FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

APRIL 2023

3005 DUNDAS WEST

TOWN OF OAKVILLE

PROJECT 2022-5281

RevisionDescriptionPreparedCheckedByDateByDate0.0Original ReportJ.PathmanapanApril 2023S.KatukurundeApril 2023

CONTENTS

1.0	INTRODUCTION 1
1.	1 Study Objective and Location 1
1.	2 Existing Condition & Proposed Development Plan. 1
1.	3 Background Reports 2
2.0	WATER SUPPLY 3
2.	1 Existing/Planned Water Supply Infrastructure 3
2.	2 Water Supply Design Criteria
2.	3 Proposed Water Supply 4
3.0	SANITARY SERVICING 1
3.	1 Existing/Planned Sanitary Infrastructure
3.	2 Design Criteria 1
3.	3 Proposed Sanitary Servicing 2
3.	4 Proposed Sanitary Demand2
4.0	STORMWATER MANAGEMENT4
4.	1 Existing Conditions
4.	2 Design Criteria
4.	3 Proposed Stormwater Management Plan 5
SUM	IMARY AND CLOSING REMARKS 1

List of Figures

Figure 1.1: Location Plan1
Figure 1.2: Site Plan1
Figure 2.1: Water Supply Servicing Plan1
Figure 3.1: Sanitary Servicing Plan
Figure 4.1: Existing Storm Drainage Conditions7
Figure 4.2: Proposed Storm Drainage Plan8

List of Tables

Table 1-1: Design Population Summary –	
Design Criteria	2
Table 1-2: Design Population Summary –	Region's
DC Background Study (PPU)	2
Table 2.1: Water Supply Demands	4
Table 3.1: Sanitary Flow Summary	2
Table 4.1: Proposed Release Rate	5

Appendices

APPENDIX A- Background information APPENDIX B- Water Supply Calculations APPENDIX C-Sanitary Demand Calculations APPENDIX D- Stormwater Management Calculations APPENDIX E-Engineering Drawings

1.0 INTRODUCTION

1.1 Study Objective and Location

This Functional Servicing Report is provided in support of a proposed mixed-use site plan located at 3005 Dundas Street, in the Town of Oakville. The subject site is bound by Dundas Street West to the south, Old Bronte Road to the east, Bronte Road to the west, as shown in **Figure 1.1**.

The objective of this report is to define a feasible servicing plan for the proposed site plan development and to establish a servicing strategy. This report provides high-level information regarding the water supply, sanitary servicing, and stormwater management (SWM) for the subject lands; while ensuring compatibility with existing services and conforming to the Town of Oakville and Halton Region design criteria.

1.2 Existing Condition & Proposed Development Plan

Currently, the subject site is vacant land with predominantly grassed area. The site is approximately 0.78ha and the proposed development will consider two towers with a connecting podium. The proposed development plan is shown in **Figure 1.2**.

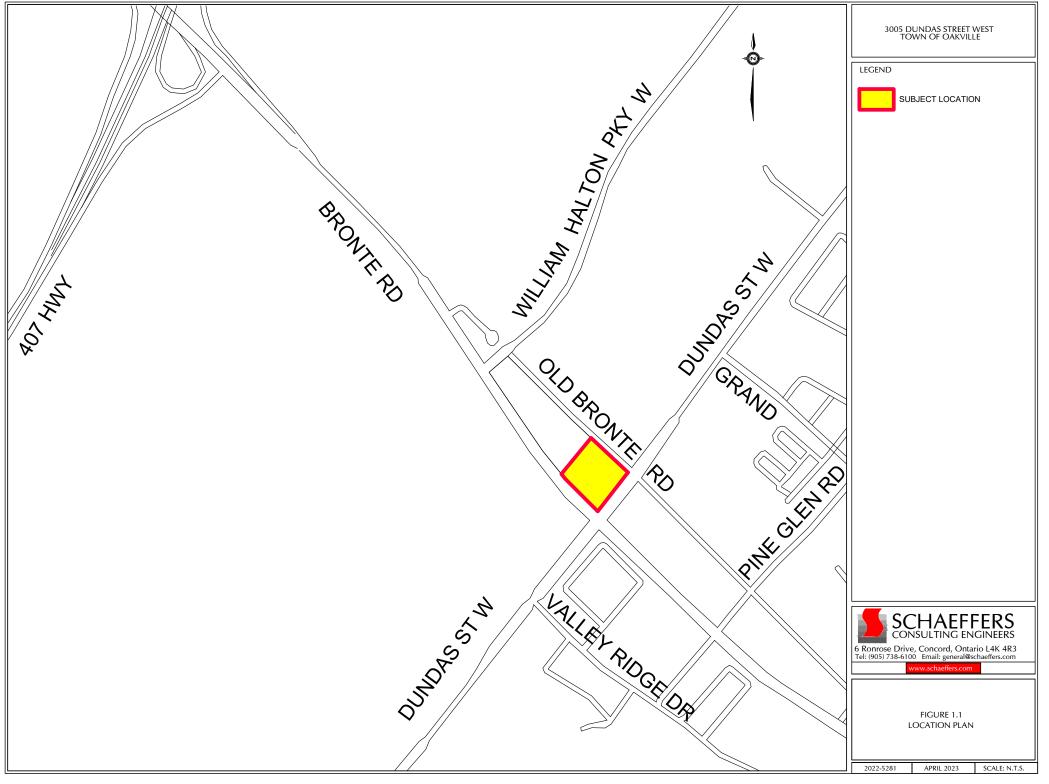
Based on the Region's population density (see **Appendix B**) the expected population is approximately 212 people. **Table 1-1** summarizes the estimated population for the proposed development. Please note that the Region's guidelines for water and wastewater design recommend a population density of 285 persons/ha for apartment developments with over six storeys and 90 persons/ha for light commercial areas. As per this criterion, the population from the proposed development is anticipated to be approximately 212 people (**Table 1-1**). However, this population is impractical as this would result in less than one person/unit. Therefore, to be more conservative, the population has been calculated on a persons per unit (ppu) basis. Reference has been made to the Region's Development Charges (DC) Background Study (September 2021) to determine the proposed population on a ppu basis, which indicates a population of approximately 1,119 people. Since the population of 1,119 people provides a more conservative estimate, this population will be considered in this analysis to determine the water and wastewater demands.

Land Use	Area (ha)	Population Density (person/ha)	Population
Apartment (over 6 storeys)*	0.72	285	206
Retail - Light Commercial**	0.06	90	6
Total	0.78	-	212

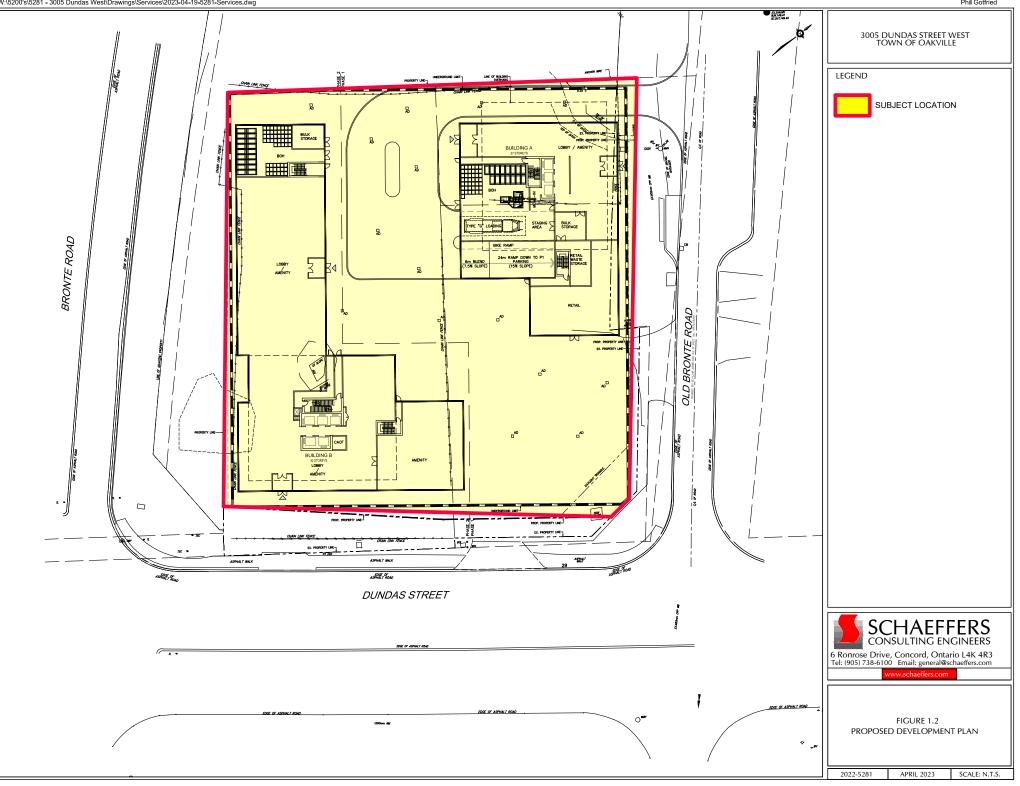
Table 1-1: Design Population Summary – Region's Design Criteria

*Based on Town of Oakville design criteria

**Based on Regional Municipality of Halton Water & Wastewater Linear Design Manual (April 2019)


Table 1 2. Design Population Summe	ary Dogion's DC Background Study (DDI)
Table 1-2: Design Population Summa	ary – Region's DC Background Study (PPU)

Land Use	Res. Units	Non Res. Area (ha)	Pop. Density (person/ha)	Pop. Density Unit	Population
Apartment < 2 Bedrooms*	462	-	1.46	ppu	675
Apartment > 2 Bedrooms*	228	-	1.92	ppu	438
Retail - Light Commercial**	-	0.06	90	persons/ha	6
Total	690	0.06	-	-	1,119


*Based on Region of Halton Development Charges Background Study (2021)

**Based on Regional Municipality of Halton Water & Wastewater Linear Design Manual (April 2019)

$1.3 \rightarrow Background Reports$

The following material has been reviewed in order to identify existing conditions, servicing constraints, and criteria, which govern the proposed development within the subject area and form the basis of this report.

• Water and Wastewater Linear Design Manual

Prepared by: Regional Municipality of Halton; October 2019

• Oakville Development Engineering Department: Procedures & Guidelines Manual

Prepared by: Town of Oakville, 2011

• Sustainable Halton Water & Wastewater Master Plan

Prepared by: AECOM, 2011

Infrastructure Ontario Area Servicing Plan - Sixteen Hollow Employment Area

Prepared by: Walterfedy, 2014

• Region of Halton Development Charges Background Study

Prepared by: Halton Region, 2021

2.0 WATER SUPPLY

The following section provides a summary of the existing and proposed water supply services within the vicinity of the site. Preliminarily calculations are provided to support the servicing of the proposed site plan in **Appendix A**. The water supply servicing plan is shown in **Figure 2.1**.

2.1 Existing/Planned Water Supply Infrastructure

The Master Plan indicates that the site lies within Pressure Zone (PZ) O3, which is currently serviced by the Kitchen (Z3) Pumping Station (PS). The Kitchen (Z3) PS has an estimated firm capacity of 71.4 MLD (megalitres per day) for 2026.

The following exist within the vicinity of the site:

- 900mmØ CPP watermain along Old Bronte Road, and
- 1200mmØ watermain along Dundas Street West.

It is to be noted that future 300mmØ watermains along Old Bronte Road and Dundas Street West and a 600mmØ watermain along Bronte Road are proposed to be constructed. Currently, timing to construct these pipes is unknown. Direct connection to the existing 900mmØ CPP watermain is not recommended; therefore, the preferred site servicing option is via the future watermains once they are constructed. Reference can be made to the excerpt from the Sixteen Hollow Area Servicing Plan in **Appendix A** for the location of the future infrastructure.

2.2 Water Supply Design Criteria

The proposed water supply scheme will be designed in accordance with the Town's and Region's design criteria. The following summarizes the relevant design criteria.

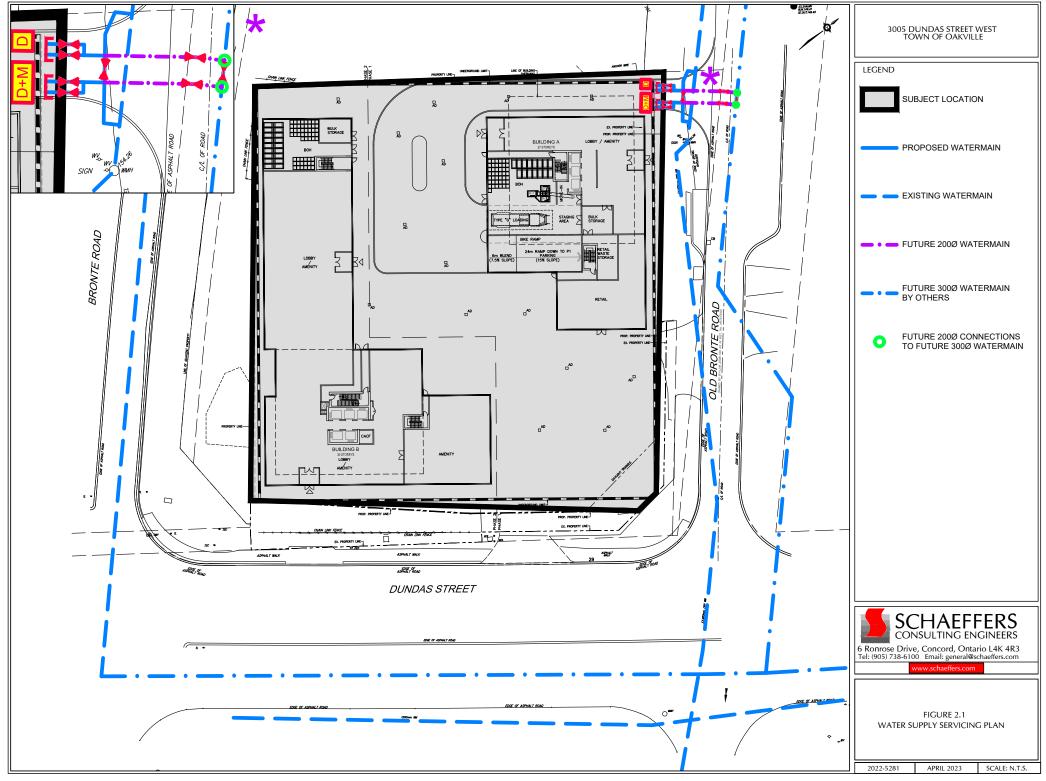
- The system shall be designed to provide sufficient flow and pressure to meet the greater of the Fire Flow Demand plus the Maximum Daily Demand, or the Peak Hour Demand;
- Design populations are estimated based on the Region's DC Background Study:
 - Apartment < 2 Bedrooms \rightarrow 1.46 ppu
 - Apartment > 2 Bedrooms \rightarrow 1.92 ppu
- Average Daily Demand of 0.275 m³/capita/day or 78.375m³/ha/day;
- Fire Flows in accordance with Water Supply for Public Fire Protection Fire Underwriters

Survey (FUS);

- Population density of 90 persons/ha for light commercial uses as per the Region's design criteria;
- Maximum Daily Demand and Maximum Hourly Demand peaking factors shall be 2.25 and 4.00, respectively;

Description	Pressure
Minimum Pressure	275 kPa (40 psi)
Maximum Pressure	690 kPa (100 psi)
Minimum Pressure (Max. Daily Demand Plus Fire Flow)	140 kPa (20 psi)

• Operating pressure requirements are noted as follows:


2.3 Proposed Water Supply

The site is recommended to be serviced via the future 300mmØ watermain on Old Bronte Road. Based on an FUS calculation of the largest tower, a fire flow of 133 L/s is estimated. The fire flows for both buildings have been calculated using the FUS methodology. This estimate considers the use of non-combustible, unprotected vertical openings, and a minimum NFPA 13 sprinkler system. The total demand expected from the proposed development is approximately 141.35 L/s. **Appendix B** presents detailed calculations. The hydraulic conditions can be confirmed with a hydrant flow test during the detailed design stage, weather permitting.

Land Use Po		Average Demand (L/s)	Max Day (L/s)	Max Hour (L/s)	Fire Flow (L/s)	Max Day + Fire (L/s)
High Density Res	1,113	3.54	7.97	14.17		7.97
Light Commercial	6	0.02	0.04	0.08		0.04
Total	1,119	3.56	8.01	14.25	133	141.35

Table 2.1: Water Supply Demands

3.0 SANITARY SERVICING

The following section provides a summary of the sanitary infrastructure within the vicinity of the site. All sanitary calculations are provided in **Appendix C**.

3.1 Existing/Planned Sanitary Infrastructure

The Master Plan indicates that the site is located within the Mid-Halton drainage area where flows eventually discharge to the Mid-Halton Wastewater Treatment Plant and Pump Station (WWTP and PS). There is an existing 825mmØ sanitary sewer, which lies directly east of the site along Old Bronte Road. This sewer runs in the north-south direction and brings flow from Milton to the Mid-Halton WWTP and PS.

As per the Sixteen Hollow Employment Area Servicing Plan, the existing sanitary sewers and Mid-Halton WWTP and PS have been identified to have sufficient capacity to service future developments within the Sixteen Hollow SP area.

It is to be noted that the SP report outlines that a 375mmØ sanitary sewer is proposed to be constructed along Old Bronte Road. Currently, timing to construct this sewer is unknown. Reference can be made to the excerpt from the Sixteen Hollow Area Servicing Plan in **Appendix A** for the location of the future sewer.

3.2 Design Criteria

The proposed sanitary servicing for the site will be designed in accordance with the Region's design criteria. These criteria, where applicable to the proposed development, are summarized below:

- Average dry weather sanitary flow for existing local sewers is 250 L/c/d for commercial and 240 L/c/d for residential;
- The design flow is equal to the Average Dry Weather Flow multiplied by the Average Peak Sanitary Flow Factor, plus the Infiltration Allowance;
- The Average Dry Weather Flow is based on $0.275 \text{ m}^3/\text{c/d}$ (apartments over 6 stories);
- The Average Dry Weather Flow is based on 24.75 m³/ha/d (light commercial areas);
- For residential areas, the peak sanitary flow factor is based on the Harmon formula;
- (M = 1 + 14/(4 + P0.5)), where P is population in thousands;

- Except under unusual circumstances, infiltration allowance shall be determined at 0.286 x 10-3 m³/s/ha for all types of land use and;
- Maximum velocity shall not be greater than 3.00 m/s with pipe flowing full, and minimum velocity shall not be less than 0.60 m/s at actual flow.

3.3 Proposed Sanitary Servicing

Since timing to construct the new 375mmØ sewer is currently unknown, as an interim servicing solution, the site is recommended to be serviced via the existing 825mmØ trunk sewer. Two interim connections, one connection for each building, is proposed to the existing trunk sewer. Once the future 375mmØ sewer on Old Bronte Road is constructed, the connection to the trunk sewer can be removed and the site can be serviced via the new 375mmØ sewer. Reference can be made to the sanitary servicing plan in **Figure 4.1** for more information.

Please note that the future sewer is expected to be sized adequately to accommodate downstream flows to the outlet location. Therefore, a downstream capacity analysis may not be required for the new sewer; however, in the event the Town requests this, an analysis can be completed.

3.4 Proposed Sanitary Demand

The table below summarizes the expected demand from the site. The proposed design population consists of approximately 1,119 persons and would generate an estimated peak flow of 13.67 L/s.

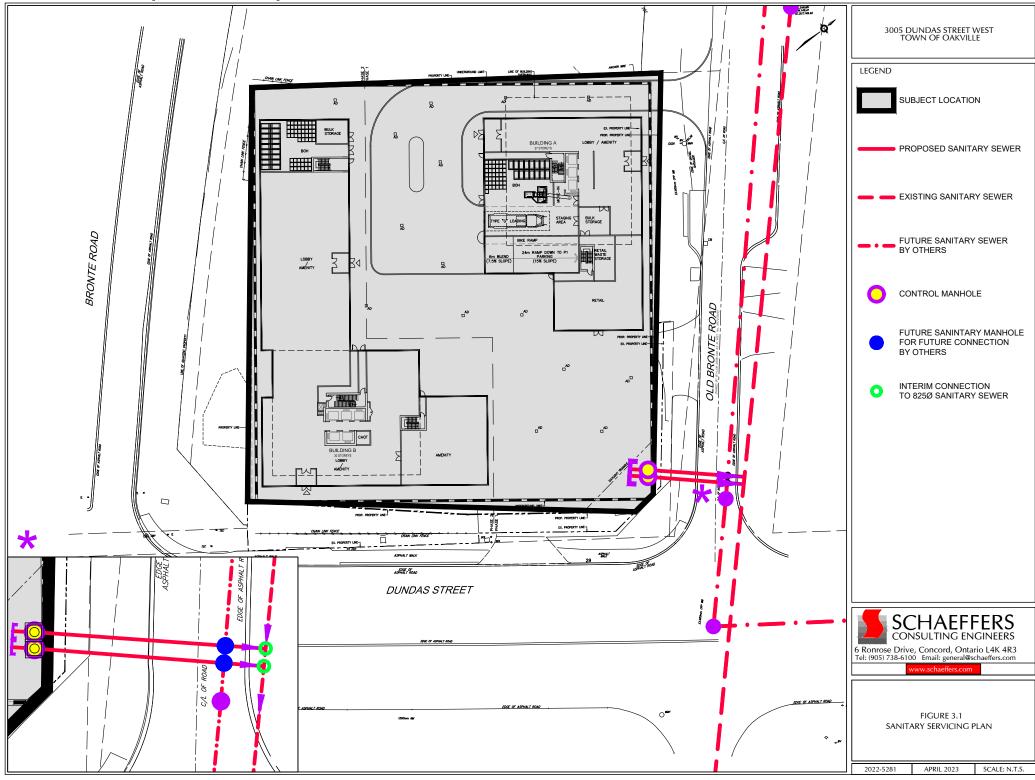

Area (ha)	Expected Population	Avg. Sewage Flow (L/s) *	Harmon Peaking Factor	Peak Flow (L/s)	Infiltration (L/s) **	Total Flow (L/s)					
Residential Flow											
0.78	78 1,113 3.54		3.77 13.35		0.22	13.58					
	Light Commercial Flow										
0.06	6	0.02	4.00	0.07	0.02	0.09					
	Total Flow										
	1,119	3.56		13.42	0.24	13.67					

Table 3.1: Sanitary Flow Summary

*Assuming average sanitary flows per capita of 24.750 m³/ha/day (Region of Halton Design Criteria) **Infiltration rate of 0.286 L/s/ha (Region of Halton Design Criteria)

4.0 STORMWATER MANAGEMENT

4.1 Existing Conditions

The subject site is currently vacant land and consists of grassed area. The existing storm sewers within the vicinity of the site include:

- 600mmØ 750mmØ storm sewers along Old Bronte Road,
- 300mmØ storm sewer along Dundas Street, and
- $900 \text{mm}\emptyset \& 600 \text{mm}\emptyset 750 \text{mm}\emptyset$ storm sewers along Bronte Road.

The pre-development drainage conditions are illustrated in **Figure 4.1**. Based on available topographic mapping, approximately 0.51 ha of the site generally drains easterly towards the storm sewers along Old Bronte Road and approximately 0.23 ha drains westerly towards the 900mmØ storm sewer on Bronte Road.

It is to be noted that there is an external drainage area of 0.10 ha, which is from another potential future development located north of the site. This external drainage area is considered to discharge to the Old Bronte Road storm sewers and is accounted for in the release rates.

4.2 Design Criteria

The stormwater flow calculations are based on the following the Town of Oakville's Development Engineering Procedures & Guidelines Manual:

- For major capture points the intensity equation was used, I = A/(T + B)C, where I is rainfall intensity in mm/hr, T is time of Concentration in hours, A = 2150, B = 5.7, C = 0.861, for the 100-year storm event;
- Water Quantity Site post-development flows for storms up to and including the 100 year event to be controlled to the 5-year design storm event;
- Water Quality to be achieved by providing a minimum enhanced level of TSS removal (80%) prior to discharging to the municipal sewer; and
- Water Balance to be achieved through the retention of 5mm of flows across site impervious areas.

4.2.1 ALLOWABLE RELEASE RATE

As per the Town's design criteria, the site is to be controlled post-to-pre-development. **Table 4.1** shows that flows are required to be controlled to approximately 21L/s (5-Year event).

The table below summarizes the 2-100 year pre-development flows from the site based on the Town's IDF parameters. Reference can be made to **Appendix B** for details on the full calculations.

Pre-development Runoff Coefficient, C	0.25	
Pre-development Drainage Area	0.29	ha
2-Year Peak Flow, Q2	15	1/s
5-Year Peak Flow, Q5	21	l/s
10-Year Peak Flow, Q10	25	1/s
25-Year Peak Flow, Q25	30	1/s
50-Year Peak Flow, Q50	34	1/s
100-Year Peak Flow, Q100	38	1/s

 Table 4.1: Proposed Release Rate

4.3 Proposed Stormwater Management Plan

The site proposes a new connection to the existing 600mmØ storm sewer on Old Bronte Road.

The proposed SWM design will capture and control site runoff to the pre-development 5-year frequency flow to the existing Old Bronte Road storm sewer. **Figure 4.1** and **Figure 4.2** and show the proposed drainage plan and proposed stormwater servicing plan.

4.3.1 WATER QUANTITY

As discussed in **Section 4.2.1**, the release rate from the site is approximately 21 L/s. A SWM tank is proposed on the P1 and P2 levels to achieve the water quantity requirements.

Given a total controlled area of 0.845 ha (0.745 ha on-site and 0.10 ha of external area shown in **Figure 4.2**), a runoff coefficient of 0.90, and a maximum controlled release rate of 21 L/s, the required storage volume is 378 m³. A HWL of 152.05m has been considered for the orifice calculation. The peak flows will be controlled using a **135mmØ orifice plate** at the control manhole. Reference can be made to **Drawing SS-1** for more details. Detailed storage calculations are shown in **Appendix C**.

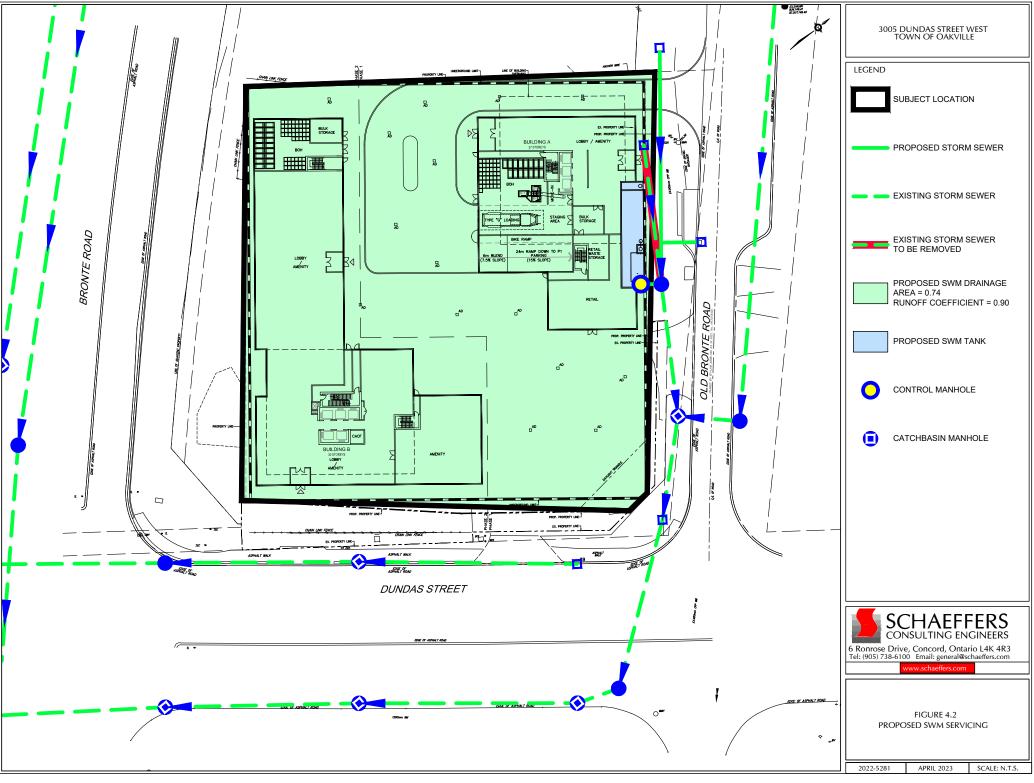
4.3.2 WATER QUALITY

Quality control is proposed with a proprietary treatment unit (i.e. jellyfish) or equivalent, which is to achieve 80% TSS removal.

4.3.3 GROUNDWATER CONSIDERATIONS

A hydrogeological investigation for the site has been undertaken by Fisher Engineering Ltd. and summarized in the Hydrogeological Investigation report, dated April 2022, to assess the potential effects of groundwater on the proposed development. Please refer to the Hydrogeology Investigation Report in **Appendix C** for further details.

The report notes that construction dewatering will be required, at a rate of 135,960 L/day and 147,750 L/day for four and five underground levels respectively. Furthermore, a permanent dewatering rate of 34.79 m^3 /day and 46.54 m^3 /day is estimated to be required for the site plan development. The permanent dewatering rate is equivalent to a maximum pumping rate of 1.26 L/s. It is to be noted that the rate of 1.26 L/s has been considered in the storage calculation. This pumping rate can be revised confirmation from the mechanical engineer is provided.


4.3.4 WATER BALANCE & EROSION CONTROL

Based on the Ontario Source Protection Information Atlas, the site is located outside of source water well-head protection areas and significant groundwater recharge areas. Furthermore, the site is located within the unregulated area of the Conservation Halton. Therefore, there is no requirement for a water balance analysis.

Erosion control is proposed to capture 5 mm across the development. 5 mm retention is provided via a rainwater harvesting (RWH) tank, requiring a volume of approximately $37m^3$ (i.e. 0.745 ha x 10 x 5 mm). The volume of the RWH tank provided is 37.8 m³. Please note that further coordination with mechanical and landscaping will be completed during the detailed design stage.

SUMMARY AND CLOSING REMARKS

This report discusses the servicing strategy for the proposed development at 3005 Dundas Street West in the Town of Oakville. The proposed municipal servicing strategy satisfies the Town's and Region's criteria. The key servicing components are summarized below.

Water Supply Servicing

- The site is recommended to be serviced via the future 300mmØ watermain on Old Bronte Road.
- A hydrant test is recommended to verify the pressure and can be completed at the detailed design stage.

Sanitary Servicing

- The site is recommended to be serviced via the future 375mmØ sewer on Old Bronte Road.
- The future 375mmØ sewer is anticipated to provide sufficient capacity to the outlet. Therefore, a downstream capacity analysis is not required.

Storm Servicing

- The site is to be serviced by a new connection to the existing 600mmØ storm sewer on Old Bronte Road.
- Quantity control will be provided by a SWM tank on the P1 and P2 levels. The required storage volume is 378 m³.
- Quality control will be provided to meet the enhanced level of treatment. A proprietary treatment unit (i.e. jellyfish) or equivalent can be used to achieve 80% TSS removal.
- Erosion control is proposed to capture 5 mm across the development. 5 mm retention is provided via a rainwater harvesting tank, requiring a volume of 37.8 m³.

Should you have any questions or comments please do not hesitate to contact the undersigned.

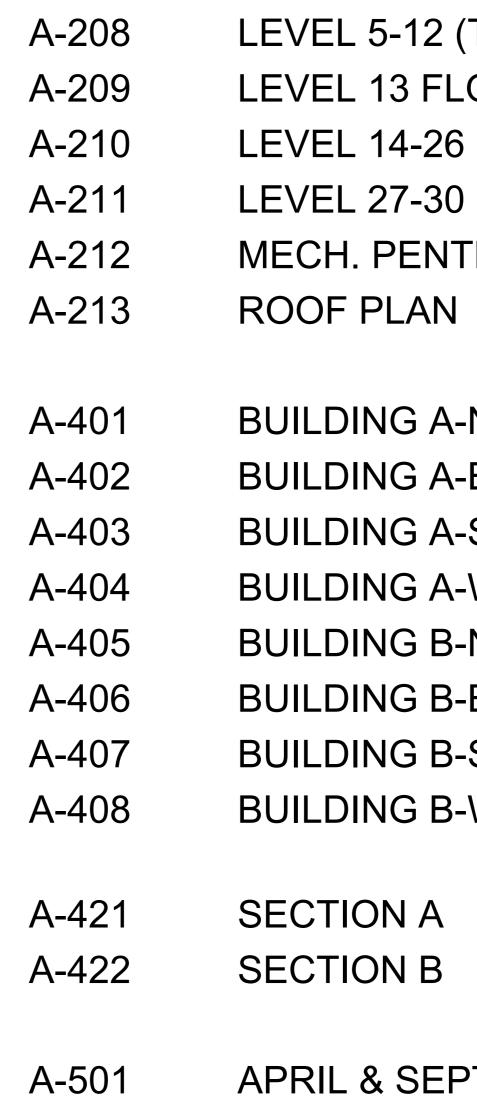
Respectfully Submitted,

SCHAEFFER & ASSOCIATES LTD.

Jenny Pathmanapan, C.E.T. Water Resources Analyst

Sadh Katukurunde, P.Eng. Junior Associate

APPENDIX A- BACKGROUND INFORMATION



2023.04.14 A4 ISSUE FOR COORDINATION PROJECT NUMBER : 08196.000

3005 DUNDAS STREET, OAKVILLE, ONTARIO

SURVEY A-100 CONTEXT PLAN

A-101

A-201

A-202

A-203

A-204

A-205

A-206

A-207

A-502

SITE PLAN

APRIL & SEPTEMBER SHADOW STUDY JUNE & DECEMBER SHADOW STUDY

BUILDING A-NORTH ELEVATION BUILDING A-EAST ELEVATION BUILDING A-SOUTH ELEVATION BUILDING A-WEST ELEVATION BUILDING B-NORTH ELEVATION BUILDING B-EAST ELEVATION BUILDING B-SOUTH ELEVATION BUILDING B-WEST ELEVATION

GROUND FLOOR PLAN LEVEL P1 FLOOR PLAN LEVEL P2 FLOOR PLAN LEVEL P3 FLOOR PLAN LEVEL P4 FLOOR PLAN LEVEL 2-3 (TYP.) FLOOR PLAN LEVEL 4 FLOOR PLAN LEVEL 5-12 (TYP.) FLOOR PLAN LEVEL 13 FLOOR PLAN LEVEL 14-26 (TYP.) FLOOR PLAN LEVEL 27-30 (TYP.) FLOOR PLAN MECH. PENTHOUSE FLOOR PLAN

ARCHITECTURAL DRAWING LIST

	ISSUES/REVISIONS						
ISSUE	TITLE	DATE					
A1	ISSUED FOR COORDINATION	12/15/20					
A2	ISSUED FOR COORDINATION	02/28/20					
A2-R1	ISSUED FOR COORDINATION	03/02/20					
A3	ISSUED FOR COORDINATION	03/22/20					
A4	ISSUED FOR COORDINATION	04/14/20					

SITE STATISTIC	υ.									
1. SITE AREA (m ²)										
TOTAL AREA:					-	762.98				
DEVELOPMENT AREA					/,	343.90 6.11)			
2. UNIT COUNT										
UNIT MIX BUILDING A		TUDIO	1B		1B+D	2B	2B+D	38	3	ΤΟΤΑ
GROUND 2ND-3ND FLOOR (2 FLOORS)	0		0		0 14	0	0 8	0		0
5TH-26TH FLOOR (23 FLOORS)	0		2 46	46 1		6 92		0		32 276
TOTAL	0		_		152	98	8	2		308
UNIT MIX BUILDING B	-	TUDIO	1B		1B+D	2B	2B+D	38	3	ΤΟΤΑ
GROUND	0		0		0	0	0	0		0
2ND-3ND FLOOR (2 FLOORS) 4TH-13TH FLOOR (10 FLOORS)	0		18 30		28 50	8 40	0	4		58 120
14TH-30TH FLOOR (17 FLOORS)	0		34		102	68	0	0		204
TOTAL	0		82		180	116	0	4		382
GRAND TOTAL						690				
3. BUILDING HEIGHT (m) PERMITTED						48.00				
PROVIDED (BUILDING A)						+8.00 88.80				
PROVIDED (BUILDING B)						97.80				
4. FLOOR AREA, NET		ZONING			-					
BELOW GRADE (BUILDING A+B)		RESIDE			²)		RES (m ²)		OTAL
PARKING LEVEL P4			55.0				.00			5.00
PARKING LEVEL P3 PARKING LEVEL P2			55.(55.(.00 .00			5.00
PARKING LEVEL P1			55.0				.00			5.00
TOTAL BELOW GRADE			20.				.00			20.00
ABOVE GRADE BUILDING A		-			NON-RES (m ²)			TOTAL		
GROUND FLOOR	386.00				272.76			658.76		
2ND-3RD FLOOR (2 FLOORS)		2,141.30			0.00			2,141.30		
4TH-27TH FLOOR (24 FLOORS)	17,309.04 19,836.34				0.00 272.76			-	309.0	
TOTAL ABOVE GRADE ABOVE GRADE BUILDING B				2			-\ -\		109.1 OTAL	
GROUND FLOOR	RESIDE		AL (m 1.19)		RES (m ² 6.67)		590.86	
2ND-3RD FLOOR (2 FLOORS)	3,762.92				0.00			-	762.92	
4TH-30TH FLOOR (27 FLOORS)		19,279.15			0.00				279.1	
TOTAL ABOVE GRADE				6.26			6.67			732.9
GROSS TOTAL ABOVE GRADE			-	2.60			9.43		-	842.0
BELOW AND ABOVE GRADE 5. AMENITY SPACE		44,492.60				569.43			45,	062.0
J. AWILWITT JFACL		ZONING BY LAW 2015-0					# OF UNITS			
			RAT	IE		# OF	UNITS		тот	ʿAL (m
REQUIRED			-				90			
PROVIDED		2.0	m²,	/unit		-	90		1,3	380.00
						679.81 668.43				
BUILDING B_GROUND FLOOR BUILDING B_4TH FLOOR						32.50				
TOTAL PROVIDED					1	,380.7				
6. PARKING	ZON	ING BY L	AW	2009-		,		1		
	RE	SIDENTIA	TIAL VISITORS		TORS	S RETAIL			TOTAL	
		863			38 TOPS	19 DE DETAIL		1,019		
PROVIDED PARKING LEVEL P1	ΚĒ	SIDENTIA 44	۱L		TORS 38	RE	TAIL 8		TOTAL 190	
PARKING LEVEL P2		211			0	0		211		
PARKING LEVEL P3		214			0	0		214		
PARKING LEVEL P4 TOTAL PARKING		83 552			0 38	0 8		83 698		
BARRIER FREE TOTAL		ING BY L							TAL	
	RESI	22 SIDENTIAL			1 NON-RES. TOTAI			TAL	.3	
PROVIDED 7. LOADING	ZON	ING BY L	22 AW		189		1		2	.3
REQUIRED	_ ~ 11							1		
PROVIDED AT GRADE (TYPE 'G')				_				1		
PROVIDED ON P1 (TYPE 'C') TOTAL								1 2		
	ZON	ING BY L	AW	2009-	189			2		
		NG TERN		SHOR	T TERM		TAL	9	% NET	r area
		150			50	-	00			
PROVIDED		150			50	2	.00			
GROUND								1		

		Date	04/14/2023
=NIR@X	3005 DUNDAS	Scale	1:150
GROUP	3005 DUNDAS STREET WEST,	Checked By	Checker
REAL ESTATE DEVELOPMENT	OAKVILLE, ON, L6M 4J4	Drawn By	Author
	Drawing Title	Project No.	08196.000
WZMH Architects 95 St. Clair Ave W., Suite 1500 Toronto, Ontario, Canada M4V 1N6 Tel: 416-961-4111 www.wzmh.com	Site Plan	Drawing No.	A-101

REGION OF HALTON

DEVELOPMENT CHARGES BACKGROUND STUDY For

Recovery of Early Payment for Estimated Future Water, Wastewater and Roads Development

Charges (Recovery DC)

September 15, 2021

Total Cost of Credit To Be Recovered	\$ 82,095,429
Anticipated SDE Unit Growth (2012-2021)	22,315
\$DC Per SDE	\$ 3,679

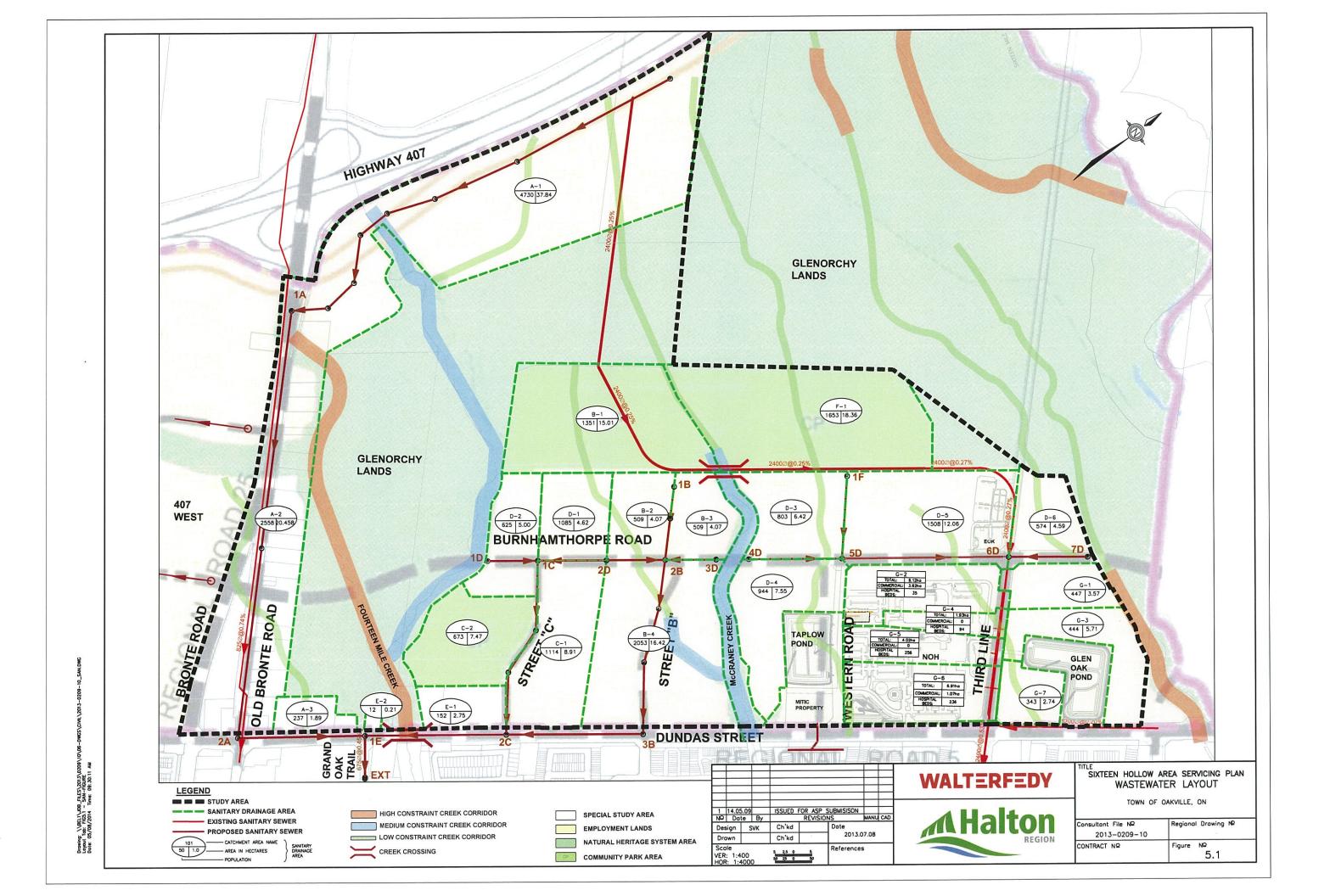
The result of the calculation above is then distributed by residential dwelling types based on person per unit (PPU) rates as follows:

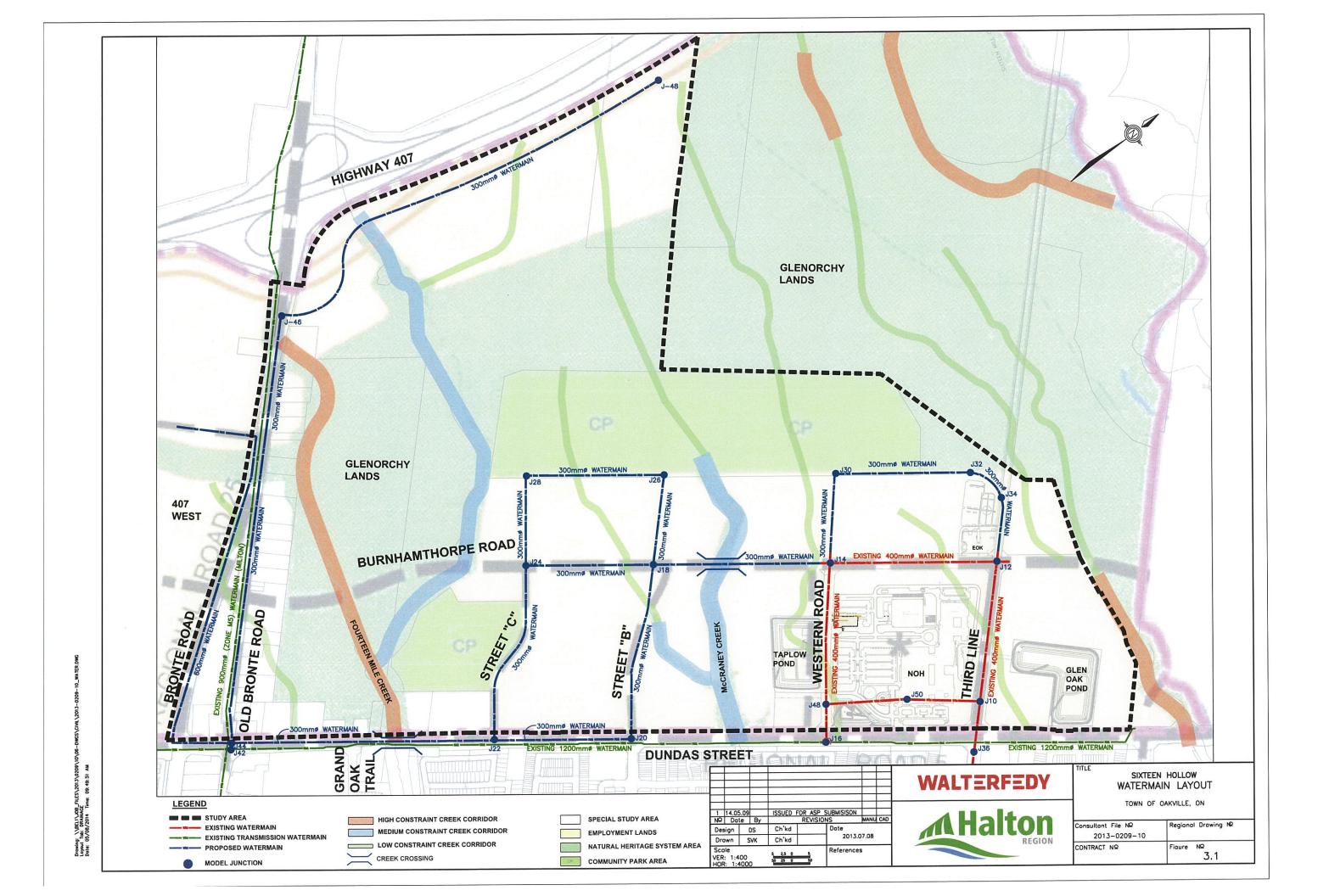
Residential Unit Type	PPU*	\$DC
Single & Semi-Detached	3.56	\$ 3,679
Multiples		
3 or more Bedrooms	2.76	\$ 2,845
Less than 3 Bedrooms	2.09	\$ 2,157
Apartments		
2 or more Bedrooms	1.92	\$ 1,977
Less than 2 Bedrooms	1.46	\$ 1,502
Special Care/Special Need	1.10	\$ 1,135

* Person Per Unit (or forecasted occupancy rates) by unit category and number of bedrooms are based on statistics Canada custom tabulation provided by dwelling unit and dwelling age

7. Collection and Repayment of Recovery DC

As set out in the proposed by-law (Appendix 'B'), the Recovery DCs is calculated based on the number and type of dwelling units that were expected to proceed under allocation programs between 2012 and 2021. DCs will be payable at the time of subdivision agreement; at the building permit stage where subdivision agreement is not applicable; or in accordance with terms set out in an agreement entered into with the Region under the DCA.


AREA SERVICING PLAN


INFRASTRUCTURE ONTARIO

SIXTEEN HOLLOW EMPLOYMENT AREA Project No.: 2013-0209-10

January 31, 2014 (revised June 26, 2014)

APPENDIX B - WATER SUPPLY CALCULATIONS

Population Calculation - Region DC Background Study

Project: 3005 Dundas Street West Project No: 5281

Population Estimate Calculation

Type of Development	Res. Units	Non Res. Area (ha)	Pop. Density	Pop. Density Units	Population
Apartment < 2 Bedrooms*	462		1.46	ppu	675
Apartment > 2 Bedrooms*	228		1.92	ppu	438
Retail - Light Commercial**	-	0.06	90	persons/ha	6
Total	690	0.06	-	-	1119

*Based on Region of Halton Development Charges Background Study (2021) **Based on Regional Municipality of Halton Water & Wastewater Linear Design Manual (April 2019)

Population Calculation - Region Design Criteria

Project:3005 Dundas Street WestProject No:5281

Population Estimate Calculation

Type of Development	Area (ha)	Pop. Density (Person/ha)	Population
Apartment (over 6 stories high)	0.72	285	206
Retail - Light Commercial	0.06	90	6
Total	0.78	-	212

*Based on Regional Municipality of Halton Water & Wastewater Linear Design Manual (April 2019)

FUS Calculation - Tower A

Project: Project number: Municipality:	3005 Dundas Street West 5281 Town of Oakville	
A = Type of Construction		٦
<u>Type of Construction:</u> Wood Frame Ordinary Non-Combustible Fire-Resistive	CDescription1.5(essentially all combustible)1(brick/masonry walls, combustible interior)0.8(unprotected metal structure, masonry/metal walls)0.6(fully protected frame, roof, floors)	
Construction Coefficient:	0.8	_
B = Largest Floor		_
Area:	1070.65 square metres (of largest floor)	
C = Height (storeys) Height:	27 Storeys	
D = Fire Flow (000's)		-
GFA Construction Type Fire Flow	5,026 square metres 0.8 12,478 L/min.	
-> Fire Flow	12,000 L/min.	\exists
E = Occupancy Factor		
Fire Hazard of Contents Non-Combustible Limited Combustible Combustible Free Burning Rapid Burning	Charge -25% -15% 0% 15% 25%	
Occupancy Factor	-15%	٦
Fire Flow F = Sprinkler Factor	10,200 L/min.	
Sprinkler System n/a NFPA 13 System Water supply is standard for both the system and Fire Dep.	Charge 0% -30%]
Hose lines Fully Supervised System	-10% -50%	
Sprinkler Factor:	-40% incl 10% Standard Connection Size	
G = Exposure Factor Separation 0 to 3 m 3.1 to 10 m 10.1 to 20 m 20.1 to 30 m 30.1 to 45 m Greater than 30	Charge 25% 20% 15% 10% 5% 1 side 0% 3 sides	_
Exposure Factor	5.00% (no more than 75%)	コ
H - Net Fire Flow Required F + G Factors	Charge -35%	-
Fire Flow:	6630 L/min. 7000 L/min.	Γ
	117 L/s	_

FUS Calculation - Tower B

Project: Project number: Municipality:	3005 Dunda 5281 Town of Oak		st
A = Type of Construction			
<u>Type of Construction:</u> Wood Frame Ordinary Non-Combustible Fire-Resistive	<u>C</u> 1. 1 0. 0.	5 8	Description (essentially all combustible) (brick/masonry walls, combustible interior) (unprotected metal structure, masonry/metal walls) (fully protected frame, roof, floors)
Construction Coefficient:	0.	8	
B = Largest Floor			
Area:		1881.46	square metres (of largest floor)
C = Height (storeys)			
Height:		30	Storeys
D = Fire Flow (000's)			
GFA			square metres
Construction Type Fire Flow		0.8 14,319	L/min.
-> Fire Flow		14,000	L/min.
E = Occupancy Factor			
E - Occupancy Factor			
Fire Hazard of Contents Non-Combustible	Charge	-25%	
Limited Combustible		-15%	
Combustible		0%	
Free Burning Rapid Burning		15% 25%	
Tapid Burning		2070	
Occupancy Factor Fire Flow		<u>-15%</u> 11,900	l /min
F = Sprinkler Factor		11,500	L//////.
Sprinkler System n/a NFPA 13 System Water supply is standard for both the system and Fire Dep.	Charge	0% -30%	
Hose lines		-10%	
Fully Supervised System		-50%	
Sprinkler Factor:		-40%	incl 10% Standard Connection Size
G = Exposure Factor			
Separation 0 to 3 m	Charge	25%	
3.1 to 10 m		20%	
10.1 to 20 m		15%	
20.1 to 30 m 30.1 to 45 m		10% 5%	1 side
Greater than 30			3 sides
Exposure Factor		5.00%	(no more than 75%)
H - Net Fire Flow Required			
F + G Factors	Charge	-35%	
		7735	L/min.
Fire Flow:			L/min.
		133	

Water Supply Calculation

Project:	3005 Dundas Street West
Project No:	5281

FUS :	133 L/s	
Average Daily Demand:	275 L/capita/	day
Residential Area	0.78 ha	
Light Commercial Area:	0.06 ha	

Average Daily Demand

Land Use	Population	Average Day Demand (I/s)
Apartments	1113	3.54
Light Commercial Area	6	0.02
Total	1119	3.56

Max Daily Demand

Land Use	Population	Peaking Factor	Max Day Demand (L/s)
High Density Residential	1113	2.25	7.97
Light Commercial	6	2.25	0.04
Total	1119		8.01

Maximum Hour Demand

Land Use	Population	Peaking Factor	Peak Hour Demand (L/s)
High Density Residential	1113	4.0	14.17
Light Commercial	6	4.0	0.08
Total	1119		14.25

Max Day + Fire Flow

Land Use	Average Day Demand (L/s)	Max. Hour Demand Peaking Factor	Demand	Max Day Demand Peaking Factor	Max Day Demand (L/s)	Fire Flow (L/s)	Total Flow (L/s)
High Density Residential	3.54	4.0	14.17	2.25	7.97		7.97
Light Commercial	0.02	4.0	0.08	2.25	0.04		0.04
Total			14.25		8.01	133	141.35

APPENDIX C-SANITARY DEMAND CALCULATIONS

Project:3005 Dundas Street WestProject number:5281Municipality:Town of Oakville

Residential Sanitary Flow Analysis

Area (ha)	Expected Population	Avg. Sewage Flow (L/s)*	Harmon Peaking Factor	Peak Flow (L/s)	Infiltration (L/s)**	Total Flow (L/s)
0.78	1113	3.54	3.77	13.35	0.22	13.58

*Based on Halton criteria of 275 L/c/d

**Based on Halton criteria of 0.286 L/ha/s

Commercial Sanitary Flow Analysis

Area (ha)	Expected Population	Avg. Sewage Flow (L/s)*	Harmon Peaking Factor	Peak Flow (L/s)	Infiltration (L/s)**	Total Flow (L/s)
0.06	6	0.02	4.00	0.07	0.02	0.09

*Based on Halton criteria of 24.750 m 3/ha/day

**Based on Halton criteria of 0.286 L/ha/s

Total Sanitary Flow= 13.66 L/s

APPENDIX D - STORMWATER MANAGEMENT CALCULATIONS

Town of Oakville

Pre-development Release Rate to East (via 600mm sewer)

Project: 2022-5281

Criteria:

The Runoff Coefficients were taken from City's Design Criteria.

Rainfall intensity

Design Storm Event	А	В	С	I (mm/hr)
2-Year	725.0	4.8	0.808	76.013
5-Year	1170.0	5.8	0.843	105.807
10-Year	1400.0	5.8	0.848	124.814
25-Year	1680.0	5.6	0.851	149.979
50-Year	1960.0	5.8	0.861	168.383
100-Year	2150.0	5.7	0.861	185.630

Note: $T = \frac{11.5 \text{ Minutes}}{I = A / (tc + B)^{C}}$

0.167 Hours

Existing Peak Discharge Rate from Site to Storm Sewer

Pre-development Runoff Coefficient, C	0.25	
Pre-development Drainage Area	0.29	ha
2-Year Peak Flow, Q2	15	l/s
5-Year Peak Flow, Q5	21	l/s
10-Year Peak Flow, Q10	25	l/s
25-Year Peak Flow, Q25	30	l/s
50-Year Peak Flow, Q50	34	l/s
100-Year Peak Flow, Q100	38	l/s

Storage Volume Calculation - East via 600mm Sewer

Project: 3005 Dundas Street West

Modified Rational Method

Internal Area	Controlled Drainage Area (ha) =	0.745
	5-year C =	0.90
	100-year C =	0.90
	Allocated Release Rate (I/s) =	21
	Actual Release Rate (l/s) =	21
External Area	Area (ha) =	0.10
	C =	0.90
_		
Groundwater Pump Rate		1.26 L/s
Fullip Rate		
10	00 Year Storm	

Design Storm =	Oakville
A =	2150
В =	5.7
C =	0.861

	100 Year					Total	Maximum	Required
Time	Intensity	Total	GW Pump	External	Total	Runoff	Release	Storage
(min)	100 year	Runoff	Rate	Runoff	Runoff	Volume	Volume	Volume
	(mm/hr)	(l/s)	(l/s)	(l/s)	(l/s)	(m ³)	(m ³)	(m ³)
10	200.80	374.19	1.26	50.24	425.69	255.42	12.60	242.8
11	190.41	354.82	1.26	47.64	403.72	266.45	13.86	252.6
12	181.11	337.49	1.26	45.31	384.06	276.52	15.12	261.4
13	172.74	321.89	1.26	43.22	366.37	285.77	16.38	269.4
14	165.16	307.77	1.26	41.32	350.36	294.30	17.64	276.7
15	158.27	294.93	1.26	39.60	335.79	302.21	18.90	283.3
16	151.97	283.19	1.26	38.02	322.47	309.57	20.16	289.4
17	146.18	272.41	1.26	36.58	310.25	316.45	21.42	295.0
18	140.86	262.49	1.26	35.24	298.99	322.91	22.68	300.2
19	135.93	253.31	1.26	34.01	288.58	328.98	23.94	305.0
20	131.37	244.80	1.26	32.87	278.93	334.71	25.20	309.5
21	127.12	236.89	1.26	31.81	269.95	340.14	26.46	313.7
22	123.16	229.50	1.26	30.81	261.58	345.28	27.72	317.6
85	44.35	82.65	1.26	11.10	95.01	484.56	107.10	377.5
90	42.35	78.92	1.26	10.60	90.78	490.21	113.40	376.8
100	38.88	72.45	1.26	9.73	83.44	500.62	126.00	374.6
105	37.36	69.62	1.26	9.35	80.23	505.46	132.30	373.2
110	35.97	67.02	1.26	9.00	77.28	510.07	138.60	371.5
115	34.68	64.63	1.26	8.68	74.56	514.49	144.90	369.6
120	33.49	62.41	1.26	8.38	72.05	518.74	151.20	367.5
125	32.38	60.35	1.26	8.10	69.71	522.82	157.50	365.3
130	31.35	58.43	1.26	7.84	67.53	526.75	163.80	362.9
135	30.39	56.63	1.26	7.60	65.50	530.54	170.10	360.4
140	29.49	54.96	1.26	7.38	63.60	534.21	176.40	357.8

Required Storage (m ³):	377.5
Provided Storage (m ³):	

Town of Oakville Orifice Control

Allowable Release Rate =

0.0210 m³/s

CALCULATE D	IAMETER
KNOWING Q &	Η
Q(m^3/s)=	0.021
Td(m) =	0.32
Approx A=	0.0135
Approx D=	131
A(m^2) =	0.015
D(mm) =	139

Control Manhole Orifice Plate				
DIA (mm)=	135			
AREA m^2=	0.014			
COEFF =	0.62			
GRAVITY =	9.81			
K =	1.0			
D/S HGL=	0.00	m		
Orifice Inv.=	151.70	m		

Effective	Depth Water		TOTAL FLOW	ELEVATION
Head	At CTL MH	Qp	Qp	of Water
m	m	m^3/s	m^3/s	m
0.00	0.067	0.0000	0.000	151.77
0.200	0.268	0.0176	0.018	151.97
0.225	0.292	0.0186	0.019	151.99
0.250	0.317	0.0197	0.020	152.02
0.287	0.355	0.0211	0.021	152.05
0.300	0.368	0.0215	0.022	152.07
0.350	0.417	0.0233	0.023	152.12

ORIFICE FLOW	Q(m^3/s)=	COEF*AREA*(2*GRAVITY*HEAD/K)^0.5
	Approx A=	+\$G\$10/(\$B\$8*(2*9.81*\$G\$11/K)^0.5)
	Approx D=	((G12/@PI)^0.5)*2*1000
	A(m^2) =	+\$G\$10/(\$B\$8*(2*9.81*(\$G\$11-(0.5*G21/1000))/K)^0.5)
	D(mm) =	((G12/@PI)^0.5)*2*1000
WEIR FLOW	Q(m^3/s)=	CLH^1.5 C=1.5

Printed: 19-Apr-23

ENGINEERING

LABORATORY

HYDROGEOLOGICAL INVESTIGATION

PROPOSED NEW DEVELOPMENT, 3005 DUNDAS STREET WEST,

OAKVILLE, ONTARIO

Prepared for:

Enirox Group

Project No. FE-P 21-117137H

April 1, 2022

400 Esna Park Drive, Unit 15 Markham, ON L3R 3K2

Tel: (905) 475-7755 Fax: (905) 475-7718 www.fisherenvironmental.com

Issued to:	Enirox Group 101 Railside Road North York, ON M3A 1B2
Contact:	Arash Kamali, B.Eng., CEO <u>akamali@enirox.com</u>
Project Name:	Hydrogeological Investigation for Proposed Development
Project Address:	3005 Dundas Street West, Oakville, ON.
Project Number:	FE-P 21-11713H
Issued on:	April 1, 2022

A

Report Prepared By:

Clive Wiggan, PhD., PMP., Project Manager clive@fishereng.com

Report Reviewed By:

Frank Fan, PEng., Geotechnical Engineer <u>frank@fishereng.com</u>

TABLE OF CONTENTS

1.	11	NTRODUCTION	1		
2.	SITE AND PROJECT DESCRIPTIONS 1				
3.	SCOPE OF HYDROGEOLOGICAL INVESTIGATION				
4.	F	IELD AND LABORATORY WORKS	3		
5.	S	UBSOIL CONDITIONS	4		
6.	н	YDROGEOLOGICAL STUDY	5		
(5.1	HYDROGEOLOGICAL CONDITIONS	5		
6	5.2	HYDRAULIC CONDUCTIVITY K MODELING RESULTS	7		
e	5.3	GRAIN SIZE ANALYSIS FOR HYDRAULIC CONDUCTIVITY K	8		
7.	С	ONSTRUCTION DEWATERING & PERMANENT DRAINAGE	9		
7	7.1	CONSTRUCTION DEWATERING	9		
-	7.2	Permanent Drainage	0		
-	7.3	PERMIT TO TAKE WATER (PTTW) 1	1		
-	7.4	GROUNDWATER QUALITY	1		
7	7.5	Dewatering Influence Zone 1	1		
7	7.6	Hydrogeological Impact 1	1		
7	7.7	PRIVATE WELL SURVEY 1	2		
8.	D	ISCUSSION1	2		
9.	LI	IMITATIONS	3		
AP	PEN	IDIX A – SITE AND LOCATION MAPS AND PLAN	4		
AP	PEN	IDIX B – LOG OF BOREHOLES	B		
AP	PEN	IDIX C – MOISTURE CONTENT AND GRAIN SIZE DISTRIBUTION ANALYSES	С		
AP	PEN	IDIX D – SEWER BYLAW RESULTS	D		
ΑΡ	PEN	IDIX E – HYDRAULIC CONDUCTIVITY ANALYSES	E		
ΑΡ	PEN	IDIX F – CONSTRUCTION DEWATERING AND PERMANENT DRAINAGE	F		
ΑΡ	APPENDIX G – BACKFILL AND DRAINAGE DESIGNG				
AP	PEN	IDIX H – PRIVATE WELL SURVEY	H		

1. INTRODUCTION

Fisher Engineering Limited was retained by Enirox Group to carry out a Hydrogeological Investigation for the proposed redevelopment at the property located at 3005 Dundas Street West, Oakville, Ontario, hereinafter referred to as the 'Site'.

The purpose of the Hydrogeological Investigation was to evaluate groundwater conditions with respect to the development of the site.

The report has been prepared specifically and solely for the proposed development regarding hydrogeological aspects for design and construction.

The Hydrogeological Review has been prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04 and the Ontario Halton Sanitary and Storm Sewer By-Law No. 02-03.

2. SITE AND PROJECT DESCRIPTIONS

Site Settings

The subject property is located on the northwest corner of the intersection of Dundas Street West and Old Bronte Road in a mixed commercial - residential neighborhood south of Highway 407, in the City of Oakville, and is bounded by Dundas Street West to the south, Bronte Road to the west, a vacant lot to the north and Old Bronte Road to the east. The site has an approximate area of 7,445m².

At the time of investigation, the site was unoccupied and covered in grass/shrubs and trees. Access to the property is via unpaved driveways of Old Bronte Road and Dundas Street West.

Topography

The site is generally flat and graded for drainage towards a ditch at the east of Bronte Road. Elevations change from approximately 154.00m at MW1 located at the southeast corner to 153.90m asl at MW6 located at the southwest corner.

Proposed Development

It was understood that the proposed development will consist of the construction of a highrise residential building with four or five underground levels extending to or close to the property boundaries. Finished floor elevations were not available during the investigation and it was therefore assumed that P4 or P5

slab would extend to approximate depths of 11.2m or 14m respectively (2.8m per level). Conventional footings, based on the geotechnical report was recommended at depths below 12m for four or five underground levels.

3. SCOPE OF HYDROGEOLOGICAL INVESTIGATION

The Hydrogeological Investigation works were required to:

- 1) Establish groundwater conditions for the design of dewatering works, if required, prior to construction of the proposed building.
- 2) Determine the need for permanent drainage and
- Conduct calculations/analyses of the groundwater quantity and quality to be used for the necessary applications for permits prior to proceeding with construction dewatering and design of permanent drainage, if necessary.

The scope of this work generally consisted of the following:

- **Drilling/locating Monitoring Wells.** Drilling of monitoring wells and reviewing / compiling the borehole logs and onsite / laboratory testing.
- Data Evaluation. Evaluating the results of soil types, groundwater static levels, ground surface elevation, groundwater quality, flow direction and other available hydrogeological data for the site and their potential impact on the proposed development.
- **Hydraulic Conductivity Tests.** Conduct single well response tests and record groundwater level drawdown and recovery to model/calculate hydraulic conductivity.
- Groundwater Quality Analysis. Carry out laboratory analyses on groundwater to determine compliance with the Ontario Halton Sewer Use Bylaws No. 02-03 (Mar 2003) – Halton Sanitary Sewer and Halton Storm Sewer.
- **Groundwater Level Monitoring.** Conduct long-term monitoring of the groundwater levels to determine the seasonal high-water levels.
- **Hydrogeological Report.** Prepare and submit a report detailing the findings and recommendations of the Hydrogeological Investigation.

4. FIELD AND LABORATORY WORKS

Subsurface exploration for the Hydrogeological Investigation was conducted concurrent with drilling for the Geotechnical Investigation over the period November 22 to 26, 2021 and consisted of eight (8) boreholes advanced to depths of 6.71m to 18.29m below prevailing grades. Approximate locations of the boreholes and elevations are presented in Appendix A - Borehole Location Plan.

All boreholes were instrumented as monitoring wells (MW1 to MW8) with 2" diameter screens on completion of drilling. A clean silica sand pack was placed around the well screens and isolated with bentonite to depths below prevailing grades as shown in the borehole details in Appendix B.

A Track mounted drill rig equipped with solid stem augurs, supplied by Terra Firma Services, was used for all drilling work under direct supervision of Fisher Engineering personnel. Soil samples, in the overburden soils, were taken at regular intervals using a split–spoon sampler advanced by means of the Standard Penetration Test (SPT) which was conducted in general accordance with ASTM Specification D1586. Field tests to determine engineering parameters of the soils were carried out during drilling, which included Standard Penetration Tests (SPT). Rock coring was carried out in BH4 & BH5 between approximate depths of 6.5m & 13.7m (BH4) and from 9.10m to 18.3m in BH5.

Laboratory Analyses

Soil samples were taken to the Fisher Environmental laboratory for further visual assessment and classification. Eleven (11) representative soil samples from BH1, BH5, BH6 and BH8 were submitted for moisture content and four (4) for grain size analyses. Five (5) soil samples were submitted for chloride and sulphate analyses and four (4) for pH tests. Two (2) soil samples from were submitted for hydrometer tests. The laboratory samples were tested and classified in general accordance with the Unified Soil Classification System, ASTM D 2487, and Standard Practice for Classification of Soil for Engineering Purposes.

One (1) groundwater sample from MW6 was submitted to ALS Environmental laboratory for analyses of water quality under the Ontario Halton Sewer Use Bylaws No. 02-03 (Mar 2003) – Halton Sanitary Sewer and Halton Storm Sewer. The results are presented in Appendix D.

The soil samples recovered during the investigation were stored in the Fisher Environmental laboratory for a period of 30 days after submitting the geotechnical report and were discarded thereafter.

Site Survey

Ground surface elevations at borehole/monitoring well locations were interpolated from a topographic survey plan prepared by Sexton McKay Limited, dated April 5, 2007.

5. SUBSOIL CONDITIONS

Surface and subsurface conditions encountered at borehole locations are shown in Appendix B - Log of Boreholes and are summarized in the following sections. The logs include soil stratification at borehole locations along with detailed soil descriptions. Variations in soil stratification may occur and should be expected between borehole locations and elsewhere on the site.

Fill - Fill soils were found below surficial layer of all boreholes and extended to approximate depths below prevailing grades as shown in Table 1. The fill generally consisted of dark brown to brown/grey sand/silty sand to sand & gravel with some to trace of topsoil/roots and occasional pieces of asphalt/brick/metal and plastic.

Borehole No.	BH1	BH2	внз	BH4	BH5	BH6	BH7	BH8
Surface Elevation (m asl)	154.00	153.92	153.59	154.50	154.52	153.81	153.90	154.37
Depth of Borehole (m bgs)	12.35	6.71	6.71	13.72	18.29	8.38	6.71	6.71
Elevation at Bottom of Borehole (m asl)	141.65	147.21	146.88	140.78	136.23	145.43	147.19	147.66
Depth of Fill (m bgs)	1.52	2.29	2.13	1.98	1.22	1.37	0.46	1.60
Elevation at Bottom of Fill (m asl)	152.48	151.63	151.46	152.52	153.30	152.44	153.44	152.77

Table 1: Fill Depths and Elevations

Grey/Reddish Brown Silt Till – The fill was underlain by grey and reddish brown, moist, compact to dense silt till extending to approximate depths of 4.65m (BH4) to 7.93m (BH6).

Greyish/Reddish Brown Weathered Shale – Grey becoming reddish brown, moist to dry, hard, weathered shale was encountered beneath the overburden soils in all boreholes at depths varying from 6.71m (BH8)

to 9.14m (BH5). Top of shale elevations, based generally on refusal to power auguring, vary from 145.88m (BH6) to 149.02m asl (BH7).

6. HYDROGEOLOGICAL STUDY

A hydrogeological study for the subject site was conducted based on the boreholes/wells' exploration, observation and site/laboratory testing. Groundwater details from the eight (8) newly installed monitoring wells were used in the Hydrogeological Study. The wells were constructed with 3.05m (10') long, 51mm diameter PVC slotted screen pipes, with the bases at approximate depths below existing grade as shown in Appendix B. Clean silica sand packs were placed around each well screen which was isolated with bentonite extending to slightly below existing grade.

Boreholes BH2, BH3, BH6, BH7 and BH8 were dry on completion of drilling while standing water was observed at 6.10m bgs in BH1. Boreholes BH4 and BH5 were drilled using mud rotary and consequently water levels on completion of drilling could not be ascertained.

6.1 Hydrogeological Conditions

Review of the available surficial geological and hydrogeological information for the area shows that the site is underlain generally with clay to silt-textured till derived from glaciolacustrine deposits or shale. Underlying bedrock is represented by shale, limestone, dolostone and siltstone of the Queenston Formation and is generally less than 10m below prevailing grade. Surficial geology and bedrock maps are presented in Appendix A.

The subsoils and hydrogeological conditions were observed and recorded during both the geotechnical and hydrogeological investigations. Based on the boreholes/wells' exploration, the water bearing soils on the site were dominated by wet seams interbedded in the grey and reddish brown silt till along with weathered shale at greater depths. The observed soil conditions are consistent with the surficial geology and bedrock descriptions.

All monitoring wells were purged/developed and allowed to fully recover prior to carrying out groundwater level measurements and sampling. Measured groundwater depths and elevations are summarized in Table 2.

Comments on Table 2:

The following general comments regarding groundwater conditions at the site are based on the groundwater level data and the geotechnical investigation:

- Static groundwater levels were observed at 1.55m to 6.47m bgs (152.45m to 148.05m asl). MW3 (depth of 4.57m bgs) was observed to be mostly dry or with very little water during the investigation.
- Pockets of perched and seepage water from more pervious soils may be expected on the site.
- Fourteen Mile Creek is located approximately 500m southwest of the site while other small creeks were observed within an approximate radius of 1km of the site.
- The site is located in a developed residential/commercial area, with some supply wells installed between 1951 and 1992. Most of these wells have been decommissioned. Water supply for new residential buildings in the area is generally via municipal water system.
- Groundwater levels are being monitored to determine seasonal highwater levels on the site.

Borehole	e No.	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8
Surface Elevat	ion (m asl)	154.00	153.92	153.59	154.50	154.52	153.81	153.90	154.37
Depth of We	ell, m bgs	10.37	6.71	4.57	9.76	18.29	7.93	6.71	6.71
Elevation at w asl	ell base, m	143.63	147.21	149.02	144.74	136.23	145.88	147.19	147.66
On	GW level, m bgs	6.10	Dry	Dry	n/a - rock	n/a - rock	Dry	Dry	Dry
Completion	GW Ele, m asl	147.90	Dry	DIy	coring	coring	DIy	Dry	Dry
30-Nov-21	GW level, m bgs	2.16	4.85	Dry	2.55	5.10	1.67	5.10	1.67
30-1107-21	GW Ele, m asl	151.84	149.07	Dry	151.95	149.42	152.14	148.80	152.70
15-Dec-21	GW level, m bgs	1.56	4.72	Dru	2.16	6.23	5.13	5.32	5.25
13-Dec-21	GW Ele, m asl	152.44	149.20	Dry	152.34	148.29	148.68	148.58	149.12
29-Dec-21	GW level, m bgs	1.61	4.76	Day	2.39	6.47	5.40	5.31	5.39
29-Dec-21	GW Ele, m asl	152.39	149.16	Dry	152.11	148.05	148.41	148.59	148.98

Table 2: Groundwater Depths and Elevations

Fisher Engineering Ltd

Borehol	e No.	MW1	MW2	MW3	MW4	MW5	MW6	MW7	MW8
12-Jan-22	GW level, m bgs	1.77	4.82		2.39	6.45	5.41	5.33	5.40
12-Jan-22	GW Ele, m asl	152.23	149.10	Dry	152.11	148.07	5 5.41 5.3 07 148.40 148. 3 5.37 5.2 09 148.44 148. 3 5.04 4.9 29 148.77 148. 8 4.95 4.9	148.57	148.97
26-Jan-22	GW level, m bgs	1.86	4.97		2.37	6.43	5.37	5.27	5.37
20-Jan-22	GW Ele, m asl	152.14	148.95	Dry	152.13	148.09	1 5.41 5.33 7 148.40 148.57 5.37 5.27 9 148.44 148.63 5.04 4.98 9 148.77 148.92 9 148.77 148.92	149.00	
9-Feb-22	GW level, m bgs	1.92	4.86	4.54	2.40	6.23	5.04	4.98	2.20
9-FED-22	GW Ele, m asl	152.08	149.06	149.05	152.10	148.29	148.77	148.92	152.17
9-Mar-22	GW level, m bgs	1.55	4.45	4.21	1.92	6.08	4.95	4.95	4.95
9-iviar-22	GW Ele, m asl	152.45	149.47	149.38	152.58	148.44	148.86	148.95	149.42

6.2 Hydraulic Conductivity K Modeling Results

Rising Head Slug Tests

Rising head slug tests were conducted in MW1, MW6 and MW8 on March 23, 2022. The water bearing media mainly consisted of seams/pockets of pervious soils interbedded in the till along with weathered shale, and were assumed to be unconfined, homogenous, isotropic and of uniform thickness. It was also assumed that the wells fully penetrated the water bearing soils. Data from the single well response tests were used to calculate the hydraulic conductivity values using Luthin's method.

Calculated values for hydraulic conductivity (k) are summarized in Table 3 and are representative of the water bearing soil observed on the site. Details of the hydraulic conductivity analyses are presented in Appendix C.

Test Wells	Well Surface Elevation (m asl)	Groundwater Depth (m)	Screen Elevation	Variance of water head created (m)	30 Minutes/ Recovery Percentage	Hydraulic Conductivity, H (Luthin's Method)		
wens		Deptii (iii)	(m asl)	neau createu (m)	reneentage	m/s	Method) m/day 0.012 0.026	
MW1	154.00	1.54	143.63 - 148.21	3.71	31 min / 9%	1.36 x 10 ⁻⁷	0.012	
MW6	153.81	4.90	145.88 – 153.81	1.95	31 min / 15%	3.03 x 10 ⁻⁷	0.026	
MW8	154.37	4.65	147.66 – 154.37	1.30	31 min / 14%	1.36 x 10 ⁻⁷	0.012	

Fisher Engineering Ltd

6.3 Grain Size Analysis for Hydraulic Conductivity K

Representative samples from BH1, BH6 and BH8 were selected and submitted to the laboratory for grain size distribution and hydrometer analyses. The results for the grain size distribution and hydrometer analyses are presented in Appendix C and summarized in Table 4.

Based on the field soil description (Unified Soil Classification System) and grain size distribution, the overburden soils within the excavation depths can by classified as: SC – Clayey sands, sand-clay mixtures to SM – Silty sands, sand-silt mixtures with estimated coefficient of permeability k and corresponding percolation times T as shown in Table 4 based on Table 2 of the Supplementary Guidelines to the Ontario Building Code, 1997. These values are generally consistent with field observation and hydraulic conductivity tests.

Location	Depth of soil sample (m)	Soil Classification	Permeability and Percolation Time (Suplementary Guidelines to the OBC)				
			Coefficient of permeability, k in cm/s	Percolation Time, T in mins/cm			
BH1	1.50 – 1.95	Clay & Silt, some Sand, trace Gravel (Till)	10 ⁻⁴ - 10 ⁻⁶	12 - 50			
БПІ	4.55 – 5.00	Clay & Silt, some Sand, trace Gravel (Till)	10 ⁻⁴ - 10 ⁻⁶	12 - 50			
BH6	4.55 – 5.00	Clay & Silt, some Sand, trace Gravel (Till)	10 ⁻⁴ - 10 ⁻⁶	12 - 50			
БПО	3.00 - 3.45	Clay & Silt, some Sand	10 ⁻⁴ - 10 ⁻⁶	12 - 50			
BH8	3.00 - 3.45	Sandy Clay & Silt, trace Gravel (Till)	10 ⁻³ - 10 ⁻⁵	8 - 20			
БПО	4.55 – 5.00	Sandy Clayey Silt, trace Gravel (Till)	10 ⁻³ - 10 ⁻⁵	8 - 20			

7. CONSTRUCTION DEWATERING & PERMANENT DRAINAGE

7.1 Construction Dewatering

It was understood that the development will consist of a highrise residential building with four or five underground levels. Subsoil conditions were observed to be generally consistent across the site. P4 and P5 slab levels were assumed at depths of 11.2m and 14m bgs respectively (2.8m per level). Conventional strip and/or spread footing were recommended, in the geotechnical investigation report, at depths below 12m. Groundwater levels were observed between 1.55m and 6.47m bgs during the investigation. This means that the footings will likely extend below the groundwater levels observed during the investigation. The groundwater level should therefore be lowered to 1m below the designed footing depths to protect the footing subgrade from hydraulic pressure disturbance during construction.

It should also be noted that the open boreholes were mostly dry on completion of drilling and that the water observed during the investigation was due mainly to trapped pockets from from depths of approximately 4.5m bgs to the upper 3m of weathered shale. The following were used in calculating construction dewatering rates:

FFE ground floor – 154.30m asl

Excavation area – 7,445m²

Hydraulic conductivity – 1.36×10^{-7} m/s

Groundwater level – 4m

Construction dewatering flowrates of **23.97 and 31.83 m³/day (23,970 and 31,830 L/day)** were estimated for four and five underground levels respectively. Factored dewatering rates of **35.96 and 47.75 m³/day** (**FS of 1.5**) should be used for planning purposes.

Seasonal High Groundwater Levels

Groundwater levels were monitored approximately biweekly over the period November 2021 to March 2022. Further groundwater level monitoring will be carried out during the rainy season to confirm seasonal highwater levels on the site. Groundwater levels observed so far are between 1.55m and 6.45m bgs. Higher levels were observed in MW1 and MW4 between 1.55m and 2.55 bgs. Lower water levels were observed in the other wells generally between 4.45m and 6.47m bgs. MW3 was mostly dry during the investigation. An average groundwater level of 4.0m was used to calculate construction dewatering rates. The average observed groundwater level was increased by 1m to 3m and used to estimate permanent drainage rates.

Accounting for Accumulated Precipitation

Provisions should be made to pump accumulated water from the excavation areas during construction, particularly following a period of heavy rainfall. For example, 25mm rainfall in 24 hrs may result in accumulation of up to 186m³ in the excavated area. Excavation for four or five underground levels will be into hard, dry shale. Consequently, some amount of ponding of rainwater may be expected. A conservative accumulated volume of **100 m³/day** may therefore be assumed for planning purposes. Accumulated precipitation may be stored on site for subsequent disposal to an MOECC-licensed facility. If the water is to be discharged into the public sewer system, then an application for the discharge of private water will have to be made to Halton Region. The water quality, at the time of the application, will need to be ascertained to ensure compliance with Ontario Sewer Use Bylaws – Halton Sanitary Sewer Bylaw No. 02-03.

Maximum construction discharge rates, taking into consideration accumulated precipitation volumes, are:

- 1. For four underground levels 123,970 L/day (unfactored) and 135,960 L/day (factored).
- 2. For five underground levels 131,830 L/day (unfactored) and 147,750 L/day (factored).

7.2 Permanent Drainage

Permanent drainage rates of **23.19 and 31.03 m³/day (23,190 and 31,030 L/day)** were obtained for the building with four or five underground levels respectively. Factored permanent drainage rates of **34.79** and **46.54m³/day (FS of 1.5)** should be used for planning purposes.

An application for permission to discharge to the municipal/regional sewer system will be required unless the subsurface structure of the building is designed as watertight or onsite disposal facilities are implemented.

Subdrain should be installed under the lowest parking level slab along with perimeter weepers for the building exterior walls as per Appendix G.

It is further recommended that the subsurface portion of the elevator shaft, below P4 or P5 level, be designed as watertight to prevent the need to have deeper groundwater sump pits for permanent drainage.

7.3 Permit to Take Water (PTTW)

As the calculated construction dewatering flowrates for the building, including accumulated precipitation, with four or five underground levels, are more than 50 m³/day, registration on the MOECC Environmental Activity and Sector Registry (EASR) for Water Taking will be required for construction. An application for permission to take water (PTTW) will not be required for the building with four or five underground levels as the daily flowrate would be less than 50,000 L/day.

7.4 Groundwater Quality

The results (December 1, 2021) of analyses for groundwater quality under the Ontario Halton Sanitary Sewer Bylaw No. 02-03 (Mar 2003) and Halton Storm Sewer Bylaw No. 02-03 show compliance with all parameters as shown in Appendix D. The groundwater under conditions observed during the investigation may be discharged to the public Storm or Sanitary Sewer Systems without treatment.

It should be noted however that testing of groundwater at the depths observed during the investigation would not be representative of the water that might accumulate during a high rainfall event. Any accumulation of precipitation occurring in the excavation during construction, that may require offsite discharge, will have to be tested at the time of the event to determine the quality of water for discharge.

7.5 Dewatering Influence Zone

The estimated construction dewatering quantities are based on the worst-case groundwater conditions that might occur during the construction period. Calculated dewatering influence zones are expected to be up to 6.38m and 8.44m from the edge of the dewatering point in the predominantly silt till, for four and five underground levels respectively. Based on the field investigation, the soils to the proposed excavation depths are dominated by silt till with weathered to solid shale at greater depths. Recharge was observed to be relatively slow during rising head slug tests. Construction dewatering may therefore be carried out by pumping from sump pits. Dewaterinig influence zones will therefore be less than calculated.

7.6 Hydrogeological Impact

During the investigation, it was determined that there will not be any negative impact to the natural environment, Halton Region Sewer works nor surrounding properties due to construction dewatering because of the depth at which groundwater was observed and the type of soils on the site. No

groundwater induced depression at surface level is expected. Consequently, it is not expected that construction will impact public infrastructure, the natural environment, nor will there be any settlement issues.

7.7 Private Well Survey

A query of the MOECC water well records showed that there are approximately 30 supply well within an approximate radius of 500m of the site as shown in Appendix H. The wells were installed between 1951 and 1993 at depths of 6.1m to 33.8m below prevailing grade and mainly in the weathered to hard shale. Some wells were reportedly decommissioned.

It is expected that new residential developments in the area would be serviced by municipal water supply and that domestic water supply wells will not be widely used.

The type of material encountered at the expected excavation depths, below the surficial soils, are mainly silt till overlying weathered shale. Construction dewatering may be achieved by pumping from sump pits as required. It is not expected therefore that construction dewatering will impact the quality and quantity of supply wells, if any, in proximity to the site.

8. DISCUSSION

Hydraulic conductivity values (k) calculated from onsite single well response tests are 1.36×10^{-7} to 3.03×10^{-7} m/s (0.012 to 0.026 m/day) in the wells screened within the silt till and weathered shale. These are representative of the water bearing materials at the expected excavation depths for footings based on the geotechnical and hydrogeological field investigations for four or five underground levels.

Approximate construction dewatering discharge rates of 23.97 and 31.83 m³/day will be required for the recommended footing depths for four or five underground levels respectively. Permanent drainage rates of 23.19 and 31.03 m³/day will be required for four or five underground levels respectivley. A factor of safety of 1.5 should be applied to construction dewatering and permanent drainage rates.

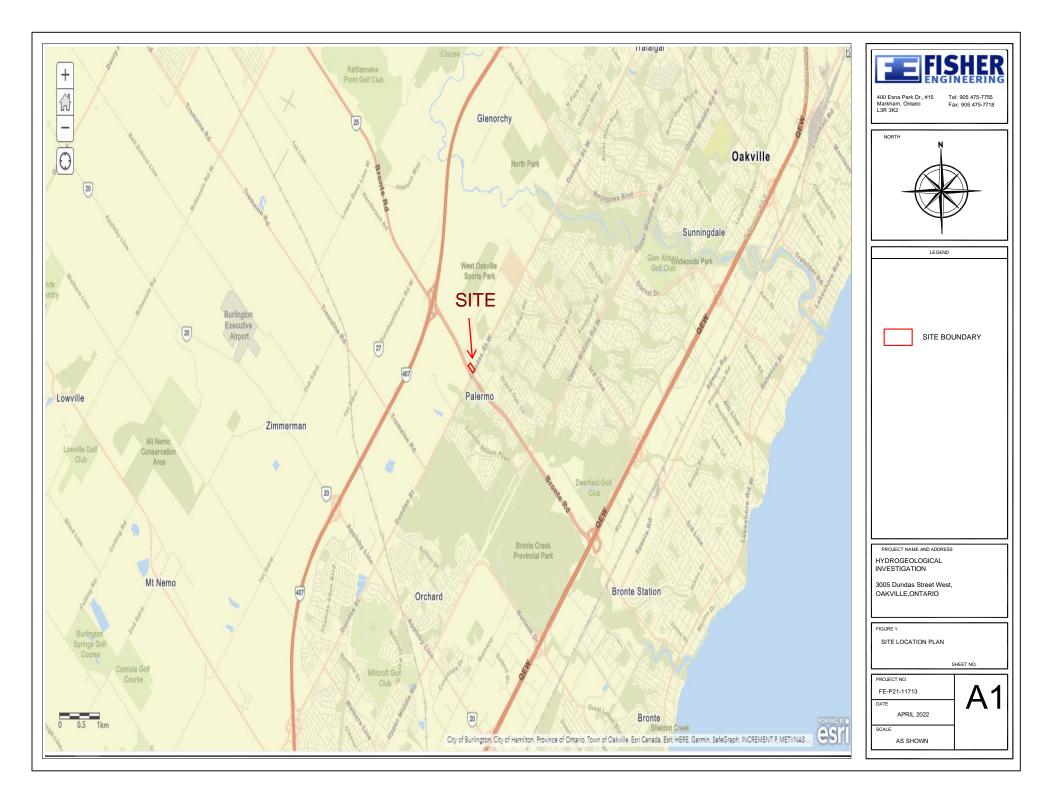
Registration on the MOECP's EASR Website for water taking will be required during construction. An application for PTTW will not be required if the building is designed with four or five underground levels.

The groundwater quality determined by laboratory analyses revealed compliance to parameters of the existing Halton Region Storm and Sanitary sewer limits.

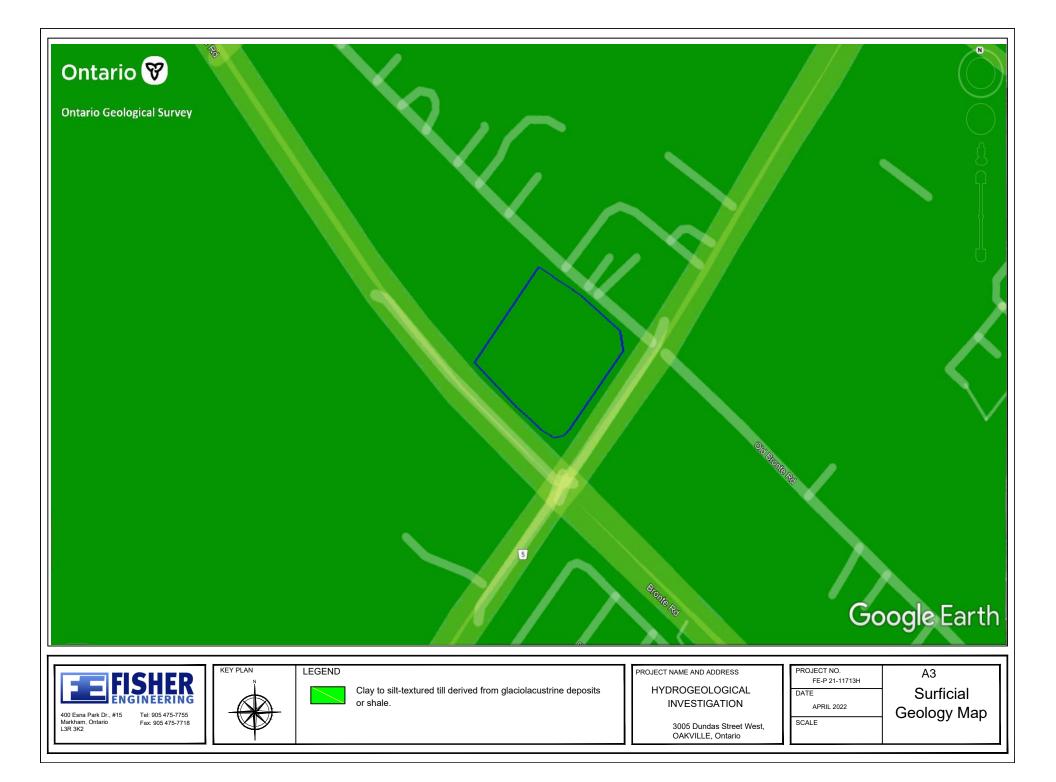
It should be noted that if it is intended that any accumulated water, following periods of heavy rainfall, be discharged into the public sewer, then a permit to discharge would be required along with laboratory analyses to ensure compliance with relevant sewer bylaws.

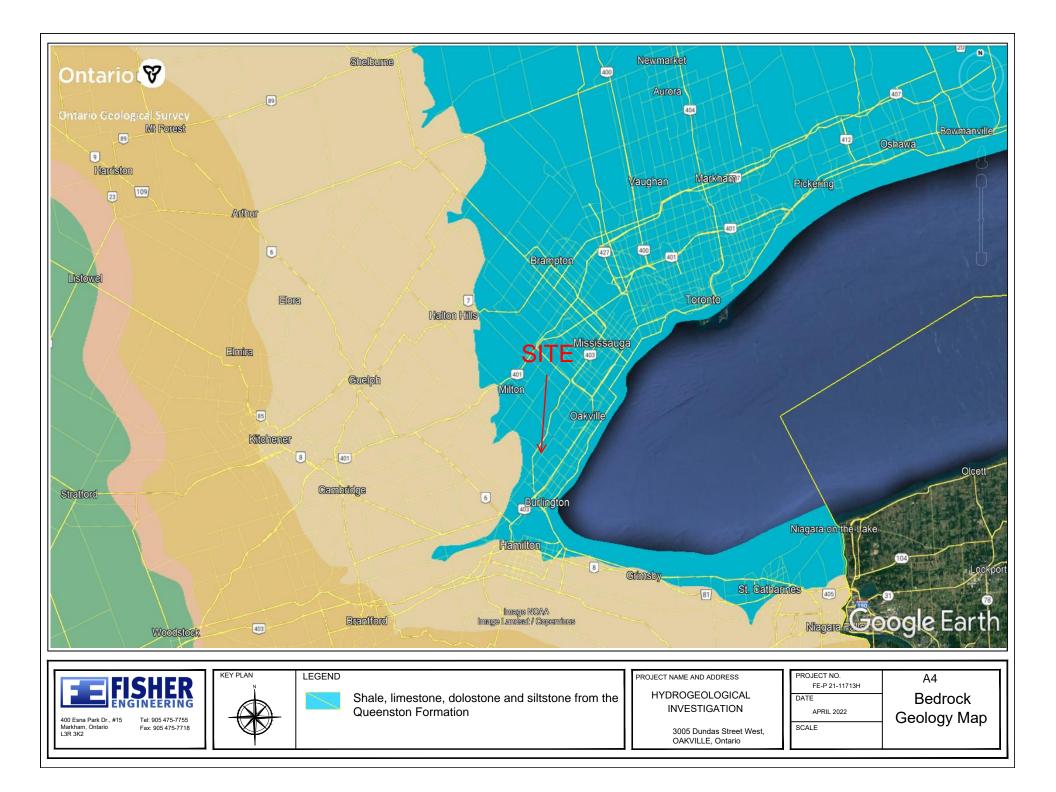
The discharge rates for construction dewatering and permanent drainage, given in the preceding, are based on common practice and reasonable assumption for excavation depths and are subject to further modifications when details of the structures become available.

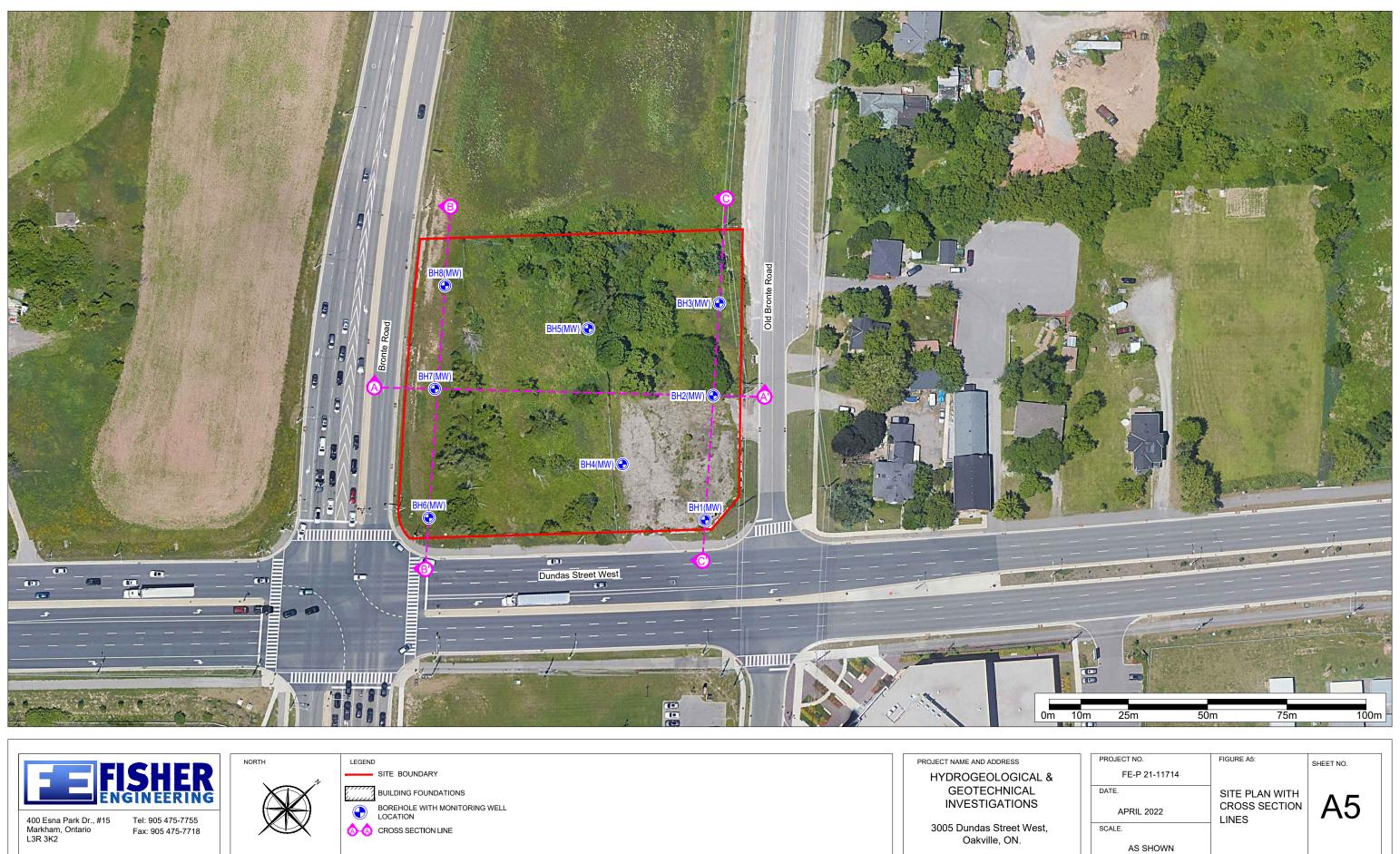
9. LIMITATIONS

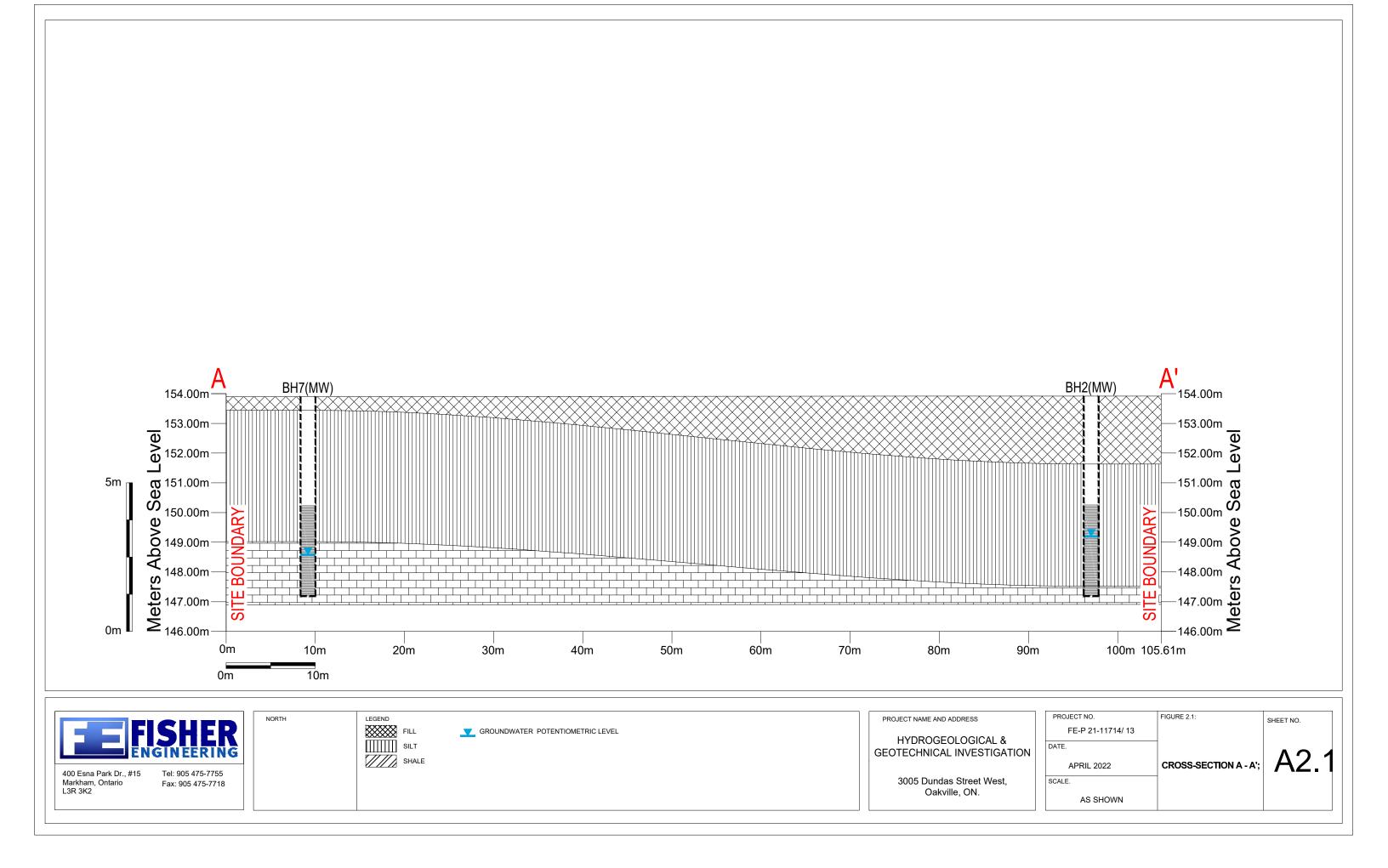

This report is limited in scope to those items specifically referenced in the text. The discussions and recommendations presented in this report are intended only as guidance for the named client, design engineers and those directly associated with implementing, regulating and monitoring of the project. The information on which these recommendations are based is subject to confirmation by engineering personnel at the time of construction. Localized variations in the subsoil conditions may be present between and beyond the boreholes and should be verified during construction.

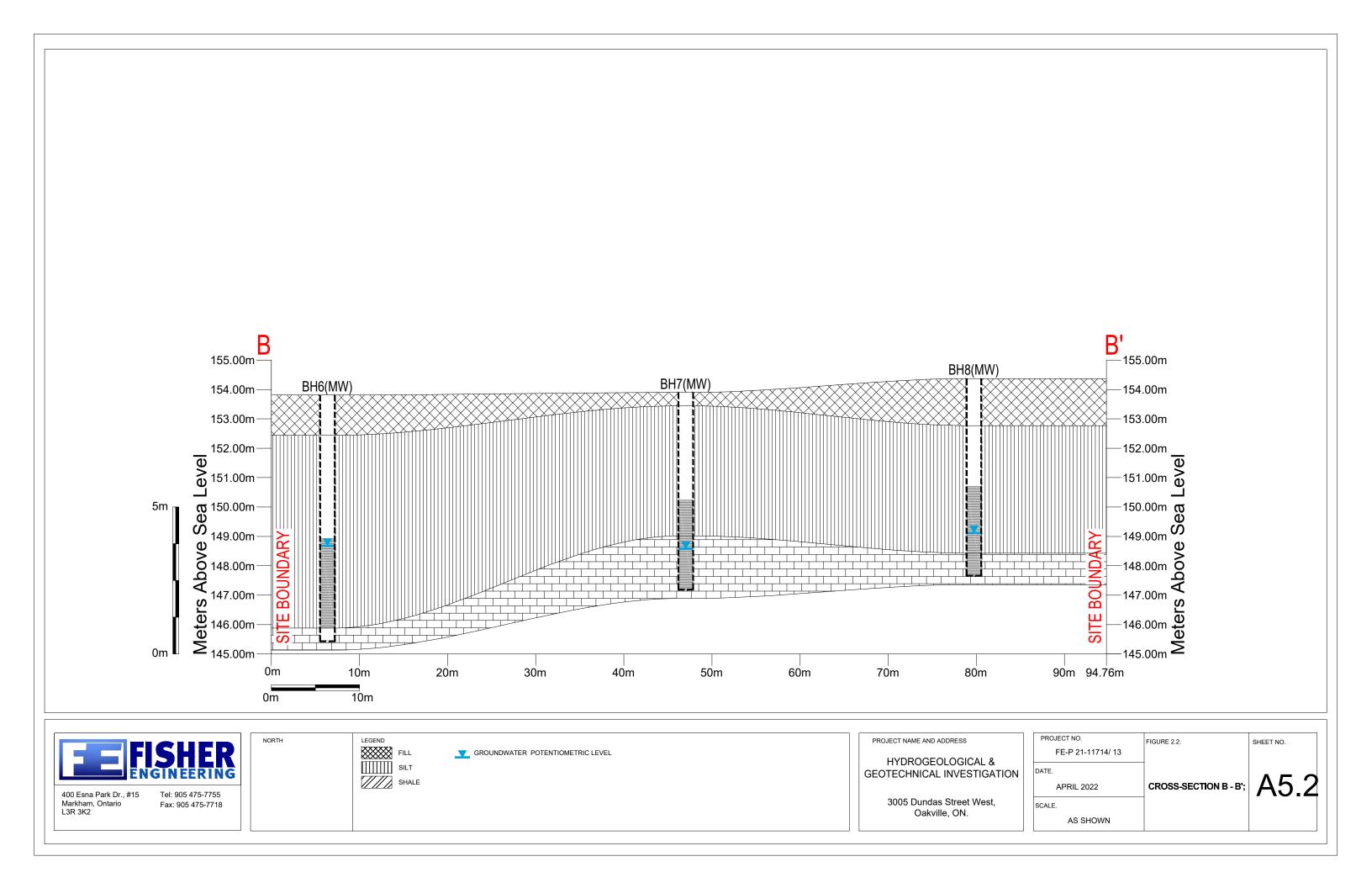
As more specific subsurface information becomes available during excavations on the Site, this report should be updated. Contractors bidding on or undertaking the work should decide on their own investigations, as well as their own interpretations of the factual borehole results. This concern specifically applies to the classification of the subsurface soil and the potential reuse of these soils on/off Site. Contractors should draw their own conclusions as to how the near surface and subsurface conditions may affect them.

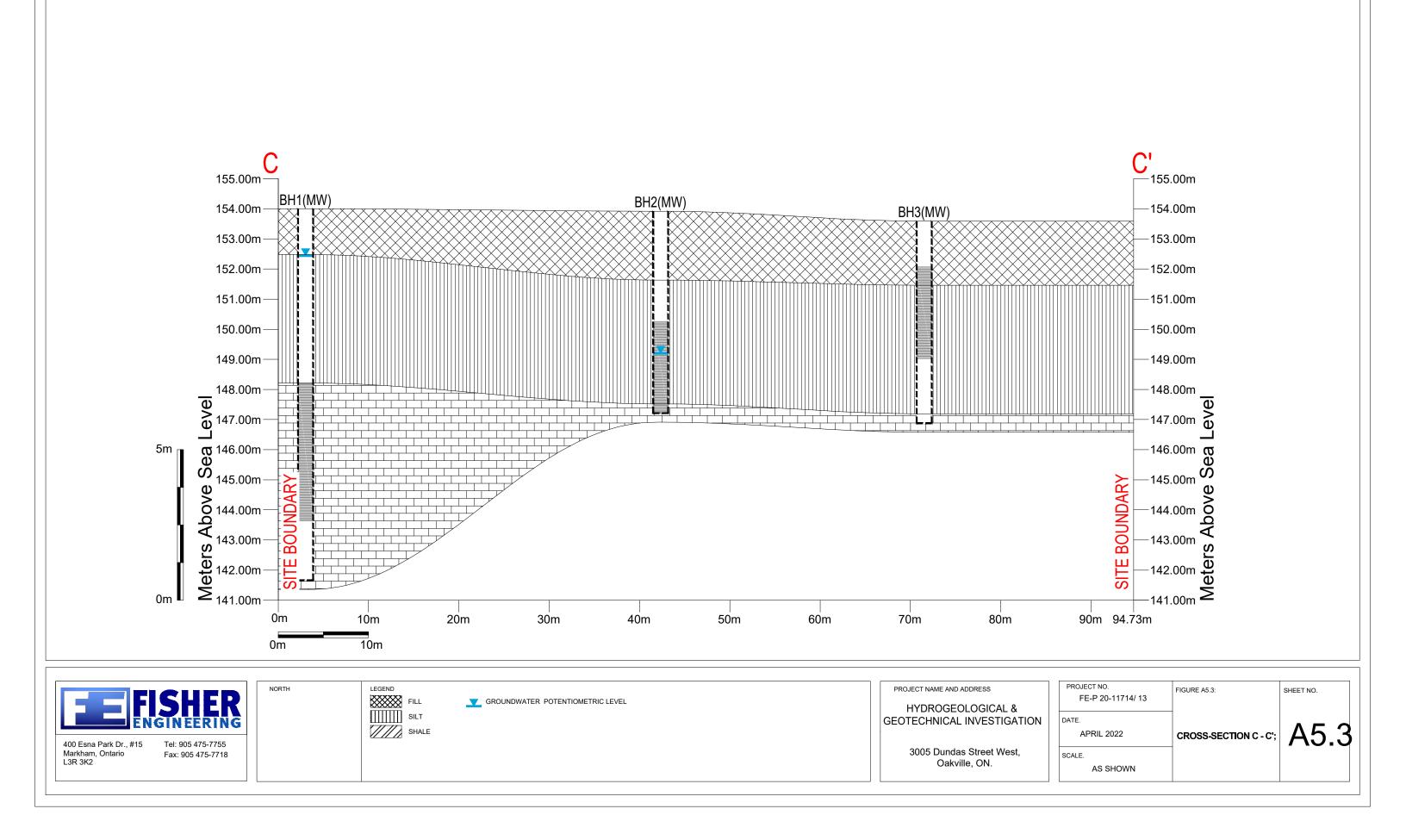


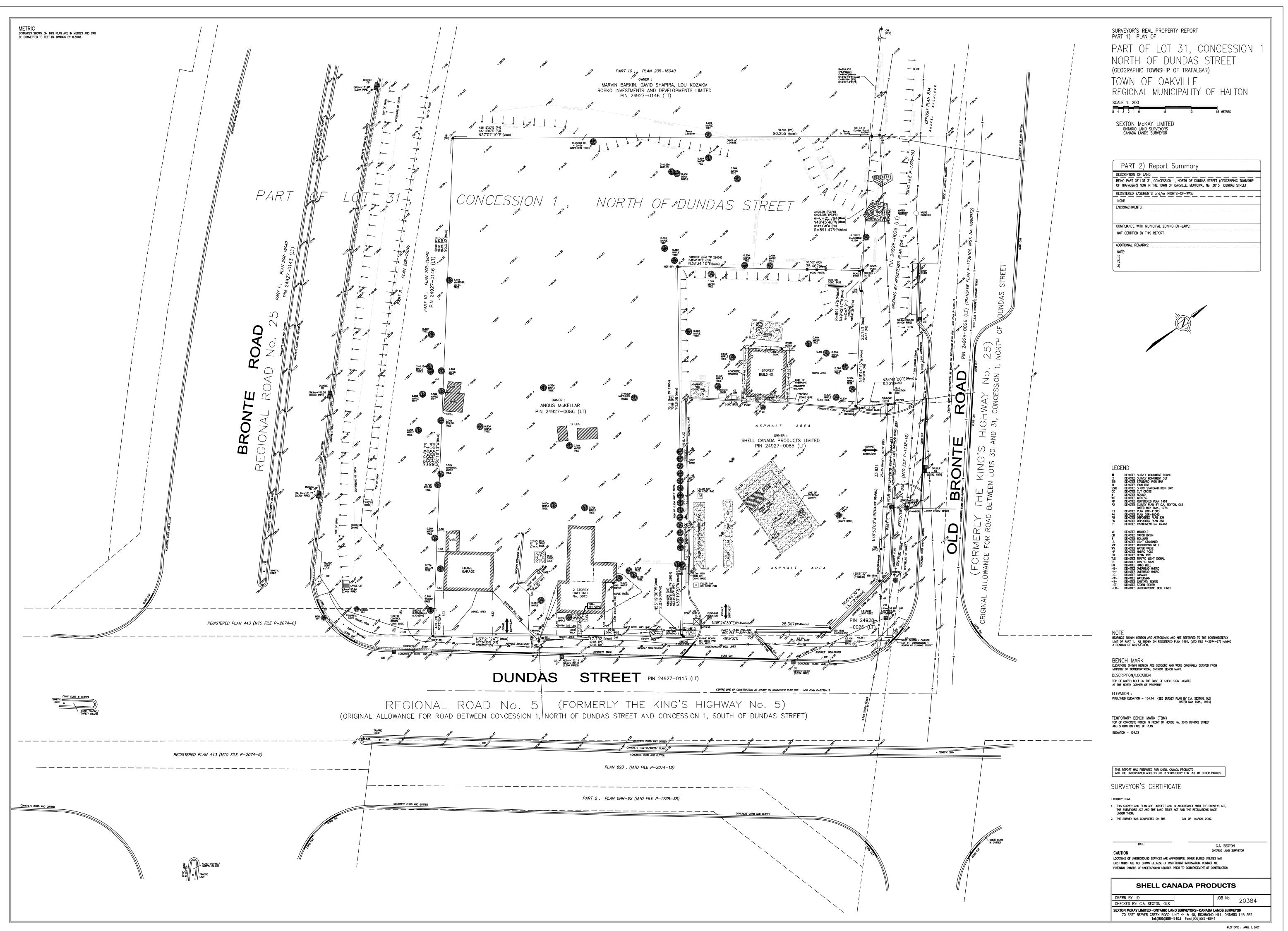

APPENDIX A – SITE AND LOCATION MAPS AND PLAN





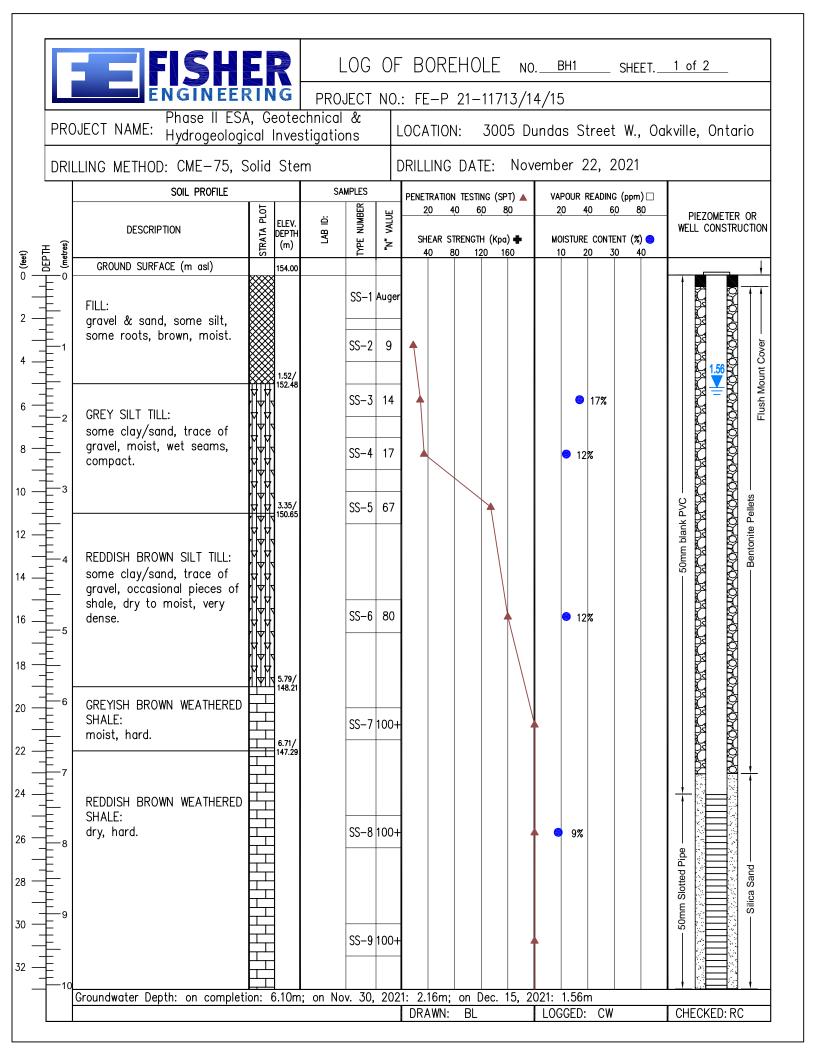






Oakville, ON.

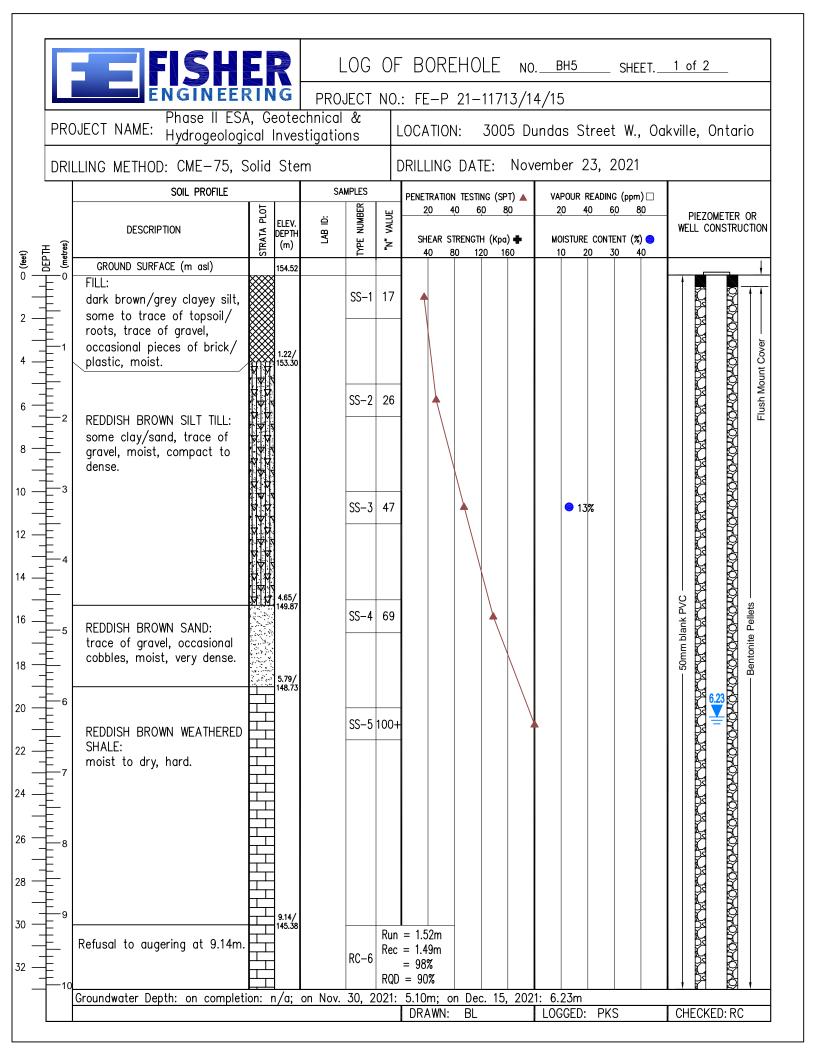
AS SHOWN



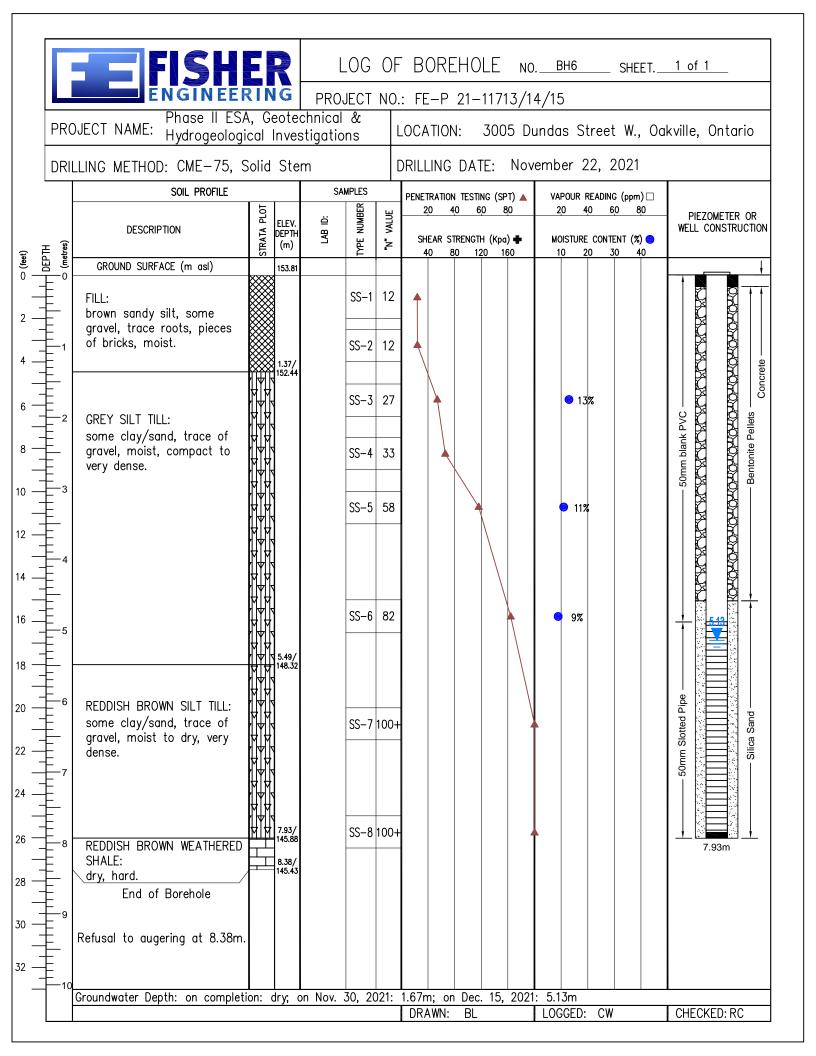
152.45m asl GROUNDWATER ELEVATION 9 March 2022

APPENDIX B – LOG OF BOREHOLES

Fisher Engineering Ltd


		FISH		R	L	_0G	OF	- B(ORE	HO	LE no). <u>BH1(M</u> \	V)	SHEET.	2 of 2
		ENGINEER	RIN	ĪĞ			NO	.: FE	-P :	21–	11713/1	4/15			
	PRC	DJECT NAME: Phase II ESA Hydrogeologi						_0CA	TION	:	3005 D	undas S	Street	W., Oa	kville, Ontario
	DRIL	LING METHOD: CME-75, S	Solid	Ste	m	DRILLING DATE: November 22, 2021									
	-	SOIL PROFILE	STRATA PLOT			MPLES		PENETRATION TESTING (SPT) 20 40 60 80							
	н (s	DESCRIPTION	ELEV. DEPTH (m)	LAB ID:	lype Number	"N" VALUE	SH	EAR STR	RENGTI	H (Kpa) 🖶	MOISTUI	RE CONTE	:NT (%) 😑	n) □ <u>80</u> PIEZOMETER OR WELL CONSTRUCTION	
	H DEPTH (metres)	GROUND SURFACE (m asl)				<u> </u>	_	4	0 80) 12	20 160	10	20 3	0 40	
32 — - -	10														
34 — -		REDDISH BROWN WEATHERED SHALE:													↓ 10.37 bgs -
36 —		moist to dry, hard.				SS-10	100+	-							otted Pij
- - - 38 —															omm Si
-	12														ũ
40 —		End of Borehole		12.34/ 141.66		SS-11	100-	-							
42 —															
		Refusal to augering at 12.34m.													
46 —	14 														
48 —															
50 —	15 15														
-															
52 — - -	 														
54 — -															
56 —	1_ 17 17														
-															
	1 														
60 —															
62 —															
-															
64 — —		Groundwater Depth: on comple	l tion:	6.10	m; on l	l Nov. 3	0, 2				n Dec. 15				
66 —								DRA	WN:	BL		LOGGE): CW		CHECKED: RC

		DJECT NAME: Hydrogeologi	, Ge	eote	chnical	JECT &	NO).:	BORE FE-P CATION	21–	1171	3/1	4/15		SHEET	<u>1 of 1</u> kville, Ontario
ŀ		LING METHOD: CME-75, S				112										
L		SOIL PROFILE				MPLES		—	ENETRATION						G (ppm) 🗆	
⊃ (feet) DEPTH	(metres)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID:	TYPE NUMBER	"N" VALUE		20 4 SHEAR ST 40 8	RENGT	60 8 H (Kpa) 20 16) 💠	20 MOIST 10	URE CONTI	0 80 ENT (%) 😑	PIEZOMETER OR WELL CONSTRUCTION
→ → → → DEPTh	0 0 	GROUND SURFACE (m asl)		153.92		SS-1	10		•							
2	1 1 1	sand & gravel, some silt, some roots, boulders, moist.				SS-2	13	-								CLARCE CARE VC
6	2					SS-3	7									- 50mm blank PVC
8	- - - - -	GREY SILT TILL:		2.29/ 151.63		SS-4	25	_								RCRCRC50
	3 4	some clay/sand, trace of gravel, stains, moist, compact to dense.		4.27/		SS-5	30	_								
14	5 5 5	REDDISH BROWN SILT TILL: some clay/sand, trace of gravel, occasional pieces of shale, dry to moist, very dense.	A A A A A A A A A A A A A A A A A A A A	149.65		SS-6	100-	+								- 50mm Slotted Pipe
20 22 24		REDDISH BROWN WEATHERED SHALE: dry, hard. End of Borehole		6.40/ 147.52 6.71/ 147.21		SS-7	100-	-								6.71m
26	- - - - 8	Refusal to augering at 6.71m.														
28	 															
30 — — 32 —																
-	- 	Groundwater Depth: on completi	on: d	dry; d	on Nov.	 30, 20)21:		85m; on DRAWN:	Dec BL	. 15 ,	2021	: 4.72r LOGGE			CHECKED: RC


	FISH ENGINEER		R	L	.0G	0	FΒ	ORE	EHC)LE	NC). <u> </u>	SHEET.	<u>1 of 1</u>
	Phase IL FS											4/15		
	OJECT NAME: Hydrogeolog													akville, Ontario
DR	SOIL PROFILE	Solid	Ste		WPLES							ember 24		
с н (se	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID:	lype Number	"N" VALUE	s	HEAR S	4 <u>0</u> TRENGT	<u>50 8</u> Դ (Кра	30) *	20 40 Moisture	Content (%) 😑	PIEZOMETER OR WELL CONSTRUCTION
⊖ (feet) ☐ DEPTH ⊖ (metres)	GROUND SURFACE (m asl)		153.59				_	40 0	30 1	20 1		10 20	30 40	
2	FILL: topsoil, silty sand, trace				SS-1	11								
	gravel, some roots, moist, compact.				SS-2	14	-							50mm blank PVC
			213/		SS-3	13								→ + - 5(
8 <u></u> 10 <u></u> 3	GREY SILT TILL: some clay/sand, trace of gravel, stains, moist,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.13/ 151.46		SS-4	28	3							tted Pipe
	compact to dense.	, 4 4 2 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5	3.66/ 149.93		SS-5	30)							
	REDDISH BROWN SILT TILL: some clay/sand, trace of gravel, occasional pieces of shale, dry to moist, very dense.	,			SS-6	75	5							4.57m
18	5	, 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4	6.40/ 147.19		SS-7	100-								
22 —	RED WEATHERED SHALE: moist to dry, hard. End of Borehole		6.71/ 146.88											
	Refusal to augering at 6.71m.													
28														
30 - 9														
32	Q													
	Groundwater Depth: on complet	ion: d	dry; d	on Nov.	30, 20)21:		on l AWN:		15, 2	021:		CW	CHECKED: RC

		FISH ENGINEER		R). <u> </u>	Sheet.	1 of 2
		DJECT NAME: Phase II ESA Hydrogeologi	4, Ge	eote	chnical	&								treet W., C)akville, Ontario
	DRI	LLING METHOD: CME-75, S	Solid	Ste	m		[DRIL	ling	DA	TE:	Nov	ember 2	26, 2021	_
		SOIL PROFILE	5		SA	MPLES	1.1			n testi 1,0 e		РТ) 🔺 30		READING (ppm) 🗆 0 60 80	
⊖ (feet) 	(metres)	DESCRIPTION	STRATA PLOI	ELEV. DEPTH (m)	LAB ID:	TYPE NUMBER	"N" VALUE	Sł	IEAR S	TRENGT	Н (Кра	ı) 🔹	MOISTURE	CONTENT (%) 😑	PIEZOMETER OR WELL CONSTRUCTION
⊖ (feet)	0 (m	GROUND SURFACE (m asl)		154.50		SS-1	10								
2	1	sand & gravel with silt and roots, brown, moist, compact.				SS-2	14								CLORDE
	 2			1.98/ 152.52		SS-3	16								Elush Mount Cover
8 -		GREY SILT TILL: some clay/sand, trace of				SS-4	18								
	3 3 	gravel, stains, moist, compact to very dense.		3.66/ 150.84		SS-5	55								- 50mm blank PVC
12 14 16	4	REDDISH BROWN SILT TILL: some clay/sand, trace of gravel, occasional pieces of shale, dry to moist, very				SS-6	63								
	5	shale, dry to moist, very dense.													
20				6.40/ 148.10		SS-7	100+								
	8	REDDISH BROWN WEATHERED SHALE: dry, hard.													
32 —	_ 10	Groundwater Depth: on completi			on Nov	30.2	021.	2 54	<u> </u>		C 15	202	21. 2.16m		9.76m
			911. I	·/ u,	511 110 0.	50, Z	521.		AWN:	BL	J. IJ	, <u>2</u> 02	LOGGED:	CW	CHECKED: RC

	Γ	FISH	ER	l	_0G	OF	- B0	REH	OLE	NO.	BH4(MW)	SHEET	2 of 2
	PR	OJECT NAME: Phase II ESA	, Geote	chnical	&		: FE- .0CAT		-117 ⁻ 300			Stree	et W., Od	akville, Ontario
	DRI	ILLING METHOD: CME-75, S					RILLI	NG D.	ATE:	Nov	embe	r 22,	2021	
]		SOIL PROFILE			MPLES		PENETRATION TESTING (SPT)		VAPOUR READING (ppm) \Box					
- Ē	res) H	DESCRIPTION	STRATA PLOT HIGT HIGT (W)	LAB ID:	TYPE NUMBER	"N" value	20 SHEA 40		60 8 IGTH (Kpa 120 1		20 Mois ⁻ 10	TURE CON	60 80 TENT (%) 😑 30 40	 PIEZOMETER OR WELL CONSTRUCTION
(feet)	⊣ ∪EP IH (metres)	GROUND SURFACE (m asl)			<u> </u>		40						30 40	
2 — — 4 — —		REDDISH BROWN WEATHERED SHALE: dry, hard.												
6 8 0		2			RC-8	Rec	= 1.52 = 1.51r = 99% = 89%	n						
2 — 4 —		3			RC-9	Rec	= 1.52 = 1.47 = 97% = 93%	n						
		End of Borehole	13.72/ 140.78											
		⁵ Rock coring to 13.72m.												
		6												
 		3												
		3												
	1	Groundwater Depth: on comple	tion: n/a;	on No	v. 30,	202	1: 2.5 DRAW	5m; o /N: F	<u>on Dec.</u> BL	<u>15, 2</u>		<u>2.16m</u> ED: CV	V	CHECKED: RC

	DJECT NAME: Phase II ESA Hydrogeologi	A, Geo	otec	chnical	JECT &	NO.	BORE : FE-P	21–11	713/1	4/15) SHEET treet W., Oo	<u>2 of 2</u> akville, Ontario
DRI	LLING METHOD: CME-75, S	Solid S	Ster	n			RILLING	DATE:	Νον	vember 2	23, 2021	
	SOIL PROFILE			SA	MPLES		PENETRATION				READING (ppm)	
)EPTH (metres)	DESCRIPTION	STRATA PLOT	LEV. EPTH (m)	LAB ID:	TYPE NUMBER	"N" VALUE		<u>0 6</u> 0 IRENGTH (K 10 120	(pa) 🖶	MOISTURE	0 60 80 CONTENT (%) 😑	 PIEZOMETER OR WELL CONSTRUCTION
11 1 1 1 1 1 DEPTH 01 (metres)	GROUND SURFACE (m asl) REDDISH BROWN WEATHERED SHALE: moist to dry, hard.				RC-6	Rec	= 1.52m = 1.49m = 98% = 90%					
					RC-7	Rec	= 1.52m = 1.5m = 99% = 99%					PVC
					RC-8	Rec	= 1.52m = 1.47m = 97% = 93%					Commission PVC
					RC-9	Rec	= 1.52m = 1.49m = 98% = 84%					
					RC-10	Rec	= 1.52m = 1.38m = 91% = 86%					50mm Slotted Pipe
			3.29 <i>/</i> 56.23		RC-11	Rec	= 1.52m = 1.42m = 93% = 88%					
	End of Borehole											7.93m

	ROJECT NAME: Phase II ESA Hydrogeolog RILLING METHOD: CME-75, S	A, Gec ical In	G PR(otechnico vestigati	DJECT I al &		F BOREHOLE NO : FE-P 21-11713/1 LOCATION: 3005 DO DRILLING DATE: Nov	4/15 undas Street W., Oc	
B B CROUND SURFACE (m est) masse FIL: Ground sum (sit/sity sand, trace of clay, growth, moist. SS-1 8 REDDISH BROWN SILT TILL: SS-3 SS-4 SS-3 SS-1 SS-3 SS-4 SS-4 G -2 -4 -4 -4 G -3 -4 -4 -4 G -4 -4 -4 -4	DESCRIPTION	TRATA PLOT	EV. Ö PTH BE		"N" VALUE	20 40 60 80 Shear strength (Kpg) 🜩	20 40 60 80 MOISTURE CONTENT (%) 🔵	- PIEZOMETER OR WELL CONSTRUCTION
REDDISH BROWN WEATHERED SHALE: dry, hard.	FILL: dark brown sandy silt/silty	15			8			
REDDISH BROWN WEATHERED SHALE: dry, hard.	asphalt, roots & topsoil,			SS-2	28			nk PVC
REDDISH BROWN WEATHERED SHALE: dry, hard.	some clay/sand, trace of			SS-3	57			50mm blank P ¹ CLCLCLCLC CLCLCLCLC CLCLCLCLC COM
REDDISH BROWN WEATHERED SHALE: dry, hard.	very dense.	,						
$\begin{array}{c} \hline \\ \hline $	1		88/ 9.02					
End of Borehole Refusal to augering at 6.71m.	REDDISH BROWN WEATHERED SHALE:							- 50mm Slotted P
Refusal to augering at 6.71m.		6. 14	.71/ .7.19	SS-7 1	00+			
	Refusal to augering at 6.71m.							6.71m

Phase II ESA Hydrogeologi LLING METHOD: CME-75, S SOIL PROFILE DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.	SIRATA PLOT	Inves	stigatic m sa	2 ng Ityee Number		PENETRATIO 20 SHEAR S	DATE: n testing (sp 40 60 8 strength (kpc		ber 23, /apour readin	2021 NG (ppm) □ 60 80	kville, Ontar PIEZOMETER WELL CONSTRU	OR
SOIL PROFILE DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.	STRATA PLOT	ELEV. DEPTH (m)	SA	TYPE NUMBER		PENETRATIO 20 SHEAR S	N TESTING (SF 40 60 8 STRENGTH (Kpc	2T) 🔺 🕚	/apour readin 20 40	NG (ppm) 🗆 60 80		
DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		(m)		TYPE NUMBER	"N" VALUE	20 Shear s	4 <u>0 60 8</u> STRENGTH (Kpc	30	20 40	60 80		
GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		(m)	LAB ID:		"N" VALUE	SHEAR S	TRENGTH (Kpc					
FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		154.37		CC 1			80 120 1	60		30 40		
trace of clay/gravel, occasional pieces of asphalt/metal, moist.				SS-1	7	•						+
REDDISH BROWN SHIT THE				SS-2	28							ts
REDDISH BROWN SILT TILL.		1.60/ 152.77		SS-3	32				● 14%		- 50mm blank PVC	Bentonite Pellets - Concrete
some clay/sand, trace of gravel, moist, dense to very	A A A A A A A A A A A A			SS-4	100+							B
dense.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SS-5	100+				• 12%			
	A 4 4 4 4 4 4 4 4 4 4 4 4 4 7 4 4			SS-6	100+				6%		50mm Slotted Pipe —	Silica Sand
REDDISH BROWN WEATHERED		5.94/ 148.43										Sil
SHALE: dry, hard. End of Borehole		6.71/ 147.66		SS-7	100+						6.71m	
Refusal to augering at 6.71m.												
Groundwater Depth: on completi			n Nov	30.00	121.	1.67m		2021. 5	25m			

APPENDIX C – MOISTURE CONTENT AND GRAIN SIZE DISTRIBUTION ANALYSES

Fisher Engineering Ltd

Project No. 21-11713H April 1, 2022

Grain Size

FISHER ENVIRONMENTAL LABORATORI

FULL RANGE ANALYTICAL SERVICES • SOIL/WATER/AIR TESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED

400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718 www.fisherenvironmental.com

ASTM D6913-04

Grain Size F-28

Client:	ENIROX 3005 DUNDAS LP	F.E. Job #:	21-7631A
Address:	101 Railside Road	Project Name:	Geotechnical Hydrogeological
	Toronto, ON		Phase 2 ESA
	M3A 1B2	Project ID:	FE-P 21-11714/21-11713
Tel.:	416-661-6900	Date Sampled:	29-Nov-2021
Email:		Date Received:	30-Nov-2021
Attn.:	Arash Kamali	Date Reported:	7-Dec-2021
		Location:	3005 Dundas Street West

Analyses	Matrix	Quantity	Date Extracted	Date Analyzed	Lab SOP	Method Reference
рН	Soil	3	30-Nov-21	1-Dec-21	pH-EC-SAR F-16	SW-846, 9045D
Chloride	Soil	4	N/A	3-Dec-21	Chloride F-20	SM 4500-Cl-E
Sulphate	Soil	4	2-Dec-21	3-Dec-21	Sulphate F-21	SM 4500-SO ₄
Moisture Content	Soil	11	N/A	1-Dec-21	Support Procedures F-99	Carter (1993)

4

Soil

Certificate of Analysis

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.

N/A

3-Dec-21

EMICALPA SSOCIATION DE > CHARTERED Ronggen (Roger) Lin Authorized by: CHEMIST Roger Lin, Ph. D., C. Chem. Laboratory Manager

Analysis Requested:	pH, Sulphate, C	pH, Sulphate, Chloride, Moisture Content, Grain Size									
Sample Description:	11 Soil Sample(1 Soil Sample(s)									
	21-7631-4	21-7631-9	21-7631-11								
Parameter	BH1	BH8	BH5			Soil Standards *					
	7.55-8.05m	3.00-3.45m	3.00-3.45m								
pH (pH unit)	8.45	8.45 8.16 7.94 (5-11) 5-9									

* Surface soil pH value from 5 - 9, Sub-surface soil pH value from 5-11.

QA/QC Report

Parameter	LCS	AR	Duplicate	AR	
		Absol	ute Difference (pl	H Unit)	
pH (pH unit)	7.16	6.90-7.20	0.02	<0.3	

LEGEND:

LCS - Laboratory Control Sample

AR - Acceptable Range

Analysis Requested:	pH, Sulphate, C	hloride, Moisture (Content, Grain Size								
Sample Description:	11 Soil Sample(11 Soil Sample(s)									
	21-7631-2	21-7631-6	21-7631-10	21-7631-11							
Parameter	BH1	BH6	BH8	BH5							
Parameter	2.25-2.70m	3.00-3.45m	4.55-5.00m	3.00-3.45m							
		Concentration (µg/g)									
Chloride in Soil	22.1	22.1 20.2 18.2 50.8									

< result obtained was below RL (Reporting Limit).

QA/QC Report

Parameter	Blank	RL	LCS	AR	MS AR		
	(μο	ı/g)	Recov	ery (%)	Recovery (%)		
Chloride in Soil	<10	10	97	70-130	87	70-130	

Parameter	Duplicate	AR		
Faranielei	RPD) (%)		
Chloride in Soil	0.0	0-20		

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

AR - Acceptable Range

RPD - Relative Percent Difference

Analysis Requested:	pH, Sulphate, C	hloride, Moisture (Content, Grain Size								
Sample Description:	11 Soil Sample(1 Soil Sample(s)									
	21-7631-2	21-7631-6	21-7631-10	21-7631-11							
Parameter	BH1	BH6	BH8	BH5							
2.25-2.70m 3.00-3.45m 4.55-5.00m 3.00-3.45m											
Sulphate (mg/kg)	52.7	87.4	118.3	84.6							

QA/QC Report

Parameter Sulphate	Blank	RL	LCS/Spike	AR	Duplicate	AR
	(mg	/kg)	Recov	ery (%)	RPD (%)	
Sulphate	<1	1	107	70-130	5	0-30

LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

RPD - Relative Percent Difference

Analysis Requested:	pH, Sulphate, C	hloride, Moisture (Content, Grain Size								
Sample Description:	11 Soil Sample(s)									
	21-7631-1	21-7631-2	21-7631-3	21-7631-4	21-7631-5	21-7631-6					
Parameter	BH1	BH1	BH1	BH1	BH6	BH6					
	1.50-1.95m	2.25-2.70m	70m 4.55-5.00m 7.55-8.05m 1.50-1.		1.50-1.95m	3.00-3.45m					
Geo Moisture Content (%)	17	12	12	9	13	11					
	21-7631-7	21-7631-8	21-7631-9	21-7631-10 21-7631-11							
Parameter	BH6	BH8	BH8	BH8	BH5						
	4.55-5.00m	1.50-1.95m	3.00-3.45m	4.55-5.00m	3.00-3.45m						
Geo Moisture Content (%)	9	14	12	6	13						

QA/QC Report

Blank RL LCS AR Blank Recovery (%) <0.1 0.1 100 70-130	AR	Duplicate	AR				
			Recov	ery (%)	RPD (%)		
Geo Moisture Content (%)	<0.1	0.1	100	70-130	5.3	0-20	

LEGEND:

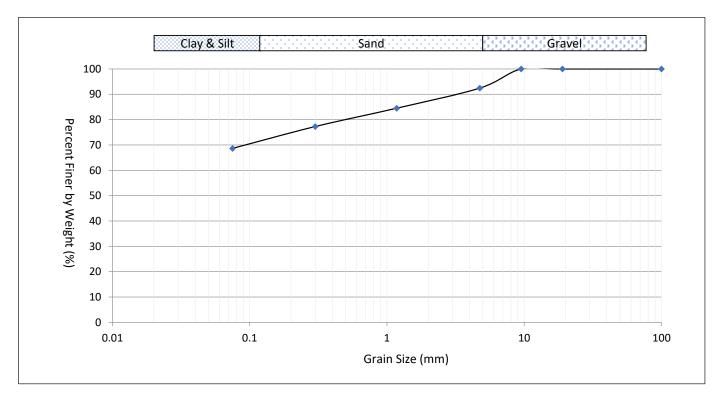
RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

RPD - Relative Percent Difference

Analysis Requested:	pH, Sulphate, C	hloride, Moisture (Content, Grain Size			
Sample Description:	11 Soil Sample(s)				
r					I	
	21-7631-1	21-7631-3	21-7631-7	21-7631-9		
Parameter	BH1	BH1	BH6	BH8		
	1.50-1.95m	4.55-5.00m	4.55-5.00m	3.00-3.45m		
Grain Size (%)						
>19mm	0.0	0.0	0.0	0.0		
9.5mm-19mm	0.0	1.9	0.0	0.0		
4.75mm-9.5mm	7.5	0.8	0.8	3.3		
1.18m-4.75mmm	7.9	3.5	8.3	7.8		
300um-1.18mm	7.3	3.7	5.4	9.3		
75um-300um	8.6	14.4	12.7	11.2		
<75um	68.7	75.7	72.9	68.5		
Clay & Silt	69	76	73	68		
Sand	24	22	26	28		
Gravel	8	3	1	3		

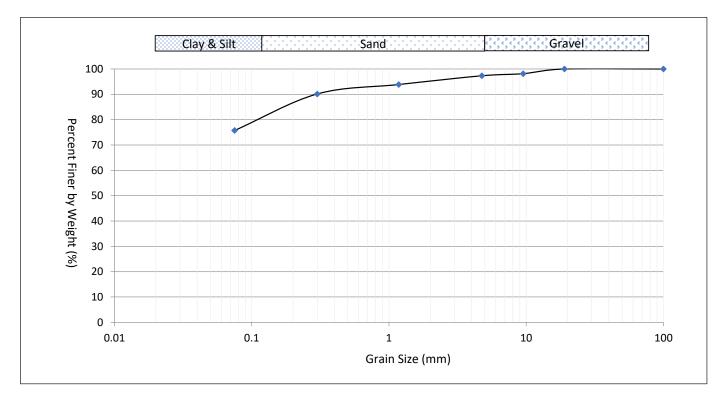

Sample ID: 21-7631-1 BH1 1

1.50-1.95m

Clay & Silt: 69%

Sand: 24%

Gravel: 8%

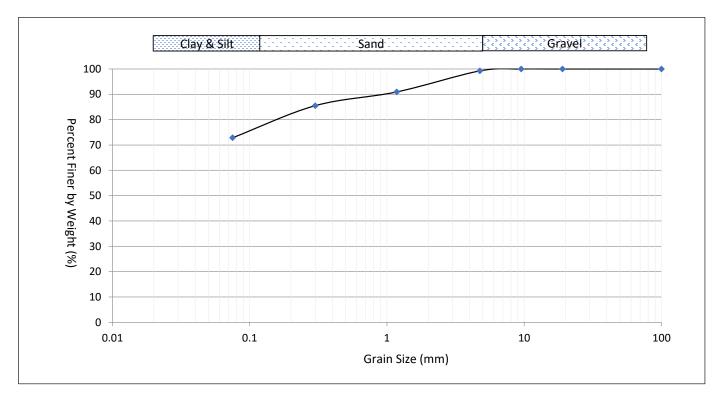

Sample ID: 21-7631-3 BH1

4.55-5.00m

Clay & Silt: 76%

Sand: 22%

Gravel: 3%

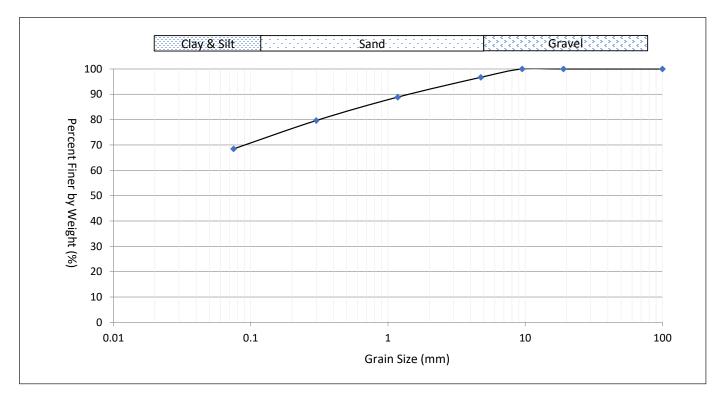

Sample ID: 21-7631-7 BH6

4.55-5.00m

Clay & Silt: 73%

Sand: 26%

Gravel: 1%


Sample ID: 21-7631-9 BH8

3.00-3.45m

Clay & Silt: 68%

Sand: 28%

Gravel: 3%

FISHER ENVIRONMENTAL LABORATORIES

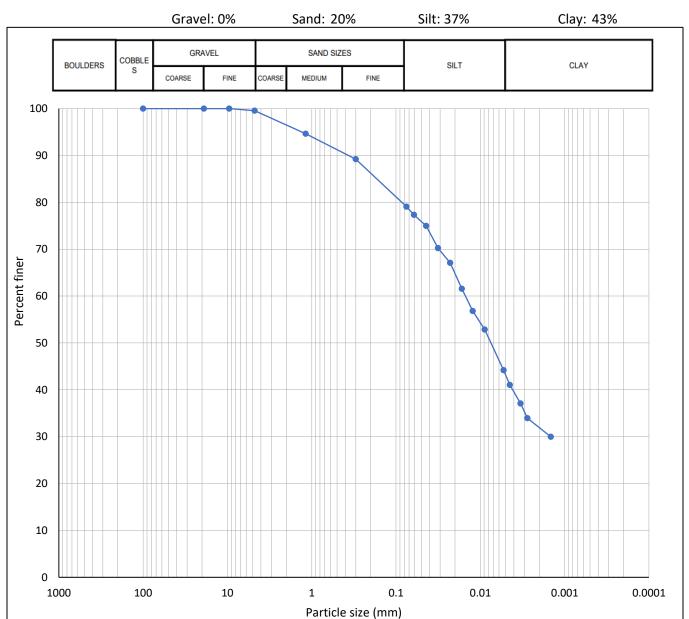
FULL RANGE ANALYTICALSERVICES • SOIL/WATER/AIR TESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED 400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718 www.fisherenvironmental.com

Client: ENIROX 3005 DUNDAS LP Address: 101 Railside Road Toronto, ON M3A 1B2 Tel.: 416-661-6900 Email: Attn.: Arash Kamali F.E. Job #: 21-7631B
Project Name: Geotechnical Hydrogeological Phase 2 ESA
Project ID: FE-P 21-11714/21-11713
Date Sampled: 29-Nov-2021
Date Received: 30-Nov-2021
Date Reported: 7-Dec-2021
Location: 3005 Dundas Street West

Certificate of Analysis

Analyses	Matrix	Quantity	Date Extracted	Date Analyzed	Lab SOP	Method Reference
Hydrometer	Soil	2	N/A	7-Dec-21	Hydrometer SOP	ASTM D7928-17

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.


EMICALD CHARTERE NO Ronggen (Roger) Lin Authorized by CHEMIS Roger Lin, Ph. D., C. Chem. Laboratory Manager

Analysis Requested:	Hydrometer
Sample Description:	2 Soil Sample(s)

Parameter	21-7631-6	21-7631-10		
	BH6	BH8		
	3.00-3.45m	4.55-5.00m		
Grain Size (%)				
>19mm	0.0	0.0		
9.5mm-19mm	0.0	0.0		
4.75mm-9.5mm	0.4	5.1		
1.18mm-4.75mm	4.9	9.5		
300um-1.18mm	5.4	7.5		
75um-300um	10.1	9.8		
5um-75um	37	43		
2um-5um	11	9		
<2um	32	16		
Clay	43	25		
Silt	37	43		
Sand	20	27		
Gravel	0	5		

Client: ENIROX 3005 DUNDAS LP

F.E. Job #: 21-7631B

Grain Size Distribution

Sample ID: 21-7631-6 BH6 3.00-3.45m

Sample	e ID: 21-7631-6 B	3H6 3.00-3.45m
Diameter	Weight (%)	Grain Size
>4.75mm	0.4	Gravel
1.18mm-4.75mm	4.9	Coarse Sand
300um-1.18mm	5.4	Medium Sand
75um-300um	10.1	Fine Sand
5um-75um	37	Silt
2um-5um	11	Clay
<2um	32	Clay

Client: ENIROX 3005 DUNDAS LP

F.E. Job #: 21-7631B

Sample ID: 21-7631-10 BH8 4.55-5.00m Clay: 25% Gravel: 5% Sand: 27% Silt: 43% GRAVEL SAND SIZES COBBLE BOULDERS SILT CLAY S COARSE FINE COARSE MEDIUM FINE 100 90 80 70 Percent finer 60 50 40 30 20 10 0.01 0.001 0.0001

Grain Size Distribution

0							
1000 10	0 10	I	1		0.1		
			Particle	size	(mm)		
Sample	ID: 21-7631-10	BH8 4.55	-5.00m				
Diameter	Weight (%)		ze				
>4.75mm	5.1	Gravel					
1.18mm-4.75mm	9.5		Coarse Sand				
300um-1.18mm	7.5		Medium S				
75um-300um	9.8						
5um-75um	43		Silt				
2um-5um	9		CI				
<2um	16	Clay					

Temp(K/C)	Soil Wei		Water g/ı			G(solid)	Specific (-						
297	52	2	0.9973297	795 0.0091	20211	2.5 F			FSW	FW S			DS G	
24							122.804	138.649	335.394	324.193	15.845	1	15.845	2.5
Time F	Reading	Comp Correc	tion Cor	rrected Reading	Hm (cm)	Particle size (μm)	Percen	t Finer	% finer	whole			
30	51.5		4		10.03665		5723654	97.	78012821	77.3	82452538			
60	49.5		3.5	46	10.28819	43.78	324231	94.	78685897	74.9	95744808			
120	46.5		3.5	43	10.79127	31.70	0732833	88.	80032051	70.2	2329346			
240	44.5		3.5	41	11.12665	22.76	620684	84.	80929487	67.0	6719038			
480	41		3.5	37.5	11.71358	16.51	L726584		77.825		61.54401			
900	38		3.5	34.5	12.21665	12.3	8188138	71.	83846154	56.8	80985538			
1800	35		3	32	12.63588	8.858	3916026	66.	.84967949	52.8	36472654			
5400	29.5		3		13.55819		3074097	55.	87435897	44.3	18544308			
7800	27.5		3	24.5	13.89358	4.462	2453945	51.	.88333333		41.02934			
14400	25		3	22	14.31281	3.333	3459522	46.	89455128	37.0	08421115			
21600	23		3	20	14.64819	2.75	5346243	42.	90352564	33.9	2810808			
79200	20.5		3		15.06742		3380723		91474359		8297923			
			3		18.50511			-2.9	93269231	-2.36	57077308			
			3	-3	18.50511	#DIV/0!		-2.9	93269231	-2.36	57077308			
									100		100			
				21-763	31-6				19		100			
					10				9.5		100			
		•	•••	100					4.75		99.56			
				90					1.18		94.62			
				80					0.3		89.21			
				80					0.075		79.08			
				70	`				0.061157	77.3245		"corrected	" for sieve data	a
	Je			60					0.043783	74.9574	74.9574			
	Percent finer					- -			0.031707	70.2233	70.2233			
	Cer			50					0.022766	67.0672	67.0672			
	Per			40					0.016517	61.5440	61.5440			
				30					0.012319	56.8099	56.8099			
									0.008859	52.8647	52.8647			
				20					0.005298	44.1854	44.1854			
				10					0.004462	41.0293	41.0293			
				0					0.003333	37.0842	37.0842			
	1000	100	10	1	0.1	0.01 0	0.001	0.0001	0.002753	33.9281	33.9281			
	1000	100	10	Particle size		0.01		0.0001	0.001458	29.9830	29.9830			
					()				#DIV/0!	-2.3671	-2.3671			
									#DIV/0!	-2.3671	-2.3671			

emp(K/C)			Water	-	ity (poise)	G(solid)	Specific							
297			0.9973	29795 0.00	9120211	3				FW S		DW	DS G	j
24							122.804	138.649	335.394	324.193	15.845	1	15.845	
me	Reading	Comp Correct	tion	Corrected Reading	Hm (cm)	Particle size	e (μm)	Percer	t Finer	% finer v	vhole			
30	47		4	4	3 10.7912	7 54	.91870365	88	8.42244681	59	.9238922			
60	43		3.5	39.	5 11.3781	9 39	.87545497	81	46787234	55.2	21077709			
120	39.5		3.5	3	6 11.9651	1 28	8.91428551	74	.51329787	50.4	49766197			
240	35.5		3.5	3	2 12.6358	8 21	.01076418	66	5.56521277	45.	11124469			
570	30.5		3.5	2	7 13.4743	5 14	.07865177	56	6.63010638	38	.3782231			
900	28		3.5	24.	5 13.8935	8 11	37706987	51	66255319	35	.0117123			
1800	25		3	2	2 14.3128	1 8.1	165274907		46.695	31	.6452015			
3600	21		3	1	8 14.9835	8 5.9	907464857	38	8.74691489	26.	25878422			
7200	18		3	1	5 15.4866	5 4.2	246754876	32	.78585106	22.	21897127			
14400	15.5		3	12.	5 15.9058	8 3.0	043282824	27	.81829787	18.	85246047			
19188	14.5		3	11.	5 16.0735	8 2.6	650245213	2	5.8312766	17.	50585615			
79200	12		3		9 16.4928	1 1.3	321384945	2	0.8637234	14.:	13934535			
			3	-	3 18.5051	1 #DIV/0	0!	-2.	980531915	-2.0	19906479			
			3	-	3 18.5051	1 #DIV/0	0!	-2.	980531915	-2.0	19906479			
									100		100			
				21-76	31-10				19		100			
					51 10				9.5		100			
		•		100					4.75		94.92			
				90					1.18		85.43			
									0.3		77.58			
				80					0.075		67.77			
				70					0.054919	59.9239			for sieve dat	ta
	e			60					0.039875	55.2108	59.7108			
	tfin								0.028914	50.4977	54.4977			
	Percent finer			50		•			0.021011	45.1112	48.6112			
	Per			40		<u> </u>			0.014079	38.3782	41.3782			
				20					0.011377	35.0117	37.5117			
				30					0.008165	31.6452	33.6452			
				20					0.005907	26.2588	27.7588			
				10			~		0.004247	22.2190	23.2190			
				10					0.003043	18.8525	19.3525			
	4000	400		0	0.1	0.01	0.001	0.0004	0.00265	17.5059	17.5059			
	1000	100	1	.0 1	0.1	0.01	0.001	0.0001	0.001321	14.1393	14.1393			
				Particle si	ze (mm)				#DIV/0!	-2.0199	-2.0199			
									#DIV/0!	-2.0199	-2.0199			

	FISHER EN FULL RANGE ANAL MOBILE LABORATO	YTICAL SERVICE	S • COM	IPLIANCE I	PACKA	GES						<u>1</u>	v	MARK	(HAM, TEL FAX	ARK DRIVE #15 , ONT. L3R 3K2 .: 905-475-7755 (: 905-475-7718 <u>ironmental.com</u> <u>ironmental.com</u>
LAB JOB #: 763) CHAIN OF CUSTODY 2588							Pa	ige_	of							
CLIENT INF	ORMATION		IDDO IEC	TINCODA	TION						ananta - mangada	BIL	ING	L NFOR	MAT	
Company Na	me:		Project N	ame: Geoto	admio	all	type	og &	. An	ase.	2 ESA	Purch	ase Or	der #:		
Contact: Address: 3	005 Dundous St W abajille	lest	Project ID): ZI-I By:-CAW										rization	:	
00	advine		Provide state of the second state of the secon	ROUND TIM	E (TAT)	REQ	JIRE	2		Clarken and Carlor State		Credit	Card (type):		
Phone:		-	STD - Stand	dard (5-7 working	days)						ng Time:					
Fax: Email:		Fax results? Y/N Email results?(Y/N	SR - Semi F R - Rush (2	Rush (48 hours)	50% 75%		receive	d after 2		0.0	ay-Friday 0am-	Credit Card #:				
			SD - Same		100%	be cons		eceived	the next	1	0	Expiry	Date:			
LAB	CLIENT'S SAMPLE ID			CONTAINER			ANA	LYSIS	REQ	UEST	ED (Che	ck or S	specify)		NOTES
SAMPLE ID	AND DESCRIPTION	DATE/TIME	9		(Above)	Metals	PHCs	VOQs	PALIS	PCBs	Asbestos	95	m	Hydr	þ	
1	BH1 5-642	Nov 29/2014	Doil	Bay								V	~			
2	175-9	u		V V				~	~				1			
3	1 15-161/2	4	bí	U								V	1			
4	, 25-261h	11	<u> </u>	K			V						1			
5	BH6 =- 61h	tr	<u>ti</u>	4									1			
6	10-11/2	6/		((~	1				1	V		
7	15-16h	u	И	9								V	1			
	BH3 5-61k	li	11	(r									1			
9	10 - 11/k	11	IT.	۲ſ			1					1	(
io	15-16th	11	V	4				~	1				(\checkmark		
11	BHS 10-11/2	10	4	1(1	1	1				1			
						_	X									
Relinquished by: (Signature & Print)			iments:			and the second				Re	gulato	ry Re	quire	ments	;	
CLIVE 4									. 153					Sewer	' Use	
Date & Time: NW 29 291 Method of Shipment: by hand								Table						□ Sani	-	
Received by: (Signature & Print) Arrival Tempe			erature (°	(C)·						al / Park / Comm				Stor Region		
Nich	les Nadult.	i intra romp		<i>cµ</i> .					ricultur					. logion		
Date & Time:	Nov 30, 2021 4pm	Laboratory R	emarks:					Soil	Texture					Reg. 5		
Devision: 2.2	, , , , , , , , , , , , , , , , , , , ,								barse	□ Med/	Ine			D TCLI	<u>с</u>	

Revision: 2.2

.

APPENDIX D – SEWER BYLAW RESULTS

Fisher Engineering Ltd

Project No. 21-11713H April 1, 2022

FISHER ENVIRONMENTAL ATTN: Clive Wiggan 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Date Received: 02-DEC-21 Report Date: 09-DEC-21 14:52 (MT) Version: FINAL

Client Phone: 905-475-7755

Certificate of Analysis

Lab Work Order #: L2668669

Project P.O. #: Job Reference: NOT SUBMITTED 3005 DUNDAS ST. WEST OAKVILLE HALTON REGION SEWER DISCHARGE

C of C Numbers: Legal Site Desc: 20-893216

lyHarser

Emily Hahsen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔪

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Halt	ton Santitary Sewer	By-law No. 02-03 (MAR, 2003) - Halt	on Sanitary Sewer By-Law No. 02-03	3		
(No pa	rameter exceedances)					
Ontario Halt	ton Santitary Sewer	By-law No. 02-03 (MAR, 2003) - Halt	on Storm Sewer By-Law No, 02-03			
(No pa	rameter exceedances)					

Physical Tests - WATER

	Lab ID L2668669-1 Sample Date 01-DEC-21 Sample ID MW6(UNFILTE RED)
Analyte	Guide Limits Unit #1 #2
рН	pH units 6.00- 6.5-8.5 7.48 10.0
Total Suspended Solids	mg/L 350 - 44.5

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Anions and Nutrients - WATER

		L	.ab ID	L2668669-1
		Sample	Date	01-DEC-21
		Sam	ple ID	MW6(UNFILTE RED)
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	mg/L	10	-	0.30 DLDS
Total Kjeldahl Nitrogen	mg/L	100	-	1.11
Phosphorus, Total	mg/L	10.0	-	0.0195
Sulfate (SO4)	mg/L	1500	-	464 DLDS

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Cyanides - WATER

		Sampl		L2668669-1 01-DEC-21 MW6(UNFILTE RED)
Analyta	Unit	Guide #1	Limits #2	i
Analyte Cyanide, Total	mg/L	2	-	<0.0020

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03 Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Bacteriological Tests - WATER

	Lab ID L2668669-1 Sample Date 01-DEC-21 Sample ID MW6(UNFILTE
	RED)
Analyte	Unit #1 #2
E. Coli	CFU/100m - 200 0 L

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Total Metals - WATER

		Sample		L2668669-1 01-DEC-21 MW6(UNFILTE RED)
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	-	0.775 DLHC
Antimony (Sb)-Total	mg/L	5	-	<0.0010
Arsenic (As)-Total	mg/L	1	-	0.0046 ^{DLHC}
Beryllium (Be)-Total	mg/L	5	-	<0.0010
Cadmium (Cd)-Total	mg/L	1	-	0.000228
Chromium (Cr)-Total	mg/L	3	-	< 0.0050 DLHC
Cobalt (Co)-Total	mg/L	5	-	0.0014 ^{DLHC}
Copper (Cu)-Total	mg/L	3	-	< 0.0050 DLHC
Iron (Fe)-Total	mg/L	50	-	1.17 DLHC
Lead (Pb)-Total	mg/L	3	-	< 0.00050
Manganese (Mn)-Total	mg/L	5	-	0.190 DLHC
Mercury (Hg)-Total	mg/L	0.05	-	<0.0000050
Molybdenum (Mo)-Total	mg/L	5	-	0.00450 ^{DLHC}
Nickel (Ni)-Total	mg/L	3	-	< 0.0050 DLHC
Selenium (Se)-Total	mg/L	5	-	<0.00050
Silver (Ag)-Total	mg/L	5	-	< 0.00050
Tin (Sn)-Total	mg/L	5	-	<0.0010 ^{DLHC}
Titanium (Ti)-Total	mg/L	5	-	0.0101 ^{DLHC}
Zinc (Zn)-Total	mg/L	3	-	<0.030 ^{DLHC}

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Aggregate Organics - WATER

			L	ab ID	L2668669-1
			Sample	Date	01-DEC-21
			Sam	ole ID	MW6(UNFILTE
					RED)
			Guide L	imits	
Analyte	ı	Jnit	#1	#2	
BOD Carbonaceous		mg/L	300	-	<3.0 BODL
Oil and Grease, Total		mg/L	-	-	<5.0
Animal/Veg Oil & Grease		mg/L	150	-	<5.0
Mineral Oil and Grease		mg/L	15	-	<2.5
Phenols (4AAP)		mg/L	1.0	-	<0.0010

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Volatile Organic Compounds - WATER

		l	_ab ID	L2668669-1
		Sample	e Date	01-DEC-21
		Sam	ple ID	MW6(UNFILTE RED)
Analyte	Unit	Guide #1	Limits #2	
Benzene	ug/L	10	-	<0.50 ^{OWP}
Chloroform	ug/L	40	-	<1.0 OWP
1,4-Dichlorobenzene	ug/L	80	-	<0.50 ^{OWP}
Dichloromethane	ug/L	2000	-	<2.0 OWP
Ethylbenzene	ug/L	160	-	<0.50 ^{OWP}
Tetrachloroethylene	ug/L	1000	-	<0.50 ^{OWP}
Toluene	ug/L	16	-	<0.50 ^{OWP}
Trichloroethylene	ug/L	400	-	<0.50 ^{OWP}
Surrogate: 4-Bromofluorobenzene	%	-	-	98.0
Surrogate: 1,4-Difluorobenzene	%	-	-	100.2

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Polycyclic Aromatic Hydrocarbons - WATER

	Selle 117			
		I	_ab ID	L2668669-1
		Sample	e Date	01-DEC-21
		Sam	ple ID	MW6(UNFILTE RED)
		Guide	Limits	
Analyte	Unit	#1	#2	
Naphthalene	ug/L	140	-	<0.020
Surrogate: d8-Naphthalene	%	-	-	89.8

Guide Limit #1: Halton Sanitary Sewer By-Law No. 02-03

Guide Limit #2: Halton Storm Sewer By-Law No, 02-03

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description			
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.			
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.			
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of			

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

S Test Code	Matrix	Test Description	Method Reference**
BOD-C-WT	Water	BOD Carbonaceous	APHA 5210 B (CBOD)
and incubating a sam	ple for a specifie	d time period, and measuring the oxygen	3 - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a dding a nitrification inhibitor to the diluted sample prior to incubation.
CN-TOT-WT	Water	Cyanide, Total	ISO 14403-2
		nbination of UV digestion and distillation. icotinic acid to form a highly colored com	Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a plex.
		f thiocyanate in samples can cause false nate to check for this potential interference	positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method,
EC-SCREEN-WT	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis o	f conductivity whe	ere required during preparation of other te	sts - e.g. TDS, metals, etc.
EC-WW-MF-WT	Water	E. Coli	SM 9222D
A 100 mL volume of s	sample is filtered	through a membrane, the membrane is p	aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are	analyzed by Ion (Chromatography with conductivity and/or l	JV detection.
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)
Water samples under	go a cold-oxidati	on using bromine monochloride prior to re	duction with stannous chloride, and analyzed by CVAAS.
MET-T-CCMS-WT	Water	Total Metals in Water by CRC ICPM	S EPA 200.2/6020A (mod)
Water samples are di	gested with nitric	and hydrochloric acids, and analyzed by	CRC ICPMS.
Method Limitation (re	: Sulfur): Sulfide	and volatile sulfur species may not be rec	overed by this method.
Analysis conducted ir	n accordance with	the Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
OGG-SPEC-CALC-W	T Water	Speciated Oil and Grease A/V Calc	CALCULATION
Sample is extracted v	vith hexane, sam	ple speciation into mineral and animal/veg	etable fractions is achieved via silica gel separation and is then determined gravimetrically.

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference**
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried ou	t using proc	edures adapted from APHA Method 4500	D-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PAH-NAPHTHALENE-WT	Water	Polyaromatic Hydrocarbons (PAHs)	SW846 8270
Sample is extracted at neu	utral pH usir	ng separate aliquots of dichloromethane v	with a modified separatory funnel technique, extracts are then concentrated and analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are analyz	ed directly b	by a calibrated pH meter.	
Analysis conducted in acc samples under this regula			ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method is u colorimetrically.	used to distil	I the sample. The distillate is then buffere	ed to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	/zed by Ion	Chromatography with conductivity and/or	UV detection.
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is filt	ered throug	h a weighed standard glass fibre filter and	d the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieve
TKN-F-WT	Water	TKN in Water by Fluorescence	J. ENVIRON. MONIT., 2005,7,37-42,RSC
Total Kjeldahl Nitrogen is	determined	using block digestion followed by Flow-in	jection analysis with fluorescence detection
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260
Aqueous samples are ana	alyzed by he	adspace-GC/MS.	
ALS test methods may incor	porate modi	fications from specified reference method	ds to improve performance.
Chain of Custody Numbers:			
20-893216			
The last two letters of the ab	ove test cod	le(s) indicate the laboratory that performe	ed analytical analysis for that test. Refer to the list below:
Laboratory Definition Code	Laborat	ory Location	
WT	ALS EN	VIRONMENTAL - WATERLOO, ONTAR	IO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

 $\ensuremath{\textit{mg/L}}\xspace$ - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			Quanty			•			
		Workorder:	L2668669		Report Date	e: 09-DE	C-21		Page 1 of 8
15-400 ES	SNA PARK DRIVE								
Clive Wig	gan								
	Matrix	Reference	Result	Qualifier	Units		RPD	Limit	Analyzed
	Water								
5669079									
DUP ceous		L2668227-2 <3.0	<3.0	RPD-NA	mg/L		N/A	30	02-DEC-21
LCS ceous			99.5		%			85-115	02-DEC-21
MB ceous			<2.0		mg/L			2	02-DEC-21
	Water								
5666016									
DUP		WG3669489-5							
		<0.010	<0.0020	RPD-NA	mg/L		N/A	20	03-DEC-21
LCS			94.1		%			80-120	03-DEC-21
MB			<0.0020		mg/L			0.002	03-DEC-21
MS		WG3669489-5	89.5		%			70-130	03-DEC-21
	Water								
5664712									
DUP		L2668879-6							
		0	0		CFU/100	DmL	0.0	65	03-DEC-21
DUP		L2668879-4 0	0		CFU/100	OmL	0.0	65	03-DEC-21
MB			0		CFU/100)mL		1	03-DEC-21
	Water								00 020 21
5665797									
DUP		WG3669665-8 0.057	0.057		mg/L		0.5	20	03-DEC-21
LCS									03-DEC-21
MB									03-DEC-21
) MS		WG3669665-8			-				03-DEC-21
	Water		57.0		70			10-120	03-DEC-21
	15-400 ES MARKHAI Clive Wigg 56669079 DUP ceous LCS 666016 DUP LCS MB MS 56664712 DUP DUP DUP MB 5665797 DUP LCS MB	FISHER ENVIRONMENTAL 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Clive Wiggan Matrix Water 5669079 DUP ceous LCS 000 LCS 000 MB 000 MB 000 Water 5666016 DUP LCS 000 Water 56664712 DUP DUP 000 MB Water 5665797 DUP LCS MB 000 MB 000 MB 000 000 000 0	FISHER ENVIRONMENTAL 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Clive Wiggan Matrix Reference Water 5669079 DUP L2668227-2 <3.0 LCS Ceous MB Ceous Water 5666016 DUP Water 5666016 DUP Water 56664712 DUP L2668879-4 0 MB Water 5664712 DUP L2668879-4 0 MB Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 DUP Water 5665797 MB Water 5665797 DUP Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB Water 5665797 CS MB	Workorder: L26686609 FISHER ENVIRONMENTAL 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Clive Wiggan Reference Result Matrix Reference Result Matrix Se69079 Jacobia DUP L2668227-2 -3.0 LCS -3.0 -3.0 LCS -3.0 -3.0 DUP L2668227-2 -3.0 MB -3.0 -3.0 DUP L2668279-5 -3.0 MB -3.0 -3.0	Fisher Environmental 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Cive Wiggan Reference Result Qualifier Matrix Reference Result Qualifier Water	Workorder: L2668669 Report Data FISHER ENVIRONMENTAL 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Clive Wiggan Matrix Reference Result Qualifier Units Water Seesors gas. Cualifier Units Seesors <3.0	Sister Environmental 15-400 ESNA PARK DRIVE MARKHAM ON L3R 3K2 Cive Wiggan Reference Result Qualifier Units Matrix Reference Sesons Sesons	Workborder: L2668669 Report Date: 09-DEC-21 FISHER ENVIRONMENTAL 15-400 ESNA PARK DRIVE MARKHAM ON LSR SK2 Cive Wiggan Matrix Reference Result Qualifier Units RPD Matrix Reference Result Qualifier Units RPD Water Second	Workorder: L26688669 Report Date: 09-DEC-21 FISHER ENVIRONMENTAL 15-00 ESNA PARK DRIVE MARKHAM ON L3R 3K2- Second Second RPD Linit Mark Reference Result Qualifier Units RPD Linit Water Seconds Seconds Seconds Seconds N/A 30 L265827-2 Sa.0 Sa.0 RPD-NA mg/L N/A 30 L25 Seconds Sec

			Workorder:	L2668669	F	Report Date:	09-DEC-21		Page 2 of 8
Client:	15-400 ES	NVIRONMENTAL SNA PARK DRIVE M ON L3R 3K2							
Contact:	Clive Wigg	gan							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT		Water							
Batch I WG3669374-3 Mercury (Hg)	_		L2662925-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	03-DEC-21
WG3669374-2 Mercury (Hg)				93.4		%		80-120	03-DEC-21
WG3669374-1 Mercury (Hg)				<0.0000050]	mg/L		0.000005	03-DEC-21
WG3669374-4			L2667794-1						
Mercury (Hg)	-Total			98.8		%		70-130	03-DEC-21
MET-T-CCMS-W	т	Water							
	R5660884								
WG3669146-4 Aluminum (Al			WG3669146-3 0.135	0.138		mg/L	2.3	20	02-DEC-21
Antimony (Sb			<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	02-DEC-21
Arsenic (As)-			<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	02-DEC-21
Beryllium (Be)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	02-DEC-21
Cadmium (Co	d)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	02-DEC-21
Chromium (C	r)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	02-DEC-21
Cobalt (Co)-T	otal		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	02-DEC-21
Copper (Cu)-	Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	02-DEC-21
Iron (Fe)-Tota	al		0.49	0.50		mg/L	1.9	20	02-DEC-21
Lead (Pb)-To	tal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	02-DEC-21
Manganese (Mn)-Total		0.0994	0.101		mg/L	1.8	20	02-DEC-21
Molybdenum	(Mo)-Total		0.00436	0.00442		mg/L	1.4	20	02-DEC-21
Nickel (Ni)-To	otal		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	02-DEC-21
Selenium (Se)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	02-DEC-21
Silver (Ag)-To	otal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	02-DEC-21
Tin (Sn)-Tota	I		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	02-DEC-21
Titanium (Ti)-	Total		0.0075	0.0078		mg/L	3.4	20	02-DEC-21
Zinc (Zn)-Tota	al		0.286	0.282		mg/L	1.4	20	02-DEC-21
WG3669146-2									
Aluminum (Al				103.1		%		80-120	02-DEC-21
Antimony (Sb				98.4		%		80-120	02-DEC-21
Arsenic (As)-				100.9		%		80-120	02-DEC-21
Beryllium (Be				99.9		%		80-120	02-DEC-21
Cadmium (Co	d)-Total			98.5		%		80-120	02-DEC-21

Report Date: 09-DEC-21

Page 3 of 8

02-DEC-21

70-130

Workorder: L2668669

Client:	FISHER ENVIRONME 15-400 ESNA PARK D MARKHAM ON L3R (RIVE						
Contact:	Clive Wiggan							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-	WT Water							
Batch	R5660884							
WG3669146 Chromium			101.0		%		80-120	02-DEC-21
Cobalt (Co))-Total		101.3		%		80-120	02-DEC-21
Copper (Cu	ı)-Total		98.0		%		80-120	02-DEC-21
Iron (Fe)-To	otal		98.4		%		80-120	02-DEC-21
Lead (Pb)-1	Total		100.4		%		80-120	02-DEC-21
Manganese	e (Mn)-Total		101.8		%		80-120	02-DEC-21
Molybdenu	m (Mo)-Total		100.7		%		80-120	02-DEC-21
Nickel (Ni)-	Total		100.5		%		80-120	02-DEC-21
Selenium (Se)-Total		96.5		%		80-120	02-DEC-21
Silver (Ag)-	Total		98.4		%		80-120	02-DEC-21
Tin (Sn)-To	otal		99.5		%		80-120	02-DEC-21
Titanium (T	ī)-Total		98.1		%		80-120	02-DEC-21
Zinc (Zn)-T	otal		96.5		%		80-120	02-DEC-21
WG3669146								
Aluminum (<0.0050		mg/L		0.005	02-DEC-21
Antimony (S			<0.00010		mg/L		0.0001	02-DEC-21
Arsenic (As			<0.00010		mg/L		0.0001	02-DEC-21
Beryllium (E			<0.00010		mg/L		0.0001	02-DEC-21
Cadmium (<0.00000	50	mg/L		0.000005	02-DEC-21
Chromium	. ,		<0.00050		mg/L		0.0005	02-DEC-21
Cobalt (Co)			<0.00010		mg/L		0.0001	02-DEC-21
Copper (Cu			<0.00050		mg/L		0.0005	02-DEC-21
Iron (Fe)-To			<0.010		mg/L		0.01	02-DEC-21
Lead (Pb)-1			<0.00005		mg/L		0.00005	02-DEC-21
Ŭ	e (Mn)-Total		<0.00050		mg/L		0.0005	02-DEC-21
-	m (Mo)-Total		<0.00005		mg/L		0.00005	02-DEC-21
Nickel (Ni)-			<0.00050		mg/L		0.0005	02-DEC-21
Selenium (S			<0.00005		mg/L		0.00005	02-DEC-21
Silver (Ag)-			<0.00005		mg/L		0.00005	02-DEC-21
Tin (Sn)-To			<0.00010		mg/L		0.0001	02-DEC-21
Titanium (T			<0.00030)	mg/L		0.0003	02-DEC-21
Zinc (Zn)-T	otal		<0.0030		mg/L		0.003	02-DEC-21
WG3669146		WG3669146-6	110 5		0/		70.400	

%

119.5

WG3669146-5 MS Aluminum (Al)-Total

						•			
			Workorder:	L266866	9	Report Date: 09-I	DEC-21		Page 4 of 8
Client:	15-400 ESM	NVIRONMENTA NA PARK DRIVI I ON L3R 3K2							
Contact:	Clive Wigg	an							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-W	/т	Water							
Batch	R5660884								
WG3669146- Antimony (SI			WG3669146-6	108.8		%		70-130	02-DEC-21
Arsenic (As)				111.7		%		70-130	02-DEC-21
Beryllium (Be				109.0		%		70-130	02-DEC-21
Cadmium (C				109.4		%		70-130	02-DEC-21
Chromium (0				106.9		%		70-130	02-DEC-21
Cobalt (Co)-				108.7		%		70-130	02-DEC-21
Copper (Cu)				108.0		%		70-130	02-DEC-21
Iron (Fe)-Tot				N/A	MS-B	%		-	02-DEC-21
Lead (Pb)-To				103.3		%		70-130	02-DEC-21
Manganese	(Mn)-Total			N/A	MS-B	%		-	02-DEC-21
Molybdenum	(Mo)-Total			112.0		%		70-130	02-DEC-21
Nickel (Ni)-T	otal			104.6		%		70-130	02-DEC-21
Selenium (Se	e)-Total			110.0		%		70-130	02-DEC-21
Silver (Ag)-T	otal			103.4		%		70-130	02-DEC-21
Tin (Sn)-Tota	al			108.2		%		70-130	02-DEC-21
Titanium (Ti)	-Total			108.6		%		70-130	02-DEC-21
Zinc (Zn)-To	tal			N/A	MS-B	%		-	02-DEC-21
OGG-SPEC-WT		Water							
Batch	R5663496								
WG3669056-				04.5		0/			
Oil and Grea				94.5		%		70-130	02-DEC-21
Mineral Oil a				90.4		%		70-130	02-DEC-21
WG3669056- Oil and Grea				<5.0		mg/L		5	02-DEC-21
Mineral Oil a	nd Grease			<2.5		mg/L		2.5	02-DEC-21
P-T-COL-WT		Water							
	R5666017								
WG3669192- Phosphorus,			L2668669-1 0.0195	0.0172		mg/L	13	20	06-DEC-21
WG3669192- Phosphorus,				98.5		%		80-120	06-DEC-21
WG3669192- Phosphorus,				<0.0030		mg/L		0.003	06-DEC-21
WG3669192- Phosphorus,			L2668669-1	98.5		%		70-130	06-DEC-21

				Quant		orreport				
			Workorder:	L2668669)	Report Date: 09-D	EC-21		Page 5 of 8	
Olient.	15-400 ES	ENVIRONMENTAL SNA PARK DRIVE M ON L3R 3K2								
Contact:	Clive Wig	gan								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-NAPHTHAL	ENE-WT	Water								
Batch R	5663248									
WG3669114-2 Naphthalene	LCS			85.8		%		50-130	03-DEC-21	
WG3669114-1 Naphthalene	MB			<0.020		ug/L		0.02	03-DEC-21	
Surrogate: d8-	Naphthale	ene		90.5		%		60-140	03-DEC-21	
PH-WT		Water								
Batch R	5666550									
WG3669991-4 рН	DUP		WG3669991-3 7.48	7.46	J	pH units	0.02	0.2	04-DEC-21	
WG3669991-2 рН	LCS			7.04		pH units		6.9-7.1	04-DEC-21	
PHENOLS-4AAP-	wт	Water								
Batch R	5666236									
WG3669232-3 Phenols (4AAI	-		L2668436-1 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	03-DEC-21	
WG3669232-2 Phenols (4AAI				101.4		%		85-115	03-DEC-21	
WG3669232-1 Phenols (4AAI	MB ⊃)			<0.0010		mg/L		0.001	03-DEC-21	
WG3669232-4 Phenols (4AAI			L2668436-1	93.8		%		75-125	03-DEC-21	
SO4-IC-N-WT		Water								
Batch R	5665797									
WG3669665-9 Sulfate (SO4)	DUP		WG3669665-8 41.5	41.5		mg/L	0.1	20	03-DEC-21	
WG3669665-7 Sulfate (SO4)	LCS			101.2		%		90-110	03-DEC-21	
WG3669665-6 Sulfate (SO4)	MB			<0.30		mg/L		0.3	03-DEC-21	
WG3669665-10 Sulfate (SO4)	D MS		WG3669665-8	101.6		%		75-125	03-DEC-21	
SOLIDS-TSS-WT		Water								
Batch R	5667701									
WG3670445-3 Total Suspend	DUP		L2668765-1 68	71		mg/L	4.3	20	07-DEC-21	
WG3670445-2 Total Suspend				102.3		%		85-115	07-DEC-21	

			Quant	y contro	ncpon			
		Workorder:	L2668669) F	Report Date: 09	9-DEC-21		Page 6 of 8
15-400 E MARKHA	ENVIRONMENTA SNA PARK DRIV M ON L3R 3K2							
Contact: Clive Wig	jgan							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TSS-WT	Water							
Batch R5667701								
WG3670445-1 MB Total Suspended Solids			<3.0		mg/L		3	07 050 04
Total Suspended Solids	•		<3.0		iiig/E		5	07-DEC-21
TKN-F-WT	Water							
Batch R5664498								
WG3669194-3 DUP		L2668526-1	4.40					
Total Kjeldahl Nitrogen		1.24	1.10		mg/L	12	20	03-DEC-21
WG3669194-2 LCS Total Kjeldahl Nitrogen			106.3		%		75-125	03-DEC-21
WG3669194-1 MB								
Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	03-DEC-21
WG3669194-4 MS		L2668526-1			24			
Total Kjeldahl Nitrogen			112.8		%		70-130	03-DEC-21
VOC-ROU-HS-WT	Water							
Batch R5665477 WG3670187-4 DUP		W00070407.0						
1,4-Dichlorobenzene		WG3670187-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	06-DEC-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-DEC-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	06-DEC-21
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	06-DEC-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-DEC-21
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-DEC-21
Toluene		<0.50	<0.40	RPD-NA	ug/L	N/A	30	06-DEC-21
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	06-DEC-21
WG3670187-1 LCS 1,4-Dichlorobenzene			109.0		%		70-130	06-DEC-21
Benzene			105.5		%		70-130	06-DEC-21
Chloroform			100.0		%		70-130	06-DEC-21
Dichloromethane			107.8		%		70-130	06-DEC-21
Ethylbenzene			114.2		%		70-130	06-DEC-21
Tetrachloroethylene			106.2		%		70-130	06-DEC-21
Toluene			109.7		%		70-130	06-DEC-21
Trichloroethylene			105.4		%		70-130	06-DEC-21
WG3670187-2 MB								
1,4-Dichlorobenzene			<0.50		ug/L		0.5	06-DEC-21
Benzene			<0.50		ug/L		0.5	06-DEC-21

			-	•	•			
		Workorder:	L2668669)	Report Date:	09-DEC-21		Page 7 of 8
Client:	FISHER ENVIRONMEN 15-400 ESNA PARK DR MARKHAM ON L3R 3F	IVE						
Contact:	Clive Wiggan	-						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-V	VT Water							
Batch WG3670187-	R5665477 -2 MB							
Chloroform			<1.0		ug/L		1	06-DEC-21
Dichloromet	hane		<2.0		ug/L		2	06-DEC-21
Ethylbenzen	e		<0.50		ug/L		0.5	06-DEC-21
Tetrachloroe	ethylene		<0.50		ug/L		0.5	06-DEC-21
Toluene			<0.40		ug/L		0.4	06-DEC-21
Trichloroethy	ylene		<0.50		ug/L		0.5	06-DEC-21
Surrogate: 1	,4-Difluorobenzene		101.3		%		70-130	06-DEC-21
Surrogate: 4	-Bromofluorobenzene		99.0		%		70-130	06-DEC-21
WG3670187-	5 MS	WG3670187-3						
1,4-Dichloro	benzene		102.7		%		50-150	06-DEC-21
Benzene			99.8		%		50-150	06-DEC-21
Chloroform			99.9		%		50-150	06-DEC-21
Dichloromet	hane		104.4		%		50-150	06-DEC-21
Ethylbenzen	e		105.9		%		50-150	06-DEC-21
Tetrachloroe	ethylene		97.3		%		50-150	06-DEC-21
Toluene			101.9		%		50-150	06-DEC-21
Trichloroethy	ylene		98.8		%		50-150	06-DEC-21

Workorder: L2668669

Report Date: 09-DEC-21

Client:	FISHER ENVIRONMENTAL					
	15-400 ESNA PARK DRIVE					
	MARKHAM ON L3R 3K2					
Contact:	Clive Wiggan					

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 - 893216

Page of

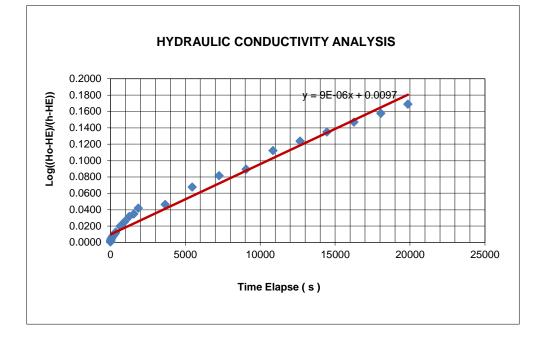
Report To	Contact and company name below will appe	ar on the final report			Turnaround Time (TAT) Requested										, 199				
Company:	Fisher Envronm	enal	Select Report Fo	Diman. 🔀 PDF] EXCEL 🔲 EC	DD (DIGITAL)	🗌 Rol	tine [R] if red	ceived by	3pm M-F	- no surcha	rges apply							
Contact:	Ciwe		Merge QC/QC	I Reports with COA	🗌 YES 📋 NO	D 🗌 N/A		ay [P4] if rec									00514		
Phone:	416-605-97	722	Compare Resu		ay [P3] if red							AFFIX	ALS BARC (ALS u	SODE LAB	SEL HE	~E			
	Company address below will appear on the fina	l report	Select Distribution	on: 🙇 EMAIL		FAX	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum									(/	oo oniy,		
Street:	15-400 Esna Pa	IX Dro	Email 1 or Fax	CIVEE	2 FE		- Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional fees							al fees					
City/Province:		N	Email 2				l 🖵 ma	apply to rush	n requests	on weeke	nds, statutory	holidays and	non-rcutin	ne tests					
Postal Code:	L3R 3K2		Email 3					ate and Tim	e Requir	red for all	E&P TATs:								
Invoice To	Same as Report To 🛛 YES [NO		Invoice Re		For all tests with rush TATs requested, please contact yo								avəilability.					
	Copy of Invoice with Report 🛛 YES [NO	Select Invoice D	istribution: 🔲 EM		Analysis Request													
Company:	Fisher Envolum	ental	Email 1 or Fax				Indicate Filtered (F). Preserved (P) or Filtered and Preserved								F/P) below			B	es)
Contact:	cive		Email 2		Ξ											H.	ğ		
	Project Information		0	Dil and Gas Required	Fields (client us	se)	CONTAINERS				\square							REQUIRED	66 1
ALS Account # /	Quote #.		AFE/Cost Center:		PO#		<u> </u>			\sim	2							Ř	s) (
Job #:			Major/Minor Code:		Routing Code:		ð	_		Q2	i's Rycel						НОГІ	ORAGE	R
PO / AFE:			Requisitioner:				<u>ا</u> لا ا	िर्भ	الإياد "						NO	SR/	Z		
LSD:			Location:				6	È	Y I	2	397							STC	Ξ
	214402	cco ull			Complant] 🖁 🖡		جنها	3.	170	_ د					Ιű		Ē
ALS LAD WOR	Corder # (ALS use only): $L2668$	669 UM	ALS Contact:		Sampler:		NUMBER	60	5	151	3-5						SAMPL	EXTENDE	SUSPECTED HAZARD (see notes)
ALS Sample #	Sample Identification			Date	Time	Sample Type]≧¦	二(7)	Υ	ارم -	512						l₹	E	JSP
(ALS use only)	(This description will a		n	(dd-mmm-yy)	(hh:mm)		z				\rightarrow						o	Ω	S
	3005 Nundas	s st west	<u> </u>	01/12/21		Hater													
	(aferrile_	· · · · · · · · · · · · · · · · · · ·				1													
	Halten Regie	n sewer	- -													+			
	ALLE CONTRACTOR	N SCOUL					+		+							+	_	1	
	discharge L	of Gris	·				+			\vdash		_				+			
	MLV6_(LA	Attered)				+ - +							╞		+	_+		<u> </u>
	· · · · · · · · · · · · · · · · · · ·	•											_						
								-									1	1	
							+ +		+							++		1	
							<u> </u>			╏┼-				++		++-	-+		
									+					+ +		++-	_	+	
			·			<u> </u>							DETAU			_ 			
Drinking) Water (DW) Samples ¹ (client use)	Notes / Specif		evaluation by selectin Excel COC only)	g from drop-down	below	Coolir	ng Method:			SAMPLE			5 (ALS					
Are samples taken	from a Regulated DW System?		1					ission Con		NONE						COOL YES		IATED	
	, -											·····						'ES 🗌	
	uman consumption/ use?						Cooler Custody Seals Intact: YES N/A Sample C								ER TEMPER			IVA	
)					INTIAL COOLER TEMPERATORS C. 8.						-1			T				
	SHIPMENT RELEASE (client use)	T	INITIAL SHIPMEN		S use only)	L				FINA	SHIPME	~	_	N (ALS III	e oniv)				
Released by: 1	Date: / /	Received by:	INTIAL STIF MEN	Date:		Time: Received by Time: Date:					1	Timg:/20				Ð			
^	nameri 01/12	Time:								H	1		12	12/	1	····	/	1 '	
REFER TO BACK P	PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION		WHI	TE - LABORATORY	COPY YELLO	W - CLIF	NT COPY										AUC 2	2026 FRONT

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY - Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

APPENDIX E – HYDRAULIC CONDUCTIVITY ANALYSES

Project No. 21-11713H April 1, 2022

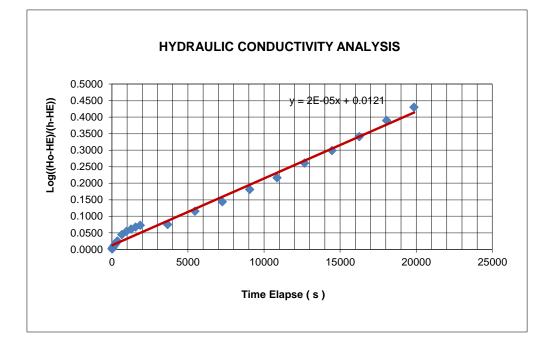

Equilibrium Water level (from top of pipe)HE154 cmInitial Water level (from top of pipe)Ho525 cmMonitoring well inner diameter d0.05 mInitial Time offset To5 secondReverse of Luthin's reference system Ru = Ho - HE371.00 cmSlope of Log((ho-he)/(ht-he)) / T9.00E-06G = Ru / (HT - HE)G = Ru / (HT - HE)

Hydraulic conductivity computed k =

0.0000136	cm/s
1.36E-07	m/s
0.012	m/day

Tin	ne	HT (Wat	ter Drop)	G	LOG (G)			
(Interval s)	(Elapsed s)	(m)	(cm)	9	200 (0)			
	0	5.250						
10	10	5.245	524.50	1.0013	0.0006			
10	20	5.235	523.50	1.0041	0.0018			
10	10 30		523.00	1.0054	0.0023			
10	10 40		522.50	1.0068	0.0029			
10	50	5.215	521.50	1.0095	0.0041			
10	60	5.210	521.00	1.0109	0.0047			
30	90	5.205	520.50	1.0123	0.0053			
30	120	5.195	519.50	1.0150	0.0065			
30	150	5.190	519.00	1.0164	0.0071			
30	180	5.185	518.50	1.0178	0.0077			
30	210	5.180	518.00	1.0192	0.0083			
30	240	5.170	517.00	1.0220	0.0095			
30			516.50	1.0234	0.0101			
30	300	5.160	516.00	1.0249	0.0107			
30	330	5.155	515.50	1.0263	0.0113			
30	360	5.145	5.145	5.145	5.145	514.50	1.0291	0.0125
300	660	5.085	508.50	1.0465	0.0198			
300	960	5.040	504.00	1.0600	0.0253			
300	1260	4.990	499.00	1.0754	0.0316			
300	1560	4.965	496.50	1.0832	0.0347			
300	1860	4.910	491.00	1.1009	0.0417			
1800	3660	4.875	487.500	1.112	0.046			
1800	5460	4.715	471.500	1.169	0.068			
1800	7260	4.615	461.500	1.207	0.082			
1800	9060	4.560	456.000	1.228	0.089			
1800	10860	4.405	440.500	1.295	0.112			
1800	12660	4.330	433.000	1.330	0.124			
1800	14460	4.260	426.000	1.364	0.135			
1800	16260	4.185	418.500	1.403	0.147			
1800	18060	4.120	412.000	1.438	0.158			
1800	19860	4.055	405.500	1.475	0.169			

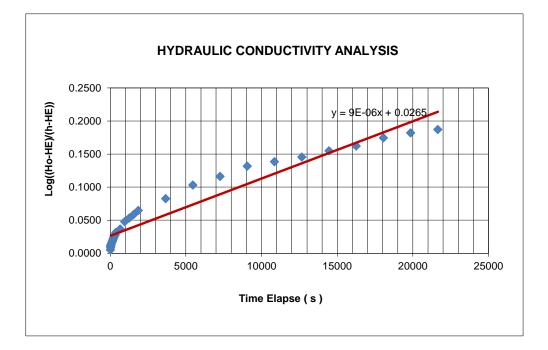
Equilibrium Water level (from top of pipe) HE Initial Water level (from top of pipe) Ho Monitoring well inner diameter d Initial Time offset To Reverse of Luthin's reference system Ru = Ho - HESlope of Log((ho-he)/(ht-he)) / T G = Ru / (HT - HE)


Hydraulic conductivity computed k =

m
m
n
econd
m

0.0000303	cm/s
3.03E-07	m/s
0.026	m/day

Tin	ne	HT (Wat	ter Drop)	G	LOG (G)								
(Interval s)	(Elapsed s)	(m)	(cm)	0	200 (0)								
	0	6.850											
10	10	6.845	684.50	1.0026	0.0011								
10	20	6.840	684.00	1.0052	0.0022								
10	30	6.840	684.00	1.0052	0.0022								
10	40	6.835	683.50	1.0078	0.0034								
10	50	6.830	683.00	1.0104	0.0045								
10	60	6.830	683.00	1.0104	0.0045								
30	90	6.815	681.50	1.0183	0.0079								
30	120	6.810	681.00	1.0209	0.0090								
30	150	6.800	680.00	1.0263	0.0113								
30	180	6.790	679.00	1.0317	0.0136								
30	210	6.785	678.50	1.0345	0.0147								
30	240	6.770	677.00	1.0428	0.0182								
30	270	6.765	676.50	1.0456	0.0194								
30	300	6.760	676.00	1.0484	0.0205								
30	330	6.750	675.00	1.0541	0.0229								
30	360	6.740	674.00	1.0598	0.0252								
300	660	6.660	666.00	1.1080	0.0445								
300	960	6.620	6.620	6.620	6.620	6.620	6.620	6.620	6.620	6.620	662.00	1.1337	0.0545
300	1260	6.595	659.50	1.1504	0.0609								
300	1560	6.570	657.00	1.1677	0.0673								
300	1860	6.550	655.00	1.1818	0.0726								
1800	3660	6.540	654.00	1.1890	0.0752								
1800	5460	6.395	639.50	1.3043	0.1154								
1800	7260	6.300	630.00	1.3929	0.1439								
1800	9060	6.185	618.50	1.5175	0.1811								
1800	10860	6.085	608.50	1.6456	0.2163								
1800	12660	5.970	597.00	1.8224	0.2607								
1800	14460	5.880	588.00	1.9898	0.2988								
1800	16260	5.790	579.00	2.1910	0.3406								
1800	18060	5.695	569.50	2.4528	0.3897								
1800	19860	5.625	562.50	2.6897	0.4297								


Equilibrium Water level (from top of pipe) HE	465	ст
Initial Water level (from top of pipe) Ho	595	ст
Monitoring well inner diameter d	0.05	m
Initial Time offset To	5	second
Reverse of Luthin's reference system Ru = Ho - HE	130.00	ст
Slope of Log((ho-he)/(ht-he)) / T	9.00E-06	
G = Ru / (HT - HE)		

Hydraulic conductivity computed k =

0.0000136	cm/s
1.36E-07	m/s
0.012	m/day

Tir	ne	HT (Wat	er Drop)	G	LOG (G)		
(Interval s)	(Elapsed s)	(m)	(cm)	3	200(0)		
	0	5.950					
10	10	5.935	593.50	1.0117	0.0050		
10	20	5.925	592.50	1.0196	0.0084		
10	30	5.920	592.00	1.0236	0.0101		
10	10 40		591.50	1.0277	0.0119		
10	50	5.915	591.50	1.0277	0.0119		
10	60	5.910	591.00	1.0317	0.0136		
30	90	5.905	590.50	1.0359	0.0153		
30	120	5.900	590.00	1.0400	0.0170		
30	150	5.895	589.50	1.0442	0.0188		
30	180	5.890	589.00	1.0484	0.0205		
30	210	5.885	588.50	1.0526	0.0223		
30	240	5.880	588.00	1.0569	0.0240		
30	270	5.875	587.50	1.0612	0.0258		
30	300	5.870	587.00	1.0656	0.0276		
30	330	5.870	587.00	1.0656	0.0276		
30	360	5.860	586.00	1.0744	0.0312		
300	660	5.845	584.50	1.0879	0.0366		
300	960	5.815	581.50	1.1159	0.0476		
300	1260	5.800	580.00	1.1304	0.0532		
300	1560	5.785	578.50	1.1454	0.0589		
300	1860	5.770	577.00	1.1607	0.0647		
1800	3660	5.725	572.50	1.2093	0.0825		
1800	5460	5.675	567.50	1.2683	0.1032		
1800	7260	5.645	564.50	1.3065	0.1161		
1800	9060	5.610	561.00	1.3542	0.1317		
1800	10860	5.595	559.50	1.3757	0.1385		
1800	12660	5.580	558.00	1.3978	0.1455		
1800	14460	5.560	556.00	1.4286	0.1549		
1800	16260	5.545	554.50	1.4525	0.1621		
1800	18060	5.520	552.00	1.4943	0.1744		
1800	19860	5.505	550.50	1.5205	0.1820		
1800	21660	5.495	549.50	1.5385	0.1871		

APPENDIX F – CONSTRUCTION DEWATERING AND PERMANENT DRAINAGE

Fisher Engineering Ltd

Project No. 21-11713H April 1, 2022

Construction Dewatering Calculation

 Location:
 3005 Dundas Street West, Oakville

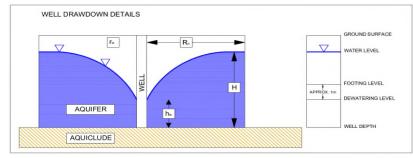
 Project:
 FE-P-21-11713H

 Date:
 3/30/2022

Dupuit Forcheimer for Radial Flow to a Closely Welled System or Excavation

Construction	TOS (m asl)	FFE (m asl)	•	Required Dewatering	Static water level		Well base elevation	H (m)	h _w (m)	H-h _w (m)	R _o	(m)	r _w	ab (m²)	K (m/s)	H ² -h _w ²	InR ₀	Inr _w	Q, (m ³ /s)	Q, (m ³ /day)
Units			(m asl)	Elevation (m asl)		Elevation (m asl)	(m)				Model	Adjusted								
Building with 4 UG levels	143.10	154.30	142.30	141.30	4.00	149.94	141.00	8.94	0.3	8.64	6.38	55.06	48.68	7445	1.36E-07	79.83	4.01	3.89	2.77E-04	23.97
Building with 5 UG levels	140.30	154.30	139.50	138.50	4.00	149.94	138.20	11.74	0.3	11.44	8.44	57.13	48.68	7445	1.36E-07	137.74	4.05	3.89	3.68E-04	31.83

Dupuit Forcl	heimer	Equation	


$$Q = \frac{\pi K (H^2 - {h_w}^2)}{lnR_0 - lnr_w}$$

Equivalent radius of well, r,

$$r_w = \sqrt{\frac{ab}{\pi}}$$

 $R_0 = 2000(H - h_w)\sqrt{k}$

Radius of influence in m, calculated from Sichardt's equation

Where:

rw = equivalent radius of the well in m,

H = hydraulic head of the original water table (total saturated aquifer thickness) in m,

 $h_{\rm w}$ = hydraulic head at maximum dewatering (proposed drawdown) in m,

R₀ = radius of influence in m, calculated from Sichardt's equation, and

K = hydraulic conductivity, in m/s

a = length of excavation area in m

b = width of excavation area in m

Permanent Drainage Rates

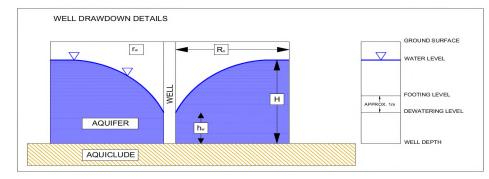
 Location:
 3005 Dundas Street West, Oakville

 Project:
 FE-P-21-11713H

 Date:
 3/30/2022

Dupuit Forcheimer for Radial Flow to a Closely Welled System or Excavation

Construction Units	ion TOS	S (m asl)	FFE (m asl)	•	Required Dewatering	Static water level		Well base elevation	H (m)	h _w (m)	H-h _w (m)		R ₀ (m)		ab (m²)	К (m/s)	H ² -h _w ²	InR₀	Inr _w	Q, (m ³ /s)	Q, (m ³ /day)
				Elevation (m asl)	Elevation (m asl)	BGS (m)	Elevation (m asl)	(m)				Model	Adjusted				-				
Building 4 UG lev	14	143.10	154.30	142.30	142.80	3.00	151.25	142.55	8.70	0.3	8.45	6.24	54.92	48.68	7445	1.36E-07	75.63	4.01	3.89	2.68E-04	23.19
Building 5 UG lev	14	140.30	154.30	139.50	140.00	3.00	151.25	139.75	11.50	0.3	11.25	8.30	56.99	48.68	7445	1.36E-07	132.19	4.04	3.89	3.59E-04	31.03


Dupuit Forcheimer Equation

$$Q = \frac{\pi K (H^2 - h_w^2)}{lnR_0 - lnr_w}$$
$$r_w = \sqrt{\frac{ab}{\pi}}$$

 $R_0 = 2000(H - h_w)\sqrt{k}$

Equivalent radius of well, r_w

Radius of influence in m, calculated from Sichardt's equation

Where:

rw = equivalent radius of the well in m,

H = hydraulic head of the original water table (total saturated aquifer thickness) in m,

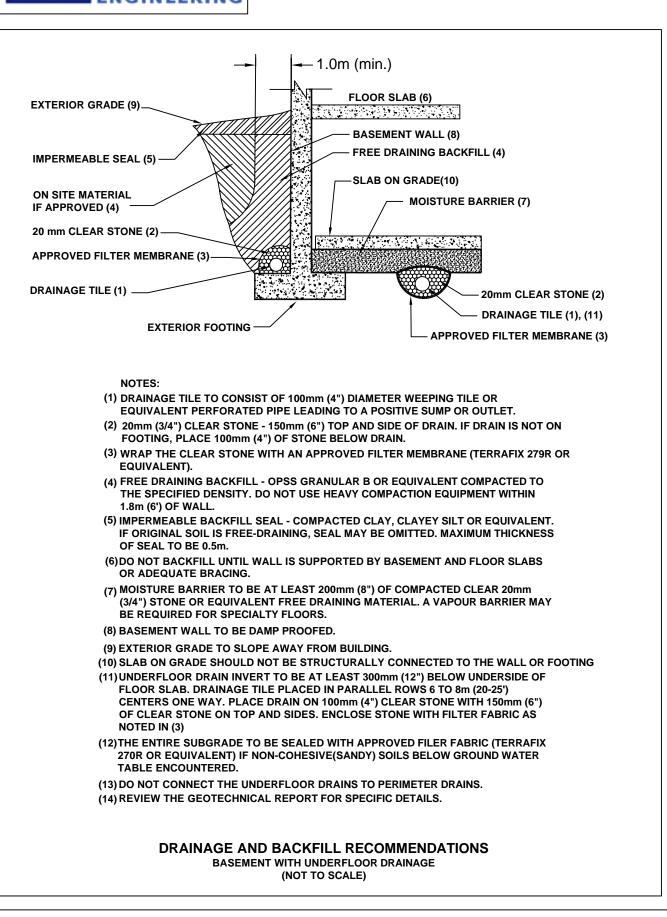
h_w = hydraulic head at maximum dewatering (proposed drawdown) in m,

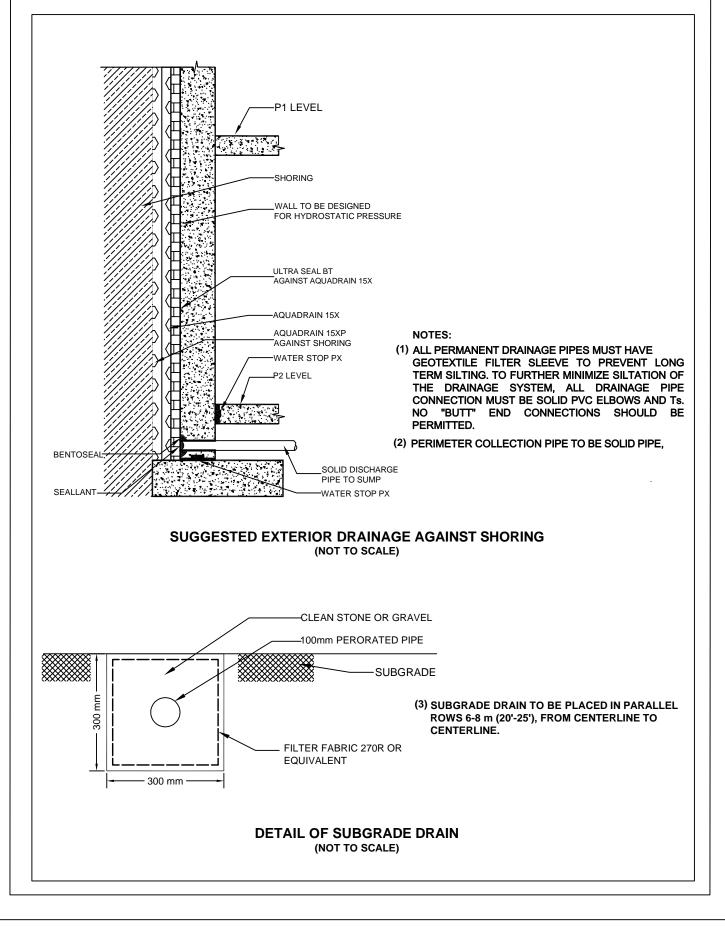
 R_0 = radius of influence in m, calculated from Sichardt's equation, and

K = hydraulic conductivity, in m/s

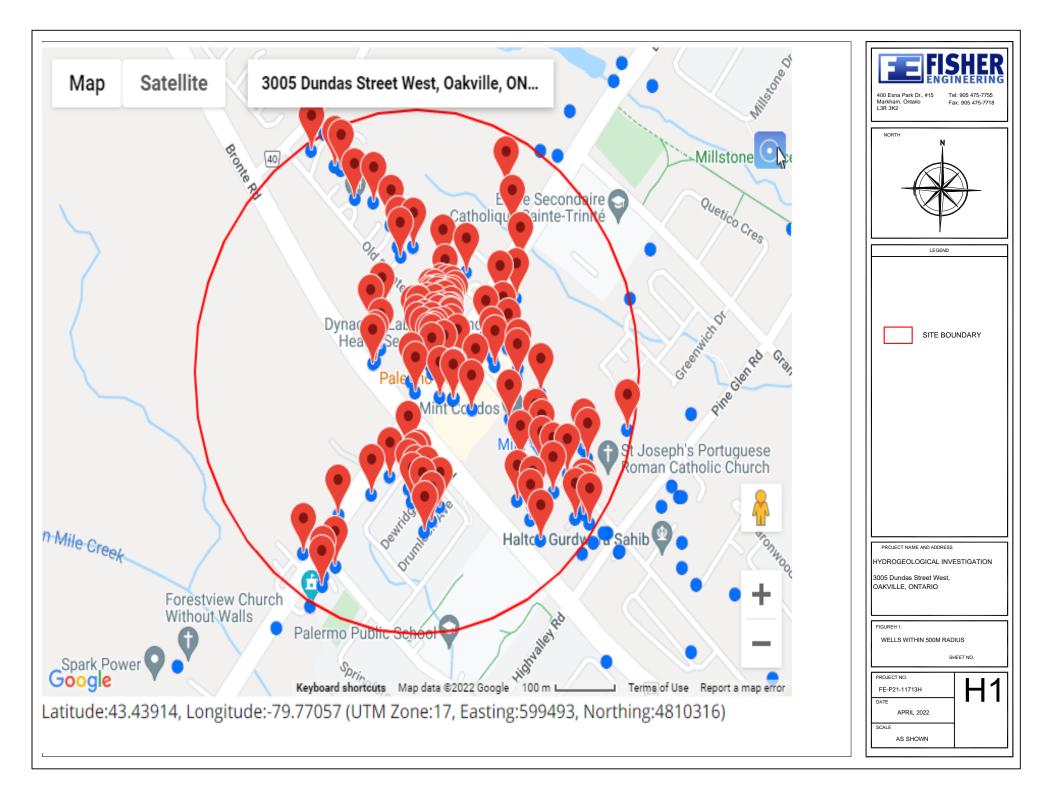
a = length of excavation area in m

b = width of excavation area in m


APPENDIX G – BACKFILL AND DRAINAGE DESIGN


Fisher Engineering Ltd

Project No. 21-11713H April 1, 2022



APPENDIX H – PRIVATE WELL SURVEY

Fisher Engineering Ltd

Project No. 21-11713H April 1, 2022

December 14, 2021

Enirox Group 101 Railside Rd. North York, ON, M3A 1B2

Attn: Arash Kamali, B.Eng., CEO Email: <u>akamali@enirox.com</u>

Re: PRELIMINARY GEOTECHNICAL & HYDROGEOLOGICAL COMMENTS – PROPOSED NEW DEVELOPMENT, 3005 DUNDAS STREET WEST, OAKVILLE, ONTARIO Project Number: 21-11713/14

We are pleased to submit this letter of opinion regarding geotechnical and hydrogeological aspects of design/construction for the proposed new development at the captioned site.

Details of the proposed new development were not available; however, we understand that it will consist of a high-rise building with 4 to 5 levels of underground parking.

Eight (8) boreholes were put down to depths from 6.71m (BH2, 3, 7 & 8) to 18.29m (BH 5) below prevailing grades between November 22 & 26, 2021. Approximate borehole locations/elevations are shown on the appended site plan.

Borehole elevations were established by interpolation from a topographical survey plan, prepared by Sexton McKay Limited (plotted April 5, 2007) which was provided to Fisher during the investigation.

Rock coring was carried out in boreholes BH4 & BH5 between approximate depths of 10.57m & 13.7m (BH4) and 9.1m & 18.3m (BH5).

We present the following general comments regarding geotechnical aspects of design/construction based on the soil stratigraphy and groundwater conditions observed from MW1 to MW8.

SOIL STRATIGRAPHY

Fill soils extending to variable depths were encountered at the surface of boreholes in all locations. Surface elevations, approximate depths of fill below prevailing grades/elevations, bottom of fill/borehole elevations are summarized Table 1.

Borehole No.	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8
Surface Elevation (m asl)	154.00	153.92	153.59	154.50	154.52	153.81	153.90	154.37
Depth of Borehole (m bgs)	12.35	6.71	6.71	13.72	18.29	8.38	6.71	6.71
Elevation at Bottom of Borehole (m asl)	141.65	147.21	146.88	140.78	136.23	145.43	147.19	147.66
Depth of Fill (m bgs)	1.52	2.29	2.13	1.98	1.22	1.37	0.46	1.60
Elevation at Bottom of Fill (m asl)	152.48	151.63	151.46	152.52	153.30	152.44	153.44	152.77

Table 1: Fill Depths and Elevations.

Fill composition varied from dark brown to brown/grey sand/silty sand to sand & gravel with some to trace of topsoil/roots and occasional pieces of asphalt/brick/metal or plastic.

Underlying natural soils predominantly consist of grey/reddish brown silty tills of relative densities varying from compact to very dense. The till soils extended to approximate depths varying from 4.88m (no. 7) to 7.93m (no. 6).

Silt till soils were followed by reddish brown hard weathered shale. Inferred surface elevation of weathered shale bedrock varied from 145.88m in borehole 6 to 149.02m in borehole 7. It should be noted that refusal to power auguring was encountered at depths/elevations varying from 12.34m/141.66m (no. 1) to 6.71m/147.66m (no. 8) indicating variable depths of weathering of rock across the site.

GROUNDWATER CONDITIONS

The open boreholes were observed to be generally dry on completion of drilling. Standing water was observed at 6.10m bgs in BH1. Mud rotary was used for rock coring in BH4 and BH5. Static groundwater levels, measured on November 30 and December 15, 2021, vary between 1.56m and 5.32m in the shallow wells (less than 10.5m deep) and 5.10m and 6.23m in the deep well (MW5) as shown in Table 2. The water bearing soils on the site consist of the silty till overburden material and the weathered/fractured sections of the predominantly hard shale at greater depth. Based on field soil description (Unified Soil Classification System), the water bearing overburden soils may be classified as silty sands/sandy silts (SM) with estimated hydraulic conductivity (K) values in the order of 10⁻³ to 10⁻⁵ cm/s.

For four to five underground levels, it is expected that some amount of groundwater will be encountered during construction, particularly in the overburden soils and weathered seams/sections of the shale. Ars.

A groundwater dewatering system may not be required depending on the time of year that excavation takes place. Once the groundwater in the overburden soils is controlled during construction, then localized dewatering may take place by pumping from sump pits in the silt till and shale at greater depth.

Provisions will also have to be made to rid the site of accumulated precipitation in the excavated areas during construction. This water will have to be tested and hauled by an MOE licensed contractor or be discharged to the City/Region sewer system during construction. Contingencies will also have to be made to dispose of groundwater accruing from permanent drainage unless the subsurface structures of the building are designed as watertight. Details of construction dewatering and permanent drainage quantities will be available following further investigation.

	Elev. at	Depth	of Well	On Com	pletion	30-No	v-21	15-D	ec-21
Well No.	Ground (m)	m bgs	m asl	GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl	GW level, m bgs	GW Ele, m asl
MW1	154.00	10.37	143.63	6.10	147.90	2.16	151.84	1.56	152.44
MW2	153.92	6.71	147.21	Dry	-	4.85	149.07	4.72	149.20
MW3	153.59	4.57	149.02	Dry	-	Dry	-	Dry	-
MW4	154.50	9.76	144.74	n/a - rock coring	-	2.55	151.95	2.16	152.34
MW5	154.52	18.29	136.23	n/a - rock coring	-	5.10	149.42	6.23	148.29
MW6	153.81	7.93	145.88	Dry	-	1.67	152.14	5.13	148.68
MW7	153.90	6.71	147.19	Dry	-	5.10	148.80	5.32	148.58
MW8	154.37	6.71	147.66	Dry	-	1.67	152.70	5.25	149.12

Table 2:	Groundwater	levels and	elevations.
----------	-------------	------------	-------------

FOUNDATIONS

We were advised that the proposed development will likely consist of high-rise building with four to five levels of underground parking.

The proposed building foundations will likely be placed at depths of 12.5m or below the prevailing grades.

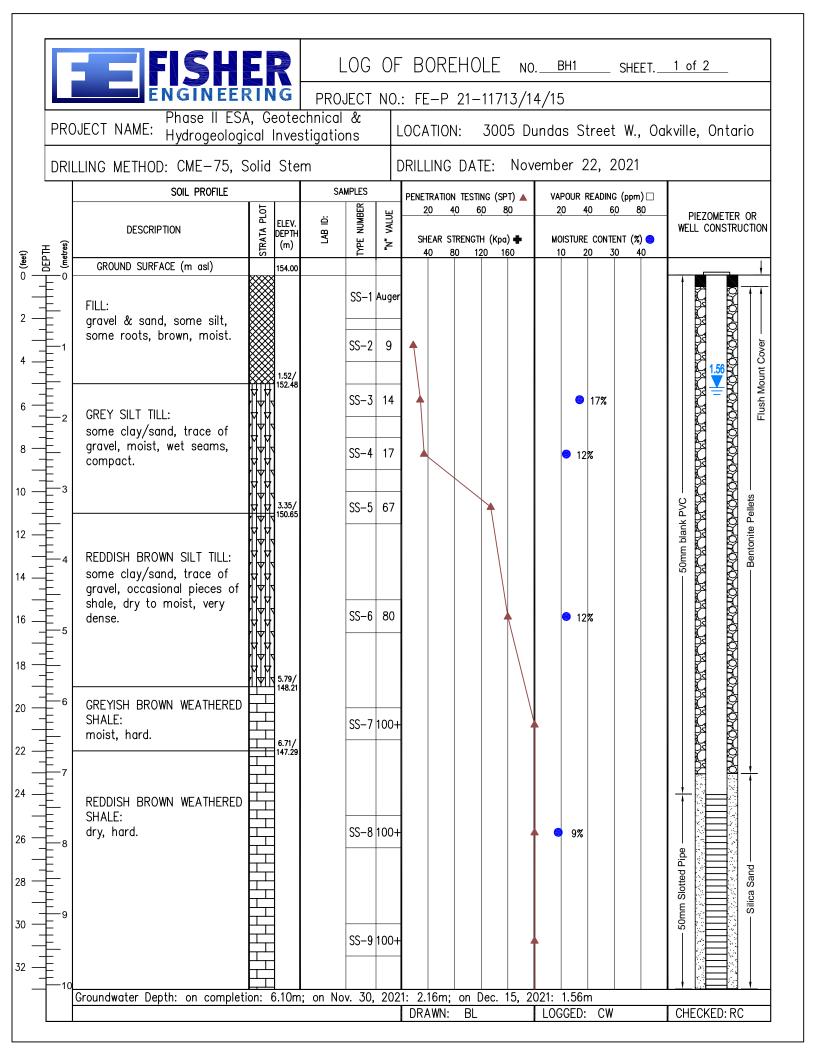
For footings placed over undisturbed solid shale bedrock at or below approximate depth of 12.5m SLS bearing pressure of 4,000kPa and ULS bearing pressure of 6,000kPa will be available for design purposes. Loose/broken/weathered shale must be removed from the footing areas. Concrete skim coat must be placed to protect the exposed footing bases.

Based the information from the boreholes Site Class 'B' will be available for earthquake design purposes for footings supported by solid shale bedrock. We recommend that shear wave velocity measurements be carried out to confirm the site class/bedrock quality.

PARKING GARAGE EXCAVATION

The onsite soils in boreholes can generally be classified as Type 3 to Type 2 Soils and will generally require side slopes of 1H:1V or flatter. In case of limited space for safe slopes, a shoring support system will be required. Fill and overburden soils/weathered shale can be supported by anchored soldier piles/lagging and/or caisson walls as required. Excavation in solid bedrock can be rock pins/wire mesh/shotcrete.

Some groundwater control measures will likely be required for excavations extending into/through wet seams/pockets/layers.

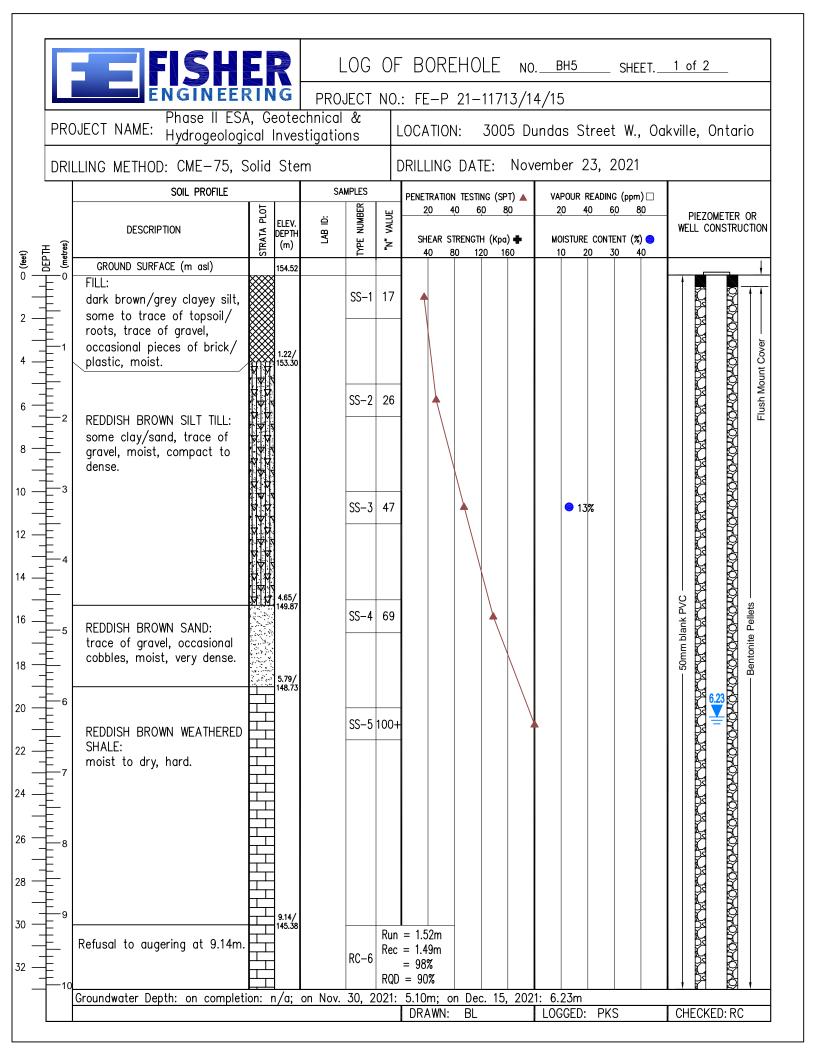

SLAB-ON-GRADE/ GARAGE WALLS/DRAINAGE

Permanent underfloor & perimeter drainage in addition to damp/water proofing of garage walls will be required. If the above is not feasible or permitted, then a bathtub design i.e., watertight structure along with design accommodations for lateral earth pressures & hydrostatic uplift pressures on parking garage walls/lowest slab-on-grade will be required.

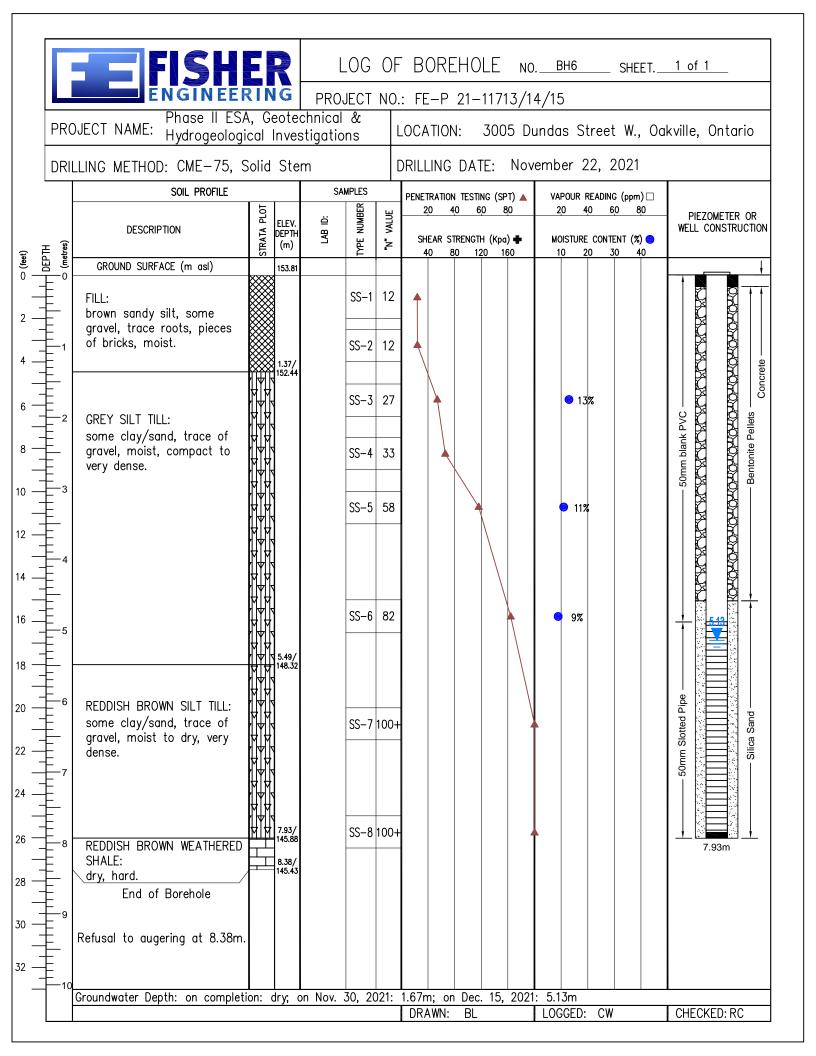
Fisher Engineering Limited

S. CHAHAL

Rajinder Chahal, P. Eng. Senior Project Engineer Mobile: 647.227.8473 rajinder@fishereng.com


		FISH		R	L	_0G	OF	- B(ORE	HO	LE no). <u>BH1(M</u> \	V)	SHEET.	2 of 2
		ENGINEER	RIN	ĪĞ			NO	.: FE	-P :	21–	11713/1	4/15			
	PRC	DJECT NAME: Phase II ESA Hydrogeologi						_0CA	TION	:	3005 D	undas S	Street	W., Oa	kville, Ontario
	DRIL	LING METHOD: CME-75, S	olid	Ste	m			ORILL	ING	DAT	E: Nov	/ember	22, 2	2021	
	-	SOIL PROFILE	ot			MPLES	ш		RATION 0 40		NG (SPT) 🔺 0 80		READING	; (ppm) □ 0 80	
	н (s	DESCRIPTION	strata plot	ELEV. DEPTH (m)	LAB ID:	lype Number	"N" VALUE	SH	EAR STR	RENGTI	H (Kpa) 🖶	MOISTUI	RE CONTE	:NT (%) 😑	PIEZOMETER OR WELL CONSTRUCTION
	H DEPTH (metres)	GROUND SURFACE (m asl)	<u></u>			<u> </u>	_	4	0 80) 12	20 160	10	20 3	0 40	
32 — - -	10														
34 — -		REDDISH BROWN WEATHERED SHALE:													↓ 10.37 bgs -
		moist to dry, hard.				SS-10	100+	-							slotted Pipe Solitica Sand
- - - 38 -															50mm Slotted Pipe
-	12														ũ
40 —		End of Borehole		12.34/ 141.66		SS-11	100-	-							
42 —															
		Refusal to augering at 12.34m.													
46 —	14 														
48 —															
50 —	15 15 														
-															
52 — - -	 														
54 — -															
56 —	1_ 17 17														
-															
54 — 56 — 58 — 60 — 62 —	 18														
60 —															
62 —															
_	⊥ '" ↓ ↓														
64 — 		Groundwater Depth: on comple	l tion:	6.10	m; on l	l Nov. 3	i0, 2				n Dec. 15				
66 —								DR/	WN:	BL		LOGGE): CW		CHECKED: RC

		DJECT NAME: Hydrogeologi	, Ge	eote	chnical	JECT &	NO	.: F	30RE FE-P	21–	1171	3/1	4/15		SHEET	<u>1 of 1</u> kville, Ontario
ŀ		LING METHOD: CME-75, S				112								· 22, 2		
L		SOIL PROFILE				MPLES		Т	NETRATION						G (ppm) 🗆	
⊃ (feet) DEPTH	(metres)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID:	TYPE NUMBER	"N" VALUE		20 4 SHEAR ST 40 8	RENGT	0 8 H (Kpa) 20 16) 💠	20 MOIST 10	URE CONTI	0 80 ENT (%) 😑	PIEZOMETER OR WELL CONSTRUCTION
→ → → → DEPTh	0 0 	GROUND SURFACE (m asl)		153.92		SS-1	10									
2	1 1 1	sand & gravel, some silt, some roots, boulders, moist.				SS-2	13									CLOROPHONE POLICY
6	2					SS-3	7									- 50mm blank PVC
8	- - - - -	GREY SILT TILL:		2.29/ 151.63		SS-4	25									RCRCRC50
	3 3 4	some clay/sand, trace of gravel, stains, moist, compact to dense.		4.27/		SS-5	30	_								
14	5 5	REDDISH BROWN SILT TILL: some clay/sand, trace of gravel, occasional pieces of shale, dry to moist, very dense.	A A A A A A A A A A A A A A A A A A A A	149.65		SS-6	100-									- 50mm Slotted Pipe
20 22 24		REDDISH BROWN WEATHERED SHALE: dry, hard. End of Borehole		6.40/ 147.52 6.71/ 147.21		SS-7	100-									6.71m
26	8	Refusal to augering at 6.71m.														
28	 															
30 — — 32 —	 															
-	10	Groundwater Depth: on completi	on: d	dry; d	on Nov.	 30, 20)21:		5m; or RAWN:	Dec	. 15 ,	2021	: 4.72			CHECKED: RC


_															
		FISH ENGINEER		R	L	.0G	0	F	BOR	EHC)LE	NC). <u> </u>	SHEET	1 of 1
		ENGINEER		G	PRO	JECT	NO).:	FE-F	21-	-1171	13/1	4/15		
P	RC)JECT NAME: Phase II ESA Hydrogeologi						LO	CATIC	N:	300	5 D	undas Str	eet W., Oo	akville, Ontario
D	RIL	LING METHOD: CME-75, S	Solid	Ste	m			DF	RILLIN	g da	TE:	Nov	vember 24	, 2021	
	_	SOIL PROFILE	⊢	1	SA	MPLES	1		ENETRATI					ADING (ppm)	
et) PTH	(metres)	DESCRIPTION	strata plot	ELEV. DEPTH (m)		TYPE NUMBER	"N" VALUE		20 SHEAR 40	STRENG			20 40 MOISTURE 0 10 20	60 80 Content (%) 😑 30 40	- PIEZOMETER OR WELL CONSTRUCTION
⊂ (feet)	<u>ق</u> -0	GROUND SURFACE (m asl)		153.59		SS-1	11	_							
2	-	FILL: topsoil, silty sand, trace													50mm blank PVC
4	-1	gravel, some roots, moist, compact.				SS-2	14	-							- 50mm t
6	- 2			0.17 /		SS-3	13	5							5(() () () () () () () () () () () () () (
8	-	GREY SILT TILL:		2.13/ 151.46		SS-4	28	3							e –
	-3	some clay/sand, trace of gravel, stains, moist,													50mm Slotted Pipe
	-	compact to dense.		3.66/ 149.93		SS-5	30)							50mm S
	-4	REDDISH BROWN SILT TILL:		1+3.35											
	-	some clay/sand, trace of gravel, occasional pieces of				SS-6	75								4.57m
	-5	shale, dry to moist, very dense.	₩ ₩ ₩ ₩			33-0	/5	,							
	-														
20	-6			6.40/ 147.19		SS-7	100-	+							
22	-7	RED WEATHERED SHALE: moist to dry, hard. End of Borehole		6.71/ 146.88											
24	-														
26	-8	Refusal to augering at 6.71m.													
28	-														
30 -	-9														
32	-														
-F	-10	Groundwater Depth: on completi	0n: /	drv: /	on Nov	 30 20) 21·		/a: on	Dec	15 2	 021∙	drv		
	-	or completion of completion	UII. (ury, (50, 20			DRAWN			521.		CW	CHECKED: RC

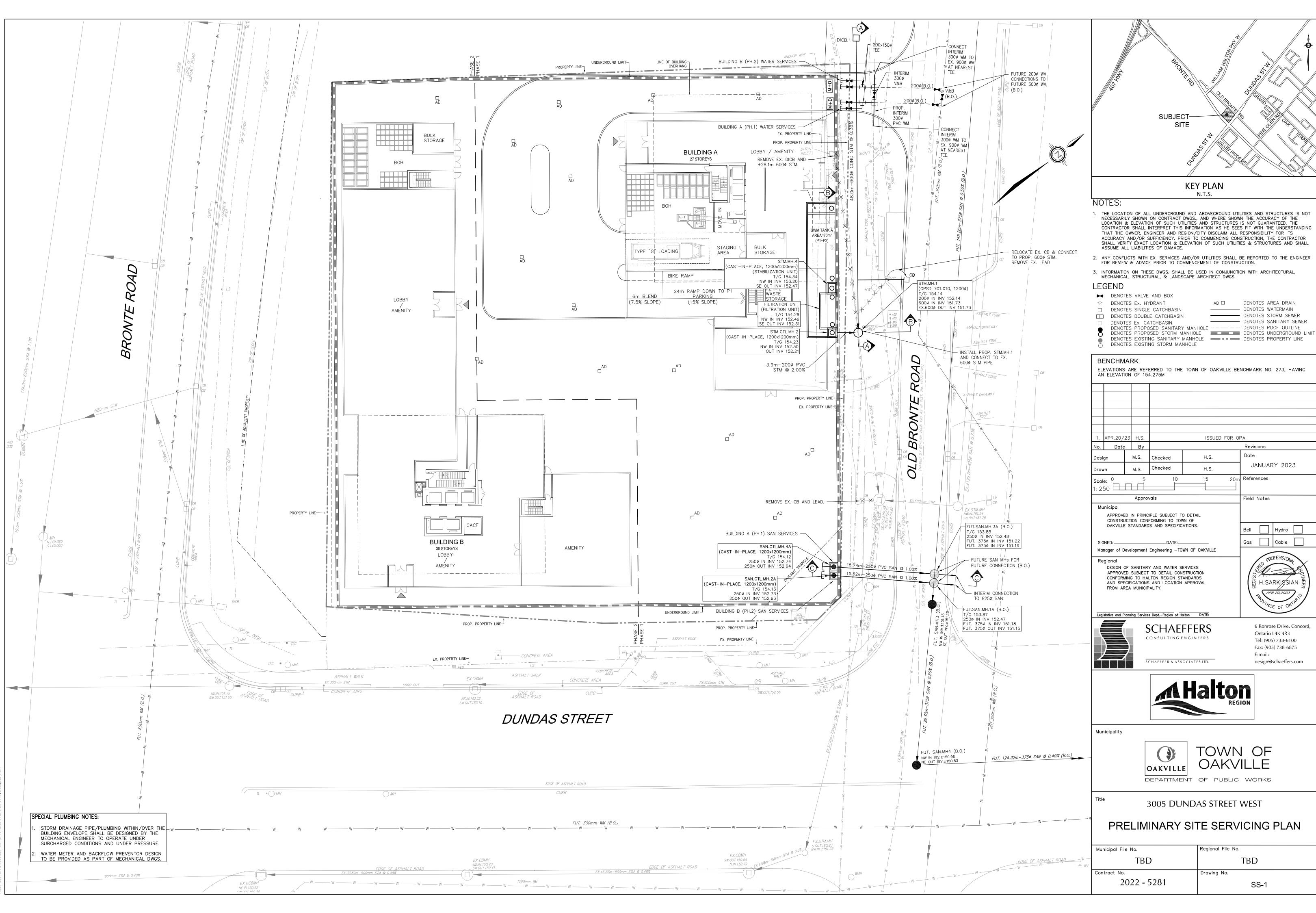
				G). <u> </u>	SHEET	1 of 2
		DJECT NAME: Hydrogeologi	4, Ge	eote	chnical	&								treet W., O	akville, Ontario
	DRII	LLING METHOD: CME-75, S	Solid	Ste	m		[DRIL	ling	DA	ΓE:	Nov	ember 2	26, 2021	
		SOIL PROFILE	5			MPLES	ш			n testi 1,0 e		РТ) 🔺 30	VAPOUR F	READING (ppm) 🗆 0 60 80	
⇔ (feet) DEPTH	(metres)	DESCRIPTION	STRATA PLOI	ELEV. DEPTH (m)		TYPE NUMBER	"N" VALUE		IEAR S	TRENGT	Н (Кра		MOISTURE	CONTENT (%) 🔵 0 30 40	PIEZOMETER OR WELL CONSTRUCTION
o (feet)	0 0 	GROUND SURFACE (m asl)		154.50		SS-1	10								
4	- - - - - - - -	sand & gravel with silt and roots, brown, moist, compact.				SS-2	14								CACACA CONCOUCH
6	- - - - - - 2			1.98/ 152.52		SS-3	16								
8	-	GREY SILT TILL: some clay/sand, trace of				SS-4	18								
		gravel, stains, moist, compact to very dense.		3.66/ 150.84		SS-5	55								- 50mm blank PVC
	4	REDDISH BROWN SILT TILL: some clay/sand, trace of						-							
	- 	some clay/sand, trace of gravel, occasional pieces of shale, dry to moist, very dense.	A A A A A A A A A A			SS-6	63								
20	6			6.40/ 148.10		SS-7	100+								
22	7	REDDISH BROWN WEATHERED		146.10											
24	- - - - - - 8	SHALE: dry, hard.													50mm Slotted Pipe —
28	-														- 50mm Slotted F
30 — 32 —	9 														
	- 	Groundwater Depth: on completi	on: r	n/a;	on Nov.	30, 2	021:		om; c AWN:	on De BL	c. 15	, 202	21: 2.16m LOGGED:	CW	9.76m CHECKED: RC

	Γ	FISH	ER	l	_0G	OF	- B0	REH	OLE	NO.	BH4(MW)	SHEET	2 of 2
	PR	OJECT NAME: Phase II ESA	, Geote	chnical	&		: FE- .0CAT		-117 ⁻ 300			Stree	et W., Od	akville, Ontario
	DRI	ILLING METHOD: CME-75, S					RILLI	NG D.	ATE:	Nov	embe	r 22,	2021	
]		SOIL PROFILE			MPLES				STING (SF				NG (ppm) 🗆	
- Ē	res) H	DESCRIPTION	STRATA PLOT HIGT HIGT (W)	LAB ID:	TYPE NUMBER	"N" value	20 SHEA 40		60 8 IGTH (Kpa 120 1		20 Mois ⁻ 10	TURE CON	60 80 TENT (%) 😑 30 40	 PIEZOMETER OR WELL CONSTRUCTION
(feet)	⊣ ∪EP IH (metres)	GROUND SURFACE (m asl)			<u> </u>		40						30 40	
2 — — 4 — —		REDDISH BROWN WEATHERED SHALE: dry, hard.												
6 8 0		2			RC-8	Rec	= 1.52 = 1.51r = 99% = 89%	n						
2 — 4 —		3			RC-9	Rec	= 1.52 = 1.47 = 97% = 93%	m						
		End of Borehole	13.72/ 140.78											
		⁵ Rock coring to 13.72m.												
		6												
 		3												
		3												
	1	Groundwater Depth: on comple	tion: n/a;	on No	v. 30,	202	1: 2.5 DRAW	5m; o /N: F	<u>on Dec.</u> BL	<u>15, 2</u>		<u>2.16m</u> ED: CV	V	CHECKED: RC

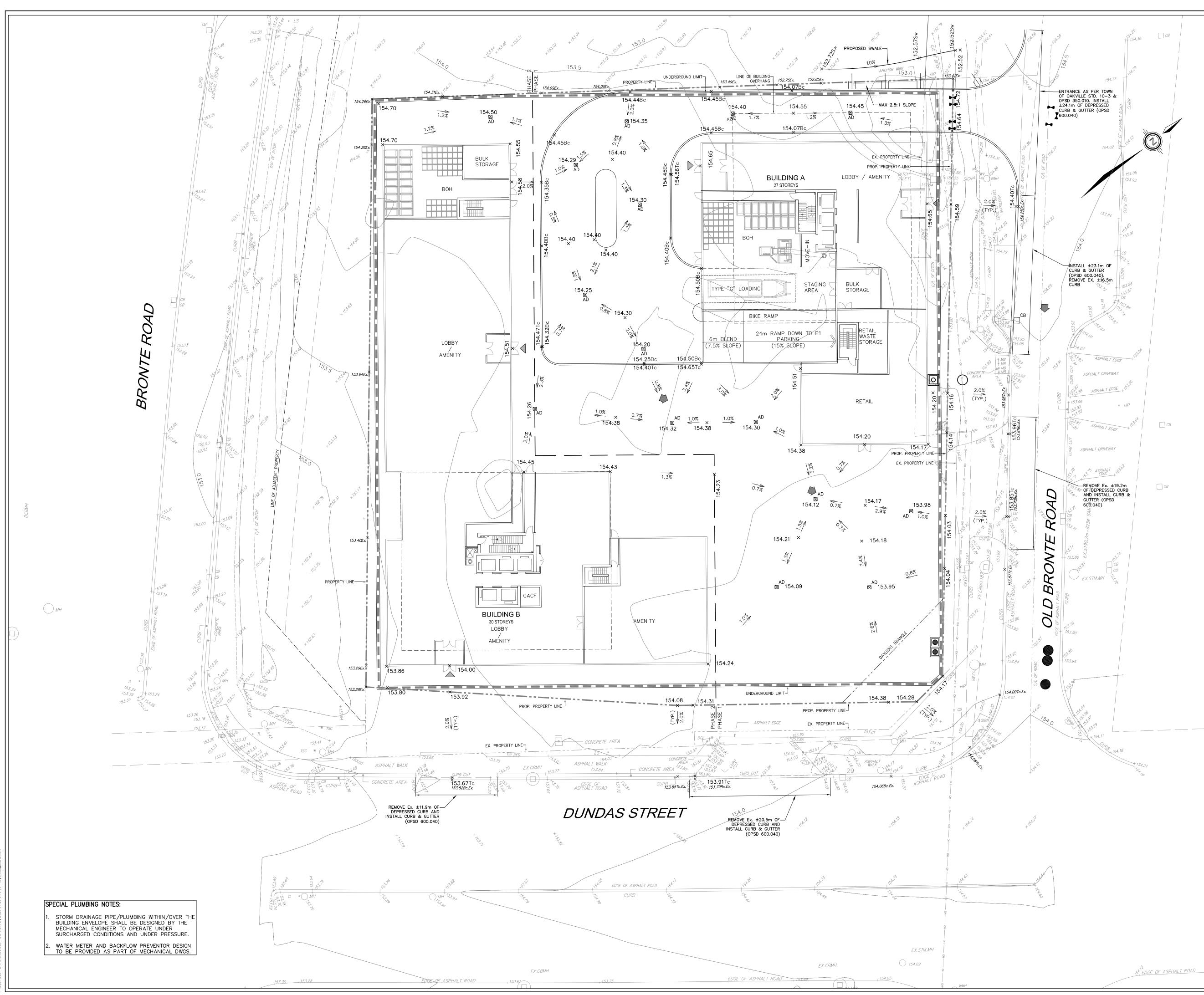
	DJECT NAME: Phase II ESA Hydrogeologi	RIN A, Ge	IG eote	PR0 chnica	JECT	NO.		21-1171	13/14	/15)SHEET treet W., Oc	<u>2 of 2</u> kville, Ontario
DRI	LLING METHOD: CME-75, S	Solid	Ste	m			RILLING	DATE:	Nove	ember	23, 2021	-
	SOIL PROFILE	L F		S/	AMPLES			N TESTING (SP			READING (ppm) 🗆 40 60 80	
)EPTH (metres)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	LAB ID:	TYPE NUMBER	"N" VALUE	SHEAR S	TRENGTH (Kpa 30 120 1	ı) ÷	MOISTURI	E CONTENT (%) 😑 20 30 40	PIEZOMETER OR WELL CONSTRUCTION
<u> </u>	GROUND SURFACE (m asl) REDDISH BROWN WEATHERED SHALE: moist to dry, hard.				RC-6	Rec	= 1.52m = 1.49m = 98% = 90%					- CRURCRUR
					RC-7	Rec	= 1.52m = 1.5m = 99% = 99%					PVC
					RC-8	Rec	= 1.52m = 1.47m = 97% = 93%					
					RC-9	Rec	= 1.52m = 1.49m = 98% = 84%					
					RC-10	Rec	= 1.52m = 1.38m = 91% = 86%					otted Pipe
	End of Borehole		15.24/ 139.28		RC-11	Rec	= 1.52m = 1.42m = 93% = 88%					Somm Slotted Sommary Silica Sam

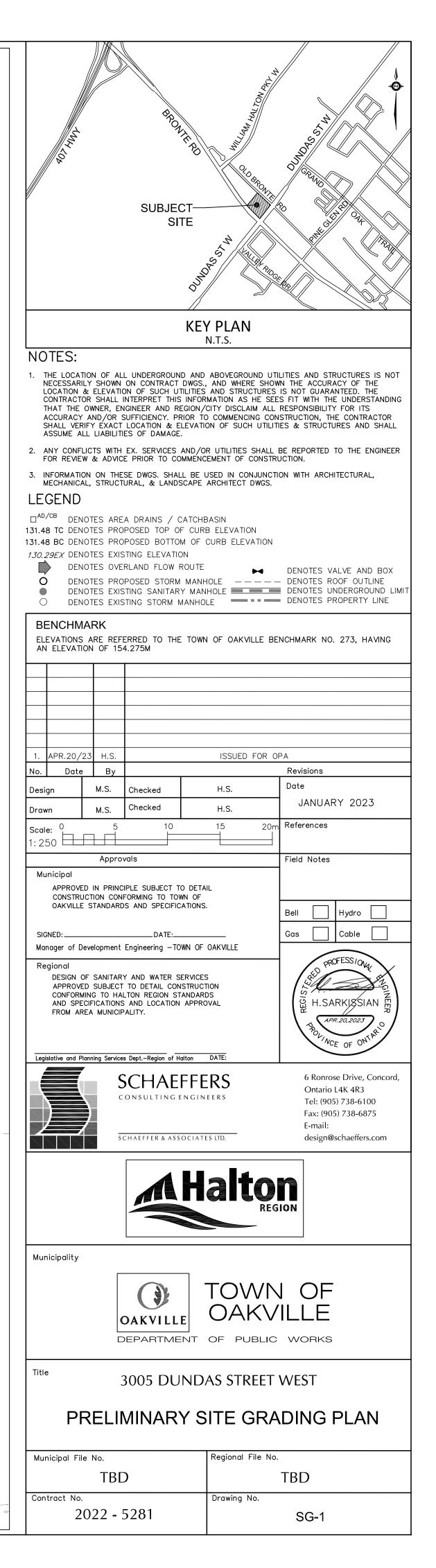
		ROJECT NAME: Phase II ESA Hydrogeolog RILLING METHOD: CME-75, S	A, Gec ical In	G PR(otechnico vestigati	DJECT I al &		F BOREHOLE NO : FE-P 21-11713/1 LOCATION: 3005 DO DRILLING DATE: Nov	4/15 undas Street W., Oc	
B B CROUND SURFACE (m est) masse FIL: Ground sum (sit/sity sand, trace of clay, growth, moist. SS-1 8 REDDISH BROWN SILT TILL: SS-3 SS-4 SS-3 SS-1 SS-3 SS-4 SS-4 G -2 -4 -4 -4 G -3 -4 -4 -4 G -4 -4 -4 -4	L E	DESCRIPTION	TRATA PLOT	EV. Ö PTH BE		"N" VALUE	20 40 60 80 Shear strength (Kpg) 🜩	20 40 60 80 MOISTURE CONTENT (%) 🔵	- PIEZOMETER OR WELL CONSTRUCTION
REDDISH BROWN WEATHERED SHALE: dry, hard.		FILL: dark brown sandy silt/silty	15			8			
REDDISH BROWN WEATHERED SHALE: dry, hard.		asphalt, roots & topsoil,			SS-2	28			nk PVC
REDDISH BROWN WEATHERED SHALE: dry, hard.		some clay/sand, trace of	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		SS-3	57			50mm blank P ¹ CLCLCLCLC CLCLCLCLC CLCLCLCLC COM
REDDISH BROWN WEATHERED SHALE: dry, hard.		very dense.	,						
$\begin{array}{c} \hline \\ \hline $		1		88/ 9.02					
End of Borehole Refusal to augering at 6.71m.		REDDISH BROWN WEATHERED SHALE:							- 50mm Slotted P
Refusal to augering at 6.71m.			6. 14	.71/ .7.19	SS-7 1	00+			
		Refusal to augering at 6.71m.							6.71m

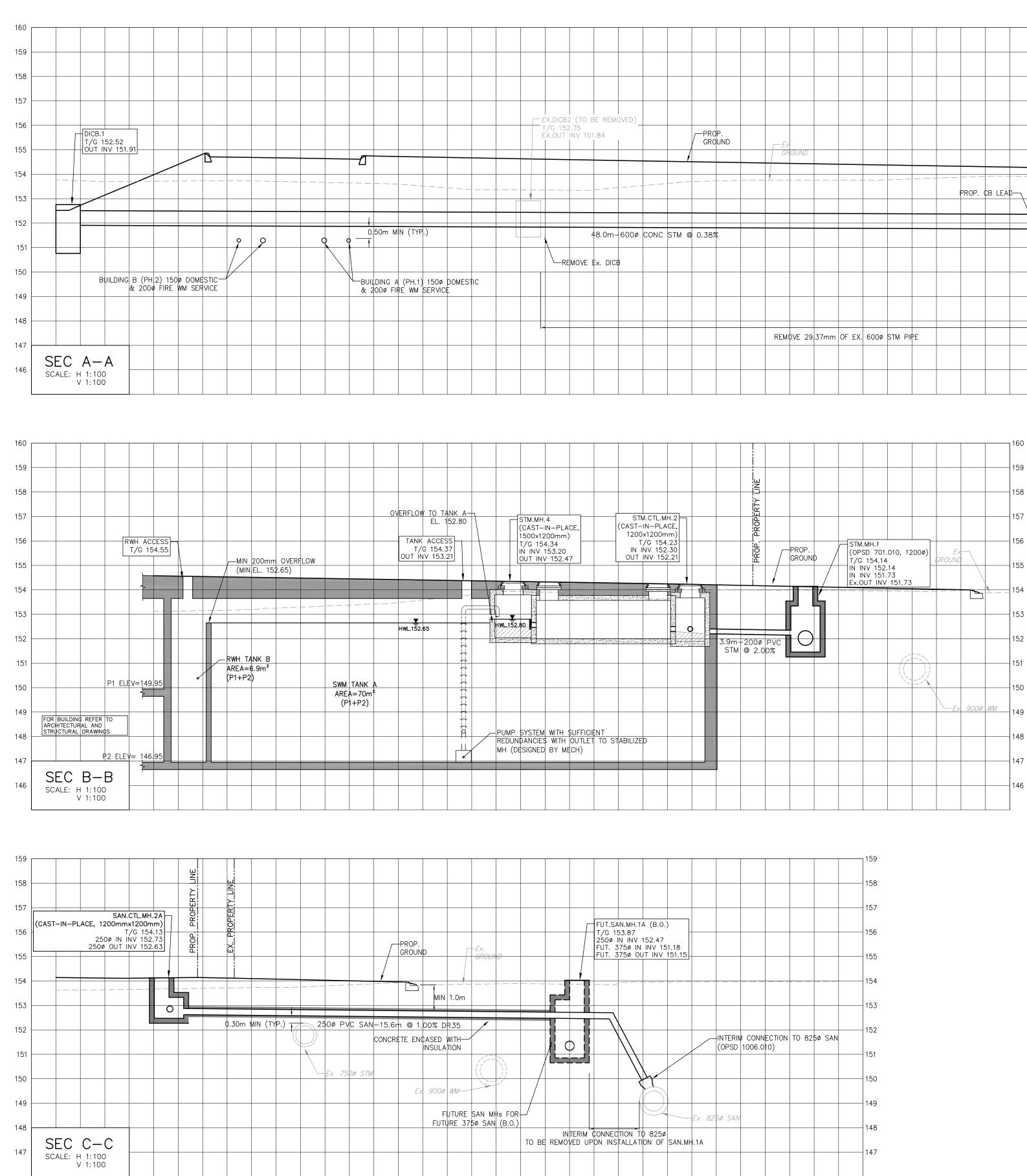
Phase II ESA Hydrogeologi LLING METHOD: CME-75, S SOIL PROFILE DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.	SIRATA PLOT	Inves	stigatic m sa	2 ng		PENETRATIO 20 SHEAR S	DATE: n testing (sp 40 60 8 strength (kpc		ber 23, /apour readin	2021 NG (ppm) □ 60 80	kville, Ontar PIEZOMETER WELL CONSTRU	OR
SOIL PROFILE DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.	STRATA PLOT	ELEV. DEPTH (m)	SA	TYPE NUMBER		PENETRATIO 20 SHEAR S	N TESTING (SF 40 60 8 STRENGTH (Kpc	РТ) 🔺 У 30	/apour readin 20 40	NG (ppm) 🗆 60 80		
DESCRIPTION GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		(m)		TYPE NUMBER	"N" VALUE	20 Shear s	4 <u>0 60 8</u> STRENGTH (Kpc	30	20 40	60 80		
GROUND SURFACE (m asl) FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		(m)	LAB ID:		"N" VALUE	SHEAR S	TRENGTH (Kpc					
FILL: dark brown/grey silty sand, trace of clay/gravel, occasional pieces of asphalt/metal, moist.		154.37		CC 1			80 120 1	60		30 40		
trace of clay/gravel, occasional pieces of asphalt/metal, moist.				SS-1	7	•						+
REDDISH BROWN SHIT THE				SS-2	28							ts
REDDISH BROWN SILT TILL.		1.60/ 152.77		SS-3	32				● 14%		- 50mm blank PVC	Bentonite Pellets - Concrete
some clay/sand, trace of gravel, moist, dense to very	A A A A A A A A A A A A			SS-4	100+							B(
dense.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SS-5	100+				• 12%			
	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SS-6	100+				6%		50mm Slotted Pipe —	Silica Sand
REDDISH BROWN WEATHERED		5.94/ 148.43										Sil
SHALE: dry, hard. End of Borehole		6.71/ 147.66		SS-7	100+						6.71m	
Refusal to augering at 6.71m.												
Groundwater Depth: on completi			n Nov	30.00	121.	1.67m		2021. 5	25m			



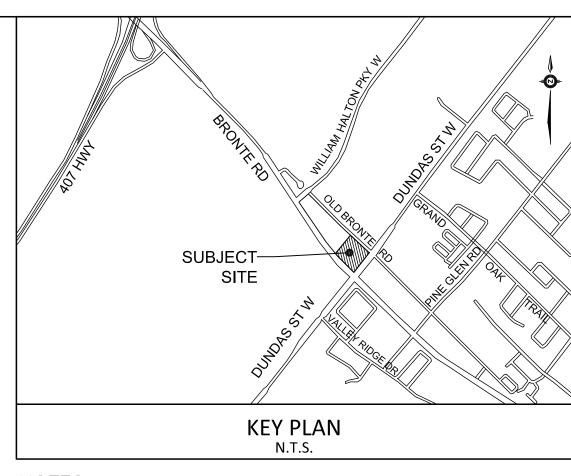
<u>s</u>	PROJECT NO. FE-P 21-11714	FIGURE 1.1:	SHEET NO.
	DATE. 1 December 2021	SITE PLAN WITH TEST HOLE AND MONITORING WELL	1.1
	SCALE. AS SHOWN	LOCATIONS	
		1	


A P P E N D I X E - E N G I N E E R I N G D R A W I N G S


(See Submission Package)



81\5281-DRAWINGS\5281-SS-1.DWG | 2023-04-20 5:15:15 PM | crodriguez-rincon



31\5281-DRAWINGS\5281-SEC-1.DWG | 2023-04-20 5:13:41 PM | crodriguez-rincon

																											160
																											159
																											158
																											157
		P. UND														((DPSD 70	1.010.1	M.MH.1 200Ø)								156
/	GRC		Ex GR	OUND												FX	200ø 600ø 600ø OL	N INV ⁻ N INV ⁻ N INV ⁻	154.14 152.14 151.73								- 155
							+						 	 						77							154
											PROP.	CB LEA		Ex.	CB LEA BE REM	D TO-					<u>\</u>						- 153
													b				N				EX.	600ø C	DNC S	TM @ 0.	38% Q		152
NC STM @	0.38%	7																			<u> </u>						
																											151
																						OF MH	I.1 AND	CONNE	M PIPE N CT TO MH	<u>0R IH</u> I.1	150
																											149
																					-						148
			REMO)VE 29	.37mm	OF EX	<. 600ø	STM P	IPE																		
										_																	

- NOTES:
- 1. THE LOCATION OF ALL UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON CONTRACT DWGS., AND WHERE SHOWN THE ACCURACY OF THE LOCATION & ELEVATION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. THE CONTRACTOR SHALL INTERPRET THIS INFORMATION AS HE SEES FIT WITH THE UNDERSTANDING THAT THE OWNER, ENGINEER AND REGION/CITY DISCLAIM ALL RESPONSIBILITY FOR ITS ACCURACY AND/OR SUFFICIENCY. PRIOR TO COMMENCING CONSTRUCTION, THE CONTRACTOR SHALL VERIFY EXACT LOCATION & ELEVATION OF SUCH UTILITIES & STRUCTURES AND SHALL ASSUME ALL LIABILITIES OF DAMAGE.
- ANY CONFLICTS WITH EX. SERVICES AND/OR UTILITIES SHALL BE REPORTED TO THE ENGINEER FOR REVIEW & ADVICE PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- INFORMATION ON THESE DWGS. SHALL BE USED IN CONJUNCTION WITH ARCHITECTURAL, MECHANICAL, STRUCTURAL, & LANDSCAPE ARCHITECT DWGS.

BENCH ELEVATION		ERRED TO THE	TOWN OF OAKVI	LLE BENCH	MARK NO	. 273, H	AVIN	3							
		+.273M													
1. APR.20 No. Dat			ISSUED	ISSUED FOR OPA Revisions											
No. Dat Design	e By M.S.	Checked	H.S.	Da											
Drawn	M.S.	Checked	H.S.		JANUAF	RY 202	3								
Scale: 0		10 	15	20m Ref	erences										
1:250 🗖	Appro				d Notaa										
Municipal	Appro	vais			ld Notes										
		IPLE SUBJECT TO FORMING TO TOWN													
		S AND SPECIFICAT		Bel	ı	Hydro									
SIGNED:		DATE:		Gas	s	Cable									
-	Development	Engineering - TOW	N OF OAKVILLE			OFESS/ON	$\overline{}$								
APPRO CONFOF AND SF FROM A	VED SUBJECT RMING TO HAI PECIFICATIONS AREA MUNICIF	Y AND WATER SER TO DETAIL CONST LTON REGION STAN AND LOCATION A PALITY.	IRUCTION NDARDS IPPROVAL		LEGISZ	RK1851 R.20,2023	AN I	CINEED							
		SCHAEF ONSULTING EN	FERS gineers		Ontario Tel: (905 Fax: (90 E-mail:	se Drive, (L4K 4R3 5) 738-61(5) 738-68 schaeffers	00 75								
			Halt												
Municipality	/														
	L	DAKVILLE	J	VN KVIL blic m	LE.										
Title		3005 DUN	NDAS STR	EET WI	EST										
	PI	RELIMIN	NARY S	ECTIC	ONS										
Municipal F	Tile No. TBE		Regional F												
Contract No		,	Drawing N	TB											
	2022 - !	5281		SEC-1											