8.97 m below grade, to provide for the collection of samples of the surficial and subsurface soil beneath the Site. All five (5) of the boreholes will be sampled for the environmental investigation. The borehole locations will be selected to determine the presence or absence of impacts in the soils and the upper overburden groundwater and to address the APECs outlined in EXP's November 2023 Phase One ESA Report.

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered, hand augering or digging will be performed beforehand to confirm the location of the utility.

The borehole drilling program will be conducted by a licensed driller under the oversight of EXP field staff. Auger flights will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geologic property characterization. The soil samples will be collected using 5 cm diameter, 61 cm long, split spoons and hollow stem augers or a 5 cm diameter, 1.5 m long, duel tube sampling system with interior dedicated vinyl sampling tubes. Upon retrieval from the boreholes, the split spoons or vinyl sampling tubes will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Soil stratigraphy encountered in the boreholes will be texturally, visually and olfactory classified in the field and in the laboratory. Soil samples will be logged for colour, grain size, moisture content, density, structures, texture, staining, and field vapour readings. A Photo-ionization Detector (PID) or GastechtorTM will be utilized to screen the soil samples for Total Organic Vapour (TOV). Representative worst-case soil samples from each borehole will be collected and submitted to a certified laboratory for analysis based on TOV readings, sample depth, visual and/or olfactory field observations.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned laboratory-supplied glass sample jars/vials identified for the specified analytical test group. Samples intended for PHC/BTEX and VOCs will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field note book. The samples will be submitted to the contractual laboratory within analytical test group holding times under Chain of Custody protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Monitoring Well Installation

A proposed total of five (5) environmental boreholes will be instrumented as groundwater monitoring wells installed with 1.5 to 3 m long screens intercepting the native overburden material, where the shallow water table aquifer is expected, extending to depths of approximately 3 m below grade. The monitoring wells will be constructed using 51 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screen will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screen will be backfilled with silica sand, to an average height of 0.6 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells will be completed with flush or monument-mounted protective steel casings cemented into place.

3.4 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using a dedicated low-density polyethylene (LDPE) tubing, equipped with an inertial foot valve to disturb the water column. The wells will be developed until approximately 3 to 5 well volumes of water will be removed and/or until purged dry. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.5 Groundwater Level Measurements

Groundwater level measurement will be recorded for the newly installed monitoring wells to determine the depth of the water table aquifer beneath the Site. The water level will be measured with respect to the top of the PVC riser pipe by means of an electronic water level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

3.6 Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations and boreholes. The top of the PVC riser pipe of the monitoring well and ground surface elevation of the monitoring well and borehole locations will be surveyed against a geodetic benchmark, or if unavailable, against a suitable arbitrary benchmark. Elevations measured against a geodetic/arbitrary benchmark will be recorded as meters above mean sea level (m AMSL). The elevation survey will be accurate to within ± 0.3 cm.

3.7 Field Measurements of Water Quality Parameters

Prior to collecting the groundwater sample, field measurements of water quality parameters will be recorded from the monitoring wells utilizing low-flow purging and sampling methodologies. Groundwater will be purged from the monitoring wells using a peristaltic pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels will be recorded in three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Generally well purging will continue until the purged water has chemically stabilized as indicated by field parameter measurements and the well head drawdown is maintained within 10 cm for 3 consecutive readings. In the event

that the parameters do not stabilize or the well head drawdown is too significant, the groundwater is to recover to approximately 75% of static levels before sampling.

The multi-meter electrodes will be calibrated prior to receipt of the meter by the supplier using in-house pH and conductivity reference standards. All collected purged water will be stored on-Site in labeled, sealed containers. Equipment used during groundwater monitoring will be thoroughly cleaned and decontaminated between wells.

3.8 Groundwater Sampling

Upon completion the field measurements of water quality parameters, groundwater samples will be collected for chemical analysis using the peristaltic pump and dedicated LDPE tubing. Recommended groundwater sample volumes will be collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Samples for BTEX and VOC analysis will be collected in triplicate vials prepared with concentrated hydrochloric acid or an acceptable substitute as a preservative. Each vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space is present.

The groundwater sample will be assigned a unique identification number, and the date, time, project number, company name, location and requested analyses will be documented in a bound hard cover notebook. The sample will be submitted to the contractual laboratory within analytical test group holding times under chain of custody protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations in according with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, and purging activities. For hydraulic conductivity tests, the electronic water level meters will be decontaminated between sampling locations. All decontamination fluids will be collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration will be calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments will be checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration will be checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

4.3 Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

4.4 Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

4.5 Field Quality Control

Field quality control samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. For groundwater sampling, one (1) field duplicate is to be collected for every ten (10) samples submitted for chemical analysis. For multiple day sampling events, at least one (1) field duplicate soil and groundwater sample will be submitted for chemical analysis. The field duplicate samples will be assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix B – Survey Plan

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix C – Borehole Logs

Log of Borehole 4

Project No. BRM-23012833-D0

Drawing No. 5

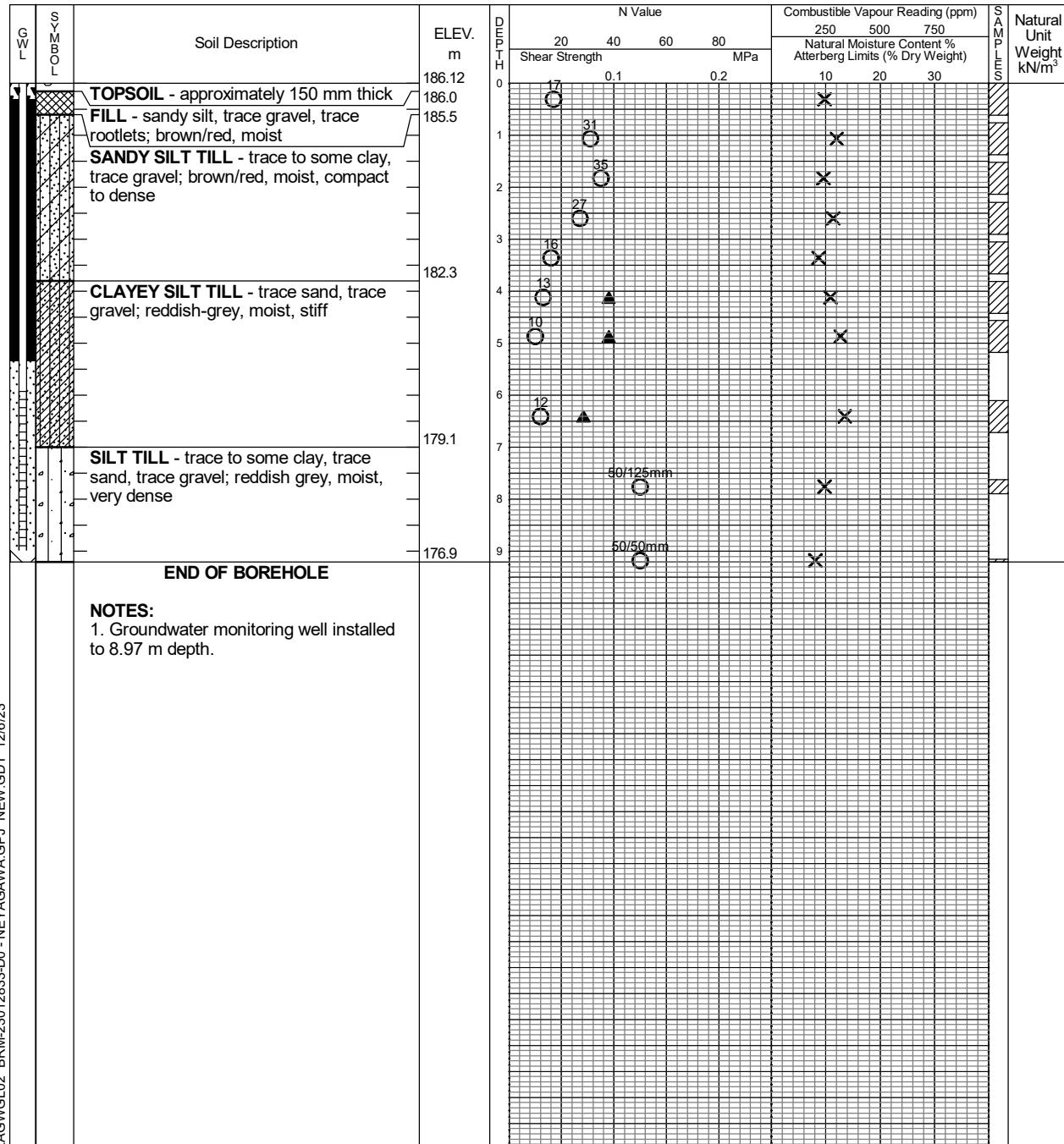
Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario

Date Drilled: November 7, 2023

- Auger Sample
- SPT (N) Value
- Dynamic Cone Test
- Shelby Tube
- Field Vane Test


- Combustible Vapour Reading
- Natural Moisture
- Plastic and Liquid Limit
- Undrained Triaxial at
- % Strain at Failure
- Penetrometer

Drill Type: CME75 Track Mount

100

Datum: Geodetic

- Combustible Vapour Reading
- Natural Moisture
- Plastic and Liquid Limit
- Undrained Triaxial at
- % Strain at Failure
- Penetrometer

AGWGL02 BRM-23012833-D0 - NEYAGAWA,GPJ NEW_GPT 12/6/23

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	2.73	Well
November 17, 2023	2.84	Well
November 29, 2023	2.89	Well

Log of Borehole 5

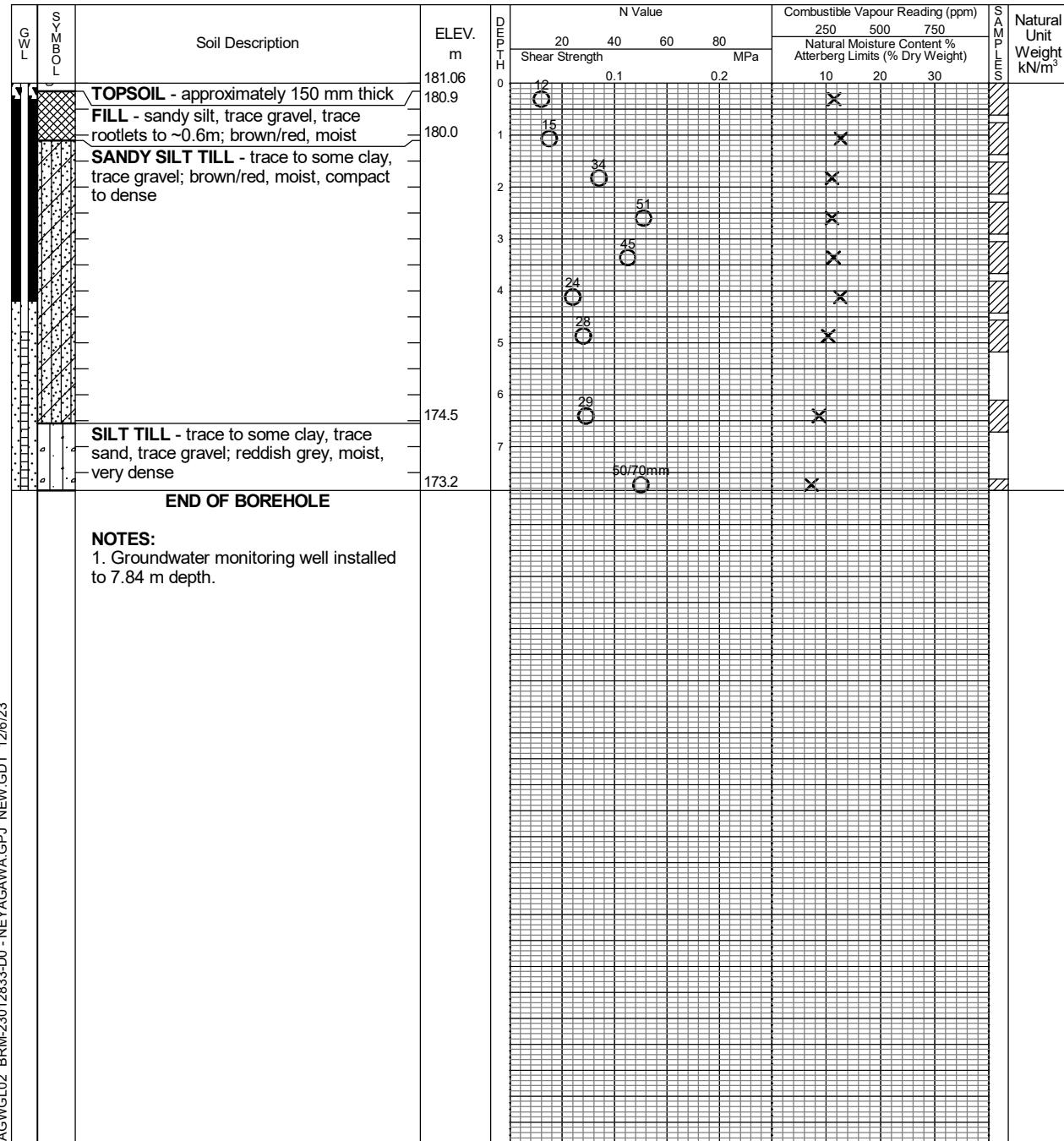
Project No. BRM-23012833-D0

Drawing No. 6

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario


Date Drilled: November 6, 2023

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: CME75 Track Mount

Datum: Geodetic

LAGWGL02 BRM-23012833-D0 - NEYAGAWA.GPJ NEW.GDT 12/6/23

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	-0.64	Well
November 17, 2023	-0.49	Well
November 29, 2023	-0.44	Well

Log of Borehole 1D

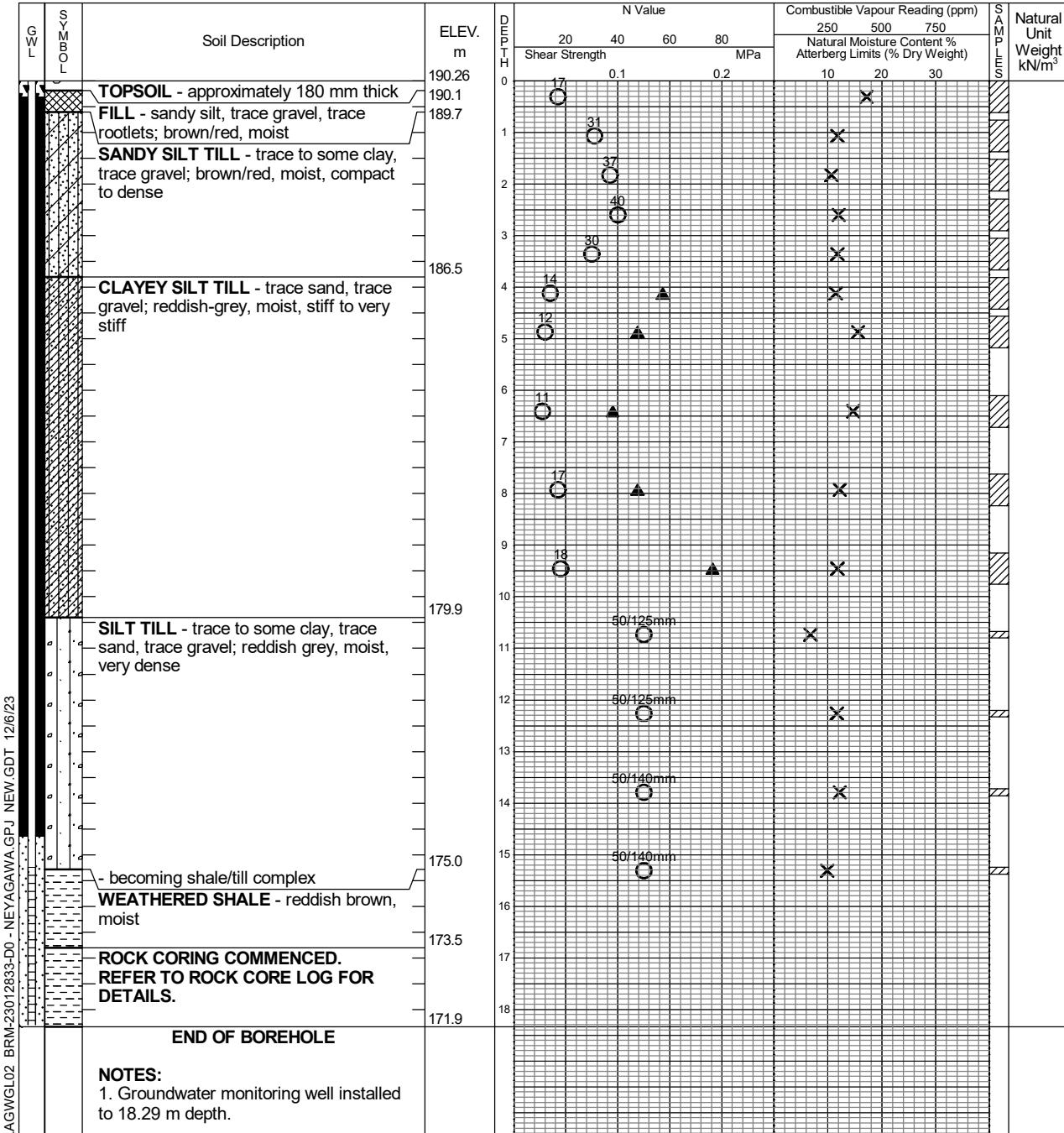
Project No. BRM-23012833-D0

Drawing No. 2

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario


Date Drilled: November 7-8, 2023

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: CME75 Track Mount

Datum: Geodetic

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	6.48	Well
November 29, 2023	6.64	Well

Log of Borehole 1S

Project No. BRM-23012833-D0

Drawing No. 2A

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario

Date Drilled: November 8, 2023

Auger Sample

Combustible Vapour Reading

Natural Moisture

Plastic and Liquid Limit

Undrained Triaxial at

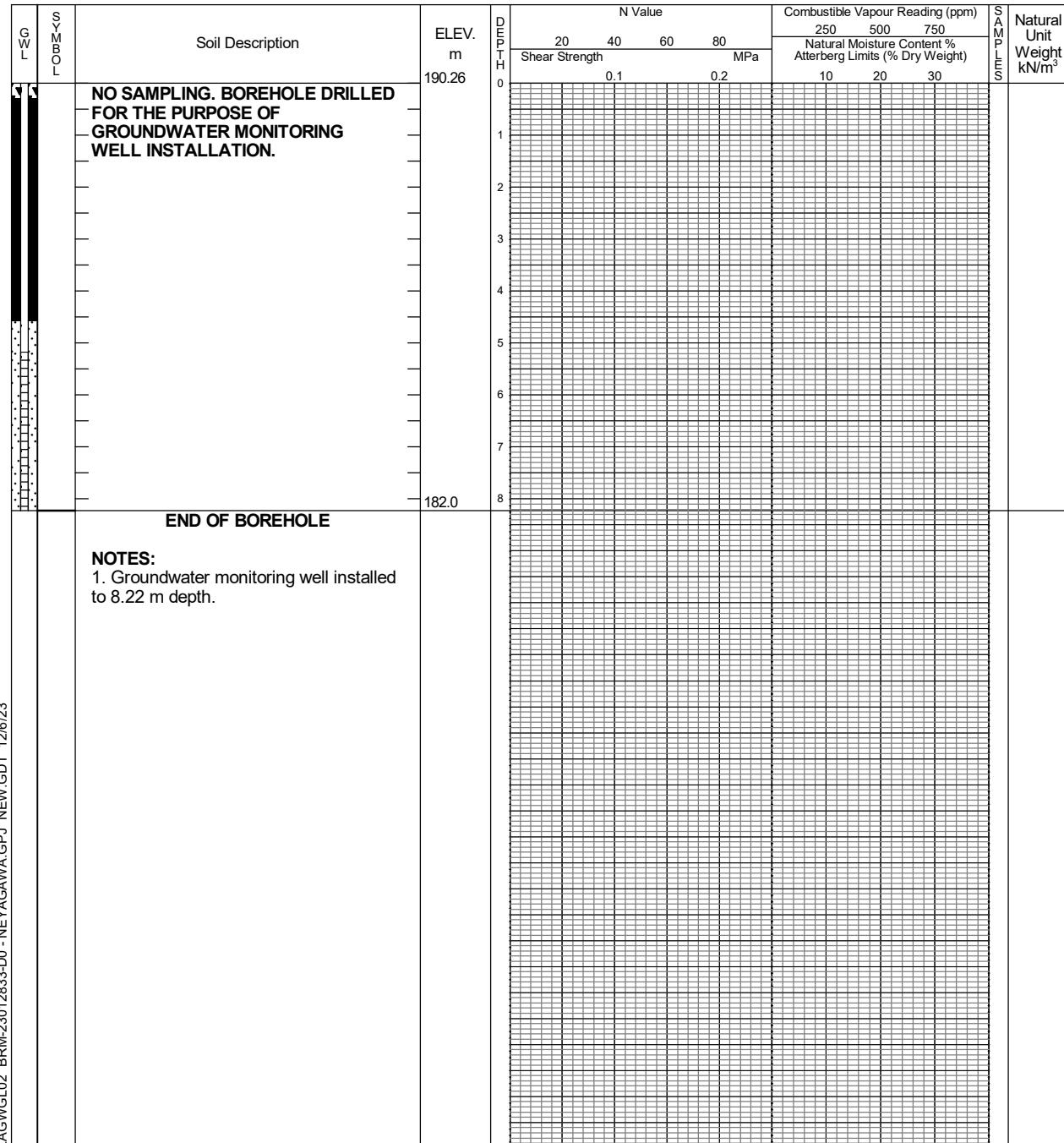
% Strain at Failure

Penetrometer

Drill Type: CME75 Track Mount

SPT (N) Value

Dynamic Cone Test


Shelby Tube

Field Vane Test

Datum: Geodetic

LAGWGL02 BRM-23012833-D0 - NEYAGAWA.GPJ NEW.GDT 12/6/23

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	7.77	Well
November 17, 2023	7.71	Well
November 29, 2023	6.31	Well

Log of Borehole 2D

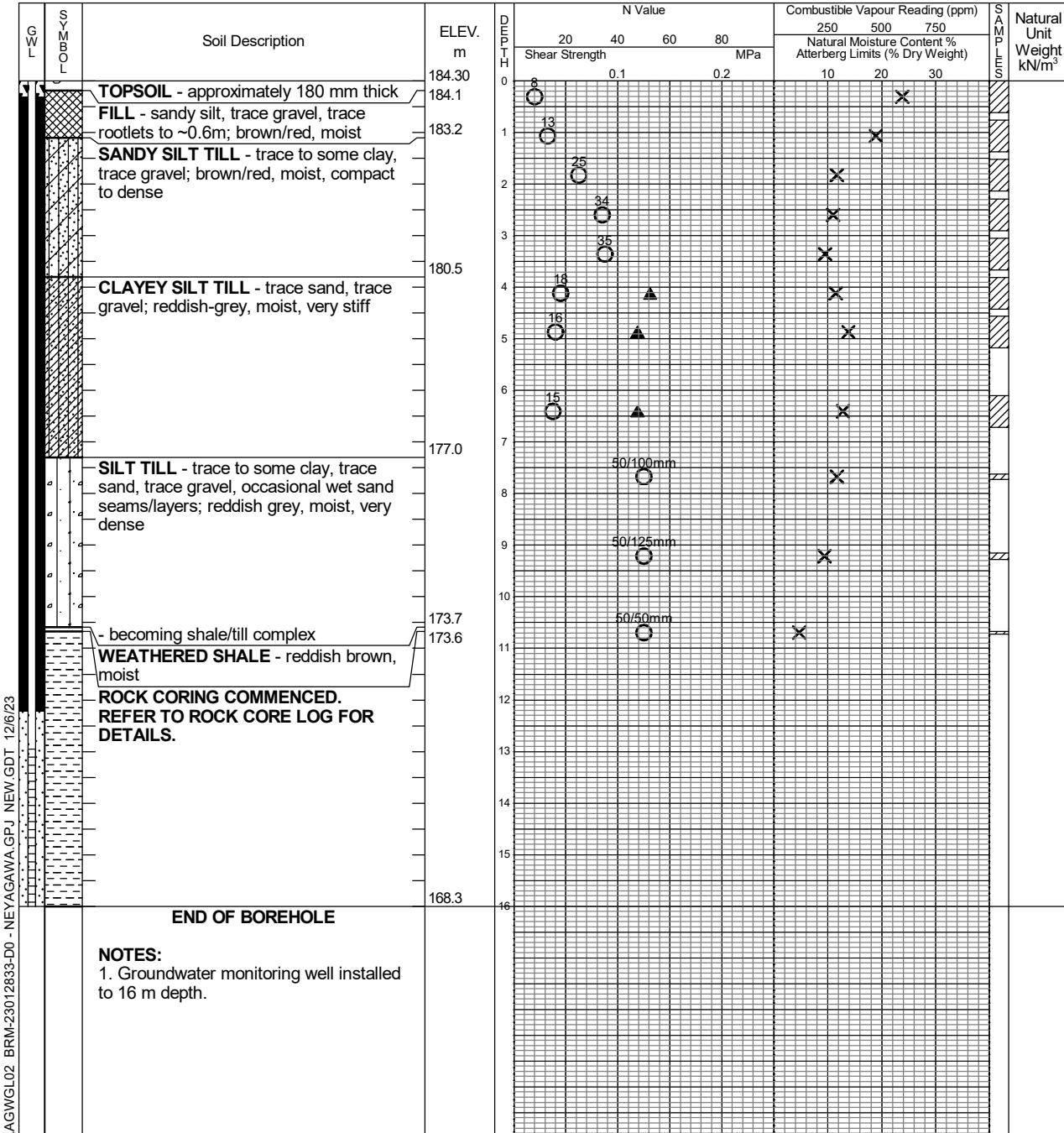
Project No. BRM-23012833-D0

Drawing No. 3

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario


Date Drilled: November 8-9, 2023

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: CME75 Track Mount

Datum: Geodetic

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	1.86	Well
November 29, 2023	1.92	Well

Log of Borehole 2S

Project No. BRM-23012833-D0

Drawing No. 3A

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario

Date Drilled: November 9, 2023

Auger Sample

Combustible Vapour Reading

Natural Moisture

Plastic and Liquid Limit

Undrained Triaxial at

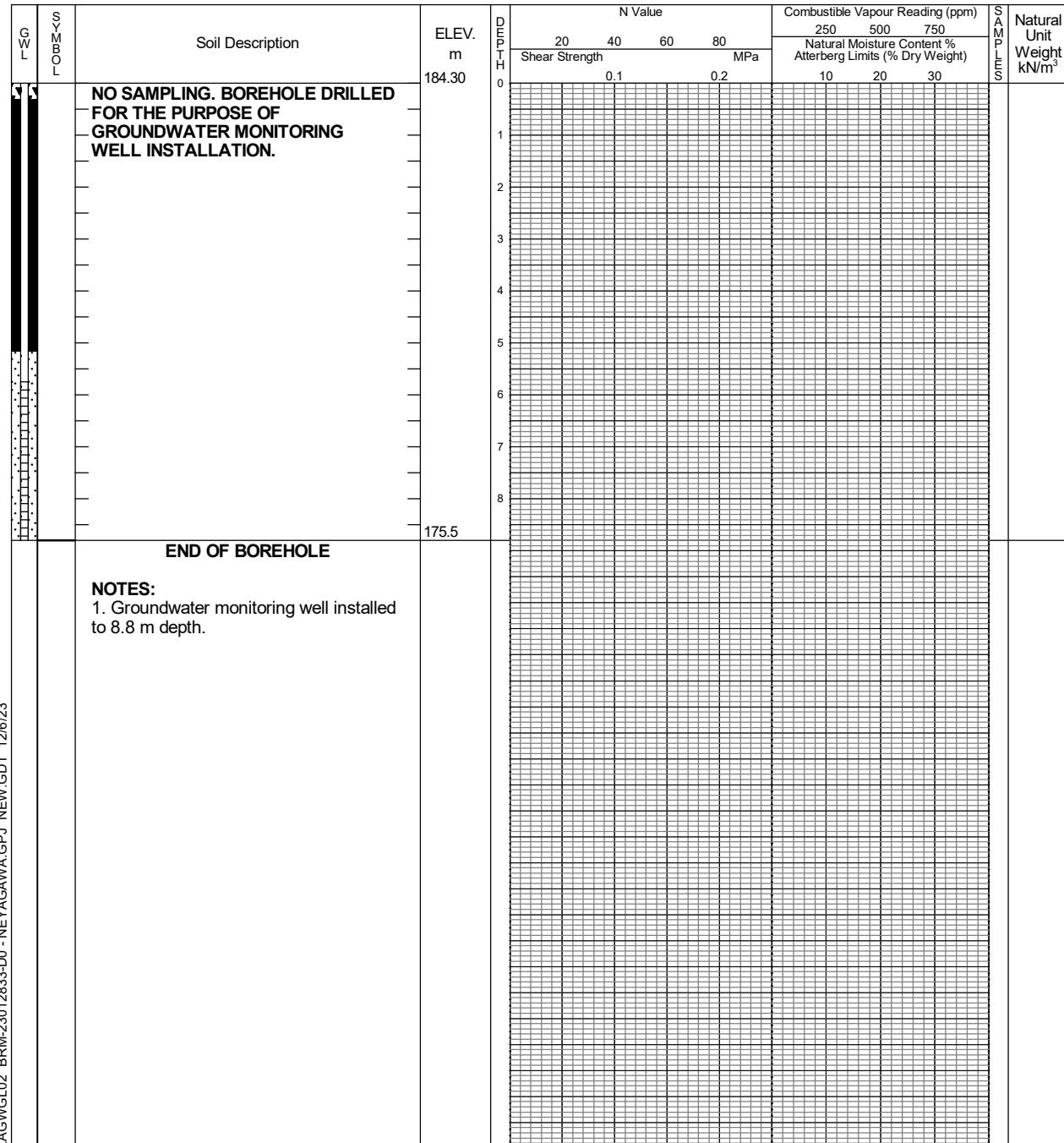
% Strain at Failure

Penetrometer

Drill Type: CME75 Track Mount

SPT (N) Value

Dynamic Cone Test


Shelby Tube

Field Vane Test

Datum: Geodetic

LAGWGL02 BRM-23012833-D0 - NEYAGAWA.GPJ NEW.GDT 12/6/23

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	0.86	Well
November 17, 2023	1.10	Well
November 29, 2023	1.02	Well

Log of Borehole 3D

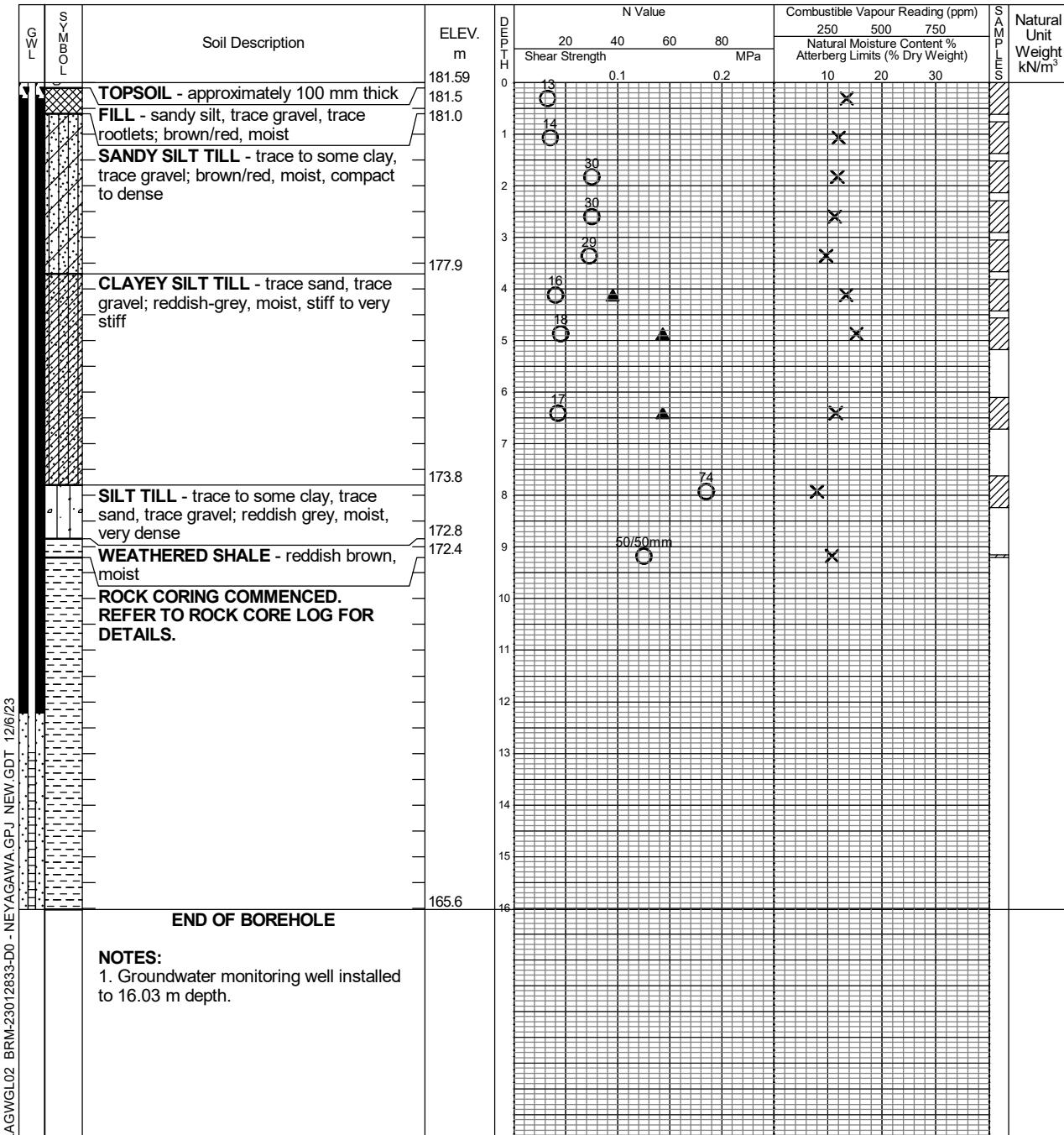
Project No. BRM-23012833-D0

Drawing No. 4

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario


Date Drilled: November 6 and 10, 2023

Auger Sample
SPT (N) Value
Dynamic Cone Test
Shelby Tube
Field Vane Test

Combustible Vapour Reading
Natural Moisture
Plastic and Liquid Limit
Undrained Triaxial at
% Strain at Failure
Penetrometer

Drill Type: CME75 Track Mount

Datum: Geodetic

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	4.47	Well
November 29, 2023	4.47	Well

Log of Borehole 3S

Project No. BRM-23012833-D0

Drawing No. 4A

Project: Preliminary Geotechnical Investigation - Proposed Development

Sheet No. 1 of 1

Location: Neyagawa Boulevard between Hwy 407 & Burnhamthorpe Road West, Oakville, Ontario

Date Drilled: November 6, 2023

Auger Sample

Combustible Vapour Reading

Natural Moisture

Plastic and Liquid Limit

Undrained Triaxial at

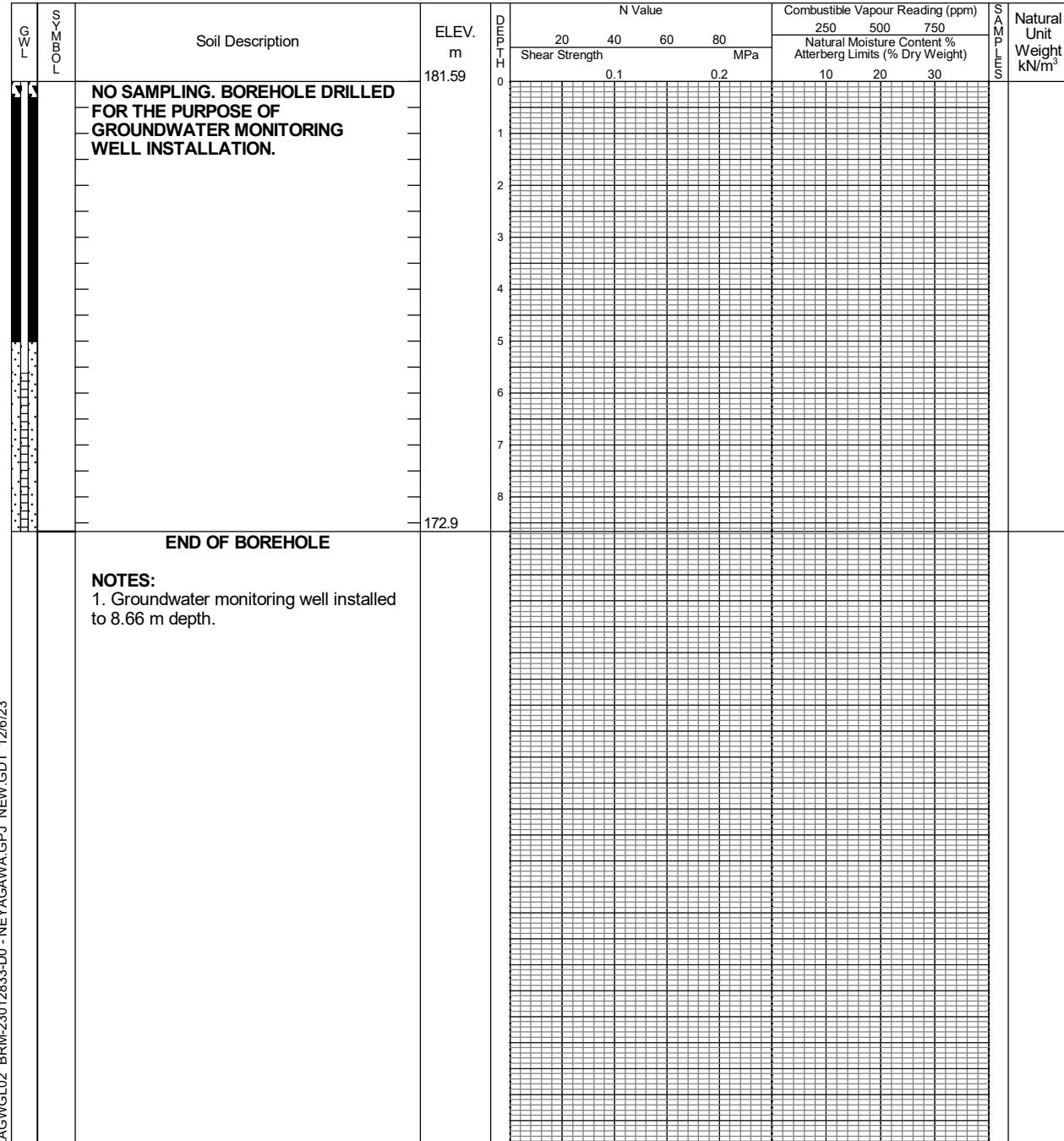
% Strain at Failure

Penetrometer

Drill Type: CME75 Track Mount

SPT (N) Value

Dynamic Cone Test


Shelby Tube

Field Vane Test

Datum: Geodetic

LAGWGL02 BRM-23012833-D0 - NEYAGAWA.GPJ NEW.GDT 12/6/23

Time	Water Level (m)	Depth to Cave (m)
On completion	N/A	Well
November 15, 2023	0.55	Well
November 17, 2023	0.66	Well
November 29, 2023	0.67	Well

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix D – Analytical Results

Table I - Petroleum Hydrocarbons (PHCs) in Soil

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Ontario Regulation 153/04 Table 2 Soil Standards**	Minimum RDL*	BH1-SS9 Test Hole 6.1 to 6.7 11/7/2023 EXP AGAT 23T090680 5438857	BH2-SS5 Test Hole 3.1 to 3.7 11/8/2023 EXP AGAT 23T091302 5444940	BH2-SS50 Duplicate of BH2- SS5 3.1 to 3.7 11/8/2023 EXP AGAT 23T091302 5444950	BH3-SS9 Test Hole 6.1 to 6.7 11/6/2023 EXP AGAT 23T090680 5438870	BH4-SS9 Test Hole 6.1 to 6.7 11/7/2023 EXP AGAT 23T090680 5438862	BH5-SS8 Test Hole 5.4 to 6.0 11/6/2023 EXP AGAT 23T090680 5438875
Benzene	µg/g	0.17	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	1.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Xylenes	µg/g	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
F1 (C6-C10)	µg/g	65	10	<5	<5	<5	<5	<5	<5
F1 (C6-C10) - BTEX	µg/g	65	10	<5	<5	<5	<5	<5	<5
F2 (C10-C16)	µg/g	150	10	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	µg/g	1300	50	<50	<50	<50	<50	<50	<50
F4 (C34-C50)	µg/g	5600	50	<50	<50	<50	<50	<50	<50

NOTES:

All results in ppm (ug/g) and based on dry weight basis.

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for an Residential/Parkland/Institutional property use with fine-textured soil.

Exceedances of Applicable Standards are shown in bold, red and shaded.

NA - Not Analyzed

Table II - Volatile Organic Compounds (VOCs) in Soil

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Ontario Regulation 153/04 Table 2 Soil Standards**	Minimum RDL*	BH1-SS9 Test Hole 6.1 to 6.7 11/7/2023 EXP AGAT 23T090680 5438857	BH1-DUP3 Duplicate of BH3- SS9 6.1 to 6.7 11/6/2023 EXP AGAT 23T090680 5438870	BH2-SS5 Test Hole 3.1 to 3.7 11/8/2023 EXP AGAT 23T091302 5444940	BH3-SS9 Test Hole 6.1 to 6.7 11/6/2023 EXP AGAT 23T090680 5438870	BH4-SS9 Test Hole 6.1 to 6.7 11/7/2023 EXP AGAT 23T090680 5438862	BH5-SS8 Test Hole 5.4 to 6.0 11/6/2023 EXP AGAT 23T090680 5438875
1,1,1,2-Tetrachloroethane	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
1,1,1-Trichloroethane	µg/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
1,1-Dichloroethane	µg/g	0.6	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,1-Dichloroethylene	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	µg/g	1.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichloroethane	µg/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,2-Dichloropropane	µg/g	0.085	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
1,3-Dichlorobenzene	µg/g	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.081	0.05	<0.05	<0.04	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	µg/g	0.097	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	µg/g	28	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	µg/g	0.17	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	µg/g	1.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	µg/g	0.26	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromomethane	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	µg/g	0.12	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	µg/g	2.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	µg/g	0.18	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Cis- 1,2-Dichloroethylene	µg/g	2.5	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibromochloromethane	µg/g	2.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	µg/g	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	1.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Methyl Ethyl Ketone	µg/g	44	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	µg/g	4.3	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl Ether	µg/g	1.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	µg/g	0.96	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
n-Hexane	µg/g	34	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	µg/g	2.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	µg/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	µg/g	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	µg/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	µg/g	0.52	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Trichlorofluoromethane	µg/g	5.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	µg/g	0.022	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Xylenes (Total)	µg/g	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

NOTES:

All results in ppm (µg/g) and based on dry weight basis.

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for an Residential/Parkland/Institutional property use with fine-textured soil.

Exceedances of Applicable Standards are shown in bold, red and shaded.

NA - Not Analyzed

Table III - Metals and Inorganics in Soil

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Ontario Regulation 153/04 Table 2 Soil Standards**	Minimum RDL*	BH1-SS1	BH2-SS1	BH3-SS1	BH3-DUP1	BH4-SS1	BH5-SS1
				Test Hole	Test Hole	Test Hole	Duplicate of BH3 SS-1	Test Hole	Test Hole
Depth (mbgs)				0 to 0.6	0 to 0.6	0 to 0.6	0 to 0.6	0 to 0.6	0 to 0.6
Date Sampled				11/7/2023	11/8/2023	11/6/2023	11/6/2023	11/7/2023	11/6/2023
Date Analyzed				EXP	EXP	EXP	EXP	EXP	EXP
Laboratory				AGAT	AGAT	AGAT	AGAT	AGAT	AGAT
Lab Job Number				23T090680	23T091302	23T090680	23T090680	23T090680	23T090680
Lab Identifier				5438838	5444928	5438867	5438883	5438860	5438873
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	6	6	8	7	6	6
Barium	µg/g	390	2	109	144	109	104	87.9	80
Beryllium	µg/g	5	0.5	1	1.4	1.1	1	0.9	1
Boron	µg/g	120	5	9	11	10	14	<5	10
Boron (Hot Water Soluble)	µg/g	1.5	0.1	0.2	0.44	0.1	0.11	0.15	0.42
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	26	38	30	31	26	28
Cobalt	µg/g	22	0.8	11.2	15.7	16.3	15.5	14.7	15.2
Copper	µg/g	180	1	23.7	27.1	33	31.5	25.3	24.3
Lead	µg/g	120	1	17	19	16	13	16	16
Molybdenum	µg/g	6.9	0.5	0.7	0.8	<0.5	<0.5	<0.5	0.7
Nickel	µg/g	130	1	25	32	37	34	31	31
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.5	0.74	1.26	0.58	0.74	0.58	0.98
Vanadium	µg/g	86	2	37.9	59.7	39.8	45.6	33.7	37.6
Zinc	µg/g	340	5	89	121	93	88	85	86
Chromium, Hexavalent	µg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	0.04	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	1.8	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.378	0.258	0.186	0.197	0.275	0.332
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.237	1.01	0.412	0.332	0.27	0.324
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	7.06	6.74	7.33	7.35	6.74	7.53

NOTES:

All results in ppm (ug/g) and based on dry weight basis.

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for an Residential/Parkland/Institutional property use with fine-textured soil.

Exceedances of Applicable Standards are shown in bold, red and shaded.

pH exceedances of Applicable Standards are shown in purple text.

NA - Not analyzed

Table IV - Organochlorine Pesticides in Soil

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Ontario Regulation 153/04 Table 2 Soil Standards**	Minimum RDL*	BH1-SS1 Test Hole 0 to 0.6 11/7/2023 EXP AGAT 23T090680 5438838	BH2-SS1 Test Hole 0 to 0.6 11/8/2023 EXP AGAT 23T091302 5444928	BH3-SS1 Test Hole 0 to 0.6 11/6/2023 EXP AGAT 23T090680 5438867	BH4-SS1 Test Hole 0 to 0.6 11/7/2023 EXP AGAT 23T090680 5438860	BH4-DUP2 Duplicate of BH4-SS1 0 to 0.6 11/7/2023 EXP AGAT 23T090680 5438884	BH5-SS1 Test Hole 0 to 0.6 11/6/2023 EXP AGAT 23T090680 5438873
Aldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chlordane	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
DDD	µg/g	3.3	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
DDE	µg/g	0.33	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
DDT (Total)	µg/g	1.4	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007
Dieldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Gamma-Hexachlorocyclohexane	µg/g	0.063	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	µg/g	0.15	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor Epoxide	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	µg/g	0.52	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobutadiene	µg/g	0.014	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	µg/g	0.07	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	µg/g	0.13	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

NOTES:

All results in ppm (µg/g) and based on dry weight basis.

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for an Residential/Parkland/Institutional property use with fine-textured soil.

Exceedances of Applicable Standards are shown in bold, red and shaded.

pH exceedances of Applicable Standards are shown in purple text.

NA - Not analyzed

Table V: GROUNDWATER CHEMICAL ANALYSIS - Petroleum Hydrocarbons

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Screen Interval (mbgs)	Units	Table 2 SCS**	Minimum RDL*	Monitoring Well BH3S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469594	Duplicate of BH3S BH30S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469605	Monitoring Well BHSS 4.8 to 7.8 11/17/2023 EXP AGAT 23T094534 5469620
F1 (C6-C10)	µg/L	750		25	<25	<25	
F2 (C10-C16)	µg/L	150		100	<100	<100	
F3 (C16-C34)	µg/L	500		100	<100	<100	
F4 (C34-C50)	µg/L	500		100	<100	<100	

NOTES:

All results in ppb (µg/L).

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

**Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with fine textured soil.

Exceedances of Table 2 Standards are shown in **bold, red and shaded**.

NA = Not Applicable

Table VI: GROUNDWATER CHEMICAL ANALYSIS - Volatile Organic Compounds

Neyagawa Boulevard, Oakville, Ontario
September 2023

Monitoring Well ID Sample ID Screen Interval (mbgs) Date Sampled Consultant Laboratory Lab Job Number Sample Identifier	Units	Table 2 SCS**	Maximum RDL*	Monitoring Well BH3S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469594	Duplicate of BH3S BH30S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469605	Monitoring Well BH55 4.8 to 7.8 11/17/2023 EXP AGAT 23T094534 5469620	TRIP BLANK 28-July-2023 EXP BV C3M6892 WNN334
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10
1,1,1-Trichloroethane	µg/L	200	0.30	<0.30	<0.30	<0.30	<0.30
1,1,2,2-Tetrachloroethane	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10
1,1,2-Trichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	5	0.30	<0.30	<0.30	<0.30	<0.30
1,1-Dichloroethylene	µg/L	14	0.30	<0.30	<0.30	<0.30	<0.30
1,2-Dichlorobenzene	µg/L	3	0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
1,3-Dichlorobenzene	µg/L	59	0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30
1,4-Dichlorobenzene	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10
Acetone	µg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0
Benzene	µg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	16	0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	µg/L	25	0.10	<0.10	<0.10	<0.10	<0.10
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	µg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	µg/L	30	0.10	<0.10	<0.10	<0.10	<0.10
Chloroform	µg/L	22	0.20	<0.20	<0.20	<0.20	<0.20
cis- 1,2-Dichloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	µg/L	25	0.10	<0.10	<0.10	<0.10	<0.10
Dichlorodifluoromethane	µg/L	590	0.40	<0.40	<0.40	<0.40	<0.40
Ethylbenzene	µg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10
Methyl Ethyl Ketone	µg/L	1800	1.0	<1.0	<1.0	<1.0	<1.0
Methyl Isobutyl Ketone	µg/L	640	1.0	<1.0	<1.0	<1.0	<1.0
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	µg/L	50	0.30	<0.30	<0.30	<0.30	<0.30
n-Hexane	µg/L	520	0.20	<0.20	<0.20	<0.20	<0.20
Styrene	µg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	24	0.20	<0.20	<0.20	<0.20	<0.20
trans- 1,2-Dichloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	150	0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	1.7	0.17	<0.17	<0.17	<0.17	<0.17
Xylenes (Total)	µg/L	300	0.20	<0.20	<0.20	<0.20	<0.20
Hexane(n)	µg/L	520	0.2	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	µg/L	150	0.3	<0.50	<0.50	<0.50	<0.50
1,3-Dichloropropene (cis + trans)	µg/L	0.5	0.2	<0.50	<0.50	<0.50	<0.50

NOTES:

All results in ppb (µg/L).

* Maximum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

**Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with fine textured soil.

Exceedances of Table 2 Standards are shown in **bold, red and shaded**.

NA = Not Applicable

Table VII: GROUNDWATER CHEMICAL ANALYSIS - Polycyclic Aromatic Hydrocarbons

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Table 2 SCS**	Minimum RDL*	Monitoring Well BH3S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469594	Duplicate of BH3S BH30S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469605	Monitoring Well BH5S 4.8 to 7.8 11/17/2023 EXP AGAT 23T094534 5469620
Screen Interval (mbgs)						
Date Sampled						
Consultant						
Laboratory						
Lab Job Number						
Lab Identifier						
2-and 1-methyl Naphthalene	µg/L	3.2	0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	4.1	0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1	0.20	<0.20	<0.20	<0.20
Anthracene	µg/L	2.4	0.10	<0.10	<0.10	<0.10
Benzo(a)anthracene	µg/L	1	0.20	<0.20	<0.20	<0.20
Benzo(a)pyrene	µg/L	0.01	0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Benzo(k)fluoranthene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Chrysene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Dibenz(a,h)anthracene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Fluoranthene	µg/L	0.41	0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	120	0.20	<0.20	<0.20	<0.20
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Naphthalene	µg/L	11	0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	1	0.10	<0.10	<0.10	<0.10
Pyrene	µg/L	4.1	0.20	<0.20	<0.20	<0.20

NOTES:

All results in ppb (ug/L).

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

**Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with fine textured soil.

Exceedances of Table 2 Standards are shown in **bold, red and shaded**.

NA = Not Applicable

**

Table

2

Full

Depth

Ge

nic

Site

Con

di

on

ar

Table VIII: GROUNDWATER CHEMICAL ANALYSIS - Metals, Hydride Forming Metals and Other Regulated Parameters

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Table 2 SCS**	Minimum RDL*	Monitoring Well BH3S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469594	Duplicate of BH3S BH30S 5.7 to 8.7 11/17/2023 EXP AGAT 23T094534 5469605	Monitoring Well BH5S 4.8 to 7.8 11/17/2023 EXP AGAT 23T094534 5469620
Screen Interval (mbgs)						
Date Sampled						
Consultant						
Laboratory						
Lab Job Number						
Lab Identifier						
Dissolved Antimony	µg/L	6	1.0	<1.0	<1.0	<1.0
Dissolved Arsenic	µg/L	25	1.0	<1.0	<1.0	3
Dissolved Barium	µg/L	1000	2.0	38.6	37	16.5
Dissolved Beryllium	µg/L	4	0.50	<0.50	<0.50	<0.50
Dissolved Boron	µg/L	5000	10.0	1020	1020	1070
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20	<0.20
Dissolved Chromium	µg/L	50	2.0	<2.0	<2.0	<2.0
Dissolved Copper	µg/L	87	1.0	<1.0	<1.0	5.4
Dissolved Lead	µg/L	10	0.50	<0.50	<0.50	<0.50
Dissolved Molybdenum	µg/L	70	0.50	10.5	10.2	8.34
Dissolved Nickel	µg/L	100	1.0	<1.0	<1.0	<1.0
Dissolved Selenium	µg/L	10	1.0	<1.0	<1.0	<1.0
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20	<0.20
Dissolved Thallium	µg/L	2	0.30	<0.30	<0.30	<0.30
Dissolved Uranium	µg/L	20	0.50	1.39	1.3	<0.50
Dissolved Vanadium	µg/L	6.2	0.40	<0.40	<0.40	<0.40
Dissolved Zinc	µg/L	1100	5.0	<5.0	<5.0	<5.0
Mercury	µg/L	1	0.02	<0.02	<0.02	<0.02
Chromium VI	µg/L	25	2.000	<2.000	<2.000	<2.000
Cyanide, WAD	µg/L	66	2	<2	<2	<2
Dissolved Sodium	µg/L	490000	50	80500	73600	75500
Chloride	µg/L	790000	100	21700	21500	20800
Electrical Conductivity	µS/cm	NA	2	1090	1070	1040
pH	pH Units	NA	7.76	7.73	7.73	7.67

NOTES:

All results in ppb (µg/L).

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

**Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with fine textured soil.

Exceedances of Table 2 Standards are shown in **bold, red and shaded**.

NA = Not Applicable

Table IX: GROUNDWATER CHEMICAL ANALYSIS - Organochlorine Pesticides

Neyagawa Boulevard, Oakville, Ontario
November 2023

Sample ID	Units	Table 2 SCS**	Minimum RDL*	Monitoring Well BH1S 5.2 to 8.2 17-Nov-23 EXP AGAT 23T094534 5469591	Monitoring Well BH2S 5.8 to 8.8 17-Nov-23 EXP AGAT 23T094534 5469594	Monitoring Well BH3S 5.7 to 8.7 17-Nov-23 EXP AGAT 23T094534 5469594	Duplicate of BH3S BH30S 5.7 to 8.7 17-Nov-23 EXP AGAT 23T094534 5469605	Monitoring Well BH4S 6.0 to 9.0 17-Nov-23 EXP AGAT 23T094534 5469606	Monitoring Well BH5S 4.8 to 7.8 17-Nov-23 EXP AGAT 23T094534 5469620
Aldrin	µg/L	0.35	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane	µg/L	7	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
DDD	µg/L	10	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DDE	µg/L	10	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DDT	µg/L	2.8	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Dieldrin	µg/L	0.35	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endosulfan	µg/L	1.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Gamma-Hexachlorocyclohexane	µg/L	1.2	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	µg/L	1.5	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	0.048	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	µg/L	1	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	µg/L	0.6	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	µg/L	2.1	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	µg/L	6.5	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04

NOTES:

All results in ppb (µg/L).

* Minimum Reporting Detection Limit is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

**Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with fine textured soil.

Exceedances of Table 2 Standards are shown in **bold, red and shaded**.

NA = Not Applicable

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix E – Laboratory Certificates of Analysis

CLIENT NAME: EXP SERVICES INC
220 Commerce Valley Drive West, Suite 500
Markham, ON, ON L3T0A8
(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T090680

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 28, 2023

PAGES (INCLUDING COVER): 22

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

VERSION 2: Version 2 supersedes work order 23T090680 , Version 1, issued November 14th, 2023. 872,882 for pH.

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-SS1	BH4-SS1	BH3-SS1	BH5-SS1	BH3-DUP1
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-07	2023-11-07	2023-11-06	2023-11-06	2023-11-06
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	6	6	8	6	7
Barium	µg/g	390	2.0	109	87.9	109	80.0	104
Beryllium	µg/g	4	0.5	1.0	0.9	1.1	1.0	1.0
Boron	µg/g	120	5	9	<5	10	10	14
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.20	0.15	0.10	0.42	0.11
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	26	26	30	28	31
Cobalt	µg/g	22	0.8	11.2	14.7	16.3	15.2	15.5
Copper	µg/g	140	1.0	23.7	25.3	33.0	24.3	31.5
Lead	µg/g	120	1	17	16	16	16	13
Molybdenum	µg/g	6.9	0.5	0.7	<0.5	<0.5	0.7	<0.5
Nickel	µg/g	100	1	25	31	37	31	34
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.50	0.74	0.58	0.58	0.98	0.74
Vanadium	µg/g	86	2.0	37.9	33.7	39.8	37.6	45.6
Zinc	µg/g	340	5	89	85	93	86	88
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.378	0.275	0.186	0.332	0.197
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.237	0.270	0.412	0.324	0.332
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	7.06	6.74	7.33	7.53	7.35

Certified By:

Nivine
Basilio

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438838-5438883 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl₂ extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basily

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

SAMPLE DESCRIPTION:				BH3-SS10	BH5-SS9
SAMPLE TYPE:				Soil	Soil
DATE SAMPLED:				2023-11-06	2023-11-06
Parameter	Unit	G / S	RDL	5438872	5438882
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	7.77	7.96

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438872-5438882 pH was determined on the 0.01M CaCl₂ extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basily

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-SS1	BH4-SS1	BH3-SS1	BH5-SS1	BH4-DUP2
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-07	2023-11-07	2023-11-06	2023-11-06	2023-11-07
Hexachloroethane	µg/g	0.089	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Gamma-Hexachlorocyclohexane	µg/g	0.056	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	µg/g	0.15	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor Epoxide	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan I	µg/g	0.005		<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	µg/g	0.005		<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Alpha-Chlordane	µg/g	0.005		<0.005	<0.005	<0.005	<0.005	<0.005
gamma-Chlordane	µg/g	0.005		<0.005	<0.005	<0.005	<0.005	<0.005
Chlordane	µg/g	0.05	0.007	<0.007	<0.007	<0.007	<0.007	<0.007
op'-DDE	ug/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
pp'-DDE	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
DDE	µg/g	0.26	0.007	<0.007	<0.007	<0.007	<0.007	<0.007
op'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
pp'-DDD	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
DDD	µg/g	3.3	0.007	<0.007	<0.007	<0.007	<0.007	<0.007
op'-DDT	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
pp'-DDT	µg/g		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
DDT (Total)	µg/g	1.4	0.007	<0.007	<0.007	<0.007	<0.007	<0.007
Dieldrin	µg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	µg/g	0.04	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	µg/g	0.13	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	µg/g	0.52	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobutadiene	µg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moisture Content	%		0.1	14.7	12.1	15.3	17.9	9.9
wet weight OC	g		0.01	10.33	10.69	10.50	10.36	10.41
Surrogate	Unit	Acceptable Limits						
TCMX	%	50-140		88	83	88	86	80
Decachlorobiphenyl	%	50-140		104	106	116	112	109

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438838-5438884 Results are based on the dry weight of the soil.
DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-SS9	BH4-SS9	BH3-SS9	BH5-SS8
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-07	2023-11-07	2023-11-06	2023-11-06
F1 (C6 to C10)	µg/g	55	5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	NA
Moisture Content	%		0.1	11.5	10.3	10.0	11.4
Surrogate	Unit	Acceptable Limits					
Toluene-d8	%	50-140		120	112	116	99
Terphenyl	%	60-140		66	69	69	66

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438857-5438875 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		5438885	
		SAMPLE TYPE: Soil			
		G / S	DATE SAMPLED: 2023-11-07		
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	
Bromodichloromethane	ug/g	1.5	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	
Dibromochloromethane	ug/g	2.3	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	
Ethylbenzene	ug/g	1.1	0.05	<0.05	
m & p-Xylene	ug/g	0.05	0.05	<0.05	

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

SAMPLE DESCRIPTION: BH1-DUP3				
SAMPLE TYPE: Soil				
DATE SAMPLED: 2023-11-07				
Parameter	Unit	G / S	RDL	5438885
Bromoform	ug/g	0.27	0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05
o-Xylene	ug/g		0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05
1,2-Dichlorobenzene	ug/g	1.2	0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	ug/g	0.05	0.04	<0.04
n-Hexane	ug/g	2.8	0.05	<0.05
Moisture Content	%		0.1	11.9
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	114	
4-Bromofluorobenzene	% Recovery	50-140	82	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438885 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-SS9	BH4-SS9	BH3-SS9	BH5-SS8
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-07	2023-11-07	2023-11-06	2023-11-06
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05
Trichlorodifluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	<0.05
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	<0.03	<0.03
Bromodichloromethane	ug/g	1.5	0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04
Toluene	ug/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	ug/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	1.1	0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-11-08

DATE REPORTED: 2023-11-28

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-SS9	BH4-SS9	BH3-SS9	BH5-SS8
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-07	2023-11-07	2023-11-06	2023-11-06
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	1.2	0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	11.5	10.3	10.0	11.4
Surrogate	Unit	Acceptable Limits					
Toluene-d8	% Recovery	50-140		120	112	116	99
4-Bromofluorobenzene	% Recovery	50-140		83	84	77	82

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5438857-5438875 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE:Oakville

SAMPLED BY:AD

Soil Analysis

RPT Date: Nov 28, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Recovery	Lower	Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony	5438838	5438838	<0.8	<0.8	NA	< 0.8	118%	70%	130%	87%	80%	120%	80%	70%	130%
Arsenic	5438838	5438838	6	6	0.0%	< 1	130%	70%	130%	109%	80%	120%	116%	70%	130%
Barium	5438838	5438838	109	110	0.9%	< 2.0	115%	70%	130%	105%	80%	120%	116%	70%	130%
Beryllium	5438838	5438838	1.0	1.0	NA	< 0.5	113%	70%	130%	100%	80%	120%	109%	70%	130%
Boron	5438838	5438838	9	8	NA	< 5	91%	70%	130%	99%	80%	120%	84%	70%	130%
Boron (Hot Water Soluble)	5438838	5438838	0.20	0.20	NA	< 0.10	83%	60%	140%	92%	70%	130%	94%	60%	140%
Cadmium	5438838	5438838	<0.5	<0.5	NA	< 0.5	120%	70%	130%	109%	80%	120%	108%	70%	130%
Chromium	5438838	5438838	26	25	3.9%	< 5	116%	70%	130%	102%	80%	120%	115%	70%	130%
Cobalt	5438838	5438838	11.2	11.3	0.9%	< 0.8	115%	70%	130%	112%	80%	120%	115%	70%	130%
Copper	5438838	5438838	23.7	23.8	0.4%	< 1.0	108%	70%	130%	103%	80%	120%	104%	70%	130%
Lead	5438838	5438838	17	18	5.7%	< 1	106%	70%	130%	96%	80%	120%	93%	70%	130%
Molybdenum	5438838	5438838	0.7	0.7	NA	< 0.5	112%	70%	130%	108%	80%	120%	109%	70%	130%
Nickel	5438838	5438838	25	25	0.0%	< 1	114%	70%	130%	105%	80%	120%	106%	70%	130%
Selenium	5438838	5438838	<0.8	<0.8	NA	< 0.8	89%	70%	130%	114%	80%	120%	117%	70%	130%
Silver	5438838	5438838	<0.5	<0.5	NA	< 0.5	120%	70%	130%	102%	80%	120%	101%	70%	130%
Thallium	5438838	5438838	<0.5	<0.5	NA	< 0.5	100%	70%	130%	108%	80%	120%	105%	70%	130%
Uranium	5438838	5438838	0.74	0.76	NA	< 0.50	106%	70%	130%	97%	80%	120%	99%	70%	130%
Vanadium	5438838	5438838	37.9	37.0	2.4%	< 2.0	117%	70%	130%	109%	80%	120%	121%	70%	130%
Zinc	5438838	5438838	89	89	0.0%	< 5	130%	70%	130%	114%	80%	120%	120%	70%	130%
Chromium, Hexavalent	5445393		<0.2	<0.2	NA	< 0.2	108%	70%	130%	102%	80%	120%	86%	70%	130%
Cyanide, WAD	5436514		<0.040	<0.040	NA	< 0.040	104%	70%	130%	98%	80%	120%	82%	70%	130%
Mercury	5438838	5438838	<0.10	<0.10	NA	< 0.10	113%	70%	130%	110%	80%	120%	110%	70%	130%
Electrical Conductivity (2:1)	5442512		1.00	1.20	18.2%	< 0.005	109%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5435345		1.23	1.30	5.5%	NA									
pH, 2:1 CaCl ₂ Extraction	5431643		6.79	6.99	2.9%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl ₂ Extraction	5483382	5.56	5.61	0.9%	NA	101%	80%	120%
--------------------------------------	---------	------	------	------	----	------	-----	------

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Nivine Basil

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T090680****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE:Oakville****SAMPLED BY:AD**

Trace Organics Analysis

RPT Date: Nov 28, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - OC Pesticides (Soil)

Hexachloroethane	5433177	< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	88%	50%	140%	93%	50%	140%
Gamma-Hexachlorocyclohexane	5433177	< 0.005	< 0.005	NA	< 0.005	85%	50%	140%	94%	50%	140%	91%	50%	140%
Heptachlor	5433177	< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	107%	50%	140%	106%	50%	140%
Aldrin	5433177	< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	98%	50%	140%	84%	50%	140%
Heptachlor Epoxide	5433177	< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	85%	50%	140%	90%	50%	140%
Endosulfan I	5433177	< 0.005	< 0.005	NA	< 0.005	97%	50%	140%	93%	50%	140%	83%	50%	140%
Endosulfan II	5433177	< 0.005	< 0.005	NA	< 0.005	96%	50%	140%	108%	50%	140%	92%	50%	140%
Alpha-Chlordane	5433177	< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	103%	50%	140%	94%	50%	140%
gamma-Chlordane	5433177	< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	105%	50%	140%	95%	50%	140%
op'-DDE	5433177	< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	109%	50%	140%	93%	50%	140%
pp'-DDE	5433177	< 0.005	< 0.005	NA	< 0.005	94%	50%	140%	111%	50%	140%	102%	50%	140%
op'-DDD	5433177	< 0.005	< 0.005	NA	< 0.005	98%	50%	140%	106%	50%	140%	95%	50%	140%
pp'-DDD	5433177	< 0.005	< 0.005	NA	< 0.005	82%	50%	140%	110%	50%	140%	101%	50%	140%
op'-DDT	5433177	< 0.005	< 0.005	NA	< 0.005	80%	50%	140%	102%	50%	140%	82%	50%	140%
pp'-DDT	5433177	< 0.005	< 0.005	NA	< 0.005	82%	50%	140%	105%	50%	140%	96%	50%	140%
Dieldrin	5433177	< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	100%	50%	140%	88%	50%	140%
Endrin	5433177	< 0.005	< 0.005	NA	< 0.005	80%	50%	140%	108%	50%	140%	115%	50%	140%
Methoxychlor	5433177	< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	92%	50%	140%	108%	50%	140%
Hexachlorobenzene	5433177	< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	89%	50%	140%	106%	50%	140%
Hexachlorobutadiene	5433177	< 0.01	< 0.01	NA	< 0.01	82%	50%	140%	88%	50%	140%	83%	50%	140%

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)

F1 (C6 to C10)	5438885 5438885	<5	<5	NA	<5	80%	60%	140%	77%	60%	140%	102%	60%	140%
F2 (C10 to C16)	5438870 5438870	<10	<10	NA	<10	114%	60%	140%	92%	60%	140%	98%	60%	140%
F3 (C16 to C34)	5438870 5438870	<50	<50	NA	<50	117%	60%	140%	79%	60%	140%	91%	60%	140%
F4 (C34 to C50)	5438870 5438870	<50	<50	NA	<50	72%	60%	140%	96%	60%	140%	84%	60%	140%

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Dichlorodifluoromethane	5438885 5438885	<0.05	<0.05	NA	<0.05	86%	50%	140%	81%	50%	140%	68%	50%	140%
Vinyl Chloride	5438885 5438885	<0.02	<0.02	NA	<0.02	113%	50%	140%	86%	50%	140%	91%	50%	140%
Bromomethane	5438885 5438885	<0.05	<0.05	NA	<0.05	103%	50%	140%	111%	50%	140%	100%	50%	140%
Trichlorofluoromethane	5438885 5438885	<0.05	<0.05	NA	<0.05	115%	50%	140%	110%	50%	140%	112%	50%	140%
Acetone	5438885 5438885	<0.50	<0.50	NA	<0.50	95%	50%	140%	98%	50%	140%	90%	50%	140%
1,1-Dichloroethylene	5438885 5438885	<0.05	<0.05	NA	<0.05	97%	50%	140%	102%	60%	130%	99%	50%	140%
Methylene Chloride	5438885 5438885	<0.05	<0.05	NA	<0.05	100%	50%	140%	104%	60%	130%	86%	50%	140%
Trans- 1,2-Dichloroethylene	5438885 5438885	<0.05	<0.05	NA	<0.05	114%	50%	140%	104%	60%	130%	76%	50%	140%
Methyl tert-butyl Ether	5438885 5438885	<0.05	<0.05	NA	<0.05	83%	50%	140%	74%	60%	130%	76%	50%	140%
1,1-Dichloroethane	5438885 5438885	<0.02	<0.02	NA	<0.02	107%	50%	140%	92%	60%	130%	70%	50%	140%
Methyl Ethyl Ketone	5438885 5438885	<0.50	<0.50	NA	<0.50	90%	50%	140%	108%	50%	140%	77%	50%	140%
Cis- 1,2-Dichloroethylene	5438885 5438885	<0.02	<0.02	NA	<0.02	109%	50%	140%	93%	60%	130%	77%	50%	140%
Chloroform	5438885 5438885	<0.04	<0.04	NA	<0.04	109%	50%	140%	98%	60%	130%	72%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 13 of 22

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.calab.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T090680

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: Oakville

SAMPLED BY: AD

Trace Organics Analysis (Continued)

RPT Date: Nov 28, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	
1,2-Dichloroethane	5438885	5438885	<0.03	<0.03	NA	< 0.03	102%	50%	140%	105%	60%	130%	79%	50%	140%	
1,1,1-Trichloroethane	5438885	5438885	<0.05	<0.05	NA	< 0.05	99%	50%	140%	86%	60%	130%	102%	50%	140%	
Carbon Tetrachloride	5438885	5438885	<0.05	<0.05	NA	< 0.05	106%	50%	140%	92%	60%	130%	80%	50%	140%	
Benzene	5438885	5438885	<0.02	<0.02	NA	< 0.02	92%	50%	140%	80%	60%	130%	86%	50%	140%	
1,2-Dichloropropane	5438885	5438885	<0.03	<0.03	NA	< 0.03	80%	50%	140%	101%	60%	130%	72%	50%	140%	
Trichloroethylene	5438885	5438885	<0.03	<0.03	NA	< 0.03	98%	50%	140%	90%	60%	130%	76%	50%	140%	
Bromodichloromethane	5438885	5438885	<0.05	<0.05	NA	< 0.05	92%	50%	140%	83%	60%	130%	85%	50%	140%	
Methyl Isobutyl Ketone	5438885	5438885	<0.50	<0.50	NA	< 0.50	95%	50%	140%	102%	50%	140%	87%	50%	140%	
1,1,2-Trichloroethane	5438885	5438885	<0.04	<0.04	NA	< 0.04	111%	50%	140%	111%	60%	130%	118%	50%	140%	
Toluene	5438885	5438885	<0.05	<0.05	NA	< 0.05	82%	50%	140%	95%	60%	130%	98%	50%	140%	
Dibromochloromethane	5438885	5438885	<0.05	<0.05	NA	< 0.05	107%	50%	140%	109%	60%	130%	112%	50%	140%	
Ethylene Dibromide	5438885	5438885	<0.04	<0.04	NA	< 0.04	91%	50%	140%	98%	60%	130%	112%	50%	140%	
Tetrachloroethylene	5438885	5438885	<0.05	<0.05	NA	< 0.05	75%	50%	140%	85%	60%	130%	105%	50%	140%	
1,1,1,2-Tetrachloroethane	5438885	5438885	<0.04	<0.04	NA	< 0.04	89%	50%	140%	88%	60%	130%	108%	50%	140%	
Chlorobenzene	5438885	5438885	<0.05	<0.05	NA	< 0.05	85%	50%	140%	110%	60%	130%	94%	50%	140%	
Ethylbenzene	5438885	5438885	<0.05	<0.05	NA	< 0.05	81%	50%	140%	109%	60%	130%	81%	50%	140%	
m & p-Xylene	5438885	5438885	<0.05	<0.05	NA	< 0.05	92%	50%	140%	115%	60%	130%	106%	50%	140%	
Bromoform	5438885	5438885	<0.05	<0.05	NA	< 0.05	107%	50%	140%	107%	60%	130%	96%	50%	140%	
Styrene	5438885	5438885	<0.05	<0.05	NA	< 0.05	82%	50%	140%	82%	60%	130%	112%	50%	140%	
1,1,2,2-Tetrachloroethane	5438885	5438885	<0.05	<0.05	NA	< 0.05	110%	50%	140%	115%	60%	130%	91%	50%	140%	
o-Xylene	5438885	5438885	<0.05	<0.05	NA	< 0.05	109%	50%	140%	106%	60%	130%	89%	50%	140%	
1,3-Dichlorobenzene	5438885	5438885	<0.05	<0.05	NA	< 0.05	93%	50%	140%	105%	60%	130%	109%	50%	140%	
1,4-Dichlorobenzene	5438885	5438885	<0.05	<0.05	NA	< 0.05	83%	50%	140%	103%	60%	130%	101%	50%	140%	
1,2-Dichlorobenzene	5438885	5438885	<0.05	<0.05	NA	< 0.05	97%	50%	140%	100%	60%	130%	96%	50%	140%	
n-Hexane	5438885	5438885	<0.05	<0.05	NA	< 0.05	105%	50%	140%	72%	60%	130%	108%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl ₂ Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Heptachlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Aldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Heptachlor Epoxide	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan I	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan II	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
Alpha-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
gamma-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
op'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
op'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
op'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDT (Total)	ORG-91-5113	modified from EPA 3570, 3620C & 8081B	CALCULATION
Dieldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Methoxychlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Hexachlorobenzene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Hexachlorobutadiene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
TCMX	ORG-91-5112	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
wet weight OC	ORG-91-5113		BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T090680

ATTENTION TO: Amanda Catenaro

SAMPLED BY: AD

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Have feedback?

Scan here for a quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Laboratory Use Only

Work Order #: 23T090680

Cooler Quantity: 219

Arrival Temperatures: 1.4 1.6 1.3
2.2 2.4 2.1

Custody Seal Intact: Yes No N/A

Notes: ice

Turnaround Time (TAT) Required:

Regular TAT

5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

Report Information:

Company: EXP Services Inc
Contact: Amanda Catenaro
Address: 220 Commerce Valley Dr. W.
Suite 110, Markham ON
Phone: 905.695.3217 Fax:
Reports to be sent to:
1. Email: amanda.catenaro@exp.com
2. Email:

Project Information:

Project: GTR-23012833-A0-2
Site Location: OAKVILLE
Sampled By: AD
AGAT Quote #: PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No
Company: _____
Contact: _____
Address: _____
Email: _____

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04 Regulation 406 Sewer Use
 Sanitary Storm
Table 2
 Ind/Corn Res/Park Agriculture
Table Indicate One
 Region
 Prov. Water Quality Objectives (PWQO)
 Other
Soil Texture (Check One)
 Coarse
 CCME
Indicate One

Is this submission for a Record of Site Condition?

Yes No

Report Guideline on Certificate of Analysis

Yes No

Sample Matrix Legend

GW Ground Water
O Oil
P Paint
S Soil
SD Sediment
SW Surface Water

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N	Field Filtered - Metals, Hg, CrV, DOC	0. Reg 153	0. Reg 558	0. Reg 406	PCBs: Aroclors	Landfill Disposal Characterization TLP: TCPL: <input type="checkbox"/> M&I <input type="checkbox"/> VOCs <input type="checkbox"/> ABNs <input type="checkbox"/> BaP <input type="checkbox"/> PCBs	Regulation 406: SPLP Rainwater Leach SPLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs	Regulation 406: Characterization Package pH, ICPMS Metals, BTEX, F1-F4: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide	Potentially Hazardous or High Concentration (Y/N):
							Metals & Inorganics	Metals - <input type="checkbox"/> CrV, <input type="checkbox"/> Hg, <input type="checkbox"/> HWSB BTEX, F1-F4 PHCs	VOC	PAHs	PCBs	Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide	OC1		
1. BH1-SS1	Nov 7	AM	2	S	Hold										
2. BH1-SS2		AM	2												
3. BH1-SS9		AM	3												
4. BH1-SS10		AM	3		Hold										
5. BH4-SS1		PM	2												
6. BH4-SS2		AM	2		Hold										
7. BH4-SS9		AM	3												
8. BH4-SS10		AM	3		Hold										
9. BH3-SS1	Nov 6	AM	2												
10. BH3-SS2		AM	2												
11. BH3-SS9		AM	3		Hold										

Samples Relinquished By (Print Name and Sign):

Abdul Rahman Dullal Mulla

Date Relinquished By (Print Name and Sign):

Nov 8/23

Date Relinquished By (Print Name and Sign):

Date Relinquished By (Print Name and Sign):

Date Relinquished By (Print Name and Sign):

Samples Received By (Print Name and Sign):

Rhiana

Samples Received By (Print Name and Sign):

Date 201

Time

Date

Time

Date

Time

Page 1 of 2

T-149757

CLIENT NAME: EXP SERVICES INC
220 Commerce Valley Drive West, Suite 500
Markham, ON, ON L3T0A8
(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T091302

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Nov 15, 2023

PAGES (INCLUDING COVER): 19

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	G / S	RDL	5444928
Antimony	µg/g	7.5	0.8	<0.8
Arsenic	µg/g	18	1	6
Barium	µg/g	390	2.0	144
Beryllium	µg/g	5	0.5	1.4
Boron	µg/g	120	5	11
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.44
Cadmium	µg/g	1.2	0.5	<0.5
Chromium	µg/g	160	5	38
Cobalt	µg/g	22	0.8	15.7
Copper	µg/g	180	1.0	27.1
Lead	µg/g	120	1	19
Molybdenum	µg/g	6.9	0.5	0.8
Nickel	µg/g	130	1	32
Selenium	µg/g	2.4	0.8	<0.8
Silver	µg/g	25	0.5	<0.5
Thallium	µg/g	1	0.5	<0.5
Uranium	µg/g	23	0.50	1.26
Vanadium	µg/g	86	2.0	59.7
Zinc	µg/g	340	5	121
Chromium, Hexavalent	µg/g	10	0.2	<0.2
Cyanide, WAD	µg/g	0.051	0.040	<0.040
Mercury	µg/g	1.8	0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.258
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	1.01
pH, 2:1 CaCl ₂ Extraction	pH Units	5.0-9.0	NA	6.74

Certified By:

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:OAKVILLE

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L.

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils ***pH range listed applies to surface soil only**

5444928 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl₂ extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	G / S	RDL	
Hexachloroethane	µg/g	0.07	0.005	<0.005
Gamma-Hexachlorocyclohexane	µg/g	0.063	0.005	<0.005
Heptachlor	µg/g	0.15	0.005	<0.005
Aldrin	µg/g	0.05	0.005	<0.005
Heptachlor Epoxide	µg/g	0.05	0.005	<0.005
Endosulfan I	µg/g		0.005	<0.005
Endosulfan II	µg/g		0.005	<0.005
Endosulfan	µg/g	0.04	0.005	<0.005
Alpha-Chlordane	µg/g		0.005	<0.005
gamma-Chlordane	µg/g		0.005	<0.005
Chlordane	µg/g	0.05	0.007	<0.007
op'-DDE	ug/g		0.005	<0.005
pp'-DDE	µg/g		0.005	<0.005
DDE	µg/g	0.33	0.007	<0.007
op'-DDD	µg/g		0.005	<0.005
pp'-DDD	µg/g		0.005	<0.005
DDD	µg/g	3.3	0.007	<0.007
op'-DDT	µg/g		0.005	<0.005
pp'-DDT	µg/g		0.005	<0.005
DDT (Total)	µg/g	1.4	0.007	<0.007
Dieldrin	µg/g	0.05	0.005	<0.005
Endrin	µg/g	0.04	0.005	<0.005
Methoxychlor	µg/g	0.13	0.005	<0.005
Hexachlorobenzene	µg/g	0.52	0.005	<0.005
Hexachlorobutadiene	µg/g	0.014	0.01	<0.01
Moisture Content	%		0.1	27.3
wet weight OC	g		0.01	10.86

Certified By:

R. Chakrabarty

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

SAMPLE DESCRIPTION:	BH2-SS1		
SAMPLE TYPE:	Soil		
DATE SAMPLED:	2023-11-08 12:00		
Surrogate	Unit	Acceptable Limits	5444928
TCMX	%	50-140	90
Decachlorobiphenyl	%	50-140	102

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils **pH range listed applies to surface soil only**
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5444928 Results are based on the dry weight of the soil.
DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.
DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.
DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.
Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.
Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

SAMPLE DESCRIPTION: BH2-SS50				
Parameter	Unit	G / S	RDL	5444950
Benzene	µg/g	0.17	0.02	<0.02
Toluene	µg/g	6	0.05	<0.05
Ethylbenzene	µg/g	1.6	0.05	<0.05
m & p-Xylene	µg/g		0.05	<0.05
o-Xylene	µg/g		0.05	<0.05
Xylenes (Total)	µg/g	25	0.05	<0.05
F1 (C6 to C10)	µg/g	65	5	<5
F1 (C6 to C10) minus BTEX	µg/g	65	5	<5
F2 (C10 to C16)	µg/g	150	10	<10
F3 (C16 to C34)	µg/g	1300	50	<50
F4 (C34 to C50)	µg/g	5600	50	<50
Gravimetric Heavy Hydrocarbons	µg/g	5600	50	NA
Moisture Content	%		0.1	19.6
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	60-140	89	
Terphenyl	%	60-140	74	

Certified By:

R. Chakraborty

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils **pH range listed applies to surface soil only** Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5444950 Results are based on sample dry weight.
The C6-C10 fraction is calculated using Toluene response factor.
Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.
Total C6 - C50 results are corrected for BTEX contribution.
This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.
nC6 and nC10 response factors are within 30% of Toluene response factor.
nC10, nC16 and nC34 response factors are within 10% of their average.
C50 response factor is within 70% of nC10 + nC16 + nC34 average.
Linearity is within 15%.
Extraction and holding times were met for this sample.
Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.
Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

SAMPLE DESCRIPTION: BH2-SS5				
SAMPLE TYPE: Soil				
DATE SAMPLED: 2023-11-08 12:00				
Parameter	Unit	G / S	RDL	5444940
F1 (C6 to C10)	µg/g	65	5	<5
F1 (C6 to C10) minus BTEX	µg/g	65	5	<5
F2 (C10 to C16)	µg/g	150	10	<10
F3 (C16 to C34)	µg/g	1300	50	<50
F4 (C34 to C50)	µg/g	5600	50	<50
Gravimetric Heavy Hydrocarbons	µg/g	5600	50	NA
Moisture Content	%		0.1	10.5
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140		
Terphenyl	%	60-140		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils **pH range listed applies to surface soil only**
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5444940
Results are based on sample dry weight.
The C6-C10 fraction is calculated using toluene response factor.
C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.
The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
The chromatogram has returned to baseline by the retention time of nC50.
Total C6 - C50 results are corrected for BTEX contribution.
This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.
nC6 and nC10 response factors are within 30% of Toluene response factor.
nC10, nC16 and nC34 response factors are within 10% of their average.
C50 response factor is within 70% of nC10 + nC16 + nC34 average.
Linearity is within 15%.
Extraction and holding times were met for this sample.
Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	G / S	RDL	SAMPLE DESCRIPTION: BH2-SS5 SAMPLE TYPE: Soil DATE SAMPLED: 2023-11-08 12:00 5444940
Dichlorodifluoromethane	µg/g	25	0.05	<0.05
Vinyl Chloride	ug/g	0.022	0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05
Trichlorofluoromethane	ug/g	5.8	0.05	<0.05
Acetone	ug/g	28	0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05
Methylene Chloride	ug/g	0.96	0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	<0.05
Methyl tert-butyl Ether	ug/g	1.4	0.05	<0.05
1,1-Dichloroethane	ug/g	0.6	0.02	<0.02
Methyl Ethyl Ketone	ug/g	44	0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	2.5	0.02	<0.02
Chloroform	ug/g	0.18	0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03
1,1,1-Trichloroethane	ug/g	3.4	0.05	<0.05
Carbon Tetrachloride	ug/g	0.12	0.05	<0.05
Benzene	ug/g	0.17	0.02	<0.02
1,2-Dichloropropane	ug/g	0.085	0.03	<0.03
Trichloroethylene	ug/g	0.52	0.03	<0.03
Bromodichloromethane	ug/g	1.9	0.05	<0.05
Methyl Isobutyl Ketone	ug/g	4.3	0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04
Toluene	ug/g	6	0.05	<0.05
Dibromochloromethane	ug/g	2.9	0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04
Tetrachloroethylene	ug/g	2.3	0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04
Chlorobenzene	ug/g	2.7	0.05	<0.05
Ethylbenzene	ug/g	1.6	0.05	<0.05

Certified By:

R. Chakrabarty

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

SAMPLE DESCRIPTION: BH2-SS5				
SAMPLE TYPE: Soil				
DATE SAMPLED: 2023-11-08 12:00				
Parameter	Unit	G / S	RDL	5444940
m & p-Xylene	ug/g		0.05	<0.05
Bromoform	ug/g	0.26	0.05	<0.05
Styrene	ug/g	2.2	0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05
o-Xylene	ug/g		0.05	<0.05
1,3-Dichlorobenzene	ug/g	6	0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.097	0.05	<0.05
1,2-Dichlorobenzene	ug/g	1.7	0.05	<0.05
Xylenes (Total)	ug/g	25	0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	ug/g	0.081	0.05	<0.05
n-Hexane	ug/g	34	0.05	<0.05
Moisture Content	%		0.1	10.5
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	118	
4-Bromofluorobenzene	% Recovery	50-140	79	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5444940 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.
Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.
The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraborty

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: OAKVILLE

SAMPLED BY: M.L.

Soil Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony	5449184	<0.8	<0.8	NA	< 0.8	122%	70%	130%	97%	80%	120%	72%	70%	130%
Arsenic	5449184	3	3	NA	< 1	137%	70%	130%	101%	80%	120%	105%	70%	130%
Barium	5449184	14.2	15.0	5.5%	< 2.0	106%	70%	130%	101%	80%	120%	102%	70%	130%
Beryllium	5449184	<0.5	<0.5	NA	< 0.5	99%	70%	130%	107%	80%	120%	112%	70%	130%
Boron	5449184	<5	<5	NA	< 5	83%	70%	130%	110%	80%	120%	112%	70%	130%
Boron (Hot Water Soluble)	5458065	0.36	0.36	NA	< 0.10	101%	60%	140%	98%	70%	130%	101%	60%	140%
Cadmium	5449184	<0.5	<0.5	NA	< 0.5	71%	70%	130%	101%	80%	120%	100%	70%	130%
Chromium	5449184	11	11	NA	< 5	106%	70%	130%	106%	80%	120%	105%	70%	130%
Cobalt	5449184	2.8	2.8	NA	< 0.8	113%	70%	130%	109%	80%	120%	111%	70%	130%
Copper	5449184	6.8	6.9	1.5%	< 1.0	102%	70%	130%	106%	80%	120%	102%	70%	130%
Lead	5449184	12	12	0.0%	< 1	106%	70%	130%	98%	80%	120%	94%	70%	130%
Molybdenum	5449184	<0.5	<0.5	NA	< 0.5	108%	70%	130%	108%	80%	120%	108%	70%	130%
Nickel	5449184	6	6	0.0%	< 1	111%	70%	130%	105%	80%	120%	106%	70%	130%
Selenium	5449184	<0.8	<0.8	NA	< 0.8	92%	70%	130%	102%	80%	120%	109%	70%	130%
Silver	5449184	<0.5	<0.5	NA	< 0.5	111%	70%	130%	103%	80%	120%	97%	70%	130%
Thallium	5449184	<0.5	<0.5	NA	< 0.5	100%	70%	130%	104%	80%	120%	100%	70%	130%
Uranium	5449184	<0.50	<0.50	NA	< 0.50	103%	70%	130%	100%	80%	120%	100%	70%	130%
Vanadium	5449184	18.4	18.3	0.5%	< 2.0	113%	70%	130%	112%	80%	120%	114%	70%	130%
Zinc	5449184	25	25	0.0%	< 5	115%	70%	130%	105%	80%	120%	126%	70%	130%
Chromium, Hexavalent	5436512	<0.2	<0.2	NA	< 0.2	103%	70%	130%	101%	80%	120%	92%	70%	130%
Cyanide, WAD	5454878	<0.040	<0.040	NA	< 0.040	107%	70%	130%	101%	80%	120%	100%	70%	130%
Mercury	5449184	<0.10	<0.10	NA	< 0.10	109%	70%	130%	105%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	5437514	0.158	0.155	1.9%	< 0.005	94%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	5449184	0.604	0.618	2.3%	NA									
pH, 2:1 CaCl ₂ Extraction	5443906	7.01	7.24	3.2%	NA	98%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T091302****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE: OAKVILLE****SAMPLED BY: M.L.**

Trace Organics Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Recovery	Lower	Upper

O. Reg. 153(511) - OC Pesticides (Soil)

Hexachloroethane	5435742	< 0.005	< 0.005	NA	< 0.005	101%	50%	140%	96%	50%	140%	92%	50%	140%
Gamma-Hexachlorocyclohexane	5435742	< 0.005	< 0.005	NA	< 0.005	117%	50%	140%	106%	50%	140%	103%	50%	140%
Heptachlor	5435742	< 0.005	< 0.005	NA	< 0.005	110%	50%	140%	89%	50%	140%	90%	50%	140%
Aldrin	5435742	< 0.005	< 0.005	NA	< 0.005	98%	50%	140%	107%	50%	140%	105%	50%	140%
Heptachlor Epoxide	5435742	< 0.005	< 0.005	NA	< 0.005	96%	50%	140%	108%	50%	140%	104%	50%	140%
Endosulfan I	5435742	< 0.005	< 0.005	NA	< 0.005	107%	50%	140%	107%	50%	140%	101%	50%	140%
Endosulfan II	5435742	< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	106%	50%	140%	104%	50%	140%
Alpha-Chlordane	5435742	< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	109%	50%	140%	107%	50%	140%
gamma-Chlordane	5435742	< 0.005	< 0.005	NA	< 0.005	112%	50%	140%	106%	50%	140%	102%	50%	140%
op'-DDE	5435742	< 0.005	< 0.005	NA	< 0.005	107%	50%	140%	109%	50%	140%	102%	50%	140%
pp'-DDE	5435742	< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	102%	50%	140%	98%	50%	140%
op'-DDD	5435742	< 0.005	< 0.005	NA	< 0.005	83%	50%	140%	112%	50%	140%	106%	50%	140%
pp'-DDD	5435742	< 0.005	< 0.005	NA	< 0.005	102%	50%	140%	115%	50%	140%	108%	50%	140%
op'-DDT	5435742	< 0.005	< 0.005	NA	< 0.005	99%	50%	140%	98%	50%	140%	96%	50%	140%
pp'-DDT	5435742	< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	88%	50%	140%	89%	50%	140%
Dieldrin	5435742	< 0.005	< 0.005	NA	< 0.005	89%	50%	140%	119%	50%	140%	105%	50%	140%
Endrin	5435742	< 0.005	< 0.005	NA	< 0.005	96%	50%	140%	106%	50%	140%	102%	50%	140%
Methoxychlor	5435742	< 0.005	< 0.005	NA	< 0.005	88%	50%	140%	108%	50%	140%	98%	50%	140%
Hexachlorobenzene	5435742	< 0.005	< 0.005	NA	< 0.005	108%	50%	140%	108%	50%	140%	103%	50%	140%
Hexachlorobutadiene	5435742	< 0.01	< 0.01	NA	< 0.01	105%	50%	140%	101%	50%	140%	97%	50%	140%

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)

F1 (C6 to C10)	5438885	<5	<5	NA	<5	80%	60%	140%	77%	60%	140%	102%	60%	140%
F2 (C10 to C16)	5438870	<10	<10	NA	<10	114%	60%	140%	92%	60%	140%	98%	60%	140%
F3 (C16 to C34)	5438870	<50	<50	NA	<50	117%	60%	140%	79%	60%	140%	91%	60%	140%
F4 (C34 to C50)	5438870	<50	<50	NA	<50	72%	60%	140%	96%	60%	140%	84%	60%	140%

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Dichlorodifluoromethane	5438885	<0.05	<0.05	NA	<0.05	86%	50%	140%	81%	50%	140%	68%	50%	140%
Vinyl Chloride	5438885	<0.02	<0.02	NA	<0.02	113%	50%	140%	86%	50%	140%	91%	50%	140%
Bromomethane	5438885	<0.05	<0.05	NA	<0.05	103%	50%	140%	111%	50%	140%	100%	50%	140%
Trichlorofluoromethane	5438885	<0.05	<0.05	NA	<0.05	115%	50%	140%	110%	50%	140%	112%	50%	140%
Acetone	5438885	<0.50	<0.50	NA	<0.50	95%	50%	140%	98%	50%	140%	90%	50%	140%
1,1-Dichloroethylene	5438885	<0.05	<0.05	NA	<0.05	97%	50%	140%	102%	60%	130%	99%	50%	140%
Methylene Chloride	5438885	<0.05	<0.05	NA	<0.05	100%	50%	140%	104%	60%	130%	86%	50%	140%
Trans- 1,2-Dichloroethylene	5438885	<0.05	<0.05	NA	<0.05	114%	50%	140%	104%	60%	130%	76%	50%	140%
Methyl tert-butyl Ether	5438885	<0.05	<0.05	NA	<0.05	83%	50%	140%	74%	60%	130%	76%	50%	140%
1,1-Dichloroethane	5438885	<0.02	<0.02	NA	<0.02	107%	50%	140%	92%	60%	130%	70%	50%	140%
Methyl Ethyl Ketone	5438885	<0.50	<0.50	NA	<0.50	90%	50%	140%	108%	50%	140%	77%	50%	140%
Cis- 1,2-Dichloroethylene	5438885	<0.02	<0.02	NA	<0.02	109%	50%	140%	93%	60%	130%	77%	50%	140%
Chloroform	5438885	<0.04	<0.04	NA	<0.04	109%	50%	140%	98%	60%	130%	72%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T091302

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: OAKVILLE

SAMPLED BY: M.L.

Trace Organics Analysis (Continued)

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
1,2-Dichloroethane	5438885		<0.03	<0.03	NA	< 0.03	102%	50%	140%	105%	60%	130%	79%	50%	140%	
1,1,1-Trichloroethane	5438885		<0.05	<0.05	NA	< 0.05	99%	50%	140%	86%	60%	130%	102%	50%	140%	
Carbon Tetrachloride	5438885		<0.05	<0.05	NA	< 0.05	106%	50%	140%	92%	60%	130%	80%	50%	140%	
Benzene	5438885		<0.02	<0.02	NA	< 0.02	92%	50%	140%	80%	60%	130%	86%	50%	140%	
1,2-Dichloropropane	5438885		<0.03	<0.03	NA	< 0.03	80%	50%	140%	101%	60%	130%	72%	50%	140%	
Trichloroethylene	5438885		<0.03	<0.03	NA	< 0.03	98%	50%	140%	90%	60%	130%	76%	50%	140%	
Bromodichloromethane	5438885		<0.05	<0.05	NA	< 0.05	92%	50%	140%	83%	60%	130%	85%	50%	140%	
Methyl Isobutyl Ketone	5438885		<0.50	<0.50	NA	< 0.50	95%	50%	140%	102%	50%	140%	87%	50%	140%	
1,1,2-Trichloroethane	5438885		<0.04	<0.04	NA	< 0.04	111%	50%	140%	111%	60%	130%	118%	50%	140%	
Toluene	5438885		<0.05	<0.05	NA	< 0.05	82%	50%	140%	95%	60%	130%	98%	50%	140%	
Dibromochloromethane	5438885		<0.05	<0.05	NA	< 0.05	107%	50%	140%	109%	60%	130%	112%	50%	140%	
Ethylene Dibromide	5438885		<0.04	<0.04	NA	< 0.04	91%	50%	140%	98%	60%	130%	112%	50%	140%	
Tetrachloroethylene	5438885		<0.05	<0.05	NA	< 0.05	75%	50%	140%	85%	60%	130%	105%	50%	140%	
1,1,1,2-Tetrachloroethane	5438885		<0.04	<0.04	NA	< 0.04	89%	50%	140%	88%	60%	130%	108%	50%	140%	
Chlorobenzene	5438885		<0.05	<0.05	NA	< 0.05	85%	50%	140%	110%	60%	130%	94%	50%	140%	
Ethylbenzene	5438885		<0.05	<0.05	NA	< 0.05	81%	50%	140%	109%	60%	130%	81%	50%	140%	
m & p-Xylene	5438885		<0.05	<0.05	NA	< 0.05	92%	50%	140%	115%	60%	130%	106%	50%	140%	
Bromoform	5438885		<0.05	<0.05	NA	< 0.05	107%	50%	140%	107%	60%	130%	96%	50%	140%	
Styrene	5438885		<0.05	<0.05	NA	< 0.05	82%	50%	140%	82%	60%	130%	112%	50%	140%	
1,1,2,2-Tetrachloroethane	5438885		<0.05	<0.05	NA	< 0.05	110%	50%	140%	115%	60%	130%	91%	50%	140%	
o-Xylene	5438885		<0.05	<0.05	NA	< 0.05	109%	50%	140%	106%	60%	130%	89%	50%	140%	
1,3-Dichlorobenzene	5438885		<0.05	<0.05	NA	< 0.05	93%	50%	140%	105%	60%	130%	109%	50%	140%	
1,4-Dichlorobenzene	5438885		<0.05	<0.05	NA	< 0.05	83%	50%	140%	103%	60%	130%	101%	50%	140%	
1,2-Dichlorobenzene	5438885		<0.05	<0.05	NA	< 0.05	97%	50%	140%	100%	60%	130%	96%	50%	140%	
n-Hexane	5438885		<0.05	<0.05	NA	< 0.05	105%	50%	140%	72%	60%	130%	108%	50%	140%	
O. Reg. 153(511) - PHCs F1 - F4 (Soil)																
Benzene	5440372		<0.02	<0.02	NA	< 0.02	108%	60%	140%	92%	60%	140%	95%	60%	140%	
Toluene	5440372		<0.05	<0.05	NA	< 0.05	87%	60%	140%	106%	60%	140%	86%	60%	140%	
Ethylbenzene	5440372		<0.05	<0.05	NA	< 0.05	86%	60%	140%	118%	60%	140%	86%	60%	140%	
m & p-Xylene	5440372		<0.05	<0.05	NA	< 0.05	96%	60%	140%	92%	60%	140%	104%	60%	140%	
o-Xylene	5440372		<0.05	<0.05	NA	< 0.05	87%	60%	140%	99%	60%	140%	101%	60%	140%	
F1 (C6 to C10)	5440372		<5	<5	NA	< 5	93%	60%	140%	90%	60%	140%	100%	60%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:*R. Chakrabarty*

QC Exceedance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T091302

ATTENTION TO: Amanda Catenaro

RPT Date: Nov 15, 2023		REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE				
PARAMETER	Sample Id	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
			Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (Soil)										
Arsenic			137%	70% 130%	101%	80% 120%	105%	70% 130%		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091302

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl ₂ Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091302

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Heptachlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Aldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Heptachlor Epoxide	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan I	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan II	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endosulfan	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
Alpha-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
gamma-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
op'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
op'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION
op'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
pp'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
DDT (Total)	ORG-91-5113	modified from EPA 3570, 3620C & 8081B	CALCULATION
Dieldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Endrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Methoxychlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Hexachlorobenzene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Hexachlorobutadiene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
TCMX	ORG-91-5112	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091302

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
wet weight OC	ORG-91-5113		BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091302

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP Services Inc
Contact: Amanda Catenaro
Address: 220 Commerce Valley Dr. W
Suite 110, Markham ON
Phone: 905 695 3217 Fax:
Reports to be sent to:
1. Email: amanda.catenaro@exp.com
2. Email:

Project Information:

Project: GTR-23012833-A0-2
Site Location: Oakville
Sampled By: M.L.
AGAT Quote #: PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company: _____
Contact: _____
Address: _____
Email: _____

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. BH2 - SS1	Nov 3	PM AM	2	S		X
2. BH2 - SS2	Nov 3	PM AM	2	S	Hold	X
3. BH2 - SS5	Nov 8	PM AM	2	S		X X
4. BH2 - SS6	Nov 8	PM AM	2	S	Hold	X X
5. BH2 - SS50	Nov 8	PM AM	2	S		X
6.		AM PM				
7.		AM PM				
8.		AM PM				
9.		AM PM				
10.		AM PM				
11.		AM PM				

Samples Relinquished By (Print Name and Sign):

Mike Luong

Samples Relinquished By (Print Name and Sign):

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04 Regulation 406

Table 2 Table

Ind/Com Res/Park Agriculture

Coarse CCME

Fine Other

Sewer Use Sanitary Storm

Region

Prov. Water Quality Objectives (PWQO)

Other

Is this submission for a
Record of Site Condition?

Yes No

Report Guideline on
Certificate of Analysis

Yes No

Sample Matrix Legend

GW Ground Water

O Oil

P Paint

S Soil

SD Sediment

SW Surface Water

Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153			O. Reg 406		
	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PAHs	PCBs	PCBs: Aroclors <input type="checkbox"/>
X						Landfill Disposal Characterization TCLP: <input type="checkbox"/> M&I <input type="checkbox"/> VOCs <input type="checkbox"/> CrVI <input type="checkbox"/> Hg <input type="checkbox"/> PCBs
X			X X			Regulation 406 SPLP Rainwater Leach SPLP: <input type="checkbox"/> Metals <input type="checkbox"/> VOCs <input type="checkbox"/> SVOCs
			X X			Regulation 406 Characterization Package ph, ICPMS Metals, BTEX, F1-F4
			X			Corrosivity: <input type="checkbox"/> Moisture <input type="checkbox"/> Sulphide
						OPC
						Potentially Hazardous or High Concentration (Y/N)

Laboratory Use Only

Work Order #: 23T091302

Cooler Quantity: 1 Litre

Arrival Temperatures: 25.20°C

Custody Seal Intact: Yes No N/A

Notes: Free Ice

Turnaround Time (TAT) Required:

Regular TAT 5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

CLIENT NAME: EXP SERVICES INC
220 Commerce Valley Drive West, Suite 500
Markham, ON, ON L3T0A8
(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T091305

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 15, 2023

PAGES (INCLUDING COVER): 7

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091305

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 558 - Metals

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-COMP	BH2-COMP	BH3-COMP	BH4-COMP
		SAMPLE TYPE:		Soil	Soil	Soil	Soil
		DATE SAMPLED:		2023-11-08	2023-11-08 12:00	2023-11-08 12:00	2023-11-08 12:00
Arsenic Leachate	mg/L	2.5	0.010	<0.010	<0.010	<0.010	<0.010
Barium Leachate	mg/L	100	0.020	0.720	0.534	1.01	1.02
Boron Leachate	mg/L	500	0.050	<0.050	0.052	0.148	0.097
Cadmium Leachate	mg/L	0.5	0.010	<0.010	<0.010	<0.010	<0.010
Chromium Leachate	mg/L	5	0.050	<0.050	<0.050	<0.050	<0.050
Lead Leachate	mg/L	5	0.010	<0.010	<0.010	<0.010	<0.010
Mercury Leachate	mg/L	0.1	0.01	<0.01	<0.01	<0.01	<0.01
Selenium Leachate	mg/L	1	0.020	<0.020	<0.020	<0.020	<0.020
Silver Leachate	mg/L	5	0.010	<0.010	<0.010	<0.010	<0.010
Uranium Leachate	mg/L	10	0.050	<0.050	<0.050	<0.050	<0.050

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basil

AGAT

Laboratories

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

Certificate of Analysis

AGAT WORK ORDER: 23T091305

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
 MISSISSAUGA, ONTARIO
 CANADA L4Z 1Y2
 TEL (905)712-5100
 FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 558 - VOCs

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	SAMPLE DESCRIPTION:		BH1-DISC	BH2-DISC	BH3-DISC	BH4-DISC
		SAMPLE TYPE:	DATE SAMPLED:	Soil	Soil	Soil	Soil
		G / S	RDL	2023-11-08	2023-11-08 12:00	2023-11-08 12:00	2023-11-08 12:00
Vinyl Chloride Leachate	mg/L	0.2	0.030	<0.030	<0.030	<0.030	<0.030
1,1 Dichloroethene Leachate	mg/L	1.4	0.020	<0.020	<0.020	<0.020	<0.020
Dichloromethane Leachate	mg/L	5.0	0.030	<0.030	<0.030	<0.030	<0.030
Methyl Ethyl Ketone Leachate	mg/L	200	0.090	<0.090	<0.090	<0.090	<0.090
Chloroform Leachate	mg/L	10.0	0.020	<0.020	<0.020	<0.020	<0.020
1,2-Dichloroethane Leachate	mg/L	0.5	0.020	<0.020	<0.020	<0.020	<0.020
Carbon Tetrachloride Leachate	mg/L	0.5	0.020	<0.020	<0.020	<0.020	<0.020
Benzene Leachate	mg/L	0.5	0.020	<0.020	<0.020	<0.020	<0.020
Trichloroethene Leachate	mg/L	5.0	0.020	<0.020	<0.020	<0.020	<0.020
Tetrachloroethene Leachate	mg/L	3.0	0.050	<0.050	<0.050	<0.050	<0.050
Chlorobenzene Leachate	mg/L	8.0	0.010	<0.010	<0.010	<0.010	<0.010
1,2-Dichlorobenzene Leachate	mg/L	20.0	0.010	<0.010	<0.010	<0.010	<0.010
1,4-Dichlorobenzene Leachate	mg/L	0.5	0.010	<0.010	<0.010	<0.010	<0.010
Surrogate	Unit	Acceptable Limits					
Toluene-d8	% Recovery	50-140	100	96	95	96	
4-Bromofluorobenzene	% Recovery	50-140	68	64	67	66	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria
 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5444962-5444968 Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T091305

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: OAKVILLE

SAMPLED BY: M.L.

Soil Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	

O. Reg. 558 - Metals

Arsenic Leachate	5445284	<0.010	<0.010	NA	< 0.010	96%	70%	130%	109%	80%	120%	105%	70%	130%
Barium Leachate	5445284	0.752	0.771	2.5%	< 0.020	100%	70%	130%	102%	80%	120%	89%	70%	130%
Boron Leachate	5445284	<0.050	<0.050	NA	< 0.050	100%	70%	130%	103%	80%	120%	110%	70%	130%
Cadmium Leachate	5445284	<0.010	<0.010	NA	< 0.010	99%	70%	130%	99%	80%	120%	98%	70%	130%
Chromium Leachate	5445284	<0.050	<0.050	NA	< 0.050	101%	70%	130%	99%	80%	120%	96%	70%	130%
Lead Leachate	5445284	<0.010	0.010	NA	< 0.010	94%	70%	130%	86%	80%	120%	85%	70%	130%
Mercury Leachate	5445284	<0.01	<0.01	NA	< 0.01	95%	70%	130%	98%	80%	120%	95%	70%	130%
Selenium Leachate	5445284	<0.020	<0.020	NA	< 0.020	97%	70%	130%	118%	80%	120%	114%	70%	130%
Silver Leachate	5445284	<0.010	<0.010	NA	< 0.010	98%	70%	130%	104%	80%	120%	89%	70%	130%
Uranium Leachate	5445284	<0.050	<0.050	NA	< 0.050	97%	70%	130%	90%	80%	120%	88%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T091305****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE: OAKVILLE****SAMPLED BY: M.L.**

Trace Organics Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 558 - VOCs

Vinyl Chloride Leachate	5455138	<0.030	<0.030	NA	< 0.030	75%	50%	140%	87%	50%	140%	84%	50%	140%
1,1 Dichloroethene Leachate	5455138	<0.020	<0.020	NA	< 0.020	96%	50%	140%	83%	60%	130%	80%	50%	140%
Dichloromethane Leachate	5455138	<0.030	<0.030	NA	< 0.030	98%	50%	140%	99%	60%	130%	114%	50%	140%
Methyl Ethyl Ketone Leachate	5455138	<0.090	<0.090	NA	< 0.090	83%	50%	140%	70%	50%	140%	107%	50%	140%
Chloroform Leachate	5455138	<0.020	<0.020	NA	< 0.020	104%	50%	140%	87%	60%	130%	92%	50%	140%
1,2-Dichloroethane Leachate	5455138	<0.020	<0.020	NA	< 0.020	76%	50%	140%	88%	60%	130%	74%	50%	140%
Carbon Tetrachloride Leachate	5455138	<0.020	<0.020	NA	< 0.020	87%	50%	140%	89%	60%	130%	72%	50%	140%
Benzene Leachate	5455138	<0.020	<0.020	NA	< 0.020	116%	50%	140%	101%	60%	130%	99%	50%	140%
Trichloroethene Leachate	5455138	<0.020	<0.020	NA	< 0.020	72%	50%	140%	80%	60%	130%	81%	50%	140%
Tetrachloroethylene Leachate	5455138	<0.050	<0.050	NA	< 0.050	79%	50%	140%	81%	60%	130%	77%	50%	140%
Chlorobenzene Leachate	5455138	<0.010	<0.010	NA	< 0.010	91%	50%	140%	91%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene Leachate	5455138	<0.010	<0.010	NA	< 0.010	93%	50%	140%	92%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene Leachate	5455138	<0.010	<0.010	NA	< 0.010	94%	50%	140%	94%	60%	130%	94%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091305

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B ICP-MS	
Trace Organics Analysis			
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webarth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP Services Inc
Contact: Amanda Cutenaro
Address: 220 Commerce Valley Dr. W
Suite 110 Markham ON
Phone: 905 695 3217 Fax:
Reports to be sent to:
1. Email: amanda.cutenaro@exp.com
2. Email:

Project Information:

Project: GTR-23012833-A0-2
Site Location: Oakville
Sampled By: M.L.
AGAT Quote #: PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company: _____
Contact: _____
Address: _____
Email: _____

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N
1. BH1 - COMP	Nov 8	AM	2	S		
2. BH1 - DISC		AM				
3. BH2 - COMP		PM				
4. BH2 - DISC		AM				
5. BH3 - COMP		AM				
6. BH3 - DISC		PM				
7. BH4 - COMP		AM				
8. BH4 - DISC		PM				
9.		AM				
10.		PM				
11.		AM				

Samples Relinquished By (Print Name and Sign):

Mike Luong

Date Nov 9, 23 Time 15:00

Samples Received By (Print Name and Sign):

Neil Rammagian

Date Nov 9/23 Time 2:58 PM

Page 1 of 1

Samples Relinquished By (Print Name and Sign):

Mike Luong

Date _____ Time _____

Samples Received By (Print Name and Sign):

Neil Rammagian

Date _____ Time _____

Page _____ of _____

Samples Relinquished By (Print Name and Sign):

Mike Luong

Date _____ Time _____

Samples Received By (Print Name and Sign):

Neil Rammagian

Date _____ Time _____

Page _____ of _____

No: T-147780

Laboratory Use Only

Work Order #: 231091305

Cooler Quantity: 1Lg

Arrival Temperatures: 25 20 28

Custody Seal Intact: Yes No N/A

Notes: Free ice

Turnaround Time (TAT) Required:

Regular TAT

5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT

*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04

Regulation 406

Sewer Use

Sanitary

Storm

Table Indicate One

Ind/Com

Res/Park

Agriculture

Regulation 558

Table Indicate One

CCME

Region

Prov. Water Quality Objectives (PWQO)

Other

Indicate One

Soil Texture (Check One)

Coarse

Fine

Other

Indicate One

Is this submission for a Record of Site Condition?

Yes

No

Report Guideline on Certificate of Analysis

Yes

No

Sample Matrix Legend

GW Ground Water

O Oil

P Paint

S Soil

SD Sediment

SW Surface Water

Field Filtered - Metals, Hg, CrVI, DOC

0. Reg 153

Metals - CrVI, Hg, HWSB

BTEX, F1-F4, PHOs

VOC

PAHs

PCBs

PCBs, Aroclors

Landfill Disposal Characterization TOLP:

TCLP: M & VOCs ABrs PCBs

Regulation 406 SPLP Rainwater Leach

SPLP: Metals VOCs SVOCs

Regulation 406 Characterization Package

pH, IC/CPMS Metals, BT/EX, F1-F4

Corrosivity: Moisture Sulphide

TCLP Metals

TCLP VOCs

Potentially Hazardous or High Concentration (Y/N)

CLIENT NAME: EXP SERVICES INC
220 Commerce Valley Drive West, Suite 500
Markham, ON, ON L3T0A8
(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T091307

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Nov 15, 2023

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091307

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 406/19 - SPLP Metals

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

Parameter	Unit	SAMPLE DESCRIPTION:		BH2-SS3	BH2-SS30
		G / S	RDL	SAMPLE TYPE:	Soil
				DATE SAMPLED:	2023-11-08 12:00
Antimony Leachate	µg/L	-	0.6	<0.6	<0.6
Arsenic Leachate	µg/L	-	5	<5	<5
Barium Leachate	µg/L	-	100	<100	<100
Beryllium Leachate	µg/L	-	0.8	<0.8	<0.8
Boron Leachate	µg/L	-	500	<500	<500
Cadmium Leachate	µg/L	-	0.20	<0.20	<0.20
Chromium Leachate	µg/L	-	10	<10	<10
Cobalt Leachate	µg/L	-	0.3	<0.3	<0.3
Copper Leachate	µg/L	-	6.9	<6.9	<6.9
Lead Leachate	µg/L	-	1.0	<1.0	<1.0
Molybdenum Leachate	µg/L	23	1.5	1.7	1.6
Nickel Leachate	µg/L	-	10	<10	<10
Selenium Leachate	µg/L	-	5.0	<5.0	<5.0
Silver Leachate	µg/L	0.3	0.10	<0.10	<0.10
Thallium Leachate	µg/L	2	0.5	<0.5	<0.5
Uranium Leachate	µg/L	-	2	<2	<2
Vanadium Leachate	µg/L	-	0.6	<0.6	<0.6
Zinc Leachate	µg/L	-	20	<20	<20

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5445029-5445031 Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003 be used for leachate testing of soil samples under O'Reg 406/19 by MECP.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basily

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T091307

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: OAKVILLE

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 406/19 - SPLP VOCs

DATE RECEIVED: 2023-11-09

DATE REPORTED: 2023-11-15

SAMPLE DESCRIPTION:				BH2-SS3	BH2-SS30
Parameter	Unit	G / S	RDL	5445029	5445031
Bromomethane Leachate	µg/L	0.5	0.20	<0.20	<0.20
1,1-Dichloroethylene Leachate	µg/L	0.5	0.30	<0.30	<0.30
Trans 1,2-Dichloroethylene Leachate	µg/L	0.5	0.20	<0.20	<0.20
1,1-Dichloroethane Leachate	µg/L	0.5	0.30	<0.30	<0.30
Cis 1,2-Dichloroethylene Leachate	µg/L	0.5	0.20	<0.20	<0.20
Chloroform Leachate	µg/L	1	0.20	<0.20	<0.20
1,2-Dichloroethane Leachate	µg/L	0.5	0.20	<0.20	<0.20
Carbon Tetrachloride Leachate	µg/L	0.2	0.20	<0.20	<0.20
1,2-Dichloropropane Leachate	µg/L	0.5	0.20	<0.20	<0.20
Trichloroethylene Leachate	µg/L	0.5	0.20	<0.20	<0.20
1,1,2-Trichloroethane Leachate	µg/L	0.5	0.20	<0.20	<0.20
Ethylene Dibromide Leachate	µg/L	0.2	0.10	<0.10	<0.10
Tetrachloroethylene Leachate	µg/L	0.5	0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane Leachate	µg/L	0.5	0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane Leachate	µg/L	0.5	0.10	<0.10	<0.10
1,4-Dichlorobenzene Leachate	µg/L	0.5	0.10	<0.10	<0.10
1,2-Dichlorobenzene Leachate	µg/L	0.55	0.10	<0.10	<0.10
1,3-Dichloropropene Total Leachate	µg/L	0.5	0.30	<0.30	<0.30
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140		97	100

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 406/19 TABLE 1: Full Depth Background Site Condition - RPIC
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
5445029-5445031 Leachate was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003 be used for leachate testing of soil samples under O'Reg 406/19 by MECP. This is a validated, unaccredited procedure.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T091307

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: OAKVILLE

SAMPLED BY: M.L.

Soil Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 406/19 - SPLP Metals

Antimony Leachate	5379922	<0.6	<0.6	NA	< 0.6	99%	70%	130%	82%	80%	120%	78%	70%	130%
Arsenic Leachate	5379922	<5	<5	NA	< 5	97%	70%	130%	104%	80%	120%	105%	70%	130%
Barium Leachate	5379922	<100	<100	NA	< 100	98%	70%	130%	101%	80%	120%	99%	70%	130%
Beryllium Leachate	5379922	<0.8	<0.8	NA	< 0.8	96%	70%	130%	106%	80%	120%	104%	70%	130%
Boron Leachate	5379922	<500	<500	NA	< 500	94%	70%	130%	100%	80%	120%	99%	70%	130%
Cadmium Leachate	5379922	<0.20	<0.20	NA	< 0.20	98%	70%	130%	105%	80%	120%	103%	70%	130%
Chromium Leachate	5379922	<10	<10	NA	< 10	95%	70%	130%	100%	80%	120%	98%	70%	130%
Cobalt Leachate	5379922	<0.3	<0.3	NA	< 0.3	95%	70%	130%	102%	80%	120%	102%	70%	130%
Copper Leachate	5379922	<6.9	<6.9	NA	< 6.9	93%	70%	130%	98%	80%	120%	99%	70%	130%
Lead Leachate	5379922	<1.0	<1.0	NA	< 1.0	93%	70%	130%	99%	80%	120%	96%	70%	130%
Molybdenum Leachate	5379922	<1.5	<1.5	NA	< 1.5	101%	70%	130%	108%	80%	120%	106%	70%	130%
Nickel Leachate	5379922	<10	<10	NA	< 10	93%	70%	130%	101%	80%	120%	100%	70%	130%
Selenium Leachate	5379922	<5.0	<5.0	NA	< 5.0	96%	70%	130%	105%	80%	120%	106%	70%	130%
Silver Leachate	5379922	<0.10	<0.10	NA	< 0.10	99%	70%	130%	104%	80%	120%	102%	70%	130%
Thallium Leachate	5379922	<0.5	<0.5	NA	< 0.5	103%	70%	130%	112%	80%	120%	103%	70%	130%
Uranium Leachate	5379922	<2	<2	NA	< 2	101%	70%	130%	104%	80%	120%	98%	70%	130%
Vanadium Leachate	5379922	1.7	1.8	NA	< 0.6	96%	70%	130%	96%	80%	120%	96%	70%	130%
Zinc Leachate	5379922	<20	<20	NA	< 20	96%	70%	130%	106%	80%	120%	93%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T091307

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: OAKVILLE

SAMPLED BY: M.L.

Trace Organics Analysis

RPT Date: Nov 15, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 406/19 - SPLP VOCs																
Bromomethane Leachate	5455138		<0.20	<0.20	NA	< 0.20	87%	50%	140%	116%	50%	140%	109%	50%	140%	
1,1-Dichloroethylene Leachate	5455138		<0.30	<0.30	NA	< 0.30	96%	50%	140%	83%	60%	130%	80%	50%	140%	
Trans 1,2-Dichloroethylene Leachate	5455138		<0.20	<0.20	NA	< 0.20	101%	50%	140%	87%	60%	130%	83%	50%	140%	
1,1-Dichloroethane Leachate	5455138		<0.30	<0.30	NA	< 0.30	110%	50%	140%	97%	60%	130%	95%	50%	140%	
Cis 1,2-Dichloroethylene Leachate	5455138		<0.20	<0.20	NA	< 0.20	108%	50%	140%	90%	60%	130%	97%	50%	140%	
Chloroform Leachate	5455138		<0.20	<0.20	NA	< 0.20	104%	50%	140%	87%	60%	130%	92%	50%	130%	
1,2-Dichloroethane Leachate	5455138		<0.20	<0.20	NA	< 0.20	76%	50%	140%	88%	60%	130%	74%	50%	140%	
Carbon Tetrachloride Leachate	5455138		<0.20	<0.20	NA	< 0.20	87%	50%	140%	89%	60%	130%	72%	50%	140%	
1,2-Dichloropropane Leachate	5455138		<0.20	<0.20	NA	< 0.20	89%	50%	140%	108%	60%	130%	103%	50%	140%	
Trichloroethylene Leachate	5455138		<0.20	<0.20	NA	< 0.20	72%	50%	140%	80%	60%	130%	81%	50%	140%	
1,1,2-Trichloroethane Leachate	5455138		<0.20	<0.20	NA	< 0.20	102%	50%	140%	106%	60%	130%	101%	50%	140%	
Ethylene Dibromide Leachate	5455138		<0.10	<0.10	NA	< 0.10	103%	50%	140%	107%	60%	130%	99%	50%	140%	
Tetrachloroethylene Leachate	5455138		<0.20	<0.20	NA	< 0.20	79%	50%	140%	81%	60%	130%	77%	50%	140%	
1,1,1,2-Tetrachloroethane Leachate	5455138		<0.10	<0.10	NA	< 0.10	83%	50%	140%	94%	60%	130%	84%	50%	140%	
1,1,2,2-Tetrachloroethane Leachate	5455138		<0.10	<0.10	NA	< 0.10	104%	50%	140%	116%	60%	130%	105%	50%	140%	
1,4-Dichlorobenzene Leachate	5455138		<0.10	<0.10	NA	< 0.10	94%	50%	140%	94%	60%	130%	94%	50%	140%	
1,2-Dichlorobenzene Leachate	5455138		<0.10	<0.10	NA	< 0.10	93%	50%	140%	92%	60%	130%	93%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091307

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP/MS	
Arsenic Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP/MS	
Barium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Beryllium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Boron Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Cadmium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Chromium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Cobalt Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Copper Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Lead Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Molybdenum Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Nickel Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Selenium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Silver Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Thallium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Uranium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Vanadium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	
Zinc Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B ICP-MS	

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: OAKVILLE

AGAT WORK ORDER: 23T091307

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Bromomethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethylene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trans 1,2-Dichloroethylene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Cis 1,2-Dichloroethylene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloropropane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichloroethylene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene Total Leachate	VOL-91-5001	modified from EPA 1312, EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback?
Scan here for a
quick survey!

5835 Coopers Avenue
Mississauga, Ontario L4Z 1Y2
Ph: 905.712.5100 Fax: 905.712.5122
webearth.agatlabs.com

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information:

Company: EXP Services Inc
Contact: Amanda Cutenaro
Address: 220 Commerce Valley Dr. W
Suite 110, Markham ON
Phone: 905 695 3217 Fax:
Reports to be sent to:
1. Email: amanda.cutenaro@exp.com
2. Email:

Project Information:

Project: GTR-23012833-A0-2
Site Location: Oakville
Sampled By: M.L.
AGAT Quote #: PO:
Please note: If quotation number is not provided, client will be billed full price for analysis.

Invoice Information:

Bill To Same: Yes No

Company: _____
Contact: _____
Address: _____
Email: _____

Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y / N	Field Filtered - Metals, Hg, CrVI, DOC	O. Reg 153	O. Reg 406	O. Reg 558	O. Reg 406 Characterization TCP:	
1. BH2-SS3	Nov 8	PM AM	2	S			Metals & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Landfill Disposal Characterization TCP: TCP: □ M&I □ VOCs □ ABNs □ BtajP □ PCBs
2. BH2-SS30	Nov 8	PM AM	2	S								Regulation 406 SPLP Rainwater Leach SPLP: □ Metals □ VOCs □ SVOCs
3.		AM PM										Regulation 406 Characterization Package pH: ICPMS Metals, BTEX, F1-F4
4.		AM PM										Corrosivity: □ Moisture □ Sulphide
5.		AM PM										
6.		AM PM										
7.		AM PM										
8.		AM PM										
9.		AM PM										
10.		AM PM										
11.		AM PM										

Samples Relinquished By (Print Name and Sign):

Mike Luong

Samples Relinquished By (Print Name and Sign):

Mike Luong

Samples Relinquished By (Print Name and Sign):

Mike Luong

Regulatory Requirements:

(Please check all applicable boxes)

Regulation 153/04 Regulation 406

Table Indicate One

Ind/Com

Res/Park

Agriculture

Soil Texture Check One

Coarse

Fine

Table Indicate One

Regulation 558

CCME

Sewer Use

Sanitary

Storm

Region _____

Prov. Water Quality Objectives (PWQO)

Other

Indicate One

Is this submission for a
Record of Site Condition?

Yes No

Report Guideline on
Certificate of Analysis

Yes No

Sample Matrix Legend

GW Ground Water

O Oil

P Paint

S Soil

SD Sediment

SW Surface Water

1. BH2-SS3	Nov 8	PM	2	S							
2. BH2-SS30	Nov 8	PM	2	S							
3.		AM PM									
4.		AM PM									
5.		AM PM									
6.		AM PM									
7.		AM PM									
8.		AM PM									
9.		AM PM									
10.		AM PM									
11.		AM PM									

Samples Relinquished By (Print Name and Sign):	Date: Nov 9, 23	Time: 15:00	Samples Received By (Print Name and Sign):	Date: Nov 9, 23	Time: 2:58 PM	Page: 1 of 1
Samples Relinquished By (Print Name and Sign):			Samples Received By (Print Name and Sign):			
Samples Relinquished By (Print Name and Sign):			Samples Received By (Print Name and Sign):			

Laboratory Use Only

Work Order #: 237091307

Cooler Quantity: 11

Arrival Temperatures: 25 20 28

Custody Seal Intact: Yes No N/A

Notes: Free Ice

Turnaround Time (TAT) Required:

Regular TAT 5 to 7 Business Days

Rush TAT (Rush Surcharges Apply)

3 Business Days 2 Business Days Next Business Day

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT
*TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

CLIENT NAME: EXP SERVICES INC
220 Commerce Valley Drive West, Suite 500
Markham, ON, ON L3T0A8
(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T094534

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Nov 23, 2023

PAGES (INCLUDING COVER): 23

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

***Notes**

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - OC Pesticides (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Parameter	Unit	SAMPLE DESCRIPTION:		BH1S	BH2S	BH3S	BH30S	BH4S	BH5S
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water	Water	Water	Water
				2023-11-17	2023-11-17	2023-11-17	2023-11-17	2023-11-17 12:00	2023-11-17 12:00
Gamma-Hexachlorocyclohexane	µg/L	1.2	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	µg/L	1.5	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	µg/L	0.35	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	0.048	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan II	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan	µg/L	1.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
alpha - chlordane	µg/L	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
gamma-Chlordane	µg/L	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Chlordane	µg/L	7	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
op'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
pp'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DDE	µg/L	10	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
op'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
pp'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DDD	µg/L	10	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
op'-DDT	µg/L	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
pp'-DDT	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DDT	µg/L	2.8	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Dieldrin	µg/L	0.35	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endrin	µg/L	0.48	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methoxychlor	µg/L	6.5	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Hexachlorobenzene	ug/L	1	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	ug/L	0.6	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	ug/L	2.1	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate	Unit	Acceptable Limits							
TCMX	%	50-140	106	106	110	112	106	115	
Decachlorobiphenyl	%	60-140	107	108	112	113	107	116	

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - OC Pesticides (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469591-5469620 DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

SAMPLE DESCRIPTION:				BH3S	BH30S	BH5S
SAMPLE TYPE:				Water	Water	Water
DATE SAMPLED:				2023-11-17	2023-11-17	2023-11-17 12:00
Parameter	Unit	G / S	RDL	5469594	5469605	5469620
Naphthalene	µg/L	11	0.20	<0.20	<0.20	<0.20
Acenaphthylene	µg/L	1	0.20	<0.20	<0.20	<0.20
Acenaphthene	µg/L	4.1	0.20	<0.20	<0.20	<0.20
Fluorene	µg/L	120	0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	1	0.10	<0.10	<0.10	<0.10
Anthracene	µg/L	2.4	0.10	<0.10	<0.10	<0.10
Fluoranthene	µg/L	0.41	0.20	<0.20	<0.20	<0.20
Pyrene	µg/L	4.1	0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	1	0.20	<0.20	<0.20	<0.20
Chrysene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.1	0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.01	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	µg/L	3.2	0.20	<0.20	<0.20	<0.20
Sediment				1	1	3
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140		98	84	83
Acridine-d9	%	50-140		90	104	99
Terphenyl-d14	%	50-140		76	95	89

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469594-5469620 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

SAMPLE DESCRIPTION:				BH3S	BH30S	BH5S
SAMPLE TYPE:				Water	Water	Water
DATE SAMPLED:				2023-11-17	2023-11-17	2023-11-17 12:00
Parameter	Unit	G / S	RDL	5469594	5469605	5469620
F1 (C6 to C10)	µg/L	750	25	<25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L		100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA
Sediment				1	1	3
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140		104	95	98
Terphenyl	% Recovery	60-140		94	71	75

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469594-5469620 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - PHCs F1/BTEX (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

SAMPLE DESCRIPTION: Trip Blank				
SAMPLE TYPE: Water				
DATE SAMPLED: 2023-11-17 12:00				
Parameter	Unit	G / S	RDL	5469623
Benzene	µg/L	5.0	0.20	<0.20
Toluene	µg/L	24	0.20	<0.20
Ethylbenzene	µg/L	2.4	0.10	<0.10
m & p-Xylene	µg/L	0.20	0.20	<0.20
o-Xylene	µg/L	0.10	0.10	<0.10
Xylenes (Total)	µg/L	300	0.20	<0.20
F1 (C6-C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	60-140	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469623

The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Parameter	Unit	SAMPLE DESCRIPTION:		BH3S	BH30S	BH5S	Trip Blank
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water	Water
				2023-11-17	2023-11-17	2023-11-17 12:00	2023-11-17 12:00
Parameter	Unit	G / S	RDL	5469594	5469605	5469620	5469623
Dichlorodifluoromethane	µg/L	590	0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	µg/L	1.7	0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	150	0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	14	0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	50	0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	15	0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	5	0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	1800	1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	22	0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	200	0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	5.0	0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	16	0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	640	1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	5	0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	24	0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	µg/L	25	0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	17	0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	30	0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

SAMPLE DESCRIPTION:				BH3S	BH30S	BH5S	Trip Blank
Parameter	Unit	G / S	RDL	5469594	5469605	5469620	5469623
m & p-Xylene	µg/L		0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	µg/L	25	0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	59	0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	3	0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	300	0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	µg/L	520	0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptable Limits					
Toluene-d8	% Recovery	50-140		104	95	98	95
4-Bromofluorobenzene	% Recovery	50-140		64	67	66	68

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469594-5469623 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Parameter	Unit	SAMPLE DESCRIPTION:		BH3S	BH30S	BH5S
		SAMPLE TYPE:	DATE SAMPLED:	Water	Water	Water
				2023-11-17	2023-11-17	2023-11-17 12:00
Parameter	Unit	G / S	RDL	5469594	5469605	5469620
Dissolved Antimony	µg/L	6	1.0	<1.0	<1.0	<1.0
Dissolved Arsenic	µg/L	25	1.0	<1.0	<1.0	3.0
Dissolved Barium	µg/L	1000	2.0	38.6	37.0	16.5
Dissolved Beryllium	µg/L	4	0.50	<0.50	<0.50	<0.50
Dissolved Boron	µg/L	5000	10.0	1020	1020	1070
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20	<0.20
Dissolved Chromium	µg/L	50	2.0	<2.0	<2.0	<2.0
Dissolved Cobalt	µg/L	3.8	0.50	<0.50	0.53	<0.50
Dissolved Copper	µg/L	87	1.0	<1.0	<1.0	5.4
Dissolved Lead	µg/L	10	0.50	<0.50	<0.50	<0.50
Dissolved Molybdenum	µg/L	70	0.50	10.5	10.2	8.34
Dissolved Nickel	µg/L	100	1.0	<1.0	<1.0	<1.0
Dissolved Selenium	µg/L	10	1.0	<1.0	<1.0	<1.0
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20	<0.20
Dissolved Thallium	µg/L	2	0.30	<0.30	<0.30	<0.30
Dissolved Uranium	µg/L	20	0.50	1.39	1.30	<0.50
Dissolved Vanadium	µg/L	6.2	0.40	<0.40	<0.40	<0.40
Dissolved Zinc	µg/L	1100	5.0	<5.0	<5.0	<5.0
Mercury	µg/L	1	0.02	<0.02	<0.02	<0.02
Chromium VI	µg/L	25	2.000	<2.000	<2.000	<2.000
Cyanide, WAD	µg/L	66	2	<2	<2	<2
Dissolved Sodium	µg/L	490000	50	80500	73600	75500
Chloride	µg/L	790000	100	21700	21500	20800
Electrical Conductivity	µS/cm	NA	2	1090	1070	1040
pH	pH Units		NA	7.76	7.73	7.67

Certified By:

Yris Verastegui

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Oakville

Laboratories

Certificate of Analysis

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-11-17

DATE REPORTED: 2023-11-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5469594-5469620 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T094534****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE:Oakville****SAMPLED BY:M.L.**

Trace Organics Analysis

RPT Date: Nov 23, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - OC Pesticides (Water)

Gamma-Hexachlorocyclohexane	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	81%	50%	140%	86%	50%	140%	88%	50%	140%
Heptachlor	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	83%	50%	140%	82%	50%	140%	103%	50%	140%
Aldrin	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	92%	50%	140%	89%	50%	140%
Heptachlor Epoxide	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	84%	50%	140%	89%	50%	140%	83%	50%	140%
Endosulfan I	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	86%	50%	140%	81%	50%	140%
Endosulfan II	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	88%	50%	140%	83%	50%	140%
alpha - chlordane	5469591	5469591	< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	88%	50%	140%	81%	50%	140%
gamma-Chlordane	5469591	5469591	< 0.04	< 0.04	NA	< 0.04	93%	50%	140%	89%	50%	140%	84%	50%	140%
op'-DDE	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	115%	50%	140%	112%	50%	140%	113%	50%	140%
pp'-DDE	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	105%	50%	140%	92%	50%	140%	115%	50%	140%
op'-DDD	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	101%	50%	140%	91%	50%	140%
pp'-DDD	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	97%	50%	140%	86%	50%	140%
op'-DDT	5469591	5469591	< 0.04	< 0.04	NA	< 0.04	96%	50%	140%	100%	50%	140%	80%	50%	140%
pp'-DDT	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	113%	50%	140%	98%	50%	140%
Dieldrin	5469591	5469591	< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	92%	50%	140%	87%	50%	140%
Endrin	5469591	5469591	< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	105%	50%	140%	115%	50%	140%
Methoxychlor	5469591	5469591	< 0.04	< 0.04	NA	< 0.04	87%	50%	140%	102%	50%	140%	104%	50%	140%
Hexachlorobenzene	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	102%	50%	140%	107%	50%	140%	102%	50%	140%
Hexachlorobutadiene	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	108%	50%	140%	102%	50%	140%
Hexachloroethane	5469591	5469591	< 0.01	< 0.01	NA	< 0.01	89%	50%	140%	92%	50%	140%	100%	50%	140%

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

F1 (C6 to C10)	5476158	<25	<25	NA	< 25	103%	60%	140%	116%	60%	140%	86%	60%	140%	
F2 (C10 to C16)	5469594	5469594	< 100	< 100	NA	< 100	120%	60%	140%	70%	60%	140%	74%	60%	140%
F3 (C16 to C34)	5469594	5469594	< 100	< 100	NA	< 100	116%	60%	140%	76%	60%	140%	80%	60%	140%
F4 (C34 to C50)	5469594	5469594	< 100	< 100	NA	< 100	77%	60%	140%	88%	60%	140%	70%	60%	140%

O. Reg. 153(511) - PAHs (Water)

Naphthalene	5468457	<0.20	<0.20	NA	< 0.20	113%	50%	140%	76%	50%	140%	86%	50%	140%
Acenaphthylene	5468457	<0.20	<0.20	NA	< 0.20	103%	50%	140%	71%	50%	140%	82%	50%	140%
Acenaphthene	5468457	<0.20	<0.20	NA	< 0.20	120%	50%	140%	115%	50%	140%	104%	50%	140%
Fluorene	5468457	<0.20	<0.20	NA	< 0.20	113%	50%	140%	112%	50%	140%	104%	50%	140%
Phenanthrene	5468457	<0.10	<0.10	NA	< 0.10	123%	50%	140%	119%	50%	140%	107%	50%	140%
Anthracene	5468457	<0.10	<0.10	NA	< 0.10	121%	50%	140%	120%	50%	140%	107%	50%	140%
Fluoranthene	5468457	<0.20	<0.20	NA	< 0.20	107%	50%	140%	115%	50%	140%	104%	50%	140%
Pyrene	5468457	<0.20	<0.20	NA	< 0.20	106%	50%	140%	114%	50%	140%	105%	50%	140%
Benzo(a)anthracene	5468457	<0.20	<0.20	NA	< 0.20	75%	50%	140%	80%	50%	140%	75%	50%	140%
Chrysene	5468457	<0.10	<0.10	NA	< 0.10	119%	50%	140%	104%	50%	140%	98%	50%	140%
Benzo(b)fluoranthene	5468457	<0.10	<0.10	NA	< 0.10	74%	50%	140%	71%	50%	140%	63%	50%	140%
Benzo(k)fluoranthene	5468457	<0.10	<0.10	NA	< 0.10	72%	50%	140%	102%	50%	140%	99%	50%	140%
Benzo(a)pyrene	5468457	<0.01	<0.01	NA	< 0.01	75%	50%	140%	75%	50%	140%	61%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.calab.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items tested. Results apply to samples as received.

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T094534****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE:Oakville****SAMPLED BY:M.L.**

Trace Organics Analysis (Continued)

RPT Date: Nov 23, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
Indeno(1,2,3-cd)pyrene	5468457		<0.20	<0.20	NA	< 0.20	82%	50%	140%	82%	50%	140%	63%	50%	140%	
Dibenz(a,h)anthracene	5468457		<0.20	<0.20	NA	< 0.20	118%	50%	140%	87%	50%	140%	77%	50%	140%	
Benzo(g,h,i)perylene	5468457		<0.20	<0.20	NA	< 0.20	103%	50%	140%	72%	50%	140%	88%	50%	140%	
O. Reg. 153(511) - VOCs (with PHC) (Water)																
Dichlorodifluoromethane	5476158		<0.40	<0.40	NA	< 0.40	93%	50%	140%	92%	50%	140%	109%	50%	140%	
Vinyl Chloride	5476158		<0.17	<0.17	NA	< 0.17	95%	50%	140%	91%	50%	140%	74%	50%	140%	
Bromomethane	5476158		<0.20	<0.20	NA	< 0.20	108%	50%	140%	89%	50%	140%	84%	50%	140%	
Trichlorofluoromethane	5476158		<0.40	<0.40	NA	< 0.40	97%	50%	140%	96%	50%	140%	72%	50%	140%	
Acetone	5476158		<1.0	<1.0	NA	< 1.0	96%	50%	140%	118%	50%	140%	78%	50%	140%	
1,1-Dichloroethylene	5476158		<0.30	<0.30	NA	< 0.30	75%	50%	140%	89%	60%	130%	72%	50%	140%	
Methylene Chloride	5476158		<0.30	<0.30	NA	< 0.30	105%	50%	140%	107%	60%	130%	117%	50%	140%	
trans- 1,2-Dichloroethylene	5476158		<0.20	<0.20	NA	< 0.20	92%	50%	140%	103%	60%	130%	87%	50%	140%	
Methyl tert-butyl ether	5476158		<0.20	<0.20	NA	< 0.20	88%	50%	140%	104%	60%	130%	116%	50%	140%	
1,1-Dichloroethane	5476158		<0.30	<0.30	NA	< 0.30	100%	50%	140%	118%	60%	130%	92%	50%	140%	
Methyl Ethyl Ketone	5476158		<1.0	<1.0	NA	< 1.0	112%	50%	140%	102%	50%	140%	95%	50%	140%	
cis- 1,2-Dichloroethylene	5476158		<0.20	<0.20	NA	< 0.20	98%	50%	140%	109%	60%	130%	100%	50%	140%	
Chloroform	5476158		<0.20	<0.20	NA	< 0.20	96%	50%	140%	105%	60%	130%	110%	50%	140%	
1,2-Dichloroethane	5476158		<0.20	<0.20	NA	< 0.20	90%	50%	140%	95%	60%	130%	81%	50%	140%	
1,1,1-Trichloroethane	5476158		<0.30	<0.30	NA	< 0.30	105%	50%	140%	117%	60%	130%	101%	50%	140%	
Carbon Tetrachloride	5476158		<0.20	<0.20	NA	< 0.20	89%	50%	140%	102%	60%	130%	96%	50%	140%	
Benzene	5476158		<0.20	<0.20	NA	< 0.20	111%	50%	140%	119%	60%	130%	104%	50%	140%	
1,2-Dichloropropane	5476158		<0.20	<0.20	NA	< 0.20	105%	50%	140%	104%	60%	130%	106%	50%	140%	
Trichloroethylene	5476158		<0.20	<0.20	NA	< 0.20	71%	50%	140%	75%	60%	130%	76%	50%	140%	
Bromodichloromethane	5476158		<0.20	<0.20	NA	< 0.20	107%	50%	140%	115%	60%	130%	98%	50%	140%	
Methyl Isobutyl Ketone	5476158		<1.0	<1.0	NA	< 1.0	117%	50%	140%	117%	50%	140%	100%	50%	140%	
1,1,2-Trichloroethane	5476158		<0.20	<0.20	NA	< 0.20	99%	50%	140%	105%	60%	130%	92%	50%	140%	
Toluene	5476158		<0.20	<0.20	NA	< 0.20	90%	50%	140%	96%	60%	130%	80%	50%	140%	
Dibromochloromethane	5476158		<0.10	<0.10	NA	< 0.10	96%	50%	140%	103%	60%	130%	91%	50%	140%	
Ethylene Dibromide	5476158		<0.10	<0.10	NA	< 0.10	112%	50%	140%	113%	60%	130%	99%	50%	140%	
Tetrachloroethylene	5476158		<0.20	<0.20	NA	< 0.20	87%	50%	140%	95%	60%	130%	78%	50%	140%	
1,1,1,2-Tetrachloroethane	5476158		<0.10	<0.10	NA	< 0.10	101%	50%	140%	106%	60%	130%	100%	50%	140%	
Chlorobenzene	5476158		<0.10	<0.10	NA	< 0.10	86%	50%	140%	89%	60%	130%	86%	50%	140%	
Ethylbenzene	5476158		<0.10	<0.10	NA	< 0.10	102%	50%	140%	107%	60%	130%	115%	50%	140%	
m & p-Xylene	5476158		<0.20	<0.20	NA	< 0.20	114%	50%	140%	120%	60%	130%	105%	50%	140%	
Bromoform	5476158		<0.10	<0.10	NA	< 0.10	112%	50%	140%	118%	60%	130%	95%	50%	140%	
Styrene	5476158		<0.10	<0.10	NA	< 0.10	120%	50%	140%	115%	60%	130%	110%	50%	140%	
1,1,2,2-Tetrachloroethane	5476158		<0.10	<0.10	NA	< 0.10	107%	50%	140%	112%	60%	130%	81%	50%	140%	
o-Xylene	5476158		<0.10	<0.10	NA	< 0.10	108%	50%	140%	113%	60%	130%	99%	50%	140%	

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: Oakville

SAMPLED BY: M.L.

Trace Organics Analysis (Continued)

RPT Date: Nov 23, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper		Lower	Upper		Lower	Upper	
1,3-Dichlorobenzene	5476158		<0.10	<0.10	NA	< 0.10	87%	50%	140%	87%	60%	130%	84%	50%	140%	
1,4-Dichlorobenzene	5476158		<0.10	<0.10	NA	< 0.10	87%	50%	140%	88%	60%	130%	84%	50%	140%	
1,2-Dichlorobenzene	5476158		<0.10	<0.10	NA	< 0.10	87%	50%	140%	87%	60%	130%	81%	50%	140%	
n-Hexane	5476158		<0.20	<0.20	NA	< 0.20	100%	50%	140%	91%	60%	130%	95%	50%	140%	
O. Reg. 153(511) - PHCs F1/BTEX (Water)																
Benzene	5476158		<0.20	<0.20	NA	< 0.20	111%	60%	140%	119%	60%	140%	104%	60%	140%	
Toluene	5476158		<0.20	<0.20	NA	< 0.20	90%	60%	140%	96%	60%	140%	80%	60%	140%	
Ethylbenzene	5476158		<0.10	<0.10	NA	< 0.10	102%	60%	140%	107%	60%	140%	115%	60%	140%	
m & p-Xylene	5476158		<0.20	<0.20	NA	< 0.20	114%	60%	140%	120%	60%	140%	105%	60%	140%	
o-Xylene	5476158		<0.10	<0.10	NA	< 0.10	108%	60%	140%	113%	60%	140%	99%	60%	140%	
F1 (C6-C10)	5476158		<25	<25	NA	< 25	103%	60%	140%	116%	60%	140%	86%	60%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Quality Assurance

CLIENT NAME: EXP SERVICES INC**AGAT WORK ORDER: 23T094534****PROJECT: GTR-23012833-A0-2****ATTENTION TO: Amanda Catenaro****SAMPLING SITE:Oakville****SAMPLED BY:M.L.**

Water Analysis

RPT Date: Nov 23, 2023			DUPLICATE			Method Blank	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
								Lower	Upper			Lower		Lower	Upper	

O. Reg. 153(511) - Metals & Inorganics (Water)

Dissolved Antimony	5468322	<1.0	<1.0	NA	< 1.0	94%	70%	130%	106%	80%	120%	92%	70%	130%
Dissolved Arsenic	5468322	1.4	1.0	NA	< 1.0	76%	70%	130%	87%	80%	120%	80%	70%	130%
Dissolved Barium	5468322	467	451	3.5%	< 2.0	99%	70%	130%	114%	80%	120%	104%	70%	130%
Dissolved Beryllium	5468322	<0.50	<0.50	NA	< 0.50	91%	70%	130%	107%	80%	120%	102%	70%	130%
Dissolved Boron	5468322	170	168	1.2%	< 10.0	93%	70%	130%	107%	80%	120%	98%	70%	130%
Dissolved Cadmium	5468322	<0.20	<0.20	NA	< 0.20	100%	70%	130%	115%	80%	120%	98%	70%	130%
Dissolved Chromium	5468322	<2.0	<2.0	NA	< 2.0	99%	70%	130%	116%	80%	120%	107%	70%	130%
Dissolved Cobalt	5468322	0.81	0.77	NA	< 0.50	101%	70%	130%	115%	80%	120%	101%	70%	130%
Dissolved Copper	5468322	4.2	4.8	NA	< 1.0	99%	70%	130%	111%	80%	120%	95%	70%	130%
Dissolved Lead	5468322	2.42	2.27	NA	< 0.50	94%	70%	130%	103%	80%	120%	82%	70%	130%
Dissolved Molybdenum	5468322	1.66	1.84	NA	< 0.50	101%	70%	130%	113%	80%	120%	107%	70%	130%
Dissolved Nickel	5468322	3.9	4.3	NA	< 1.0	101%	70%	130%	115%	80%	120%	98%	70%	130%
Dissolved Selenium	5468322	<1.0	<1.0	NA	< 1.0	97%	70%	130%	112%	80%	120%	104%	70%	130%
Dissolved Silver	5468322	<0.20	<0.20	NA	< 0.20	98%	70%	130%	114%	80%	120%	92%	70%	130%
Dissolved Thallium	5468322	<0.30	<0.30	NA	< 0.30	100%	70%	130%	111%	80%	120%	90%	70%	130%
Dissolved Uranium	5468322	25.5	25.0	2.0%	< 0.50	92%	70%	130%	115%	80%	120%	104%	70%	130%
Dissolved Vanadium	5468322	2.06	2.38	14.4%	< 0.40	102%	70%	130%	118%	80%	120%	112%	70%	130%
Dissolved Zinc	5468322	<5.0	<5.0	NA	< 5.0	100%	70%	130%	110%	80%	120%	94%	70%	130%
Mercury	5471075	<0.02	<0.02	NA	< 0.02	104%	70%	130%	98%	80%	120%	95%	70%	130%
Chromium VI	5468322	<2.000	<2.000	NA	< 2	102%	70%	130%	102%	80%	120%	95%	70%	130%
Cyanide, WAD	5476660	<2	<2	NA	< 2	92%	70%	130%	107%	80%	120%	89%	70%	130%
Dissolved Sodium	5468322	797000	734000	8.2%	< 50	111%	70%	130%	121%	80%	120%	NA	70%	130%
Chloride	5467497	77400	77300	0.1%	< 100	93%	70%	130%	101%	80%	120%	105%	70%	130%
Electrical Conductivity	5467332	85	79	7.3%	< 2	104%	90%	110%						
pH	5467332	6.34	6.41	1.1%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

QA Qualifier for metals – Dissolved Sodium: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

Certified By:*Yris Verastegui*

QC Exceedance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

AGAT WORK ORDER: 23T094534

ATTENTION TO: Amanda Catenaro

RPT Date: Nov 23, 2023		REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE				
PARAMETER	Sample Id	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
			Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (Water)			111%	70% 130%	121%	80% 120%	NA	70% 130%		

Dissolved Sodium

111% 70% 130% 121% 80% 120% NA 70% 130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

QA Qualifier for metals – Dissolved Sodium: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T094534

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Gamma-Hexachlorocyclohexane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Aldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor Epoxide	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan I	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan II	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
alpha - chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
gamma-Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
Dieldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Methoxychlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobenzene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobutadiene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachloroethane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
TCMX	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD

AGAT

Laboratories

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
<http://www.agatlabs.com>

Method Summary

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23T094534

PROJECT: GTR-23012833-A0-2

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: Oakville

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Benzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T094534

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6-C10)	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T094534

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-23012833-A0-2

SAMPLING SITE: Oakville

AGAT WORK ORDER: 23T094534

ATTENTION TO: Amanda Catenaro

SAMPLED BY: M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

EXP Services Inc.

*Phase Two Environmental Site Assessment
Neyagawa Boulevard, Oakville, Ontario
GTR-23012833-A0
December 6, 2023*

Appendix F – Phase Two Conceptual Site Model

Phase Two Conceptual Site Model – Neyagawa Boulevard, Oakville, Ontario

This section presents a P2CSM providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. These components are discussed in the following sections. The Phase Two CSM was completed in accordance with O. Reg.153/04 as defined by the MECP. The list of figures referenced throughout this report is provided below.

List of Figures

- Figure 1 – Site Location Plan
- Figure 2 – Surrounding Land Use Plan, Phase One Study Area and PCAs
- Figure 3 – Site Plan
- Figure 4 – Areas of Potential Environmental Concern
- Figure 5A – Borehole / Monitoring Well Location Plan and Cross Section Plan
- Figure 5B – Borehole / Monitoring Well Location Plan and APEC
- Figure 6 – Groundwater Contour Plan
- Figure 7A – Soil Analytical Results – PHCs including BTEX
- Figure 7B – Soil Analytical Results – Volatile Organic Compounds
- Figure 7B – Soil Analytical Results – Metals and Other Regulated Parameters (including B-HWS, Cr (VI), Hg, CN-, EC, SAR)
- Figure 7C – Soil Analytical Results – OCs
- Figure 8A – Groundwater Analytical Results – PHCs including BTEX
- Figure 8B – Groundwater Analytical Results – VOCs
- Figure 8C – Groundwater Analytical Results – PAHs
- Figure 8D – Groundwater Analytical Results – Metals and Other Regulated Parameters (including Na, Hg)
- Figure 8E – Groundwater Analytical Results – OCs
- Figure 9 – Cross Section A-A' and B-B'

1. Introduction

The Site is located on the northeast side of Neyagawa Boulevard, between Burnhamthorpe Road West and Highway 407, in Oakville Ontario (hereinafter referred to as the “Site”). Details of the Site are as follows:

Table 1: Site Identification Information

Municipal Address	N/A
Current Land Use	Agricultural and/or Other Use
Proposed Land Use	Residential
Legal Description	Part of Lot 20, Concession 2, Traf NDS, Parts 1&2 20R16345, Except Part 4 20R19373, Part 2 HR1788345
Property Identification Number (PIN)	24929-6891 (LT)
Approximate Universal Transverse Mercator (UTM) coordinates	NAD83 17T- 4815149 m N 600070 m E
Accuracy Estimate of UTM	10-15 m
Site Area	2.63 hectares (6.5 acres)
Property Owners	Burnhamthorpe/Oakville Holdings Inc.

2. Potentially Contaminating Activities and Areas of Potential Environmental Concern

2.1 Potentially Contaminating Activities

A Draft Phase One ESA, in accordance with O.Reg.153/04, has been conducted by EXP in November 2023 for the Phase One Property. Potentially Contaminating Activities (PCAs) were identified on-Site and within 250 m from the Phase One Property site boundaries. All PCAs that were identified within 250 m property are shown on Figure 2. Each PCA was further evaluated to determine if the activity may be contributing to an APEC at the Phase One Property.

The QP determined that select PCAs may contribute to an APEC for the property. Refer to Table 2 for the evaluation of the PCAs in the Phase One Study Area.

Table 2: Potentially Contaminating Activities in the Phase One Study Area

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
1	Neyagawa Boulevard	West adjacent	PCA#N/A – Salting and De-icing	1950s to present. Based on the Site walkover, Neyagawa Boulevard is located adjacent to the Site and likely undergoes salting and de-icing during winter months for the purposes of	Yes, based on the close proximity to the Site.

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Approximate timeline that PCA occurred	Contributes to APEC (Yes or No)?
				keeping vehicular traffic and/or pedestrians safe.	
2	Highway 407	Northeast Adjacent	PCA#N/A – Salting and De-icing	1970s to present. Based on the Site walkover, Neyagawa Boulevard is located adjacent to the Site and likely undergoes salting and de-icing during winter months for the purposes of keeping vehicular traffic and/or pedestrians safe.	Yes, based on the close proximity to the Site.
3	Burnhamthorpe Road West	Southeast Adjacent	PCA#N/A – Salting and De-icing	1950s to present. Based on the Site walkover, Neyagawa Boulevard is located adjacent to the Site and likely undergoes salting and de-icing during winter months for the purposes of keeping vehicular traffic and/or pedestrians safe.	Yes, based on the close proximity to the Site.
4	4 TH Line	650 m South	PCA #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosolids as soil conditioners	1986 to 2015. The Regional Municipality of Halton was registered as a waste generator of Steel Making Residues, Inorganic Tannery Wastes, Petroleum Distillates and/or Landfill Leachates from 1986 to 2015.	Yes, given the large capacity, long operation (20 years) and upgradient location of the historical dump.
5	Entire Site	On-Site	#40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	1900s to present. As a conservative measure, it is assumed pesticides have been applied since the early 1900s to present.	Yes, given that it is located on-Site.

(1) Distances are approximate. Precise distances are not possible due to the age of some listings and the aggregation and/or loss of addresses.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg 153/04, as amended) that is occurring or has occurred in a phase one Study area.

2.2 Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located within the Phase One Study Area APECs were identified, as presented in Figure 4, and summarized in Table 3 below.

Table 3: Areas of Potential Environmental Concern (APECs)

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Site	Potentially Contaminating Activity	Location of the PCA (On-Site/Off-Site)	Contaminants of Potential Concern (Soil)	Media of Concern Soil /Groundwater
APEC 1 Salting along Neyagawa Boulevard	Western portion of Site	(PCA 1) #NA - Application of De-icing Salts	Off-site	EC, SAR	Soil
APEC 2 Salting along Highway 407	Northeastern portion of Site	(PCA 2) #N/A - Application of De-icing Salts	Off-site	EC, SAR	Soil
APEC 3 Salting along Burnhamthorpe Road West	Southwestern portion of Site	(PCA 3) #N/A – Application of De-icing Salts	Off-site	EC, SAR Na, Cl	Soil and Groundwater
APEC 3	Southwestern portion of Site	(PCA 4) #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-site	PHCs, BTEX, VOCs, PAHs, Metals, As, Sb, Se, HWS-B, Cr (VI), Hg, CN-	Groundwater
APEC 4	Entire Site	(PCA 5) #40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-site	OCs	Soil and Groundwater

(1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg.153/04, as amended) that is occurring or has occurred in a phase one Study area.

Based on the findings of the Phase One ESA and conclusions, a Phase Two ESA is required to assess the soil and groundwater conditions at the Site.

Refer to Figure 4 or the location of APECs on the Site. Boreholes/monitoring wells advanced on the Site to investigate the identified APECs, are shown on Figure 5.

2.3 Impediments

No impediments to the work were encountered during the Phase Two ESA.

2.4 Underground Utilities

The Site utilities and services were identified at the Site based on information provided in environmental records and relevant utility infrastructure observed during the Site reconnaissance. The Site utilities are summarized in the table below and noted on Figure 3, where available.

Table 4: Site Utilities

Utility	Source	Location	Site Entry
Natural Gas	Enbridge Gas	Underground	Unknown.

Utility	Source	Location	Site Entry
			Given that the Site is vacant, this utility is not anticipated to be present on-Site.
Sanitary Sewer	Town of Oakville	Underground	Manholes were observed along Neyagawa Boulevard and Burnhamthorpe Road West. Given that the Site is vacant, this utility is not anticipated to be present on-Site.
Storm Sewer	Town of Oakville	Underground	Catch basins were observed along Neyagawa Boulevard and Burnhamthorpe Road West. Given that the Site is vacant, this utility is not anticipated to be present on-Site.
Water	Halton Region	Underground	Unknown Given that the Site is vacant, this utility is not anticipated to be present on-Site.
Electricity	Hydro-electric	Overhead	Overhead hydro wires were observed along Neyagawa Boulevard and Burnhamthorpe Road West. Given that the Site is vacant, this utility is not anticipated to be present on-Site.
Telecommunications	Bell Canada	Underground	Unknown Given that the Site is vacant, this utility is not anticipated to be present on-Site.

Preferential pathways for COCs in groundwater include underground utilities, building footings and subsurface features. As no COCs were identified in soil and groundwater at the Site, preferential pathways provided by subsurface structures and utilities will not affect groundwater contaminant fate or transport.

3. Physical Site Description

3.1 Geological and Hydrogeological Conditions

The Site and surrounding areas are generally located within the South Slope. The geology of the Site and surrounding area is comprised of till moraines and till plains, which comprises of silty to clayey deposits. The bedrock in the general area consists of shale, limestone, dolostone, and siltstone belonging to the Queenston Formation, Georgian Bay, Blue Mountain and Billings Formations and Collingwood and Eastview Members. Based on the Phase Two ESA, shale bedrock was encountered below the silt till at BH1D to BH3D. Depths of bedrock ranged from approximately 8.7 and 15.3 mbgs. Based on the topographic map, the Site slopes gently towards the south in the southern portion and north in the northern portion of the Site. East Sixteen Mile Creek is located approximately 385 m north of the Site. Groundwater flow within the Phase One Study Area is anticipated to be towards the north to northwest. Based on the groundwater contour map for the Site, the groundwater is anticipated to be multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site.

Based on the review of available resources from the Ministry of Natural Resources and Forestry website on October 24, 2023, no areas of natural significance were identified at the Site or within 30 m of the Site. A natural heritage system is located on the northwest side of Highway 407, approximately 125 metres to the northwest.

3.1.1 Surface Material

No pavement or asphalt were present on-Site. Soil was exposed across the entirety of the Site.

Topsoil was present at all borehole locations. The topsoil extends to depths of approximately 0.1 to 0.18 mbgs. The topsoil consists of brown silt and organic material.

3.1.2. Native Material

Sandy Silt Till

The sandy silt till extends to a depth of approximately 3.5 to 6.4 mbgs. The silt is brown, becoming grey around the water table depth.

Clayey Silt Till

A clayey silt till deposit was intersected below the sandy silt till or silt till in BH1S to BH4S. The clayey silt till extends to depths of approximately 7.3 to 10.2 mbgs. The clayey silt till is brown to grey in colour and contains trace sand and gravel at some depths and locations.

Silt Till

A silt till deposit was intersected below the clayey silt till in BH1S to BH4S. The silt till extends to the top of the shale bedrock, to depth of approximately 8.7 and 15.3 mbgs. The silt till is grey in colour with trace clay, sand, and/or gravel.

3.1.3 Bedrock

Shale bedrock was encountered below the silt till at BH1D to BH3D. Depths of bedrock ranged from approximately 8.7 and 15.3 mbgs. BH1S to BH5S were terminated prior to hitting bedrock. The details findings from the rock cores are presented in the geotechnical report, on a separate coverage.

All five (5) environmental boreholes were terminated within the silt or clayey silt till.

3.2 Hydrogeology

Based on the groundwater contour map for the Site, the groundwater is anticipated to be multi-directional and flows in a northwesterly direction at the northern portion of the Site and a southerly direction at the southern portion of the Site. Refer to Table 5 (below) for the Site hydrogeology characteristics based on groundwater monitoring observations.

Table 5: Site Hydrogeology Characteristics

Location	Observation
Depth to Groundwater	0.661 (BH3S) to 7.708 mbgs (BH1S)
Groundwater Elevation	180.93 (BH3S) to 183.28 masl (BH4S)
Direction of Groundwater Flow	Multi-directional: Northwesterly at the northern portion and southerly in the southern portion
Horizontal Hydraulic Gradient	0.003 m/m

mbgs = metres below ground surface
masl = meters above sea level

The hydrogeology of the Phase Two Property is illustrated on the groundwater contour plan (Figure 6).

3.3 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Sections 35, 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in Table 6.

Table 6: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
Section 35 applies if	(i) The full depth generic site condition standards in a non-potable groundwater condition	No
	(ii) The stratified site condition standards in a non-potable groundwater condition	No
	(iii) The property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the property, are supplied by a municipal drinking water system	No
	(iv) The record of site condition does not specify agricultural or other use as the type of property use	No
	(v) The property is located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater	No
	(vi) The property or one of the properties in the phase one study area has a well used or intended for use as a source of water for human consumption or agriculture.	Yes
	(vii) A person authorized by the owner of a property has given the clerk of the municipality a written notice of intention to apply the standards in preparing a record of site condition for the property.	No
Section 41 applies if	(i) property is within an area of natural significance	No
	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
	(iv) soil at property has a pH value for surface soil less than 5 or greater than 9	No
	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section 43.1 applies if	(i) property is a shallow soil property	No
	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

3.3.1 Excess Soil Importation

Fill material is typically brought to a property as a base for buildings and pavement areas. Fill can also be used to re-grade a property, and to backfill excavations.

Based on the reviewed information, very small amounts of reworked native material is present across the Site. No excess soil has been brought to the Site during the Phase Two ESA or has historically anticipated to be brought to the Site.

3.4 Land Use

At the time of the Phase Two ESA, the Site was occupied by vacant land containing soy bean crops.

Reportedly, the Site is intended to be redeveloped for residential purposes. Design plans have not been finalized, at this time.

4. Contaminants of Concern

For assessment purposes, EXP selected the MECP (2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and fine-textured soil was considered applicable for determining contaminants of concern (COCs), based on the rationale presented in Table 7 below.

Table 7: Site Condition Standards

Description	Site Specific Condition
Section 35 Site Sensitivity	Not Applicable
Section 41 Site Sensitivity	<p>Not applicable</p> <ul style="list-style-type: none"> The soil at the Site has pH values between 5 and 9 for surficial soil; and, between 5 and 11 for subsurface soil. The Site is not located within, and/or located adjacent to an area of natural significance/an environmentally sensitive area.
Section 43.1 Site Sensitivity	<p>Not Applicable</p> <ul style="list-style-type: none"> The Site is not considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m. The Site is not located within 30 m of a surface water body
Land Use	<p>Residential/Parkland/Institutional</p> <ul style="list-style-type: none"> The proposed future use of the Site is for residential use.
Soil Texture	<p>Medium and Fine textured</p> <ul style="list-style-type: none"> The predominant texture of soils at the Site is considered to be medium and fine, based on soil characteristics identified in the borehole logs

Based on the reported analytical results, soil and groundwater parameters were not detected at concentrations above the applicable MECP Table 2 SCS.

4.1 Soil

Soil was within the Table 2 SCS for all parameters analyzed. Therefore, no soil COCs are present at the Site at concentrations above the Table 2 SCS.

4.2 Groundwater

Groundwater was within the Table 2 SCS for all parameters analyzed. Therefore, no groundwater COCs are present at the Site at concentrations above the Table 2 SCS.

4.3 Mechanism of Discharge of Contaminants

No COCs were identified at the Site during the Phase Two ESA.

4.4 Migration of Contaminants

As no soil or groundwater COCs were identified, underground utility corridors are not considered an applicable pathway for migration of any contaminant plume. Furthermore, fill is not anticipated to affect groundwater contaminant migration.

4.5 Climatic and Meteorological Conditions Affecting Migration

No soil or groundwater exceedances of the MECP Table 2 SCS were identified at the site. As such, temporal variability in groundwater flow direction due to climatic and meteorological conditions is not expected to be a factor concerning the distribution and migration of contaminants.

4.6 Soil Vapour Intrusion

As no volatile soil and groundwater COCs were identified, vapour intrusion pathways are not considered complete.

5. Uncertainty in the Phase Two Investigation

The investigation undertaken by EXP, and any conclusions or recommendations resulting from the work, reflect EXP's judgment based on the Site conditions observed at the time of EXP's site inspections and on information available at the time of preparation of the work. EXP has confirmed neither the completeness nor the accuracy of the records that were provided by others; as such, the historical records review is identified as a potential source of uncertainty during the investigation. The CSM is developed using multiple lines of evidence, searches and source information to make every reasonable attempt to ensure that findings of environmental significance are captured.

Any uncertainty or absence of information in the records review, interviews, and site reconnaissance components of the Phase One investigation, or any uncertainty or absence of information within the Phase Two or subsequent investigations, are not anticipated to materially affect the validity of the Phase Two CSM.