TRAFFIC IMPACT STUDY
 CHARLES CORNWALL AVENUE DESIGN BRONTE GREEN - OAKVILLE

TRAFFIC IMPACT STUDY CHARLES CORNWALL AVENUE DESIGN BRONTE GREEN - OAKVILLE

APRIL 2020

Read, Voorhees \& Associates Limited, 99 Toynbee Trail, Toronto, Ontario M1E 1G4 Tel: 416 445-4360 / danc@rva.ca

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. DEVELOPMENT PLAN 1
3. EXISTING CONDITIONS 2
3.1 Road System 2
3.2 Traffic Volume 3
4. TRAFFIC FORECASTS 3
4.1 Background Traffic. 3
4.2 Commercial Site Traffic 3
4.3 Future Total Traffic 4
5. TRAFFIC OPERATIONS 4
5.1 Signalized Intersection Operation 4
5.2 Site Access Unsignalized Intersection Operation 5
6. CONCLUSIONS 9

LIST OF TABLES

Page
TABLE 1. SITE TRAFFIC FOR COMMERCIAL BLOCK. 3
TABLE 2. SIGNALIZED INTERSECTION ANALYSIS 2025 4
TABLE 3. UNSIGNALIZED INTERSECTIONS - LEVEL OF SERVICE 6

LIST OF FIGURES

FIGURE 1. CHARLES CORNWALL AVENUE
FIGURE 2. COMMERCIAL BLOCK DEVELOPMENT CONCEPT
FIGURE 3. EXISTING TRAFFIC
FIGURE 4. BACKGROUND AND RESIDENTIAL TRAFFIC
FIGURE 5. COMMERCIAL SITE TRAFFIC
FIGURE 6. TOTAL TRAFFIC

TRAFFIC IMPACT STUDY CHARELS CORNWALL AVENUE DESIGN BRONTE GREEN - OAKVILLE

1. INTRODUCTION

The Bronte Green subdivision is approved and under construction. A part of the subdivision is the transfer of a portion of the Halton Region Woodlands Operations Centre site into the subdivision, including the Woodlands Centre private access road. As part of the design of the new public road, which is named Charles Cornwall Avenue, the Region has requested a traffic impact study (TIS) analysis of the proposed usage and design.

Read Voorhees and Associates (RVA) has been retained by the subdivision owner to prepare the TIS in support of the proposed design. The traffic impact study is intended to assess the operation of the planned commercial block on the north side of the road, the continued access to the Woodlands Operations Centre, the access road to the larger Regional complex to the south, and the residential subdivision roads to the north and east.

A TIS dated April 2017 was prepared and submitted in support of the entire subdivision application, and has been used as the background document for the residential traffic generation.

The traffic study area consists of the signalized intersection of Bronte Road and Charles Cornwall Avenue, and all segments of Charles Cornwall Avenue east from Bronte Road to Queens Plate Road.

The analysis periods used for the TIS are existing conditions, and a five year horizon to 2025, at which time all segments of the subdivision are expected to be occupied. In 2025 the capital roads program indicates the widening of Bronte Road to six through lanes.

The hours analyzed for the TIS are the weekday a.m. and p.m. peak hours.

2. DEVELOPMENT PLAN

Figure 1 shows the proposed design of the section of Charles Cornwall Avenue from Bronte Road to Queens Plate Road.

Charles Cornwall Avenue is a collector road running east-west from Bronte Road into and serving the residential subdivision. It is a two lane road, and posted speed will be $50 \mathrm{~km} / \mathrm{h}$. The basic right-of-way for Charles Cornwall Avenue is 19 metres, but at Bronte Road it is
widened to 22 metres plus daylight triangles to provide two outbound lanes and an inbound lane. The pavement width at Bronte Road is 12.5 metres, and the remainder of the road to the east has a pavement width of 9.5 metres.

Merton Road and Queens Plate Road are local roads with a right-of-way of 17 metres and pavement width of 8.5 metres.

An access driveway to the Woodlands Operations Centre will be maintained, and the access road to the Halton Region office complex will be realigned to intersect with Charles Cornwall Avenue at a 90 degree intersection.

The intersection at Bronte Road and Charles Cornwall Avenue is signalized. Traffic control at all other intersections with Charles Cornwall Avenue will be Stop signs on the minor streets or private driveways intersecting Charles Cornwall Avenue.

There is no final development plan for the proposed commercial block on the north side, but Figure 2 shows the development concept plan under consideration. The floor area is 4,438 $\mathrm{m}^{2}\left(47,759 \mathrm{ft}^{2}\right)$, one half retail and one half office. Site access for the commercial block is by two driveways, one on Charles Cornwall Avenue opposite the Woodlands Centre driveway, and one on Merton Road.

The access to the Woodlands Operations Centre remains essentially where it is currently, about 45 m back from the Stop bar on Charles Cornwall, although the driveway curbs intersecting with Charles Cornwall Avenue are slightly revised.

Merton Road intersects with Charles Cornwall Avenue about 115 metres back from the Stop bar at Bronte Road. Merton Road is located between the commercial block and the Regional storm pond on the east side of the road, and serves the residential blocks to the north.

The access road to the Halton Region office complex will intersect with Charles Cornwall Avenue about 45 metres east of Merton Road.

Queens Plate Road intersects Charles Cornwall Avenue about 30 metres east of the Halton Region access road.

3. EXISTING CONDITIONS

3.1 Road System

Bronte Road is a major north-south arterial road under Regional jurisdiction. It is a four lane road, plus a centre left turn lane which is a dedicated left turn lane at signalized intersections. The posted speed is $60 \mathrm{~km} / \mathrm{h}$.

The existing access road to the Woodlands Operations Centre is a private road on Halton Region property. It also provides a connection to the Halton Region office complex to the south.

Currently there is a Stop sign on the Woodlands Centre driveway, and also for westbound traffic on the Woodlands access road at the Woodlands Centre driveway. The intersection at Woodlands Centre road and Bronte Road is signalized.

3.2 Traffic Volume

Turning movement volumes at the intersections along the Woodlands Operations Centre access road are shown on Figure 3. The Woodlands Operations Centre road volumes are from a count by Read Voorhees on the Woodlands access road and Woodlands driveway in February 2020. The Bronte Road through volumes used in this analysis are based on an all day count on Bronte Road in June 2018.

The Bronte Road volumes are factored up to 2020 by application of a 2% annual increase over the 2018 counts.

The base count data is included in Appendix A of the report.

4. TRAFFIC FORECASTS

4.1 Background Traffic

Figure 4 shows the intersection volumes for 2025, which is the 5 year horizon. The through volumes on Bronte Road are based on an annual increase of 2%, and the volumes on Charles Cornwall Avenue are based on the residential traffic from the subdivision as forecast in the Bronte Green draft plan of subdivision TIS.

4.2 Commercial Site Traffic

Figure 5 shows the intersection turning volumes for 2025 for the proposed commercial block on the north side of Charles Cornwall Avenue. An estimate was made in the subdivision TIS at the draft plan stage, but this has been updated using the latest planning development concept for the commercial block.

The site traffic forecast for the proposed commercial development uses the same hybrid rate used in the draft plan TIS for the retail use, and the ITE Trip Generation Manual for the office use, land use code 710. Total commercial site traffic is shown in Table 1.

Table 1. Site Traffic for Commercial Block

Use	Area (ft ${ }^{2}$)	A.M.		P.M.	
		In	Out	In	Out
Retail rate	1,000	1.0	0.5	3.5	3.5
Site traffic	23,880	$\mathbf{2 4}$	$\mathbf{1 2}$	$\mathbf{8 4}$	$\mathbf{8 4}$
Office rate	1,000	1.36	0.19	0.25	1.24
Site traffic	23,880	32	5	6	30
TOTAL traffic	47,760	56	17	90	114

The retail trips are assumed to be half from the Bronte Green subdivision and half bypass trips from Bronte Road. The office trips are assumed to be 10% from the Bronte Green subdivision and 90% from Bronte Road from elsewhere.

4.3 Future Total Traffic

Figure 6 shows total traffic for the 2025 five year horizon period.

5. TRAFFIC OPERATIONS

The intersections have been analyzed using the Synchro 7 program, with the parameters at Halton Region intersections as specified in their guidelines for Synchro analysis. The saturation flow rate is 1900 vphg, the peak hour factor varies from 0.92 to 1.0, and lost time for all signalized intersection movements is equal to the clearance time.

The Synchro output data for HCM capacity analysis is included in Appendix B.

5.1 Signalized Intersection Operation

Table 2 shows the Synchro analysis results for the signalized intersections, for existing conditions and for the 2025 background and total traffic conditions. Through movements with v / c ratios over 0.85 and individual turning movements with v / c ratios over 1.00 are shown in the summary table.

Table 2. Signalized Intersection Analysis 2025

	Scenario											
Intersection / Condition	2020 Existing Traffic			Future Background Traffic 2025 Bronte 4 lanes			Future Total Traffic 2025 Bronte 4 lanes			Future Total Traffic 2025 Bronte 6 lanes		
A.M. Peak Hour	Del. (sec)	LOS	v/c ratio	Del. (sec)	LOS	v/c ratio	Del. (sec)	LOS	v/c ratio	Del. (sec)	LOS	v/c ratio
Bronte \& Charles Cornwall	9.1	A	0.88	42.1	D	1.05	42.8	D	1.06	14.3	B	0.83
- WB left/thru/right	57.1	E	0.29	80.7	F	0.91	84.1	F	0.94	60.1	E	0.80
- NB thru	5.3	A	0.46	10.8	B	0.57	11.4	B	0.58	10.5	B	0.42
- SB left	1.9	A	0.29	6.6	A	0.43	7.3	A	0.47	5.5	A	0.46
- SB thru/right	10.6	B	0.91	56.2	E	1.08	57.3	E	1.08	13.0	B	0.84
P.M. Peak Hour	$\begin{aligned} & \hline \hline \text { Del. } \\ & (\mathrm{sec}) \end{aligned}$	LOS	$\begin{gathered} \hline \mathrm{v} / \mathrm{c} \\ \text { ratio } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline \text { Del. } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	LOS	$\begin{gathered} \hline \hline \mathrm{v} / \mathrm{c} \\ \text { ratio } \\ \hline \end{gathered}$	Del. (sec)	LOS	v/c ratio	$\begin{aligned} & \hline \text { Del. } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	LOS	$\begin{gathered} \hline \hline \mathrm{v} / \mathrm{c} \\ \text { ratio } \\ \hline \end{gathered}$
Bronte \& Charles Cornwall	11.6	B	0.84	33.2	C	1.01	37.8	D	0.99	15.8	B	0.79
$-\mathrm{WB}$ left/thru/right	58.3	E	0.66	60.3	E	0.74	74.0	E	0.69	60.0	E	0.80
- NB thru	12.2	B	0.87	46.6	D	1.04	51.9	D	1.05	15.7	B	0.82
- SB left	7.8	A	0.15	35.6	D	0.36	37.7	D	0.53	22.3	C	0.51
- SB thru/right	4.6	A	0.45	5.4	A	0.50	6.0	A	0.51	5.3	A	0.36

5.1.1 Bronte Road and Charles Cornwall Avenue

The Bronte Road and Charles Cornwall Avenue intersection has four through lanes on Bronte Road, plus a separate northbound right turn lane, and northbound and southbound left turn lanes. Existing Woodlands Access Road, and future Charles Cornwall Avenue, have a separate left turn lane and a right lane. There is a driveway access on the west side forming a fourth approach, but the traffic volume using the west side driveway is very minor.

2020 Existing Traffic

The intersection is calculated as presently operating with a v/c ratio of 0.88 in the a.m. peak hour, and 0.84 in the p.m. peak hour. Level of service is level A in the a.m. peak hour and level B in the p.m. peak hour. The westbound traffic in the a.m. peak hour has a v / c ratio of 0.29 for the left turn movement and in the p.m. peak hour has a v / c ratio of 0.66 for the right turn movement.

The overall intersection v / c ratio is primarily influenced by the peak directional volume on Bronte Road of southbound in the a.m. peak and northbound in the p.m. peak. The peak hour factor for these movements are 0.96 in the a.m. and 0.99 in the p.m. These factors are carried through to the 2025 analysis.

2025 Background Traffic

With the 2025 background traffic forecast, the intersection level of service changes to level D in the a.m. peak hour and to level C in the p.m. peak hour. The v/c ratio in the a.m. peak hour increases to 1.05, and in the p.m. peak hour increases to 1.01 . The westbound traffic in the a.m. peak hour has a v / c ratio of 0.91 for the left turn movement and in the p.m. peak hour has a v / c ratio of 0.74 for the left turn movement.

2025 Total Traffic

With the proposed commercial development traffic added to the 2025 background volumes, there is marginal change in the intersection operation. The v / c ratio in the a.m. peak hour increases by 0.01 to 1.06 , and in the p.m. peak hour actually decreases by 0.02 to 0.99 . The p.m. decrease occurs because with the increase in volume in the southbound left turn this movement becomes one of the critical movement and the lost time calculation decreases which decreases the overall v / c ratio.

The road program shows that in 2025 Bronte Road is to be widened to six lanes. With this improvement the intersection capacity increases substantially. The v/c ratio in the a.m. peak hour decreases by 0.23 to 0.83 , and in the p.m. peak hour decreases by 0.20 to 0.79 . The widening of Bronte Road to six lanes will resolve any capacity deficiency at the intersection.

5.2 Site Access Unsignalized Intersection Operation

Table 3 shows the Synchro analysis results for the unsignalized intersections along Charles Cornwall Avenue for existing volumes, the 2025 background volumes, and the 2025 total traffic volumes. The total 2025 volumes represent full development of the residential subdivision and the commercial block.

Table 3. Unsignalized Intersections - Level of Service

Intersection	A. M.			P.M.		
	Volume	Delay (sec)	LOS	Volume	Delay (sec)	LOS
2017 EXISTING TRAFFIC						
Woodlands Access Road and Woodlands Driveway						
Overall Intersection		1.8	A		3.3	A
NB left/right	27/5	9.4	A	54/1	9.4	A
EB thru/right	104/26	9.4	A	3/8	9.4	A
WB left/thru	2/5	9.4	A	2/93	9.4	A
2025 BACKGROUND TRAFFIC						
Charles Cornwall and Woodlands Driveway						
Overall Intersection		0.9	A		1.5	A
NB left/right	32	10.9	B	55	12.0	B
Charles Cornwall and Merton Road						
Overall Intersection		1.6	A		1.9	A
SB left/right	48	9.3	A	31	9.4	A
Charles Cornwall and Halton Region Access						
Overall Intersection		0.2	A		3.2	A
NB left/right	7/0	9.9	A	95/0	10.6	B
Charles Cornwall and Queens Plate Road						
Overall Intersection		3.8	A		3.8	A
SB left/right	0/54	8.9	A	0/36	8.7	A
NB left/right	6/0	10.1	B	4/0	10.9	B
2025 TOTAL TRAFFIC						
Charles Cornwall and Woodlands Driveway/Commercial Block Driveway						
Overall Intersection		2.0	A		3.7	A
NB left/thru/right	32	12.7	B	55	17.2	C
SB left/thru/right	11	9.7	A	74	10.2	B
Charles Cornwall and Merton Road						
Overall Intersection		1.6	A		2.1	A
SB left/right	49	9.3	A	10/31	10.2	B
Merton Road and Commercial driveway						
Overall Intersection		0.9	A		2.6	A
EB left/right	6	8.9	A	30/10	9.2	A
Charles Cornwall and Halton Region Access						
Overall Intersection		0.2	A		3.0	A
NB left/right	7/0	10.0	A	95/0	10.8	B
Charles Cornwall and Queens Plate Road						
Overall Intersection		3.9	A		3.8	A
SB left/right	0/56	8.9	A	0/40	8.7	A
NB left/right	7/0	10.2	B	5/0	11.3	B

5.2.1 Charles Cornwall Avenue and Woodlands/Commercial Block Site Driveway

The Woodlands Access Road and Woodlands Centre driveway currently operates at level of service A in both the a.m. and p.m. peak hours.

With the subdivision occupied the Charles Cornwall Avenue and Woodlands Driveway intersection would operate with an overall level of service A in both peak hours, and the Woodlands driveway would operate at level of service B in both peak hours. Charles Cornwall Avenue becomes a through street and there is no delay for east-west traffic.

With the Commercial Block developed and a site driveway located opposite the Woodlands Centre driveway, the intersection would continue to operate with an overall level of service A in both peak hours, and the Woodlands driveway would continue to operate at level of service B in the a.m. peak hour and would operate at level C in the p.m. peak hour. The Commercial driveway will operate at level A in the a.m. peak hour and at level B in the p.m. peak hour.

Queues back from Bronte Road could affect the operation at this intersection, and this is discussed in section 5.3.

5.2.2 Charles Cornwall Avenue and Merton Road

With the subdivision occupied the Charles Cornwall Avenue and Merton Road intersection would operate with an overall level of service A in both peak hours, and the Merton Road approach would operate at level of service A in both peak hours. Charles Cornwall Avenue is a through street and there is no delay for east-west traffic.

With the Commercial Block developed and a site driveway located opposite the Woodlands Centre driveway, and on Merton Road, the intersection would continue to operate with an overall level of service A in both peak hours, and the Merton Road approach would continue to operate at level of service A in the a.m. peak hour and would operate at level B in the p.m. peak hour.

5.2.3 Merton Road and Commercial Block Driveway

With the Commercial Block developed and a site driveway located on Merton Road, the Commercial driveway will operate at level A in the a.m. peak hour and at level A in the p.m. peak hour.

5.2.4 Charles Cornwall Avenue and Halton Region Access

With the subdivision occupied the Charles Cornwall Avenue and Halton Region intersection would operate with an overall level of service A in both peak hours, and the Halton Region approach would operate at level of service A in the a.m. peak hour and at level B in the p.m. peak hour. Charles Cornwall Avenue is a through street and there is no delay for east-west traffic.

With the Commercial Block developed, the intersection would continue to operate with an overall level of service A in both peak hours, and the Halton Region approach would continue to operate at level of service A in the a.m. peak hour and at level B in the p.m. peak hour.

5.2.5 Charles Cornwall Avenue and Queens Plate Road

With the subdivision occupied the Charles Cornwall Avenue and Queens Plate Road intersection would operate with an overall level of service A in both peak hours, and the north leg of the intersection would operate at level of service A in the a.m. peak hour and at level A in the p.m. peak hour. The south leg of the intersection would operate at level of service B in both the a.m. and p.m. peak hours. Charles Cornwall Avenue is a through street and there is no delay for east-west traffic.

With the Commercial Block developed, the intersection would continue to operate with an overall level of service A in both peak hours, and the north leg of the intersection would continue to operate at level of service A in the a.m. peak hour and at level A in the p.m. peak hour. The south north leg of the intersection would continue to operate at level of service B in both the a.m. and p.m. peak hours.

5.3 Queue Analysis

The capacity analysis shows that the Woodlands Centre and the Commercial Block driveways will operate at level of service A or B in the peak hours. However, actual operation can be affected by queues on Charles Cornwall Avenue back from the signal at Bronte Road. The driveways are shown in the design plan to be about 45 metres back from the stop bar at Bronte Road.

Queue lengths in the turn lanes on Charles Cornwall have been calculated using the SimTraffic program, with an average of 5 runs, a seeding time of 10 minutes and a run time of 60 minutes. These are summarized in Table 4. The table shows average queues over the peak hours, and the 95th percentile queues within the peak hours. The 95th percentile queue lengths are used for design purposes.

Bronte Road will be widened to six lanes in 2025, so the queues have been calculated for both conditions, Bronte Road at 4 lanes and 6 lanes.

The queues in the turn lanes on Charles Cornwall will be highest in the p.m. peak hour when commercial block office traffic is leaving the site.

Table 4. Queue Lengths (metres)

Charles Cornwall Avenue Traffic				
2025 Volumes with Full Development, Four Lane Bronte Road				
Time	WB left turn lane queue (m)		WB right turn lane queue (m)	
	Average	$95^{\text {th }}$ percentile	Average	$95^{\text {th }}$ percentile
A.M. peak hour	35	54	19	53
P.M. peak hour	37	56	43	66
2025 Volumes with Full Development, Six Lane Bronte Road				
A.M. peak hour	30	48	16	45
P.M. peak hour	32	50	32	57

The queuing analysis shows that the average queue lengths are relatively short for the 2025 scenario, and are all contained within the 45 m distance from the Bronte Road stop bars to the driveways.

The longest average queues on Charles Cornwall Avenue are in the p.m. peak hour, at 37 m for the left turn lane and 43 m for the right lane, with Bronte Road at 4 lanes. With Bronte Road at 6 lanes, the average queues on Charles Cornwall Avenue in the p.m. peak hour are 32 m for the left turn lane and 32 m for the right lane. Bronte Road is scheduled to be widened to six lanes in 2025.

The longest 95th percentile queues on Charles Cornwall Avenue are also in the p.m. peak hour, at 56 m for the left turn lane and 66 m for the right lane, with Bronte Road at 4 lanes. With Bronte Road at 6 lanes, the longest 95th percentile queues on Charles Cornwall Avenue in the p.m. peak hour are 50 m for the left turn lane and 57 m for the right lane.

With Bronte Road widened to 6 lanes, the 95th percentile queues on Charles Cornwall Avenue in the a.m. peak hour are 48 m for the left turn lane and 45 m for the right lane,

This means that on 1 to 2 cycles per hour in the a.m. peak hour the queues would extend back to the driveway locations. In the p.m. peak hour the queues would extend back to the driveways on 2 to 3 cycles for the left turn lane and on 3 to 4 cycles for the right turn lane. For the remainder of the peak hours the queues would not extend past the driveways.

Consideration should be given to a relocation of these two driveways further east to beyond the queue lengths.

6. CONCLUSIONS

A part of the Bronte Green subdivision includes the transfer of a portion of the Halton Region Woodlands Operations Centre site into the subdivision, including the Woodlands Centre private access road. As part of the design of the new public road, which is named Charles Cornwall Avenue, the Region has requested a traffic impact study (TIS) analysis of the proposed usage and design.

The traffic study area consists of the signalized intersection of Bronte Road and Charles Cornwall Avenue, and all segments of Charles Cornwall Avenue east from Bronte Road to Queens Plate Road.

The horizon year for the TIS is a five year period to 2025, at which time all segments of the subdivision are expected to be occupied. The capital roads program indicates the widening of Bronte Road to six through lanes in 2025.

There is no final development plan for the proposed commercial block on the north side, but the development concept plan under consideration has a floor area of $4,438 \mathrm{~m}^{2}\left(47,759 \mathrm{ft}^{2}\right)$, one half retail and one half office. Site access for the commercial block is by two driveways,
one on Charles Cornwall Avenue opposite the Woodlands Centre driveway, and one on Merton Road.

Signalized Intersection

The Bronte Road and Woodlands Access Road (to be named Charles Cornwall Avenue) intersection is calculated as presently operating with a v / c ratio of 0.88 in the a.m. peak hour, and 0.84 in the p.m. peak hour. Level of service is level A in the a.m. peak hour and level B in the p.m. peak hour.

With the 2025 background traffic forecast, and Bronte Road at the existing four lanes, the intersection level of service changes to level D in the a.m. peak hour and to level C in the p.m. peak hour. The v/c ratio in the a.m. peak hour increases to 1.05, and in the p.m. peak hour increases to 1.01 . The overall intersection v / c ratio is primarily influenced by the peak directional volume on Bronte Road of southbound in the a.m. peak and northbound in the p.m. peak.

With the proposed commercial block development traffic added to the 2025 background volumes, there is marginal change in the intersection operation. The v / c ratio in the a.m. peak hour increases by 0.01 to 1.06 , and in the p.m. peak hour actually decreases by 0.02 to 0.99 . The p.m. decrease occurs because with the increase in volume in the southbound left turn this movement becomes one of the critical movement and the lost time calculation decreases, which decreases the overall v / c ratio.

The road program shows that in 2025 Bronte Road is to be widened to six lanes. With this improvement the intersection capacity increases substantially. The v / c ratio for total traffic in the a.m. peak hour decreases by 0.23 to 0.83 , and in the p.m. peak hour decreases by 0.20 to 0.79 . The widening of Bronte Road to six lanes will resolve any capacity deficiency at the intersection.

Unsgnalized Intersections

The Woodlands Access Road and Woodlands Centre driveway currently operates at level of service A in both the a.m. and p.m. peak hours.

With the subdivision occupied the Charles Cornwall Avenue and Woodlands Driveway intersection would operate with an overall level of service A in both peak hours, and the Woodlands driveway would operate at level of service B in both peak hours. Charles Cornwall Avenue becomes a through street and there is no delay for east-west traffic.

With the Commercial Block developed and a site driveway located opposite the Woodlands Centre driveway, the intersection would continue to operate with an overall level of service A in both peak hours, and the Woodlands driveway would continue to operate at level of service B in the a.m. peak hour and at level C in the p.m. peak hour. The Commercial driveway will operate at level A in the a.m. peak hour and at level B in the p.m. peak hour.

However, actual operation can be affected by queues on Charles Cornwall Avenue back from the signal at Bronte Road. With Bronte Road widened to 6 lanes, the 95th percentile queues on Charles Cornwall Avenue in the a.m. peak hour are 48 m for the left turn lane and 45 m for
the right lane. The longest 95th percentile queues in the p.m. peak hour are 50 m for the left turn lane and 57 m for the right lane.

This means that on 1 to 2 cycles per hour in the a.m. peak hour the queues would extend just to the driveway locations. In the p.m. peak hour the queues would extend back to the driveways on 2 to 3 cycles for the left turn lane and on 3 to 4 cycles for the right turn lane. For the remainder of the peak hours the queues would not extend past the driveways.

All other intersections along Charles Cornwall Avenue, with the subdivision occupied and the commercial block developed, will operate with an overall level of service A in both peak hours. Charles Cornwall Avenue is a through street and there is no delay for east-west traffic. All approaches to Charles Cornwall Avenue will operate at level of service A or B in the a.m. and p.m. peak hours.

CHARLES CORNWALL AVENUE
FIGURE 1

APPENDIX A

TRAFFIC VOLUME DATA

Prepared For: Halton Region
Prepared By: PYRAMID Traffic Inc.
Site ID: 102501
Location: REG. RD. \#25 btwn QEW WB \& Upper Middle Rd Interval: 15 min.
Start Date: Thursday Jun 7, 2018

Period Ending	Channel 1 NB	Channel 2 SB	Hourly Summary	Period Ending	Channel 1 NB	Channel 2 SB	Hourly Summary
0:15	55	37		12:15	301	278	2183
0:30	49	26		12:30	270	261	2213
0:45	57	22		12:45	233	288	2158
1:00	55	18	319	13:00	277	278	2186
1:15	38	23	288	13:15	252	304	2163
1:30	35	23	271	13:30	264	276	2172
1:45	21	15	228	13:45	263	313	2227
2:00	10	18	183	14:00	291	291	2254
2:15	13	15	150	14:15	289	284	2271
2:30	19	13	124	14:30	338	284	2353
2:45	26	6	120	14:45	321	324	2422
3:00	16	12	120	15:00	323	354	2517
3:15	19	17	128	15:15	389	344	2677
3:30	22	11	129	15:30	384	355	2794
3:45	11	18	126	15:45	376	371	2896
4:00	15	13	126	16:00	453	358	3030
4:15	9	22	121	16:15	523	338	3158
4:30	22	18	128	16:30	538	294	3251
4:45	20	26	145	16:45	530	286	3320
5:00	22	38	177	17:00	569	292	3370
5:15	30	52	228	17:15	582	301	3392
5:30	48	67	303	17:30	584	248	3392
5:45	52	138	447	17:45	570	274	3420
6:00	73	138	598	18:00	482	258	3299
6:15	85	178	779	18:15	418	221	3055
6:30	109	202	975	18:30	424	262	2909
6:45	139	317	1241	18:45	324	238	2627
7:00	191	365	1586	19:00	312	256	2455
7:15	185	414	1922	19:15	254	275	2345
7:30	240	477	2328	19:30	277	242	2178
7:45	237	626	2735	19:45	261	255	2132
8:00	299	641	3119	20:00	235	203	2002
8:15	276	670	3466	20:15	240	210	1923
8:30	264	627	3640	20:30	206	199	1809
8:45	268	612	3657	20:45	194	196	1683
9:00	230	592	3539	21:00	205	160	1610
9:15	239	451	3283	21:15	215	158	1533
9:30	238	422	3052	21:30	162	142	1432
9:45	221	323	2716	21:45	212	126	1380
10:00	225	342	2461	22:00	168	105	1288
10:15	225	277	2273	22:15	150	117	1182
10:30	197	317	2127	22:30	136	112	1126
10:45	218	269	2070	22:45	148	127	1063
11:00	212	284	1999	23:00	131	100	1021
11:15	210	267	1974	23:15	134	82	970
11:30	211	290	1961	23:30	127	95	944
11:45	255	321	2050	23:45	108	71	848
12:00	248	279	2081	0:00	112	78	807
AM Peak:	3657		PM Peak:	3420	24 HR V	OLUME:	42147

APPENDIX B
SYNCHRO OUTPUT

SIGNALIZED INTERSECTIONS

	4		\checkmark	\checkmark		4	4	4	\%	(\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger		${ }^{*}$	\uparrow		${ }^{1}$	44	F゙	${ }^{1}$	中 ${ }^{\text {a }}$	
Volume (vph)	0	0	0	114	0	145	0	2647	148	52	1281	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				6.0	6.0			6.0	6.0	1.0	6.0	
Lane Util. Factor				1.00	1.00			0.95	1.00	1.00	0.95	
Frt				1.00	0.85			1.00	0.85	1.00	1.00	
Flt Protected				0.95	1.00			1.00	1.00	0.95	1.00	
Satd. Flow (prot)				1770	1583			3539	1583	1770	3539	
Flt Permitted				0.76	1.00			1.00	1.00	0.04	1.00	
Satd. Flow (perm)				1410	1583			3539	1583	83	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	1.00	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	124	0	158	0	2647	161	57	1392	0
RTOR Reduction (vph)	0	0	0	0	48	0	0	0	29	0	0	0
Lane Group Flow (vph)	0	0	0	124	110	0	0	2647	132	57	1392	0
Turn Type	Perm			Perm			Perm		Perm	pm+pt		
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)				14.2	14.2			86.2	86.2	93.8	93.8	
Effective Green, g (s)				14.2	14.2			86.2	86.2	96.8	93.8	
Actuated g/C Ratio				0.12	0.12			0.72	0.72	0.81	0.78	
Clearance Time (s)				6.0	6.0			6.0	6.0	4.0	6.0	
Vehicle Extension (s)				3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)				167	187			2542	1137	160	2766	
v/s Ratio Prot					0.07			c0.75		0.02	c0.39	
v/s Ratio Perm				c0.09					0.08	0.27		
v/c Ratio				0.74	0.59			1.04	0.12	0.36	0.50	
Uniform Delay, d1				51.1	50.1			16.9	5.2	34.3	4.7	
Progression Factor				1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2				16.2	4.6			29.7	0.2	1.4	0.7	
Delay (s)				67.4	54.7			46.6	5.4	35.6	5.4	
Level of Service				E	D			D	A	D	A	
Approach Delay (s)		0.0			60.3			44.3			6.6	
Approach LOS		A			E			D			A	
Intersection Summary												
			33.2		HCM Leve	of Service			C			
HCM Average Control Delay			1.01									
Actuated Cycle Length (s)			120.0		Sum of los	time (s)			18.0			
Intersection Capacity Utilization			92.1\%		ICU Level	Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

UNSIGNALIZED INTERSECTIONS

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type	None	None		
Median storage veh)				
Upstream signal (m)	69			
pX, platoon unblocked				
VC , conflicting volume		141	137	127
$\mathrm{vC1}$, stage 1 conf vol				
vC2, stage 2 conf vol				
vCu, unblocked vol		141	137	127
tC , single (s)		4.1	6.4	6.2
tC, 2 stage (s)				
tF (s)		2.2	3.5	3.3
p0 queue free \%		100	97	99
cM capacity (veh/h)		1442	855	923

Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	
Volume Total	141	8	29	5	
Volume Left	0	2	29	0	
Volume Right	28	0	0	5	
cSH	1700	1442	855	923	
Volume to Capacity	0.08	0.00	0.03	0.01	
Queue Length 95th (m)	0.0	0.0	0.8	0.1	
Control Delay (s)	0.0	2.2	9.4	8.9	
Lane LOS		A	A	A	
Approach Delay (s)	0.0	2.2	9.3		
Approach LOS			A		
Intersection Summary					
Average Delay			1.8		
Intersection Capacity Utilization			17.1\%	ICU Level of Service	A
Analysis Period (min)			15		

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type	None	None		
Median storage veh)				
Upstream signal (m)	69			
pX, platoon unblocked		0.99	0.99	0.99
VC , conflicting volume		202	395	188
$\mathrm{vC1}$, stage 1 conf vol				
vC2, stage 2 conf vol				
vCu, unblocked vol		193	386	178
tC , single (s)		4.1	6.4	6.2
$\mathrm{tC}, 2$ stage (s)				
tF (s)		2.2	3.5	3.3
p0 queue free \%		100	95	99
cM capacity (veh/h)		1371	611	858

Direction, Lane \#	EB 1	WB 1	NB 1			
Volume Total	202	204	35			
Volume Left	0	2	29			
Volume Right	28	0	5			
cSH	1700	1371	640			
Volume to Capacity	0.12	0.00	0.05			
Queue Length 95th (m)	0.0	0.0	1.3			
Control Delay (s)	0.0	0.1	10.9			
Lane LOS		A	B			
Approach Delay (s)	0.0	0.1	10.9		A	
Approach LOS			B			
Intersection Summary						

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type	None	None		
Median storage veh)				
Upstream signal (m)	69			
pX, platoon unblocked				
VC , conflicting volume		217	440	213
$\mathrm{vC1}$, stage 1 conf vol				
vC2, stage 2 conf vol				
vCu, unblocked vol		217	440	213
tC , single (s)		4.1	6.4	6.2
tC, 2 stage (s)				
tF (s)		2.2	3.5	3.3
p0 queue free \%		100	90	100
cM capacity (veh/h)		1352	573	827

Direction, Lane \#	EB 1	WB 1	NB 1		
Volume Total	217	225	60		
Volume Left	0	2	59		
Volume Right	9	0	1		
cSH	1700	1352	577		
Volume to Capacity	0.13	0.00	0.10		
Queue Length 95th (m)	0.0	0.0	2.6		
Control Delay (s)	0.0	0.1	12.0		
Lane LOS		A	B		
Approach Delay (s)	0.0	0.1	12.0		
Approach LOS			B		
Intersection Summary					
Average Delay			1.5		
Intersection Capacity Utilization			22.4\%	ICU Level of Service	A
Analysis Period (min)			15		

	4	\rightarrow	\checkmark	7	\Perp	4	4	\dagger	7	\pm	\ddagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			*			*	
Volume (veh/h)	41	160	26	2	186	2	27	0	5	1	0	10
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	45	174	28	2	202	2	29	0	5	1	0	11
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)		69										
pX, platoon unblocked				0.99			0.99	0.99	0.99	0.99	0.99	
vC, conflicting volume	204			202			496	486	188	490	499	203
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu, unblocked vol	204			186			483	474	172	478	487	203
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			100			94	100	99	100	100	99
cM capacity (veh/h)	1367			1371			469	467	861	476	459	837
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	247	207	35	12								
Volume Left	45	2	29	1								
Volume Right	28	2	5	11								
cSH	1367	1371	505	783								
Volume to Capacity	0.03	0.00	0.07	0.02								
Queue Length 95th (m)	0.8	0.0	1.7	0.4								
Control Delay (s)	1.6	0.1	12.7	9.7								
Lane LOS	A	A	B	A								
Approach Delay (s)	1.6	0.1	12.7	9.7								
Approach LOS			B	A								
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilization			40.8\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\checkmark	7	\downarrow	4	4	\dagger	7	\pm	\ddagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\&			*			*	
Volume (veh/h)	47	192	8	2	205	7	54	0	1	5	0	69
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	51	209	9	2	223	8	59	0	1	5	0	75
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)		69										
pX, platoon unblocked												
vC, conflicting volume	230			217			621	550	213	547	551	227
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	230			217			621	550	213	547	551	227
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			100			83	100	100	99	100	91
cM capacity (veh/h)	1337			1352			352	425	827	433	425	813
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	268	233	60	80								
Volume Left	51	2	59	5								
Volume Right	9	8	1	75								
cSH	1337	1352	355	767								
Volume to Capacity	0.04	0.00	0.17	0.10								
Queue Length 95th (m)	0.9	0.0	4.5	2.7								
Control Delay (s)	1.8	0.1	17.2	10.2								
Lane LOS	A	A	C	B								
Approach Delay (s)	1.8	0.1	17.2	10.2								
Approach LOS			C	B								
Intersection Summary												
Average Delay			3.7									
Intersection Capacity Utilization			44.2\%		CU Level	Service			A			
Analysis Period (min)			15									

