

Environmental Study Report

Wyecroft Road Improvements from Bronte Road to Kerr Street

Appendix C: Fluvial Geomorphology

Submitted to Town of Oakville by IBI Group January 2020

Sinclair Rd

Wyecroft Road Improvements Municipal Class Environmental Assessment

Fluvial Geomorphological Assessments Fourteen Mile Creek and Tributary, Taplow Creek and Glen Oaks Creek

Prepared for: Town of Oakville c/o IBI Group Professional Services (Canada) Inc. 410 Albert Street, Suite 101 Waterloo, ON N2L 3V3

GEO

June 25, 2019 GEO Morphix Project No. 18049

MORPHIX

Geomorphology Earth Science Observations

Report Prepared by:	GEO Morphix Ltd. 36 Main St. N, P.O. Box 205 Campbellville, ON LOP 1B0
Report Title:	Wyecroft Road Improvements Municipal Class Environmental Assessment Fluvial Geomorphological Assessments Fourteen Mile Creek and Tributary, Taplow Creek and Glen Oaks Creek
Project Number:	18049
Status:	Final
Version:	1.1
First Submission Date:	August 22, 2018
Revision Date:	August 26, 2019
Written by:	Kevin Tabata, M.Sc., CAN-CISEC Suzanne St. Onge, M.Sc.
Approved by:	Paul Villard, P.Geo., Ph.D., CAN-CISEC
Approval Date:	August 26, 2019

Table of Contents

Introduction						
Study Site History 3						
Existi	ng Conc	litions	. 4			
3.1	Waters	hed-scale Characteristics	. 4			
	3.1.1	Geology	. 4			
	3.1.2	Fourteen Mile Creek Watershed	. 4			
	3.1.3	McCraney Creek Watershed (Taplow Creek and Glen Oaks Creek)	. 5			
3.2	Waterc	ourse Characteristics	. 6			
	3.2.1	Reach Delineation	. 6			
	3.2.2	General Reach Observations	. 7			
	3.2.3	Reconnaissance-level Assessments	. 9			
Mean	der Belt	Width Assessment	10			
Sumn	nary		10			
Recommendations11						
References						
	Introd Study Existin 3.1 3.2 Meand Sumn Recor Refere	Introduction Study Site Hi Existing Cond 3.1 Waters 3.1.1 3.1.2 3.1.3 3.2 Watero 3.2.1 3.2.2 3.2.3 Meander Belt Summary Recommenda References	Introduction			

List of Figures

Figure 1 · Fo	ourteen Mile	Creek and M	AcCranev Creel	crossings of	Wvecroft	Road	2
inguie I. It	Jui teen mile	CIEEK and P	icciancy cree	Crossings of	wyecioic	Noau	~

List of Tables

Table 1: Reaches of watercourses that cross Wyecroft Road	6
Table 2: Summary of reconnaissance-level assessments	. 9

Appendices

Appendix A Historical Aerial Imagery Appendix B Photographic Record Appendix C Field Sheets Appendix D Meander Belt Width Assessment

1 Introduction

The Town of Oakville initiated a Schedule C Municipal Class Environmental Assessment (EA) for improvements to Wyecroft Road between Bronte Road and Kerr Street, south of Queen Elizabeth Way (QEW). Wyecroft Road is a major east-west corridor that consists of two lanes and includes a section of South Service Road West between Third Line and Fourth Line. It has a semi-rural cross section with roadside ditches as well as inconsistent boulevard treatments. The Town wishes to complete road improvements to address active transportation, land servicing needs, safety concerns, structural and pavement deficiencies, drainage issues, and approved and proposed changes in land use. IBI Group Professional Services (Canada) Inc. was retained to complete the Class EA on behalf of the Town of Oakville.

There are four regulated watercourses that travel in a generally north to south orientation that cross Wyecroft Road. These include Fourteen Mile Creek and one of its tributaries, and Taplow Creek and Glen Oaks Creek, which are tributaries of McCraney Creek (**Figure 1**). As the Class EA is to consider road improvement alternatives that may involve alteration/reconstruction of watercourse crossings, a fluvial geomorphological assessment of existing conditions, and identification of opportunities and constraints, for each watercourse is required. GEO Morphix Ltd. was therefore retained as a subconsultant to IBI Group to complete these watercourse assessments.

The following activities were completed in support of the geomorphological assessment:

- Review available background reports and mapping (e.g., geology and topography)
- Historical assessment using aerial photographs to identify past channel modifications and changes to the system due to land use
- Field assessments for portions of accessible channel upstream and downstream of each of the four crossings to document channel conditions, including stability via Rapid Geomorphic Assessments, and to verify the results of the desktop assessment
- Meander belt width analyses on a reach basis, where appropriate
- Prepare a report that summarizes existing watercourse conditions and meander belt widths, where appropriate
- Provide recommendations, such as erosion protection measures and/or watercourse enhancements, for consideration at the detailed design stage

MORPHIX

FIGURE 1

Reach Extents Assessed

Fourteen Mile Creek and McCraney Creek crossings along Wyecroft Road

Town of Oakville

「「「「「」の「同じ

WYECROFT RD

0

Metres

200

2 Study Site History

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use/cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics.

Aerial photographs from 1934 (partial coverage of the study area, scale 1:20,000), 1954 (scale 1:15,840), 1966 (scale 1:20,000) and 1978 (scale 1:10,000), and recent satellite imagery from Google Earth Pro were reviewed to complete the historical assessment. Refer to **Appendix A** for copies of the imagery.

The 1934 aerial photograph captured only the upstream portions (north of the present day QEW) of the McCraney Creek and tributary of Fourteen Mile Creek watersheds. In 1934, the predominant land uses near the study area were agriculture and rural residential. Natural riparian vegetation had been removed in upstream areas prior to 1934, likely to maximize land available for agriculture. However, several relatively small woodlots remained adjacent to each watercourse approximately midway between present day QEW and Upper Middle Road West. Narrow treed riparian areas were generally present along each watercourse downstream of the woodlots but were absent in vicinity of present day QEW. The road network appeared to be limited to single lanes and concessions, with driveways and access roads to agricultural fields. Immediately upstream and downstream of present-day QEW, both Taplow Creek and Glen Oaks Creek were straightened, likely for agricultural purposes. Channel straightening combined with woody vegetation removal would increase stream power and thus erosion potential, as well as decrease complexity with respect to channel morphology and aquatic habitat.

In 1954, the primary land uses remained agriculture and rural residential. What is now the GO Transit rail line was visible in the 1954 photograph, although it was constructed much earlier. The QEW was widened and residential subdivisions were being constructed southeast of the study area.

Between 1954 and 1978, there were significant land use changes south of the QEW to the Lake Ontario shoreline. Commercial/industrial development was establishing adjacent to the rail line. A portion of Wyecroft Road, between Kerr Street and Fourth Line, was constructed by 1978. Another portion of Wyecroft Road, between Third Line and Bronte Road, also appeared to be under construction. The portions of Wyecroft Road were apparently constructed to accommodate large commercial/industrial facilities. The construction of these facilities resulted in further alterations to the tributary of Fourteen Mile Creek and Glen Oaks Creek, as they became confined to narrow corridors between properties. Fourteen Mile Creek was also affected by the construction of a larger, more complex interchange at QEW and Third Line. Although also historically altered, Taplow Creek maintained a slightly meandering planform downstream of the QEW, and travelled adjacent to an agricultural field.

While intensive residential development occurred further south of the rail line to the Lake Ontario shoreline, lands north of the QEW remained largely under agricultural use in 1978. All four subject watercourses north of the QEW had a buffer with establishing woody riparian vegetation. Along Fourteen Mile Creek, an online pond was present northwest of Upper Middle Road and Bronte Road, approximately 3 km (Euclidean distance) upstream of the crossing at Wyecroft Road. This pond would have likely acted as a sediment sink and reduced sediment supply to downstream reaches.

Since 1978, industrial/commercial development continued to expand between the rail line and the QEW, as well as to the immediate north. Numerous residential subdivisions were also constructed north of the QEW. While the roads associated with the residential developments required crossing structures over the watercourses, these watercourses also had narrow corridors with apparently mature woody vegetation to allow at least some level of natural channel function. The online pond observed on the 1978 aerial photograph was also no longer present.

South of the QEW, the development of commercial/industrial facilities along the rail line intensified. Although the tributary of Fourteen Mile Creek and Glen Oaks Creek remained generally unchanged in this area from 1978, Taplow Creek was realigned and straightened by 2004, again to accommodate the construction of commercial/industrial facilities.

Overall, the land use changes associated with development within and upstream of the study area have resulted in a significant increase in impermeable surface. Due to the age of the surrounding development and the prevailing stormwater management practices at the time of construction, there are likely few measures to effectively prevent stormwater runoff from rapidly being conveyed to the receiving watercourses. For example, there is an apparent lack of stormwater management ponds in the residential area between the QEW and Dundas Street. In contrast, the newer residential developments north of Upper Middle Road West contain modern stormwater management facilities, which may have been designed with low impact development strategies when compared to older subdivisions to the south. The lack of stormwater management in the older, settled areas would likely result in flashy flow regimes, enhanced erosion potential and sediment transport, and possible downstream flooding issues within and downstream of the study area.

3 Existing Conditions

3.1 Watershed-scale Characteristics

3.1.1 Geology

Channel morphodynamics are largely governed by the flow regime and the availability and type of sediments (i.e., surficial geology) within the stream corridor. Secondary variables that affect the channel include land use and riparian vegetation. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

Local surficial geology along Fourteen Mile Creek, Taplow Creek and Glen Oaks Creek consists of Paleozoic Bedrock (OGS, 2010). The bedrock is comprised of shale, limestone, dolostone, and siltstone of the Queenston Formation (OGS, 2011). Upstream (north) of QEW, surficial geology consists of a shore bluff or scarp and clay to silt-textured till derived from glaciolacustrine deposits or shale.

The study area is located within the Iroquois Plain physiographic region, which extends from the South Slope to the north to Lake Ontario. Specifically, the study area is characterized as Shale Plains, while areas upstream (north) of QEW are located on drumlinized till plains (Halton-Hamilton Source Protection, 2012 and Chapman and Putnam, 1984).

The shale bedrock, through which all watercourses in the study area travel, is an erodible material although less so compared to alluvial fines. The shale, once exposed, is vulnerable to hydraulic forces as well as weathering (e.g., freeze-thaw cycles), and can break down into smaller particles with a platy form. Larger pieces of shale on the channel bed can become imbricated and form a natural armour layer on the bed surface and, in doing so, protect underlying substrate from being transported downstream.

3.1.2 Fourteen Mile Creek Watershed

Fourteen Mile Creek flows in a primarily northwest-southeast direction through the study area and has a total drainage area of approximately 40 km² (TSH *et al.*, 2006). Its headwaters consist of three branches, originating north of Highway 407 in the Trafalgar Moraine, which is identified as an Earth Science Area of Natural and Scientific Interest (ANSI). This moraine extends from east of Bronte Creek

to just west of Sixteen Mile Creek north of Highway 407 and consists of reddish clayey till containing a significant amount of shale from the Queenston Formation (Chapman and Putnam, 1984). The area upstream of the QEW is designated as the Fourteen Mile Creek Valley Environmentally Significant Area (ESA) and has vegetated valley walls and floodplains (Halton-Hamilton Source Protection, 2012).

South of the QEW, there is one tributary that joins Fourteen Mile Creek. This tributary from the east was formerly a part of the McCraney Creek watershed but was diverted to discharge to Fourteen Mile Creek to address downstream flooding concerns along McCraney Creek. After crossing the QEW, the tributary travels south through the study area across South Service Road and then west along the GO Transit rail line to join Fourteen Mile Creek (Halton-Hamilton Source Protection, 2012). Land use in the headwaters consists of predominantly agricultural activities and rural residential development. The downstream portion of the catchment is highly urbanized, and includes commercial, industrial and residential land use.

Fourteen Mile Creek is known to support relatively healthy populations of Redside Dace (*Clinostomus elongatus*). This species is listed as endangered on the Species at Risk in Ontario (SARO) List and Schedule 1 of the *Species at Risk Act, 2002* (SARA). It therefore receives individual and habitat protection under the *Endangered Species Act, 2007* (ESA). At this time, a federal recovery strategy and formal definition of critical habitat has not been developed, and as such, this species receives only individual protection under SARA.

Fish community sampling was completed in April and May of 2002 and April 2005 as part of the North Oakville Creeks Subwatershed Study (TSH et al., 2006). Redside Dace were captured in the west branch of Fourteen Mile Creek in 2002 at two sampling stations located upstream of Dundas Street. The Natural Heritage Information Centre (NHIC) database, maintained by the MNRF, was accessed on June 11, 2018, to determine if recent records of Redside Dace occurred in vicinity of Wyecroft Road. Squares 17PJ0208, 17PJ0308 and 17PJ0408, each 1 km², contained records of Redside Dace from October 2000. The project team has subsequently confirmed with the MNRF that the main branch of Fourteen Mile Creek is considered regulated (occupied) Redside Dace habitat. NHIC database squares 17PJ0309 and 17PJ0409, which encompass the east tributary of Fourteen Mile Creek, also contained records of Redside Dace from 2000. Although consultation with the MNRF is ongoing, this tributary is assumed to contain regulated (contributing) Redside Dace habitat at this time.

According to Section 29.1 of Ontario Regulation 242/08 under the ESA, the extent of occupied Redside Dace habitat includes the meander belt width and 30 m vegetated riparian area on either side of the channel. Areas that are not vegetated (i.e., contain buildings or impervious surfaces) were not considered to contain regulated habitat as part of this study. Contributing habitat includes streams, headwater drainage features, groundwater discharge areas or wetlands that augment or maintains baseflow, coarse sediment supply or surface water quality of part of a stream or watercourse that contains occupied habitat, provided that the watercourse has an average bankfull width no greater than 7.5 m.

3.1.3 McCraney Creek Watershed (Taplow Creek and Glen Oaks Creek)

McCraney Creek has a relatively small drainage area of approximately 12.2 km² (Halton-Hamilton Source Protection, 2012). Similar to Fourteen Mile Creek, the headwaters of McCraney Creek originate north of Highway 407, in the Trafalgar Moraine. This system has two main tributaries: Taplow Creek and Glen Oaks Creek (Philips Engineering Ltd., 2008). These tributaries converge immediately north of the GO Transit rail line to form McCraney Creek, which continues in a southerly direction to Lake Ontario. Most of the catchment has been developed, with the exception of the headwater area. Urban storm sewers therefore discharge to the tributaries and help support perennial flow in the downstream reaches of McCraney Creek (Halton-Hamilton Source Protection, 2012).

The NHIC database was also reviewed for McCraney Creek. Redside Dace is not found in Taplow Creek or Glen Oaks Creek in the vicinity of Wyecroft Road. This is consistent with the Natural Environment Opportunities and Constraints Report prepared by LGL Limited (2012) in support of the Town of Oakville Transportation Master Plan (Switching Gears), which was finalized in February 2013.

3.2 Watercourse Characteristics

3.2.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are typically delineated based on changes in the following:

- Channel planform (pattern)
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Historical channel modifications

Four regulated watercourses cross Wyecroft Road within the study area: Fourteen Mile Creek, an unnamed tributary of Fourteen Mile Creek, and Taplow Creek and Glen Oaks Creek (tributaries of McCraney Creek). Typically, reaches are delineated following scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997) and the Toronto and Region Conservation Authority (2004). For this study, the full length of each reach was not verified due to site access limitations. Instead, the results of the desktop review of available information was used to first segment each watercourse in the vicinity of Wyecroft Road into reaches. Reach breaks (locations of adjoining reaches) were subsequently verified in the field. As the full length of each reach could not be assessed, **Figure 1** shows each reach to the extents verified in the field. **Table 1** provides a list of the reaches as well as their locations and the primary characteristics that define and distinguish each reach.

Reach	Extent Assessed	Length	Reach-defining Characteristics			
14MC-1	100 m south of QEW to first meander bend downstream of Wyecroft Road	585 m	Confined valley; bedrock channel; confined pattern planform; mature, wooded riparian buffer			
14MCT-1	Forested area north of QEW to QEW	75 m	Unconfined valley; bedrock channel; irregular meanders; immature, non-wooded riparian buffer			
14MCT-2	Wyecroft Road to GE Distribution Centre.	130 m	Unconfined valley; Concrete-lined bed and banks; straight channel; no riparian vegetation			

Table 1: Reaches of watercourses that cross Wyecroft Road

TC-1	125 m upstream and downstream from Wyecroft Road	250 m	Unconfined valley; Concrete cable block lined bed and banks; straight channel; immature riparian buffer.
GO-1	125 m upstream and downstream from Wyecroft Road	250 m	Unconfined valley; bedrock channel; narrow riparian buffer consisting of grasses and herbaceous species

3.2.2 General Reach Observations

A field investigation was completed on June 1, 2018 and included the following:

- Reach-scale habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow patterns, geomorphological units (e.g., riffle, run, pool), and riparian vegetation
- Descriptions of riparian conditions
- Estimates of bankfull channel dimensions
- Bed and bank material composition and structure
- Observations of erosion, scour, or deposition
- Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures

These observations and measurements were collected for the four regulated watercourses in the vicinity of Wyecroft Road, and are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix B**. Field sheets – reach summaries, habitat sketch maps and rapid assessments – are provided in **Appendix C**.

Fourteen Mile Creek

Reach 14MC-1 is a bedrock channel conveying flows in an easterly direction from the QEW to the GO rail line. The channel occupies a confined valley with a wide and mature riparian buffer populated predominantly by deciduous trees. A well-defined riffle-pool sequence was present within the moderately-sloped channel, with exposed Paleozoic bedrock in the pools and platy cobbles and gravels in the riffles. Channel banks were composed of clay and silt and were typically near-vertical and frequently undercut. Willow rootlets were often observed at the base of channel banks. A valley wall contact was observed approximately 75 m upstream (northwest) of the Third Line crossing, and 100 m downstream (southeast) of the Wyecroft Road crossing. Average bankfull width and average maximum bankfull depth were 6.53 m and 0.93 m, respectively.

Flows are conveyed across Wyecroft Road through a twin box culvert (Crossing C1). The south barrel conveys flow up to approximately the bankfull discharge, as the north barrel has a well-vegetated bank that only allows flows to enter only during higher flow events. Immediately upstream of the culvert and approximately 5 m downstream of a confluence of Fourteen Mile Creek and a storm outfall channel originating at Third Line, a concrete weir spans the channel bed and provides grade control. On the downstream side of the south twin box culvert barrel, the south channel bank has developed at the outlet, constraining the flow path to a 2.5 m wide gap. A fallen tree at this location further impedes flow. This partial blockage of the south barrel has evidently caused flows to locally overtop the channel bank during storm events before spilling back into the channel.

Tributary of Fourteen Mile Creek

Reach 14MCT-1 is an irregularly meandering channel within an unconfined valley conveying flows southeastwards towards the QEW. The wide riparian buffer is composed of grasses and herbaceous

vegetation. The channel has riffles and pools, with exposed bedrock typically in the pools, and cobble and gravel in the riffles. The channel has a moderate gradient, and little erosion was noted along the channel banks. The average bankfull width within the reach was 2.9 m, and the average maximum bankfull depth was 0.53 m.

A 100-m long box culvert (Crossing C3), with a 3 m span and 1.5 m rise, conveyed flows across the QEW and South Service Road to Reach 14MCT-2. Notably, at the upstream end of the culvert, sandbags were found spanning the channel. The placement of these sandbags suggest that they may have been used to control creek flows during construction activities and subsequently forgotten. Within the box culvert, there were two drops that were about 0.3 m high, which likely inhibits fish passage. A third drop was observed at the culvert outlet; this drop did not appear to be a result of downstream channel degradation.

Reach 14MCT-2 is a straight, concrete-lined trapezoidal channel bounded by commercial/industrial properties. The bed is 3.25 m wide and has no morphological variability, and the channel banks have a 1.5:1 slope. The bankfull level was assumed to be demarcated by the discolouration on the concrete banks. The average bankfull width and average maximum bankfull depth within the reach were estimated to be 4.3 m and 0.80 m. While there was no in-stream vegetation within the first ~100 m downstream of South Service Road, reed canary grass and cattails were found along the channel margins farther downstream.

Taplow Creek

Reach TC-1 is a straightened channel lined with articulated concrete blocks. The channel travels in a southeasterly direction through a narrow (~15 m wide) corridor between commercial properties upstream of Wyecroft Road, crosses the road at an angle, and along Fourth Line south of Wyecroft Road before crossing Fourth Line just north of the GO rail line. Upstream of Wyecroft Road, riparian vegetation consisted of mostly 10- to 20-year-old deciduous trees and herbaceous vegetation, whereas south of Wyecroft Road, the immediate riparian area was vegetated with only grasses.

Due to the articulate concrete blocks that lined the channel, there was no complexity in the bed morphology. The articulate concrete blocks were in good condition and provided robust erosion protection to the channel. The average bed width was 1.60 m, and the average channel width and maximum depth were 3.3 and 0.76 m.

Immediately upstream and downstream of Wyecroft Road, retaining walls lined the channel to direct flows into and out of the twin box culvert (Crossing C6), which had 3 m barrel spans and 2 m rises. Although both barrels conveyed flows, most of the low flow passed through the east barrel due to the sediment deposition in the west barrel. At the outlet of the west barrel, a well-vegetated bar partially impeded flow.

Glen Oaks Creek

Reach GO-1 is a 10 to 20 m wide corridor with a previously straightened channel that travels in a southeasterly direction across Wyecroft Road. A narrow (<5 m wide) and fragmented strip of mature deciduous trees acted as the channel's riparian buffer. The channel had a riffle and pool bed morphology despite the generally straight channel alignment. Pool beds were typically composed of exposed bedrock, while riffle substrate consisted of cobbles and boulders. Bank materials were largely clay and silt with willow rootlets. Notably, bricks and concrete blocks were commonly found along the bed and banks, having presumably been deposited into the creek as waste material. The average bankfull width and average maximum bankfull depth were 3.45 and 0.76, respectively.

The Wyecroft Road crossing (Crossing C7) is a 6 m span box culvert. The channel was partly misaligned with the culvert inlet, as the western two-thirds of the culvert inlet was blocked by a well-vegetated bar. Within the culvert, there was sediment accumulation forcing flows to make a right angle turn near the inlet and continue along the western internal wall of the culvert due to sediment deposition along the opposite side. At the culvert outlet, the sediment deposition through the culvert extends beyond the culvert end and blocks the eastern two-thirds of the outlet.

3.2.3 Reconnaissance-level Assessments

Channel stability was semi-quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric form adjustment. The index produces values that indicate whether the channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40) or adjusting (score >0.41).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system and considers the ecological function of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

Reaches were also classified according to a modified Downs (1995) Channel Evolution Model and the River Styles Framework (Brierley and Fryirs, 2005). The Downs Model describes successional stages of a channel as a result of a perturbation, namely hydromodification. Understanding the current stage of the system is beneficial as this allows one to predict how the channel will continue to evolve or respond to an alteration to the system. The River Styles Framework (Brierley and Fryirs, 2005) provides a geomorphological approach to examining river character, behaviour, condition, and recovery potential.

These reconnaissance-level assessments can be applied to alluvial or semi-alluvial systems. For this study, only the reaches associated with Fourteen Mile Creek, 14MC-1, and its tributary, 14MCT-1, were eligible. The results of these assessments are summarized below in **Table 2**. Taplow Creek and Glen Oaks Creek were not assessed using these indices as Taplow Creek consisted of a hardened channel and Glen Oaks Creek was a channelized feature.

	RGA			RSAT			Downs	
Reach	Score	Condition	Dominant Systematic Adjustment	Score	Condition	Limiting Features	Channel Evolution Model	River Styles Framework
14MC-1	0.28	In transition	Degradation, widening	30	Good	Channel Stability	E - enlarging	Meandering, mixed load
14MCT-1	0.12	In regime	Degradation	27	Good	Water Quality	S - stable	Meandering, suspended load

Table 2: Summary of reconnaissance-level assessments.

4 Meander Belt Width Assessment

Most watercourses in southern Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no spatial constraints. A meander belt width, or erosion hazard assessment, estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining, for example, the potential limit of an activity (e.g., development) adjacent to a watercourse or the floodplain width required to restore a stream. In addition, the meander belt width forms the basis for determining the limits of regulated Redside Dace habitat in occupied and recovery reaches, as defined in Section 29.1 of Ontario Regulation 242/08.

The meander belt width was delineated only for Fourteen Mile Creek Reach 14MC-1 as this reach was the only one that was not straightened, channelized and armoured within the road allowance. To do so, available historical aerial imagery was reviewed to determine the largest amplitude of a meander bend of Fourteen Mile Creek relative to the general channel alignment, between Wyecroft Road and the GO rail line. A maximum meander amplitude of 42 m was measured in the 2015 First Base Solutions orthophoto provided by the Town of Oakville. The bankfull channel width was added to this value, as well as a 20% factor of safety. This resulted in a final meander belt width of 58 m. A 30 m buffer was applied to either side of the meander belt width at Wyecroft Road to define the regulated Redside Dace habitat limits, as per Section 29.1 of Ontario Regulation 242/08. The meander belt width and extent of regulated Redside Dace habitat are shown in **Appendix D**. Note that the extent of regulated habitat does not account for the built environment (e.g., existing roadways, buildings, other non-vegetated areas).

5 Summary

Fluvial geomorphological assessments of watercourses were completed in support of the Schedule C Municipal Class EA for the improvements to Wyecroft Road between Bronte Road and Kerr Street. The study included the characterization of the four regulated watercourses that cross Wyecroft Road – Fourteen Mile Creek, a tributary of Fourteen Mile Creek, Taplow Creek and Glen Oaks Creek – and involved desktop reviews and assessments, field investigations, and the delineation of meander belt width and regulated Redside Dace habitat for Fourteen Mile Creek.

The RGA results for Reach 14MC-1 indicated the reach was in transition (score of 0.28), with evidence of degradation and widening. Reach 14MCT-1 was assessed to be in regime (score of 0.12). Reach 14MC-1 was assessed to be in good condition according to the RSAT (score of 30), with channel stability as the limiting feature. The Fourteen Mile Creek tributary was also assessed to be in good condition (score of 27) with water quality as the limiting feature. RGAs and RSATs were not completed for Taplow Creek and Glen Oaks Creek as Taplow Creek consisted of a hardened channel and Glen Oaks Creek was channelized.

A meander belt width of 58 m was calculated for the main channel of Fourteen Mile Creek at Wyecroft Road, based on the maximum amplitude of the largest meander bend located downstream of Wyecroft Road, the average channel bankfull width, and a 20% factor of safety. A 30 m riparian buffer was added to either side of the meander belt width to delineate the extent of regulated (occupied) Redside Dace habitat, as per Section 29.1 of Ontario Regulation 242/08. Meander belt widths were not delineated for the Fourteen Mile Creek Tributary, Taplow Creek, or Glen Oaks Creek due to past straightening and armouring, which precluded the development of a sinuous channel planform.

6 Recommendations

It is understood that the preferred alternative for each crossing associated with the four regulated watercourses has been determined to be as follows:

- Crossing C1 (Fourteen Mile Creek) replacement with 20 m clear span bridge
- Crossing C3 (Tributary of Fourteen Mile Creek) extension of 3.06 m x 2.6 m box culvert
- Crossing C6 (Taplow Creek) no change to twin 3.0 m x 1.8 m box culvert
- Crossing C7 (Glen Oaks Creek) replacement with 6.1 m x 1.5 m open-bottom box culvert

With respect to Crossing C1 at Fourteen Mile Creek, the 58 m meander belt width could potentially be accommodated with an equivalent span crossing structure. However, such a large structure would be inconsistent with the size of the existing crossing structure at Third Line only 120 m upstream as well as the culvert across the GO Transit rail line. The proposed 20 m clear span bridge instead provides a more suitable and significantly improved replacement as its span is more than three times the bankfull channel width (6.53 m), which allows for the design of a bankfull channel through the clear span bridge as well as terrestrial wildlife passage.

The channel under the proposed clear span bridge should be designed based on principles of natural channel design while recognizing that there would be a lack of natural soil stabilization through vegetation establishment due to limited sunlight. It is therefore recommended that the channel boundary material and the overbank area for the full bridge span be comprised of riverstone that is hydraulically sized to resist entrainment. The depth of riverstone relative to the top of the overbank elevation should be greater than the depth of pools to ensure that the bridge footings are protected. It should be noted that the Ministry of the Environment, Conservation and Parks, which now administers the ESA, may have concerns with the extent of riverstone use, and an acceptable alternative may need to be explored.

To provide habitat complexity through the 23.9 m long clear span bridge, the channel morphology should vary with the inclusion of riffles and pools. The pools would ideally have a bankfull depth of 1 m or more, depending on the assessed stability of the channel cross-sectional geometry, as this depth would be suitable for Redside Dace. A veneer of gravel-sized riverstone on the channel bed would also benefit Redside Dace, understanding that this material could ultimately be redistributed or transported downstream as it may have a low entrainment threshold. A more permanent and highly recommended channel treatment that would enhance Redside Dace habitat would be to install large woody debris or root wads along the channel banks, particularly along the outside bank of channel bends. These wood features would not only provide microhabitat, but also a source of roughness to retard flow velocities. They can also promote bed scouring to maintain pool depths depending on the design.

It is understood that the alignment of South Service Road, east of Third Line, would be modified such that the proposed clear span bridge would be positioned downstream of the existing Crossing C1 structure. The newly opened channel section would therefore also need to be restored. This also provides an opportunity to remove the concrete weir at the existing culvert inlet, unless it still provides a function. The restoration approach outlined above for the channel through the clear span bridge should be utilized, but adapted with the recognition of the benefit afforded by sunlight availability. Here, the channel boundary materials can be more consistent with that found elsewhere in the reach. The shale bed cannot be easily replicated, but the transport of shale fragments from upstream may eventually be deposited to provide similar bed material composition. The banks should be restored with a form of bioengineering suitable based on the modelled hydraulics. This could simply involve woody plantings to provide soil stability (with a biodegradable erosion control blanket for immediate erosion protection), but should include large woody debris or root wads for enhanced stability and aquatic habitat.

Crossing C3 at the tributary of Fourteen Mile Creek is proposed to be extended on the south side of the road. The perched condition of Crossing C3 outlet could be addressed as part of the culvert extension and/or receiving channel restoration. Further discussion with the regulatory agencies is recommended as this tributary is currently considered to be a contributing Redside Dace reach, a designation that may change. Moreover, there are two additional drops within the culvert that may impede fish passage.

With respect to Crossing C6, there is an opportunity to improve conditions for fish, should this be desired. Currently, both barrels of the twin box culvert have sediment accumulation, but the east barrel has less with a low-flow channel travelling along one side. Culvert capacity may need to be restored by removing sediment, but a low-flow channel could still be installed through the east barrel for fish passage during baseflow conditions if the existing culvert is sufficiently embedded to allow for a certain depth of substrate that would be stable and not slide on the concrete slab (to be assessed at the detailed design stage). It should be noted, however, that substrate, or a functionally equivalent measure, would need to be placed in the west barrel to direct low flows through the east barrel, and this could affect culvert capacity to an extent that results in an unacceptable increase in upstream flooding potential. If the existing culvert is not embedded, the installation of baffles or other means of reducing low-flow velocities can be explored, but again its feasibility must be evaluated with consideration to culvert hydraulics/capacity, upstream flooding and the assessed importance of improving fish passage and habitat.

The replacement of Crossing C7 at Glen Oaks Creek with a longer open-bottom structure offers an opportunity to reinstate a low-flow channel across the road and improve fish habitat and passage. Similar to Crossing C1, natural channel design principles could be employed to develop a channel through the culvert. The replacement culvert will be longer than existing and therefore will require channel works. The channel beyond the proposed ends of the culvert can be restored so that it better aligns with the culvert. Bioengineered banks are recommended for the restored channel to provide aquatic habitat benefits and enhance stability.

7 References

Brierley, G.J. and Fryirs, K.A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing. Malden, MA, USA.

Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2, Map 226.

Cole Engineering Group Limited. 2013. Switch Gears Final Report. Prepared for the Town of Oakville.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Endangered Species Act. 2007. Statutes of Ontario, 2007, Chapter 7

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Halton-Hamilton Source Protection. 2012. Assessment Report for the Halton Region Source Protection Area. Version 2.1. Prepared for the Halton-Hamilton Source Protection Committee.

Ministry of the Environment (MOE). 2003. Ontario Ministry of the Environment. Stormwater Management Guidelines.

Montgomery, D.R. and Buffington, J.M. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin (109), 5: 596-611.

Newson, M. D., Newson, C. L., and Ne, T. 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 2: 195–217.

Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario. Ontario Geological Survey. Miscellaneous Release – Data 128-REV.

Ontario Geological Survey (OGS). 2011. 1:250 000 Scale Bedrock Geology of Ontario. Ontario Geological Survey, Miscellaneous Release ---Date 126-Revision 1.

Ontario Ministry of Natural Resources (MNR). 2001. Technical Guide–River & Stream Systems: Erosion Hazard Limit.

Ontario Streams. Undated. Fourteen Mile Creek Redside Dace Monitoring and Rehabilitation.

Philips Engineering Ltd. 2008. Town-Wide Flood Study, Town of Oakville. Prepared for the Town of Oakville.

Toronto and Region Conservation Authority (TRCA). 2004. Belt Width Delineation Procedures.

Totten Sims Hubicki Associates Ltd. (TSH), Parish Geomorphic Ltd., Natural Resources Solutions Inc., Donald G. Weatherbe Associates Inc., Morrison Environmental Limited, and Environmental Water Resources Group Ltd. 2006. North Oakville Creeks Subwatershed Study. Prepared for the Town of Oakville.

Species at Risk Act. 2002. Statues of Canada, 2002, Chapter 29.

Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.

Appendix A Historical Aerial Imagery

Scale: 1: 10,000 Source: Ministry of Natural Resources and Forestry

Source: Ministry of Natural Resources and Forestry

Source: Ministry of Natural Resources and Forestry

Year: 1978 Scale: 1: 10,000 Source: Ministry of Natural Resources and Forestry

Year: 1978 Scale: 1: 10,000 Source: Ministry of Natural Resources and Forestry

Year: 1978 Scale: 1: 10,000 Source: Ministry of Natural Resources and Forestry

Location: Wyecroft Road, Town of Oakville Year: 1978 Scale: 1: 10,000 Source: Ministry of Natural Resources and Forestry

Location: Wyecroft Road, Town of Oakville Year: 2017 Scale: Not Applicable Source: Google Earth Pro

Appendix B Photographic Record

geomorphix.com | The science of earth + balance.

Appendix C Field Sheets

NEALI LIAI ALL		רו טובע בעו				Observations		
Date:	1018-06-61	stream/Reach:	L-JMH1	1				
Weather:	15°C, Outicast	.ocation:	Third Live	SSer	110 Rd. 1	Dakull	e	
Field Staff:	AP, BM2	Natershed/Subwatershed:	14 Mile	Ovec	1			
JTM (Upstream)		JTM (Downstream)			-			
Land Use 6 4 Vall (Table 1)	ley Type Channel Type Channel Zo (Table 2) (Table 3)	A) C Flow Type (Table 5)	Ground	lwater	Evidence:			
kiparian Vegetation		Aquatic/Instream Ve	getation		Water Q	uality		
ominant Type: Cover Table 6)	age: ^{Channel} Age Class (yrs): Encroachment: widths Age Class (yrs): Encroachment: ne 🗌 1-4 🔲 Immature (<5) (Table 7)	Type (Table8) /	Coverage of Re Density of V	ach (%) S		Ddour (T	able 16)	
pecies: C Fra	gmented 🛛 4-10 🗌 Established (5-30) 🖓 ntinuous 🗌 > 10 🔍 Mature (>30)	 Present in Cutbank Present in Channel Not Present 	C Low	wDJ/50m:		Turbidity	(Table 17)	-
Channel Characteristics								
inuosity (Type)	Sinuosity (Degree) Gradient Numb	er of Channels	Clay/Silt	Sand Gra	vel Cobble	Boulder	Parent	Rootlet
(Table 9) 5	(Table 10) 2 (Table 11) 2 (Table	12) 1 Riffle Substra	ate				Þ	
ntrenchment	Type of Bank Failure Downs's Classification	Pool Substra	ate 🕅				$\not =$	
(Table 13) 1	(Table 14) 2 (Table 15)	Bank Material	ø				⊭	
ankfull Width (m)	U 7.6 C 9 wetted width (m) 2	2 22 04 5	9.5.6 4.4 Bank	Angle Ba	nk Erosion	Notes:		
ankfull Depth (m)	07 1.3 0.4 wetted Depth (m) 0	3 637 0.11 0.	16,057, 61 [] 30	- 60	< 5% 5 – 30%			
iffle/Pool Spacing (m)	40 % Riffles: 10 % Pools: 20	Meander Amplitude:	T TUN	- 90 dercut	30 - 60% 60 - 100%			
'aol Depth (m)	1.5 Riffle Length (m) 10 Undercuts (m)	0.5 Comments:	1					
/elocity (m/s)	Viffle ball / ADV /	Estimated			1			

х

-
-
a)
5
×
Ś
ČĴ.
_
7.5
•••
-
a)
<u> </u>
5
U
T
=
σ
~
<u> </u>
()
-
_
_
C
=
10
d 1
.
\sim

GEO MORPHIX Georges (As Earth Scient

Date:	1.1	1/2019	Stream/Reach:	IMMC. Und.
	Dunc_	1010	Stream, Keach	Torrer Upst (rom
Weather:	Overcas	1, 15°C	Location:	Thudlive Wyeciat
Field Staff:	AB, BH	12	Watershed/Subwatershed:	14 Mile Creek
Features			Site Sketch:	
Reach b	reak	0.000		Weir N
x X Cross-se	ction		W / Re	itter a (the
	ection		VV - (F)	X
✓ Riffle			N S DE	1 100 100 11
O Pool			M L () M	516/6 5/16/
Medial b	ar		KI IC SSI	11 5 65 V 1
####### Eroded	bank		V/ 11 201	118 115 11
Undercu	t bank		VIIIA	CI GELIVI
KXXXXX Rip rap/	stabilization/gabion		11 200	100 mini
Leaning	uce		N TATA	11 3 C 2V C 5 V
Fence	outfall	1		Cur VIUS
Cuivery	wetland	5	r - 29-5-1-	
WWW Graces	nadanu		545 (5	ms Third line
Tree				- I I'M'S FINC
Instream	log/tree		-+++-	
XXX Woody	ebris		V / Z ! all	
只 Station	ocation		W W / / / / /	4 91-
Vegetat	ed island		IVI Dui OT	Parking
Flow Type	1.4.1		N. State	
H1 Standing	water		VII STA	Lut
H2 Scarcely	perceptible flow		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
H3 Smooth	surface flow		$\left \left(L^{-} \right) \right $	
H4 Upwellin	g		Vale) jal	4 411
H5 Rippled				
H6 Unbroke	n standing wave		All Alman A	Y-P5,91
H7 Broken	tanding wave		VI CALL	
HO Eroo fall			Y C 2LEV	
Substrate			C VIII NO	0, 31
S1 Silt	S6 Sma	ll boulder	1 A X A	
S2 Sand	S7 Larg	e boulder	Winth-	Powed S
S3 Gravel	S8 Bimo	dal	KI LALE	
S4 Small co	bble S9 Bedr	ock/till		Constant
S5 Large co	bble		V Shi	Shabs
Other			1 00 5354	
BM Benchm	ark EP Erosi	ion pin	5 00 2	(8)
BS Backsig	nt RB Reba	ır	NO CORSI	7
DS Downstr	eam US Upst	ream		
WDJ Woody	lebris jam TR Terra	ace	431:1	$\left(\right)$
VWC Valley w	all contact FC Floor	d chute		Scale:
BOS Bottom	of slope FP Flood	d plain	Additional Notes:	
TOS Top of s	ope KP Knic	k point		

GEO MORPHIX

Date:		Jun 1 2018	Stream/Reach:	14MC, DS
		0.11 1 950r	Location:	S Service Rd & Bil Lite
Weathe	er:	Overcast LDC	Wetershed /Subwatershed:	14 Mile Creek
Field St	taff:	(113, BM =	Watersneu/Subwatersneu	
	Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank Rip rap/stabilization Leaning tree Fence Culvert/outfall Swamp/wetland Grasses Tree Instream log/tree Woody debris Station location	i/gabion	Site Sketch:	SUS IN
Flow Ty H1 2 H2 3 H4 4 H5 1 H6 1 H7 1 H8 0 H9 1	Vegetated island pe Standing water Scarcely perceptible Smooth surface flow Upwelling Rippled Unbroken standing wa Chute Free fall	e flow v wave ve		B B Box Culver
S1 2 S2 2 S3 0 S4 2 S5 1 Other BM 1	Silt Sand Gravel Small cobble Large cobble	 S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till EP Erosion pin 	WWW WW	1 V CB CC
BS I DS I WDJ V VWC V BOS I	Backsight Downstream Woody debris jam Valley wall contact Bottom of slope Top of slope	RBRebarUSUpstreamTRTerraceFCFlood chuteFPFlood plainKPKnick point	Additional Notes:	Scale:

Completed by: <u>AB</u> Checked by: ____

Data						10011			
Date:	1.50	018-00-01	Stre	am/Reach:		IMMIC-	1		
Weather:	25	of Overeast	Wate	ershed/Subwater	shed:	14 Mil	Cri	erk	14
Field Staff:	R	B. BM2	Loca	tion:	1	third Line !	5.Selv	alefa (Dolenth
Automa			Geomorpholo	gical Indicator			Pr	esent?	Factor
Process	No.	Description					Yes	No	Value
	1	Lobate bar					1	1	
	2	Coarse materials in	riffles embed	ided			1.	17	
Evidence of	3	Siltation in pools						1	A
Aggradation	4	Medial bars	-				1	1	$\left\{ \right\}$
(AI)	5	Accretion on point	bars					1	- ~
	6	Poor longitudinal so	orting of bed	materials			1	1	
	7	Deposition in the o	verbank zone				1	1	-
			2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sun	n of indices =	C	-7	-
	1	Exposed bridge foo	ting(c)						1
	2	Exposed projection	ctorm course	(pipeline / sta			-	1	-
	2	Exposed sanitary /	storm sewer	/ pipeline / etc.				-	-
Evidence of	3	Elevated storm sev	ver outrali(s)					,	-
	4	Charmined gabior	Daskets / co	ncrete aprons / etc.			-	-/	-nc
Degradation	5	Scour pools downs	cream or cuive	erts / storm sewer c	outlets			1	10.21
(DI)	7	Cut face on bar for		al a sa bi a s		_	-	1	-
	0	Terrace out through	o knickpoint m	nigration			1.	-	
	8	Furnace cut through	n older bar ma	aterial			1	-	-
	10	Suspended armour	layer visible				1	-	-
	1 10		undisturbed o	verburgen / bedroc	к Sun	n of indices =	ú	3	-
	1.		/				1 .		1
	1	Fallen / leaning tre	es / rence pos	sts / etc.			- 1		-
	2	Expand tree roots	e organic debr	15			-	/	4
	3	Exposed tree roots	tree roots our on inside meander bends						-
Evidence of	4	Basal scour on Insid							
Widening	6	Outflanked ashien	hadkets (ann	-	12	0.57			
(WI)	7	Longth of basal see	1 baskets / concrete walls / etc.					-	-
	8	Exposed length of	aroviouchy bur	ind pipe (cable (of			/	-	-
	9	Exposed length of p	top of bank	ied pipe / cable / el			1	-	-
P.	10	Exposed building for	undation				1		
	1 10	Laposed building to			Sun	of indices =	4	Z	-
	1	1			Jun	ror malees -	1-1		
	1	Formation of chute	(s)					1	
Evidence of	2	Single thread chan	nel to multiple	e channel				1	1
Planimetric	3	Evolution of pool-riffle form to low bed relief form Cut-off channel(s) Formation of island(s)						1	()
Form	4							1	
(PI)	5							1	
	6	Thalweg alignment	out of phase	with meander form			-	1	
	7	Bar forms poorly fo	rmed / reworl	ked / removed	Curr	of indicas -		1-1	
			-		Sun		10	1.1	6.04
Additional note	s:			Stability I	ndex ((SI) = (AI+	DI+WI+	-PI)/4 =	10.18
			Condition	In Regime	InT	ransition/S	tress	In Adju	stment
			SI score =	0.00 - 0.20	E	0.21 - 0.4	0		0.41

Completed by: _____ Checked by: _

Date:	Drug my cu	Stream / Peach		ILIMC A	
Marthan	2011-06-01	Sueam/ Reach:		Ignic-1	01112
weatner:	2Sec Overcast	Location:		Thud Line S.S.	ervice Pld. W. Oglevilla
Field Staff:	(AIS, ISM C	Watershed/Subwate	rshed:	19 Mile Cree	K
Evaluation Category	Poor	Fair		Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-809 stable Infrequencies slough failure 	% of bank network uent signs of bank ing, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	Stream Outer I m abov 1.5 m for larg Bank o	n bend areas stable bank height 0.6-0.9 ve stream bank (1.2- above stream bank ge mainstem areas) overhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	Young exposed tree roots common 4-5 recent large tree fails per stream mile	 Expose predon large, s scarce 2-3 rec per structure 	ed tree roots ninantly old and smaller young roots cent large tree falls eam mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	 2-3 recent large tree fails per stream mile Per stream mile Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material 		
	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally trapezoidally- shaped shaped		el cross-section is Ily V- or U-shaped	 Channel cross-section is generally V- or U-shaped
Point range	00102	030405	Þ.	6 0 7 0 8	□ 9 □ 10 □ 11
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	• 25-49% 59% er mainst	% embedded (35- mbedded for large em areas)	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Modera popis Pool su 30-59% 	ate number of deep abstrate composition % sand-silt	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits common Streambed streak mar and/or "banana"-shaped sediment deposits uncommon		Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 		 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 		 Point bars few, small and stable, well-vegetated and/or armoured with little or no fiesh sand
Point range		□ 3 □ 4	1	5 8 6	0708

Date:	June 1/2018	Reach:	MMC-	1	Project Code:	18	049		
Evaluation Category	Poor		Fair	G	bod	L	Excellent		
	Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	Wetted pe 60% of bo width (45- mainstem	rimeter 40- ttom channel 65% for large areas)	Wetted perir of bottom ch (66-90% for mainstem ar	neter 61-85% Jannel width Jarge Jeas)	• Wett of bo 90% area	ed perimeter > 85% ottom channel width (> for large mainstem s)		
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools and runs of Velocity ar generally s shallow (for mainstem and pools velocity ar diversity in 	present, riffles dominant. nd depth slow and or large areas, runs dominant, nd depth ntermediate)	 Good mix be runs and poor Relatively diand depth of 	tween riffles, bls verse velocity flow	• Riffle habit • Dive of flo fast, wate	es, runs and pool tat present rse velocity and depth ow present (i.e., slow, shallow and deep r)		
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle subs composition predomination cobble, grate 5-24% cobble 	trate on: antly small avel and sand oble	 Riffle substrations compositions grave/, cobb material 25-49% cobb 	ate good mix of le, and rubble ble	 Riffle comp grav with > 50 	e substrate position: cobble, el, rubble, boulder mix little sand % cobble		
Habitat	 Riffle depth < 10 cm for large mainstem areas 	 Riffle dept large main 	h 10-15 cm for Istem areas	Riffle depth large mainst	15-20 cm for em areas	Riffle large	e depth > 20 cm for e mainstem areas		
	 Large pools generally < Large pools generally < Carge pools generally Large pools generally 46 cm deep (61- for large mainstem areas) and devoid of overhead cover/structure Large pools generally arge pools generally brain deep (61- for large mainstem arge pools generally brain deep (61- for large mainstem arge pools generally brain deep (61- for large mainstem arge pools generally brain deep (61- for large mainstem arge pools generally brain deep (61- for large mainstem arge pools generally brain deep (61- for large pools genep (61- for large pools gener		s generally 30- p (61-91 cm nainstem h little or no cover/structure	Large pools cm deep (91 large mainst some overhe cover/struct	2001s generally 46-61 20 (91-122 cm for ainstem areas) with verhead tructure	Large cm d large good cove	e pools generally > 61 leep (> 122 cm for mainstem areas) with overhead r/structure		
	 Extensive channel alteration and/or point bar formation/enlargement 	Extensive channel alteration and/or point bar formation/enlargement Alteration and/or point formation/enlargement Alteration and/or point bar formation/enlargement Alteration and/or point bar formation/enlargement Alteration and/or point bar formation/enlargement		nt of channel d/or slight oint bar nlargement	annel • No channel alter ght significant point r formation/enlarg ent				
	Riffle/Pool ratio 0.49:1 ; ≥1.51:1	 Riffle/Pool 0.69:1 ; 1 	ratio 0.5- .31-1.5:1	• Riffle/Pool ra ; 1.11-1.3:1	tio 0.7-0.89:1	• Riffle	e/Pool ratio 0.9-1.1:1		
	 Summer afternoon water temperature > 27°C 	Summer afternoon water temperature 24-27°C		Summer afternoon water temperature 20-24°C		• Sum temp	mer afternoon water perature < 20°C		
Point range	00102	□ 3	□ 4	0586			0708		
	Substrate fouling level: High (> 50%)• Substrate fouling le Moderate (21-50%)		Substrate fouling level: Moderate (21-50%)		ate fouling level: ght (11-20%)		te fouling level: bt (11-20%) Substrate fouli Rock underside		trate fouling level: underside (0-10%)
	Brown colour TDS: > 150 mg/L	Grey colou TDS: 101-	ır 150 mg/L	Slightly grey colour TDS: 50-100 mg/L		• Clear	flow < 50 mg/L		
Water Quality	Objects visible to depth < 0.15m below surface	 Objects vis 0.15-0.5m 	sible to depth below surface	Objects visible to depth 0.5-1.0m below surface		• Obje	cts visible to depth Om below surface		
	Moderate to strong organic odour	 Slight to morganic od 	noderate our	Slight organi	c odour	No odour			
Point range						□ 5 □ 6		2708	
Riparian	Narrow riparian area of mostly non-woody vegetation abitat		 Riparian area predominantly wooded but with major localized gaps 		 Forested buffer generally, > 31 m wide along major portion of both banks 		: (> 60 m) mature sted buffer along both		
Conditions	Canopy coverage: <50% shading (30% for large mainstem areas)	 Canopy co 60% shadi for large m areas) 	verage: 50- ing (30-44% nainstem	Canopy coverage: 60-79% shading (45-59% for large mainstem areas)		• Canc >80 ⁴ large	opy coverage: % shading (> 60% for e mainstem areas)		
Point range	001	□ 2	03	□ 4	25		□ 6 □ 7		
Total overall s	score (0-42) = 30	Poor (-	<13)	Fair (13-24)	Good (25-	34)	Excellent (>35)		

Completed by:

_ Checked by:

	relistics	Project Lot	de/ruase: 11049		Observation	
Date:	clure 1 2018	Stream/Reach:	14 Mile Creek Tr.)	SU. o		
Weather:	Overcast 15°C	Location:	QEW East of	Sveline		
Field staff:	AR. BM2	Watershed/Subwatershed:	IN Mile Creck			
UTM (Upstream)		UTM (Downstream)				
Land Use [Table 1] V.	alley Type Channel Type Channel Zi (Table 2) (Table 3) (Table 2)	one 2 Flow Type -	1 🛛 🗆 🗠	Evidence:		
Riparian Vegetation		Aquatic/Instream Ve,	getation	Water Qua	ality	
Dominant Type: Cov Table 6) 1,2 1 1 2 pecies: 1 5 Deceduous 7 0	Erage: Channel widths Age Class (yrs) : Encroachment Ione 1-4 Immature (<5) (Table 7 ragmented 4-10 Established (5-30) 7 ontinuous > 10 Mature (>30) 7	Type (Table8) 1 Woody Debris 1 Present in Cutbank Present in Channel Not Present	Coverage of Reach (%) C Density of WD: C Z Low WDJ/50m: Noderate C		Odour (Table 고 Turbidity (Tab	16) le 17)
Channel Characteristic	5					
inuosity (Type) (Table 9)	Sinuosity (Degree) Gradient Numt (Table 10) 7 (Table 11) 7 (Table 11) 7 (Table	er of Channels a 12) T Riffle Substra	Clay/Silt Sand Gr	avel Cobble	Boulder P	arent Rootlets
intrenchment	Type of Bank Failure Downs's Classification	Pool Substra	ate 📈 🗆			
(Table 13)	(Table 14) 【 (Table 15) [M	Bank Material	Z			
iankfull Width (m)	3.6 4 3.7 Wetted Width (m) [−]	21 22 27	Bank Angle E	ank Erosion 기 < ና%	Notes:	
lankfull Depth (m)	05 06 05 wetted Depth (m) (3.13 0.18 6.15	N 50 - 60	□ 5 – 30%		
kiffle/Pool Spacing (m	20 % Riffles: 20 % Pools: 30	Meander Amplitude:		□ 60 - 100%		
ool Depth (m)	0.6 Riffle Length (m) $5-7$ Undercuts (m)	O. 2 comments:				
/eloctity (m/s)	Wiffle ball / ADV /	' Estimated				

	teristics	Project Co	de/Phase: 18049	Latts Steries Discretesisms
Date:	June 1 2018	Stream/Reach:	14 Mile Craile Tut) dowin stron
Weather:	Overcard 25°C	Location:	SSOULLE RLEOF	Sid Ling
Field staff:	AR RMI	Watershed/Subwatershed:	14 Mile Criele	
UTM (Upstream)		UTM (Downstream)		
Land Use [] Va (Table 1)	Iley Type Channel Type Channel I (Table 2) (Table 3) (Table 3)	Zone Zone Flow Type (Table 5)	E Groundwater	vidence:
Riparian Vegetation		Aquatic/Instream Vo	egetation	Water Quality
Dominant Type: Cove (Table 6) 3 0 N	trage:theometic channelAge Class (yrs) :Encroachmenone $\boxed{1}$ -4 $\boxed{\boxed{1}}$ Immature (<5)(Tableragmented $\boxed{1}$ 4-10 $\boxed{\boxed{1}}$ Established (5-30) $\boxed{\boxed{2}}$ ontinuous $\boxed{1}$ > 10 $\boxed{\boxed{1}}$ Mature (>30)	nt: Type (Table8) 6 7) Woody Debris 6 1 Present in Cutban 1 1 Present in Cutban 1 1 Present in Cutban 1	Coverage of Reach (%) [16 Density of WD: K Dow WDI/50m: I Moderate High	Odour (Table 16)
Channel Characteristic				
Sinuosity (Type)	Sinuosity (Degree) Gradient Num	ber of Channels	Clay/Silt Sand Gravel	Cobble Boulder Parent Ro
(Table 9)	(Table 10) (Table 11) (Table 11) (Table 11)	ble 12) Riffle Substi	rate 0 / //1 0	
Entrenchment	Type of Bank Failure Downs's Classification	Pool Subst	rate ///\A	
(Table 13)	(Table 14) (Table 15) (Table 1	Bank Materia	" AVAC O	
Bankfull Width (m)	3.95 8 U.3 wetted width (m)	3.1	Bank Angles Bank I	irosion Notes: Cancyrdr
Bankfull Depth (m)	2 0.9 wetted Depth (m)	0.IS		30% channel
Riffle/Pool Spacing (m	Miffles: 0 % Pools:	Meander Amplitude:		- 100%
Pool Depth (m)	Riffle Length (m)	Comments:		
Veloctity (m/s)	Wiffle ball / ADV	/ Estimated		

τ.

GEO	MO
	Commonphism, Earth Science Observations

ORPHIX

e

Date:	June 7 2018	Stream/Reach:	14 Mile Creek Window
Weather:	Overcard 25°C	Location:	S Service Rd, EOF 3'CLin
Field Staff:	AB BM2	Watershed/Subwatershed:	14 Mile Criek
Features Reach break Cross-section Flow direction Riffle		Site Sketch:	B R N
Pool Medial bar Eroded bank Undercut bank XXXXX Rip rap/stabiliz Leaning tree	ation/gabion	C V K SYS	VVV Lawn
Culvert/outfall Culvert/outfall Swamp/wetlan VVV Grasses Tree Instream log/t * * * Woody debris Station location	d ree	bix V V culvut Ismwide Ismhigh	V E3, V V V
Vegetated islar	nd		
Flow Type H1 Standing water H2 Scarcely perce H3 Smooth surface H4 Upwelling H5 Rippled H6 Unbroken standing H7 Broken standing H8 Chute H9 Free fall	ptible flow e flow ding wave g wave	Gabilett Concrete OSCA	C.MSCSP //
SubstrateS1SiltS2SandS3GravelS4Small cobbleS5Large cobble	 S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till 	ine work	Concir te lined x charnel Parking
Other BM Benchmark BS Backsight DS Downstream WDJ Woody debris j VWC Valley wall con	EP Erosion pin RB Rebar US Upstream am TR Terrace tact FC Flood chute		Lot Scale:

Completed by: <u>AB</u> Checked by:

Rapid Geor	norp	hic Assessmen	t	Project Co	Dae: 18049	- 1/1	1	
Date:	Ju	ne I, 2018	Strea	am/Reach:	1991120	recic 4	rin. uf	SITAM
Weather:	C	recast, 25°C	Wate	ershed/Subwatersh	red: 14 Mil	TL	TERIC	
Field Staff:	AR	RM2	Loca	tion:	QEW, E	of 3	chira	
	1112	1011	Geomorpholog	nical Indicator		Pre	sent?	Factor
Process	Nia	Description	Geomorphore			Yes	No	Value
	NO,	Description					1	
	1	Lobate Dai	riffles ember	Ided		1	1	
	2	Coarse materials in		1				
Evidence of	3	Siltation in pools				1	1]
Aggradation (AI)	4	Accretion on point	bars				1	0
	6	Poor longitudinal s	orting of bed r	naterials		1	10	1 (3
	7	Deposition in the o	verbank zone				1	
					Sum of indices =	6	7	
	1	Exposed bridge for	oting(s)					
	2	Exposed sanitary /	storm sewer	pipeline / etc.				
	3	Elevated storm sev	ver outfall(s)	pipeline / etc.				
Evidence of	4	Undermined gabio	haskets / cor	ocrete aprons / etc		-		
	5	Scour pools downs	tream of culve	rts / storm sewer ou	lets		1	-
Degradation	6	Cut face on bar for	ms				1	0.33
(01)	7	Head cutting due to	o knickpoint m	nigration			1	
	8	Terrace cut throug	h older bar ma	iterial		-	N	
	9	Suspended armour	laver visible i	n bank		1		1
	10	Channel worn into	undisturbed o	verburden / bedrock		1	×	
	1 100				Sum of indices =	2	4	
	1	Fallen / leaning tre	es / fence pos	ts / etc.		1	1	
	2	Occurrence of large	e organic debr	is			1	1
	3	Exposed tree roots					1	1
	4	Basal scour on insi	de meander be	ends			1	GIU
Evidence of	5	Basal scour on bot	h sides of char	nnel through riffle			1	0.14
(WI)	6	Outflanked gabion	baskets / cond	crete walls / etc.				
1.14	7	Length of basal sco	our >50% thro	ough subject reach			1	1
	8	Exposed length of	previously bur	ied pipe / cable / etc		1.1	1	
	9	Fracture lines along	g top of bank				1	
	10	Exposed building for	oundation				1.5	
	_				Sum of indices =	1	6	
	1	Formation of chute	e(s)					
	2	Single thread chan	nel to multiple	channel			1	
Evidence of Planimetric	3	Evolution of pool-r		1	0			
Form	4	Cut-off channel(s) Formation of island(s)					1	\bigcirc
Adjustment	5						1	1
(PI)	6	Thalweg alignment	out of phase	with meander form			1	1
	7	Bar forms poorly fo	ormed / rewor	ked / removed			1	
					Sum of indices =	0	7	
Additional note	s:		1	Stability In	dex (SI) = (AI+D	I+WI+	PI)/4 =	0.119
			Condition	In Regime	In Transition/St	ress	In Adjus	stment
			SI score =	0.00 - 0.20	0.21 - 0.4	0		.41

Completed by: AB Checked by:

Rapid Stream Assessment Technique

Project Code: 18049

Date:	June 1, 2018	Stream/Reach:	Stream/Reach:		4 psilion
Weather:	Chreicast 25°C	Location:		QEW, East	of Ste Line
Field Staff:	OR BM2	Watershed/Subwate	rshed:	14 Mile Cr	rck
Evaluation	Poor	Fair	1	Good	Excellent
Category	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% stable Infreque sloughir failure 	of bank network ent signs of bank ng, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	Stream bend areas unstableStream bend areas stable • Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas)Stream bend areas stable • Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas) • Bank overhang 0.6-0.8 mStream b stable • Height < stream t mainster • Bank overhang 0.6-0.8 m		 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed predomi large, sr scarce 2-3 rece per stree 	tree roots nantly old and naller young roots ent large tree falls am mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	per stream mile Bottom 1/3 of bank is • Bottom 1/3 of t generally highly erodible generally highly material plant/soil matrix compromised of t		Bottom 1/3 of bank is generally highly resistant plant/soil matrix or' material
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	 Channel generall 	cross-section is y V- or U-shaped	Channel cross-section is generally V- or U-shaped
Point range	00102	030405	□ 6	0708	0 9 0 10 0 11
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	• 25-49% 59% em mainster	embedded (35- bedded for large m areas)	Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 		 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits common uncor		ed streak marks banana"-shaped t deposits oon	Streambed streak marks amd/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 		 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks Fresh, I rare or channe No evid sedime overbar 		 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point ba well-veg armoure fresh san 	rs small and stable, etated and/or d with little or no nd	Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range	000102	0304		5 🛱 6	0708

Date:	June 1/2018	Reach: IMMCT	vib-US	Project Code:	1804	9
Evaluation	Poor	Fair	G	boo	E	cellent
Category	Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	 Wetted perimeter 40- 60% of bottom channe width (45-65% for larg mainstem areas) 	Wetted perin of bottom ch (66-90% for mainstem at	Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)		channel width (> arge mainstem
Physical Instream Habitat	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffl and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	es • Good mix be runs and poo • Relatively di and depth of	etween riffles, ols verse velocity f flow	 Riffles, ru habitat pr Diverse vo of flow pro fast, shall water) 	ns and pool esent elocity and depth esent (i.e., slow, ow and deep
	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	Riffle substration substr	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 		trate on: cobble, oble, boulder mix sand bble
	 Riffle depth < 10 cm for large mainstem areas 	 Riffle depth 10-15 cm f large mainstem areas 	or • Riffle depth 15-30 cm for large mainstern areas		 Riffle dept large mair 	h > 20 cm for istem areas
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure large mainstem areas) with		 Large poo cm deep (large main good over cover/strue 	ls generally > 61 > 122 cm for Istem areas) with head cture	
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/ moderate increase in point bar formation/enlargement 	 Slight amour alteration an increase in p formation/er 	nt of channel d/or slight oint bar nlargement	• No channe significant formation,	el alteration or point bar 'enlargement
	 Riffle/Pool ratio 0.49:1 ; ≥1.51:1 	 Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1 	• Riffle/Pool ra ; 1.11-1.3:1	atid 0.7-0.89:1	Riffle/Pool	ratio 0.9-1.1:1
	 Summer afternoon water temperature > 27°C 	Summer afternoon water temperature 24-27°C Summer afternoon water temperature 20-24°C		 Summer a temperatu 	fternoon water re < 20°C	
Point range	00102	0304	05	5 16		7 🗆 8
	• Substrate fouling level: High (> 50%)	 Substrate fouling level: Moderate (21-50%) 	Substrate for Very light (1)	uling level: 1-20%)	 Substrate Rock unde 	fouling level: rside (0-10%)
	Brown colour TDS: > 150 mg/L	Grey colour TDS: 101-150 mg/L Slightly grey colour TDS: 50-100 mg/L		Clear flow TDS: < 50	mg/L	
water Quality	Objects visible to depth < 0.15m below surface	 Objects visible to depth 0.15-0.5m below surface 	• Objects visib ce 0.5-1.0m be	Objects visible to depth 0.5-1.0m below surface		sible to depth low surface
	Moderate to strong organic odour	Slight to moderate organic odour	 Slight organi 	Slight organic odour		
Point range	00122	0304	. 5	0506		7 🗆 8
Riparian	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 		Wide (> 60 m) mature forested buffer along bo banks	
Habitat Conditions	 Canopy coverage: <50% shading (30% for large mainstem areas) 	 Canopy coverage: 50- 60% shading (30-44% for large mainstem areas) 	Canopy cove 60-79% sha for large mai	ding (45-59% nstem areas)	 Canopy co >80% sha large mair 	verage: ding (> 60% for stem areas)
Point range	001		□ 4	¢ 5	0607	
Total overall s	core (0-42) = 1	Poor (<13)	Fair (13-24)	Good (25-3	34) Ex	cellent (>35)

Completed by: AB_ Checked by:

		0.00 M			
Date: (June 1 2018	Stream/	/Reach:	Taplow Oreck		
Weather: Overcast 25°C	Location	ï	HANLING ; Wyca	oft Rd	
Field staff: AB, BM ²	Watersh	hed/Subwatershed:	McCraney Crec	V	
UTM (Upstream)	UTM (D	ownstream)	-		
Land Use U Valley Type Channel Type (Table 1) (Table 2)	Channel Zone (Table 4)	Flow Type (Table 5)	Groundwater	Evidence: Worley	c/rss.
Riparian Vegetation		Aquatic/Instream Ve	getation	Water Quality	
Dominant Type: Coverage: Channel widths Age Class (yrs) : (Table 6) 23 0 None 21-4 0 Species: 0 4-10 24 55 Species: 0 0 0 0 Species: 0 0 0 0	Encroachment: 5) (Table 7) 5-30) 2	Type (Table8) C Woody Debris C D Present in Cutbanl Present in Channe Mot Present in Channe C	Coverage of Reach (%) 5 Density of WD: A Low WDJ/50m: I D Moderate	Odo Turbid	r (Table 16) ity (Table 17)
Channel Characteristics					
sinuosity (Type) / Sinuosity (Degree) Gradient	Number of Ch	hannels	Clay/Silt Sand Gra	avel Cobble Bould	er Parent Rooi
(Table 9) (Table 10) (1 (Table 11) (1 (Table	(Table 12) (Table 12)	Riffle Substr	ate		
Entrenchment Type of Bank Failure Down's Cla (Table 13)	lassification	Bank Materia	80		
Bankfull Width (m) 3.5 3. 3.5 Wet	etted Width (m)	1.1S	Bank Angle B	ank Erosion Notes:	
Bankfull Depth (m) 0.65 1 0.65 Wet	etted Depth (m) 0.69	0.04	2 30 - 60 0 60 - 90	5 – 30% 30 – 60%	
Riffle/Pool Spacing (m) % Riffles:	% Pools:	inder Amplitude:] 60 – 100%	
Pool Depth (m) Riffle Length (m)	Undercuts (m)	Comments: B.	old lived cha	MAR	
Veloctity (m/s)	Wiffle ball / ADV / Estima	ited			

Â.

1

GEO MORPHIX

Date: June 7 2018		June 7 2018	Stream/Reach:	Taplow Creek	
Weat	her:	Overcast 25°C	Location:	S. Service Rd Fawth Line	
Field	Staff:	AB, BM2	Watershed/Subwatershed:	Hickaney Crick	
Featur	res		Site Sketch:	5	
	Reach break		I VO		
x x	Cross-section			Davicina	
	Flow direction		WI YEU AVX	N	
~	Riffle		VXXXVN	let I	
\bigcirc	Pool				
	Medial bar		Im I w	111114 ¹	
ionummi 	Eroded bank		$\left \left\{ \right\} \right = \left \left\{ \right\} \right = \left \left\{ \right\} \right = \left \left\{ \left\{ \right\} \right\} \right = \left \left\{ \left\{ \left\{ \right\} \right\} \right = \left \left\{ \left\{ \right\} \right\} \right = \left \left\{ \left\{ \left\{ \right\} \right\} \right = \left \left\{ \left\{ \right\} \right\} \right = \left \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right = \left \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right = \left \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right = \left \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right\} \right\} \right = \left \left\{ $		
	Undercut bank		XXXX XVXX	Line	
	kip rap/stabilization	n/gabion	VI	Concrete brick	
Y Y Y	Leaning tree			channel corrider	
1 1	Fence		Serol VVV		
-	Curvert/outrall	lt lt	m l'		
WWW	Grasses		1.1 x52 X V M.1	X	
0	Tree		W AN		
	Instream log/tree		INA KA	Double box - 3mx2	
***	Woody debrie		AN AN	Culvert 1	
8	Station location		AN A		
WD	Vegetated island		K W X Y	XXX	
Flow T	ype		1		
H1	Standing water			XXX	
H2	Scarcely perceptible	flow	1 02. Ch		
НЗ	Smooth surface flow	v	in a cert	8 8	
H4	Upwelling		1 Ser X IN R	S P Sila	
HS	Rippled		X X	1 X	
H6	Unbroken standing	wave	X	XS1 KI	
H7	Broken standing wa	ve	XXX .	X X V	
H8	Chute				
H9	Free fall		KL X V		
Substra	ate		X		
S1	Silt	S6 Small boulder	9.9n		
S2	Sand	S7 Large boulder	X Pile	N X	
S 3	Gravel	S8 Bimodal			
S 4	Small cobble	S9 Bedrock/till	1.		
S5	Large cobble		XVX	N N	
Other		and the second second		N X	
M	Benchmark	EP Erosion pin	XX		
35	Backsight	RB Rebar	· · · ·		
ND3	Downstream	US Upstream	XVV		
NUC	Woody debris jam	IR Terrace	1 W V	X	
WC .	Valley wall contact	FC Flood chute	X	Scale:	
05	Bottom of slope	FP Flood plain	Additional Notes:		
OS	Top of slope	KP Knick point			

Completed by: _

_ Checked by:

		1-0 1-1 C	11001			
Date:	June 2/2018	Stream/Reach:	Clen Oales Cm	12		
Weather:	25°C Overcast	Location:	WyeCroft Rd, Egg	Hth, Jo	Lint	
Field staff:	AB BMª	Watershed/Subwatershed:	McCraney Orric			
UTM (Upstream)		UTM (Downstream)				
Land Use (Table 1)	Iley Type Channel Type Channel i (Table 2) (Table 3) (Table 3)	Zone Z Flow Type Z (Table 5)	Groundwater	Evidence:		
Riparian Vegetation		Aquatic/Instream Veg	etation	Water Qua	lity	
Dominant Type: Covel (Table 6) $I_1 T_1$ N_1 Species: \Box Γ_1 \Box Γ_2 \Box Γ_1	rage: Channel widths Age Class (yrs) : Encroachmen one	tt: Type (Table8) 1 7) Woody Debris 7 Present in Cutbank 7 Present in Channel 7 Not Present	Coverage of Reach (%)		Odour (Table 16) Turbidity (Table 1	e É
Channel Characteristics						
Sinuosity (Type)	Sinuosity (Degree) Gradient Num	ther of Channels	Clay/Silt Sand Grav	vel Cobble	Boulder Pare	nt Rootlets
(Table 9)	(Table 10) (Table 11) 2 (Tab	vie 12) Riffle Substra		1 A		
Entrenchment	Type of Bank Failure Downs's Classification	Pool Substra	te d a	D		
(Table 13)	(Table 14) (Table 15)	Bank Material				A
Bankfull Width (m)	2.9 H 3.5 Wetted Width (m)	1.8 2.3 1.3	Bank Angle Ba	ink Erosion	Notes:	
Bankfull Depth (m)	0.9 0.7 0.9 wetted Depth (m)	0.11 0.16 0.3	00-00	< 3% 5 - 30%		
Riffle/Pool Spacing (m)	20 % Riffles: 20 % Pools: 70) Meander Amplitude:		30 - 60% 60 - 100%		
Pool Depth (m)	0 8 Riffle Length (m)	Comments:]			
Veloctity (m/s)	Wiffle ball / ADV	/ Estimated				

GEO	MORPHIX	
	Germani (Andray) Barsh Sciande Obsenvelions	
18049		

Completed by: <u>AB</u> Checked by:

Appendix D Meander Belt Width Assessment

Watercourse banks

Contour (1 m)

50

Metres

Ņ

THIRD LINE

215

MILES ADA

Meander belt width* (58 m) * Extent shown beyond road allowance has not been field verified.

Extent of Redside Dace habitat* (30 m) *Non-vegetated areas with existing structures are not considered Redside Dace habitat. Extent shown does not account for built environment.

Meander belt width, and Habitat extent: GEO Morphix Ltd., 2018. Watercourse banks and Contour: Town of Oakvile, 2018. Imagery: First Base Solutions, 2018

58 m

MORPHIX

Meander Belt Width and Redside Dace Habitat Delineation

Fourteen Mile Creek

Wyecroft Road Crossing, Town of Oakville