FUNCTIONAL STORMWATER MANAGEMENT REPORT

INFRASTRUCTURE ONTARIO

50 SHERWOOD HEIGHTS DRIVE Project No.: 2020-0652-10

March 3, 2022

INFRASTRUCTURE ONTARIO

FUNCTIONAL STORMWATER MANAGEMENT REPORT

50 Sherwood Heights Drive

Table of Contents

			Page
1.0	INTRO	DUCTION	1
2.0	EXISTI	NG SITE CONDITIONs	1
	2.1	Existing Topography, Soils, and Hydrogeology	1
		2.1.1 Storm Servicing	1
3.0	SITE G	RADING, drainage, and stormwater management	2
	3.1	Surface Grading and Drainage	2
	3.2	Stormwater Management	2
	3.3	Water Balance	3
4.0	CONC	LUSIONS	3

FIGURES TABLES

APPENDICES

Appendix A – Design Calculations

Appendix B - Hydrologic Model Output

1.0 INTRODUCTION

WalterFedy was retained by Infrastructure Ontario to prepare the following Functional Stormwater Management Report to evaluate a conceptual site development scenario for the lands at 50 Sherwood Heights Drive in the Town of Oakville ("Site") as shown in Figure 1. The Site is proposed on a 7.40 ha undeveloped parcel of land owned by the Ministry of Government and Consumer Services, managed by Infrastructure Ontario. The site is currently vacant with remnants of an approximately 30-car parking lot at the southern end.

A conceptual site plan was prepared to demonstrate the development potential of the subject lands and to provide a framework for the preparation of this study; however, the conceptual site plan is not being submitted for approval. The concept plan was developed for this assessment.

The purpose of this Report is to demonstrate the viability of the presented site layout given recent de-listing of the onsite wet areas and the ability to relocate the drainage channel through the parcel. The concept plan for the Site was developed by GSP Group Ltd. The report presents a potential stormwater management solution to support the development concept.

2.0 EXISTING SITE CONDITIONS

The Site is located close to the Highway 403 and QEW split in Oakville. The site fronts onto Sherwood Heights Drive to the northeast; Kingsway Drive is to the southeast; Ford Drive is to the southwest; and a QEW onramp is to the west of the Site. The Ford plant is located on the southern side of Ford Drive. Across from the Site on Sherwood Heights Drive is Kingsford Gardens, which includes a dog park and community garden. Refer to Figure 2 for the existing conditions of the site.

2.1 Existing Topography, Soils, and Hydrogeology

The Site slopes from the northwestern corner to the southeastern corner, with elevations ranging from approximately 143 mamsl near the northwestern corner to 115 mamsl near the southeastern corner. The Site is mostly greenfield, with an approximately 30-car remnant of a parking lot in the southern end fronting Sherwood Heights Drive. Drawing C-100 presents existing conditions at the Site.

A geotechnical investigation for the Site will be completed during detailed design stage if the project progresses. The findings and recommendations of the geotechnical investigation will be incorporated into the detailed design at that time.

The Site is not located in a source water protection area. The Site does not fall within the regulation area of Conservation Halton and, thus, is not within the Conservation Authority's jurisdiction for review.

NRSI identified an unregulated wetland on the site, adjacent to Sherwood Heights Drive and towards the northern portion of the site. Through discussions with the Town of Oakville, Halton Region, and Conservation Halton, it was determined that the area does not meet the minimum threshold requirements to be listed as a wetland.

2.1.1 Storm Servicing

A 600-mm-diameter watermain runs southeasterly on Ford Drive and appears to outlet into a ditch southwest of Ford Drive via a culvert. At the southeastern side of the Site, a natural channel drains surface runoff to a culvert which crosses under Kingsway Drive and outlets into a small stormwater management pond. The pond has an outlet culvert at the southern end.

3.0 SITE GRADING, DRAINAGE, AND STORMWATER MANAGEMENT

3.1 Surface Grading and Drainage

Surface grading would direct stormwater generally from the northwestern end of the site at a higher elevation to the southeastern end of the site at a lower elevation.

Utilizing the Site Plan concept developed by GSP Group, WalterFedy has prepared a conceptual grading design presented on Drawing C-200 . The concept features an opportunity to construct a public green space wetland feature at the western end of the property and provides opportunity to redirect the drainage swale around the development along Sherwood Heights Drive.

It will be necessary to utilize the site's existing outlet as part of any development plan. The culvert under Kingsway Drive should be assessed in detailed design to confirm the size and ensure that the culvert is not failing, blocked, or clogged.

3.2 Stormwater Management

From the Conservation Halton map of the watershed, the site falls within the category of Urban Creeks. The site does not fall within the bounds of a specific subwatershed study and, thus, the constraints for stormwater management are governed by the Town of Oakville *Development Engineering Procedures & Guidelines Manual*.

The Town of Oakville's guidelines are that minor and major drainage need to be controlled to the predevelopment conditions. Existing drainage features on the property should be safely convey flows through to an approved outlet without impact to the property itself or surrounding properties, for up to and including the 100-year flows.

There are three stormwater management objectives for the site:

- (1) water quality;
- (2) water quantity; and
- (3) peak flow control

The Town of Oakville typically requires enhanced water quality treatment, in line with the Ministry of the Environment, Conservation and Parks (MECP) requirements. This includes enhanced 80% long-term suspended solids removal.

At a minimum, the site will require that post-development flows are controlled to the pre-development levels for all design storms up to and including the 100-year storm. The site appears to have a single outlet at the southeastern end to a culvert which crosses under Kingsway Drive and outlets to a dry pond. The size of the culvert is not labelled in the information provided by the Town of Oakville. However, this would be the governing factor in determining the peak release rate, as the vast majority of the site is directed to this culvert. The Town of Oakville requires all minor system infrastructure to handle stormwater flows for the 5-year storm event.

The proposed stormwater management approach takes into consideration the amount of fall across the site and utilizes two ponds tiered at different levels across the site. Combined, the ponds provide flow control to attenuate the 100-year, post-development peak flow to less than the pre-development 5-year peak flow. Adequate storage is provided to achieve a 24-hour drawdown time in the ponds prior to discharge from the site. The combined volume of the ponds would feature approximately 3,000 m³ of active storage volume with an appropriate permanent pool to meet MECP guidelines for Enhanced Water Quality treatment.

The concept provides open space adjacent to buildings which could support placement of infiltration galleries to capture rooftop runoff and then overflow into the storm sewer. It is recommended that detailed design take this opportunity into consideration as the Town has requested in that infiltration be included as part of the strategy to provide stormwater management on site to maintain the site water balance. At a minimum, it is recommended that the infiltration galleries accommodate capture of the first 5 mm of runoff from rooftop areas.

Analysis of the stormwater management system design was completed using Visual OttHymo. Input rainfall parameters for the 2- through 100-year storm events are presented in Table 1. Figure 2 presents the existing conditions drainage area considered to represent the development area within the IO lands at 50 Sherwood Heights. Figure 3 presents the hydrologic model schematic used to represent the existing Site in the model. Input parameters used in the hydrologic model to represent existing conditions are presented in Table 2.

Figure 4 presents the drainage area plan representing proposed conditions. Figure 5 presents the hydrologic model schematic used to represent the Site in the model. Input parameters used in the hydrologic model to represent proposed conditions are presented in Table 2.

Table 3 summarizes the calculated peak flows from each catchment under existing and proposed conditions. Table 4 summarizes the runoff volumes calculated for each catchment under existing and proposed conditions. Table 5 summarizes the routing performance summary of each stormwater management pond under proposed conditions. Design sheets used to calculate the pond volumes and outflow rates are included in Appendix A. Model output is provided in Appendix B.

In general, the stormwater management system incorporates two ponds. The upper pond features an active storage volume of approximately 2,200 cubic metres with an outlet structure comprising an opening 0.2 m by 0.2 m. The lower pond features an active storage volume of approximately 900 cubic metres featuring a staged outlet with a low flow opening 0.1 m by 0.2 m and a high flow outlet 0.2 m by 0.5 m. Combined, the ponds provide a residence time in excess of 24 hours for the 2-year storm event, which is slightly larger than the 25 mm storm event.

3.3 Water Balance

A site water balance was prepared using the methodology provided in the Ministry of the Environment's Stormwater Management Planning and Design Manual (2003). Based on that analysis, it was determined that under existing conditions, the site contributes approximately 7,165 m³ of groundwater recharge annually. Under proposed conditions, it was determined that the amount of recharge would be reduced to approximately 3,475 m³. It is commonly required that site development stormwater management plans incorporate infiltration of the first 5 mm of surface runoff. On average, annually in the Oakville region there are 46 unique storm events that have a precipitation accumulation of 5 mm or greater. Capture of the first 5 mm of runoff from the site represents approximately 360 m³ of available groundwater recharge with each rainfall event. Annually this represents capture and groundwater recharge in excess of 16,000 m³ of rainfall and, therefore, is able to mitigate for the loss in groundwater recharge resulting from development of the site. A copy of the water balance calculation is provided in Appendix A.

4.0 CONCLUSIONS

Based on the analysis presented in this report, stormwater management for the conceptual layout can be readily achieved to meet municipal and Conservation Authority requirements and outlet to the storm sewer in Ford Drive.

All of which is respectfully submitted,

WALTERFEDY

Buan Verpagen

Brian Verspagen, M.Sc., P.E., P.Eng.

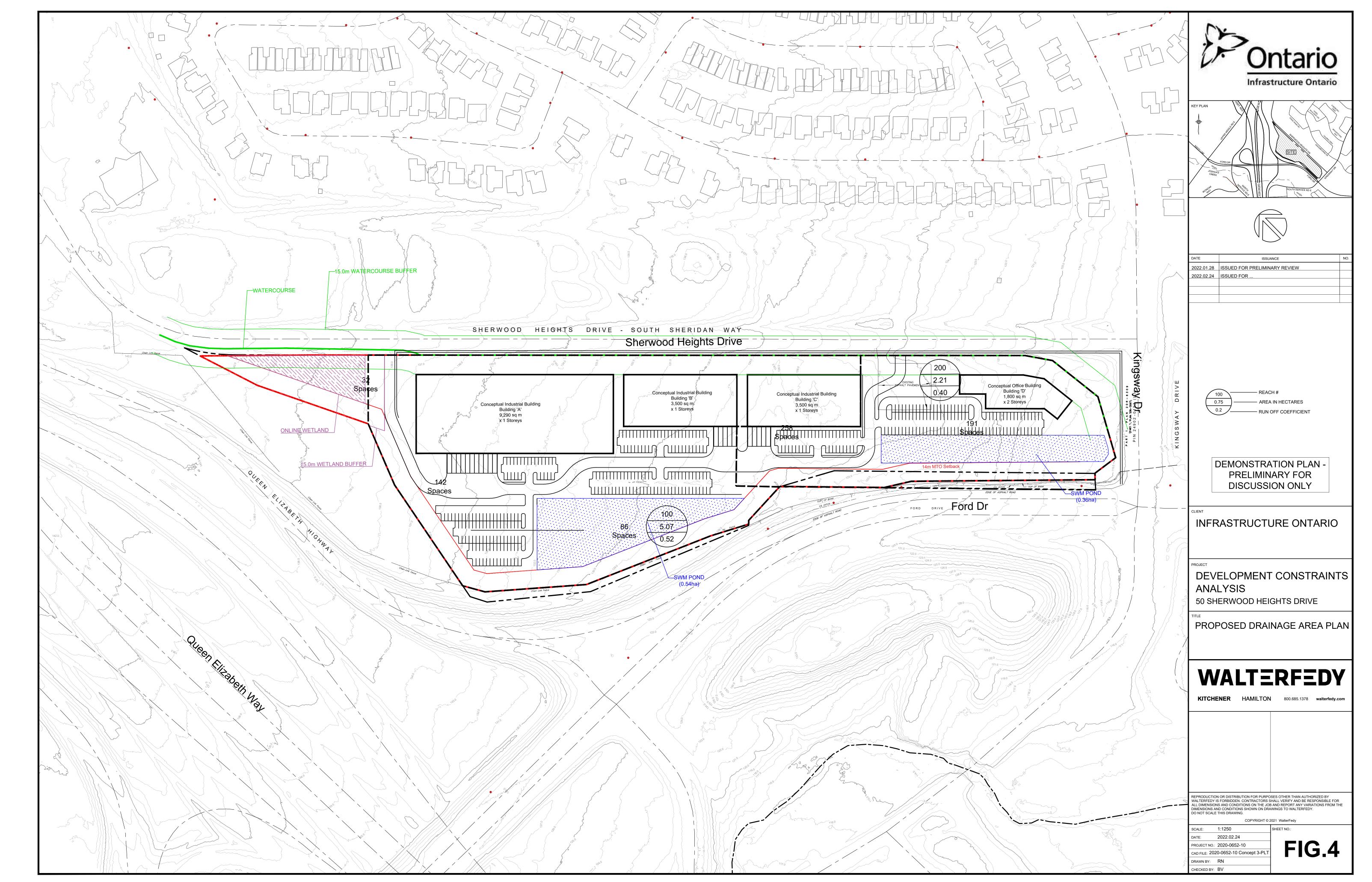
Practice Lead, Water Resources, Civil

Partner

bverspagen@walterfedy.com

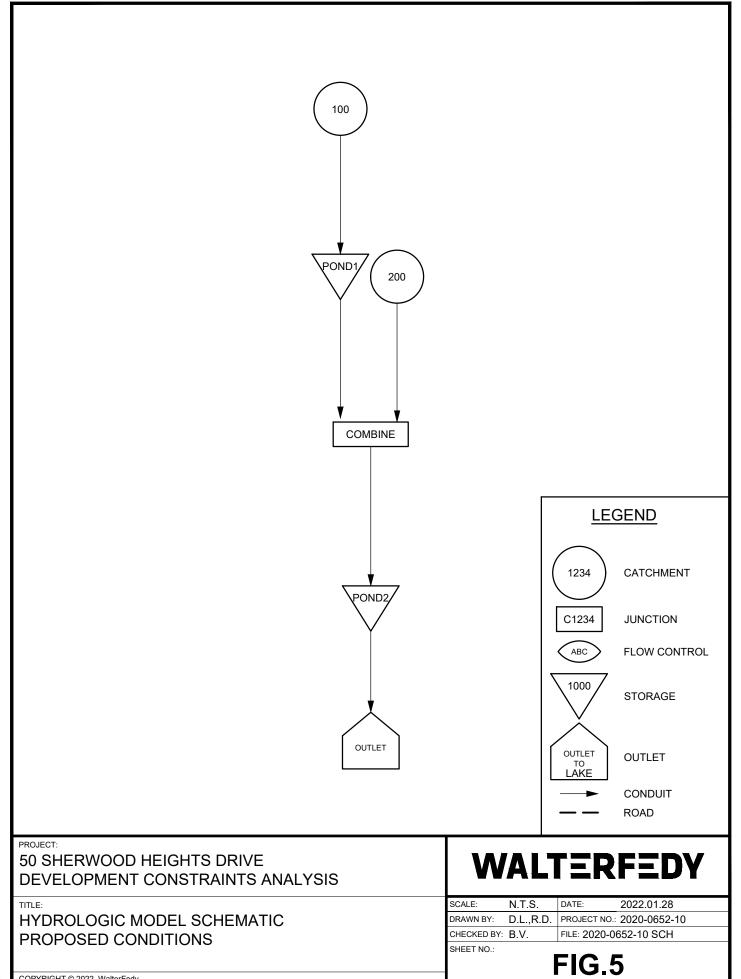
519.576.2150 Ext. 331

/ajw


FIGURES

- 1. Site Location Map
- 2. Existing Conditions Drainage Areas
- 3. Existing Conditions Hydrologic Model Schematic
- 4. Proposed Servicing Drainage Areas
- 5. Proposed Servicing Hydrologic Model Schematic

P:\2020\0652\10\06-DWGS\CIVIL\Plot Files\2020-0652-10 SITE LOCATION; FIG.1; DWG PDF no layers.pc3; Drazen Lepan; 2022-01-28 12:11:10 PM


P:\2020\0652\10\06—DWGS\CIVIL\Working\2020—0652—10 EX AREA; FIG.2; None; Drazen Lepan; 2022—03—03 9:17:05 AM

P:\2020\0652\10\06-DWGS\CIVIL\Working\2020-0652-10 SCH; FIG.3; DWG To PDF no layers.pc3; Drazen Lepan; 2022-01-28 2:17:58 PM

?:\2020\0652\10\06—DWGS\CIVIL\Working\2020—0652—10 Concept 3—PLT; FIG.4; None; Ridvan Darsot; 2022—02—24 2:29:05

COPYRIGHT © 2022 WalterFedy

TABLES

- 1. Design Storm Parameters
- 2. Catchment Parameters
- 3. Peak Flow Comparison
- 4. Runoff Volume Comparison
- 5. Pond Performance Summary

TABLE 1
DESIGN STORM PARAMETERS

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

Design Storm	ID	F Storm Paramete	ers	Time to Peak Ratio	Storm Duration	Total Rainfall	Max. Rainfal Intensity	
	a	b	С	– r	D			
					(hr)	(mm)	(mm/hr)	
2-year	725	4.80	0.81	0.33	3	32.1	114.7	
5-year	1170	5.80	0.84	0.33	3	42.9	157.4	
10-year	1400	5.80	0.85	0.33	3	50.0	186.1	
25-year	1680	5.60	0.85	0.33	3	59.1	225.3	
50-year	1960	5.80	0.86	0.33	3	65.4	252.6	
100-year	2150	5.70	0.86	0.33	3	71.8	279.3	

Notes:

(1) Rainfall hyetograph parameters provided in the Town of Oavkille Development Engineering Procedures and Guidelines.

TABLE 2 CATCHMENT PARAMETERS

Visual Otthymo Model

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

Pre-Development Conditions

Subcatchment NHYD	Туре	Time Step DT	Area	Curve Number ¹	Intital Abstraction	N hyd	Time to Peak
		(min)	(ha)		(mm)		(hr)
1	NasHyd - 1	10	7.28	80	6.35	3.00	0.2

Post Development Conditions Scenario 1

Subcatchment NHYD	Туре	Time Step DT	Area	Impervious Fraction	Curve Number ¹	Loss Methodology	Pervious Slope	Impervious Slope	Pervious Flow Length	Impervious Flow Length
		(min)	(ha)	(-)	(mm)		(%)	(%)	(m)	(m)
 100	Urb Hyd	5	5.07	0.60	80	SCS	2.5	2.5	20.0	30.0
200	Urb Hyd	5	2.21	0.40	80	SCS	2.5	2.5	20.0	30.0

Notes

1. Curve number based on pasture, silty-clay/clayey-silt.

TABLE 3 PEAK FLOW COMPARISON

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

Existing Conditions	Area (Ha)	2-Year (m³/s)	5-Year (m³/s)	10-Year (m³/s)	25-Year (m³/s)	50-Year (m³/s)	100-Year (m³/s)
<u>Catchments</u>							
1	7.280	0.177	0.368	0.482	0.684	0.835	0.989
Proposed Conditions - Scenario 1	Area	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
	(Ha)	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m³/s)
<u>Catchments</u>							
100	5.070	0.85	1.251	1.494	2.12	2.438	2.756
200	2.210	0.261	0.397	0.477	0.606	0.696	0.786
<u>Outlet</u>	Area (Ha)	2-Year (m³/s)	5-Year (m³/s)	10-Year (m³/s)	25-Year (m³/s)	50-Year (m³/s)	100-Year (m³/s)
Existing Conditions	7.280	0.177	0.368	0.482	0.684	0.835	0.989
Proposed Conditions	7.280	0.081	0.118	0.134	0.156	0.172	0.186

TABLE 4 RUNOFF VOLUME COMPARISON

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

Existing Condition	ns						
	Area	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
	(Ha)	(m³)	(m³)	(m³)	(m³)	(m³)	(m³)
<u>Catchments</u>							
1	7.280	598	1104	1388	1913	2257	2627
Proposed Condition	ons - Scenario 1						
	Area	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
	(Ha)	(m³)	(m³)	(m³)	(m³)	(m³)	(m³)
<u>Catchments</u>							
100	5.070	1180	1702	1970	2439	2734	3045
101	2.210	418	624	732	923	1045	1173

TABLE 5 POND PERFORMANCE SUMMARY

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

			Max. Storage	
Pond Number	Peak Inflow	Peak Outflow	Volume	Drawdown Time
	(m ³ /s)	(m ³ /s)	(ha m)	(hr)
Scenario 1 - Pond 1100				
2-Year	0.850	0.087	0.0694	18.5
5-Year	1.251	0.106	0.1077	35.0
10-Year	1.494	0.113	0.1286	44.6
25-Year	2.120	0.125	0.1642	64.4
50-Year	2.438	0.131	0.1885	77.0
100-Year	2.756	0.137	0.2127	90.9
Scenario 1 - Pond 1200				
2-Year	0.314	0.081	0.0664	35.5
5-Year	0.464	0.118	0.0725	35.9
10-Year	0.550	0.134	0.0754	36.0
25-Year	0.691	0.156	0.0842	36.2
50-Year	0.786	0.172	0.0907	36.5
100-Year	0.881	0.186	0.0984	37.1

APPENDIX A

Pond Design Calculations

APPENDIX A STORMWATER MANAGEMENT POND #1 VO3 INPUTS

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

	Stage / S	torage								Discharge			
Top of pond =	129	Ū								Ū			
Dead Storage Elevation =	127										1		
Elevation	Area	Depth	Total Storage	Live Storage	Live Storage		rifice w (1)	Orifice Flow (2)	Weir Flow (3)	Total Flow from SWMP	Total Time to Empty	Cumm. Time	Cumm. Time
(m)	(m^2)	(m)	(m ³)	(m ³)	(ha·m)	(m	1 ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(hours)	(hours)	(days)
126.00	256	0.00	0	0	0								
127.00	705	1.00	481	0	0.000	0	.000	0.000	0.000	0.000			
127.20	856	1.20	637	156	0.016	0	.035	0.000	0.000	0.035	2.5	2.5	0.1
127.40	1,006	1.40	823	342	0.034	0	.061	0.000	0.000	0.061	4.0	6.5	0.3
127.60	1,156	1.60	1,039	558	0.056	0	.079	0.000	0.000	0.079	6.7	13.2	0.6
127.80	1,306	1.80	1,285	805	0.080	0	.093	0.000	0.000	0.093	9.5	22.7	0.9
128.00	1,456	2.00	1,561	1,081	0.108	0	.106	0.000	0.000	0.1059	12.3	34.9	1.5
128.20	1,606	2.20	1,868	1,387	0.139	0	.117	0.000	0.000	0.1171	15.2	50.2	2.1
128.40	1,756	2.40	2,204	1,723	0.172	0	.127	0.000	0.000	0.1273	18.3	68.5	2.9
128.60	1,906	2.60	2,570	2,090	0.209	0	.137	0.000	0.000	0.1367	21.6	90.0	3.8
128.80	2,057	2.80	2,967	2,486	0.249	0	.146	0.000	0.000	0.1455	24.9	115.0	4.8
129.00	2,207	3.00	3,393	2,912	0.291	0	.154	0.000	0.000	0.1539	28.5	143.4	6.0

Permanent Pool 1,300 Live Storage 2,500

Notes:

Inputs will vary depending on modelling software you choose

*Rectangular Orifice - change cross sectional area calculation for circular orifice

APPENDIX A STORMWATER MANAGEMENT POND #2 VO3 INPUTS

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

e / Storage Depth (m)	Total Storage (m³)	Live Storage (m³)	Live Storage (ha·m)		Orifice Flow (1) (m³/s)	Orifice Flow (2) (m³/s)	Weir Flow (3) (m ³ /s)	Total Flow from SWMP (m³/s)	Total Time to Empty (hours)	Cumm. Time	Cumm. Time (days)
(m)	Storage	Storage	J		Flow (1)	Flow (2)	Flow (3)	from SWMP	Time to Empty		
(m)	Storage	Storage	J		Flow (1)	Flow (2)	Flow (3)	from SWMP	Time to Empty		
, ,	(m ³)	(m ³)	(ha·m)		(m ³ /s)	(m ³ /s)	(m ³ /s)			(hours)	(days)
									()	(hours)	(Gays)
0.00	0	0	0.000		0.000	0.000	0.000	0.000			
0.10	67	67	0.007		0.012	0.000	0.000	0.012	3.0	3.0	0.1
0.20	147	147	0.015		0.022	0.000	0.000	0.022	4.9	4.9	0.2
0.30	241	241	0.024		0.028	0.000	0.000	0.028	8.3	11.3	0.5
0.40	348	348	0.035		0.033	0.000	0.000	0.033	11.7	16.5	0.7
0.50	469	469	0.047		0.037	0.000	0.000	0.0374	15.2	26.4	1.1
0.60	603	603	0.060		0.041	0.000	0.000	0.0414	18.9	35.4	1.5
0.70	751	751	0.075		0.045	0.088	0.000	0.1332	0.9	36.3	1.5
0.80	912	912	0.091		0.048	0.125	0.000	0.1731	2.2	38.5	1.6
0.90	1,087	1,087	0.109		0.051	0.153	0.000	0.2043	3.1	41.7	1.7
1.00	1,275	1,275	0.128		0.054	0.176	0.000	0.2309	3.9	45.6	1.9
	0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	0.10 67 0.20 147 0.30 241 0.40 348 0.50 469 0.60 603 0.70 751 0.80 912 0.90 1,087	0.10 67 67 0.20 147 147 0.30 241 241 0.40 348 348 0.50 469 469 0.60 603 603 0.70 751 751 0.80 912 912 0.90 1,087 1,087	0.10 67 67 0.007 0.20 147 147 0.015 0.30 241 241 0.024 0.40 348 348 0.035 0.50 469 469 0.047 0.60 603 603 0.060 0.70 751 751 0.075 0.80 912 912 0.091 0.90 1,087 1,087 0.109	0.10 67 67 0.007 0.20 147 147 0.015 0.30 241 241 0.024 0.40 348 348 0.035 0.50 469 469 0.047 0.60 603 603 0.060 0.70 751 751 0.075 0.80 912 912 0.091 0.90 1,087 1,087 0.109	0.10 67 67 0.007 0.012 0.20 147 147 0.015 0.022 0.30 241 241 0.024 0.028 0.40 348 348 0.035 0.033 0.50 469 469 0.047 0.037 0.60 603 603 0.060 0.041 0.70 751 751 0.075 0.045 0.80 912 912 0.091 0.048 0.90 1,087 1,087 0.109 0.051	0.10 67 67 0.007 0.012 0.000 0.20 147 147 0.015 0.022 0.000 0.30 241 241 0.024 0.028 0.000 0.40 348 348 0.035 0.033 0.000 0.50 469 469 0.047 0.037 0.000 0.60 603 603 0.060 0.041 0.000 0.70 751 751 0.075 0.045 0.088 0.80 912 912 0.091 0.048 0.125 0.90 1,087 1,087 0.109 0.051 0.153	0.10 67 67 0.007 0.012 0.000 0.000 0.20 147 147 0.015 0.022 0.000 0.000 0.30 241 241 0.024 0.028 0.000 0.000 0.40 348 348 0.035 0.033 0.000 0.000 0.50 469 469 0.047 0.037 0.000 0.000 0.60 603 603 0.060 0.041 0.000 0.000 0.70 751 751 0.075 0.045 0.088 0.000 0.80 912 912 0.091 0.048 0.125 0.000 0.90 1,087 1,087 0.109 0.051 0.153 0.000	0.10 67 67 0.007 0.012 0.000 0.000 0.012 0.20 147 147 0.015 0.022 0.000 0.000 0.022 0.30 241 241 0.024 0.028 0.000 0.000 0.028 0.40 348 348 0.035 0.033 0.000 0.000 0.033 0.50 469 469 0.047 0.037 0.000 0.000 0.0374 0.60 603 603 0.060 0.041 0.000 0.000 0.0414 0.70 751 751 0.075 0.045 0.088 0.000 0.1731 0.80 912 912 0.091 0.048 0.125 0.000 0.2043 0.90 1,087 1,087 0.109 0.051 0.153 0.000 0.2043	0.10 67 67 0.007 0.012 0.000 0.000 0.012 3.0 0.20 147 147 0.015 0.022 0.000 0.000 0.022 4.9 0.30 241 241 0.024 0.028 0.000 0.000 0.028 8.3 0.40 348 348 0.035 0.033 0.000 0.000 0.033 11.7 0.50 469 469 0.047 0.037 0.000 0.000 0.0374 15.2 0.60 603 603 0.060 0.041 0.000 0.000 0.0414 18.9 0.70 751 751 0.075 0.045 0.088 0.000 0.1332 0.9 0.80 912 912 0.091 0.048 0.125 0.000 0.1731 2.2 0.90 1,087 1,087 0.109 0.051 0.153 0.000 0.2043 3.1	0.10 67 67 0.007 0.012 0.000 0.012 3.0 3.0 0.20 147 147 0.015 0.022 0.000 0.000 0.022 4.9 4.9 0.30 241 241 0.024 0.028 0.000 0.000 0.028 8.3 11.3 0.40 348 348 0.035 0.033 0.000 0.000 0.033 11.7 16.5 0.50 469 469 0.047 0.037 0.000 0.000 0.0374 15.2 26.4 0.60 603 603 0.060 0.041 0.000 0.000 0.0414 18.9 35.4 0.70 751 751 0.075 0.045 0.088 0.000 0.1332 0.9 36.3 0.80 912 912 0.091 0.048 0.125 0.000 0.1731 2.2 38.5 0.90 1,087 1,087 0.109 0.051 0

Permanent Pool 400 Live Storage 1,100

Nata.

Inputs will vary depending on modelling software you choose

APPENDIX A WATER BALANCE

INFRASTRUCTURE ONTARIO SHERWOOD HEIGHTS DRIVE OAKVILLE, ONTARIO

CATCHMENT INFORMATION

Number	Description	Area (ha)	Percent Impervious	Imperv. Area (ha)
1	Pre-development	7.280	5%	0.364
100	Post-development - Scenario 1	5.070	60%	3.042
200	Post-development - Scenario 1	2.210	40%	0.884

WATER BALANCE SUMMARY - ANNUAL

Pre Developme	nt Catchment \	Vater Balance			Infiltrati	ion Factor			Average	Annual Depth	Output				
Catchment	Land Type	Area (ha)	Soil Type	Soil Group	Topography ¹	Soils ²	Land Use ³	Total	Precipitation ⁴ (mm)	Evapotranspiration ⁴ (mm)	Average Annual Rainfall (m³)	Evapotranspiration (m ³)	Precipitation Surplus (m ³)	Groundwater Recharge (m³)	Annual Runoff Volume (m³)
1 1	Pervious Impervious	6.9160 0.3640	Silty Clay Silty Clay	CD CD	0.2	0.15 0	0.05 0	0.4	785 785	526 0	54,291 2,857	36,378 0	17,912 2,857	7,165 0	10,747 2,857
	Total	7.280								Total	57,148	36,378	20,770	7,165	13,605

Post Developm	ent Catchment	Water Balance	?		Infiltrati	on Factor			Average	Annual Depth			Output		
C-4-b	Land Same	A (b -)	C-11.T	C-!! C	1	2	3	Total	Precipitation ⁴	Evapotranspiration ⁴	Average Annual	Evapotranspiration	Precipitation	Groundwater	Annual Runoff
Catchment	Land Type	Area (ha)	Soil Type	Soil Group	Topography ¹	Soils ²	Land Use ³	rotai	(mm)	(mm)	Rainfall (m³)	(m³)	Surplus (m³)	Recharge (m ³)	Volume (m³)
100	Pervious	2.0280	Silty Clay	CD	0.2	0.15	0.05	0.4	785	526	15,920	10,667	5,253	2,101	3,152
200	Pervious	1.3260	Silty Clay	CD	0.2	0.15	0.05	0.4	785	526	10,409	6,975	3,434	1,374	2,061
100	Impervious	3.0420	Silty Clay	CD	0	0	0	0	785	0	23,880	0	23,880	0	23,880
200	Impervious	0.8840	Silty Clay	CD	0	0	0	0	785	0	6,939	0	6,939	0	6,939
Total Scenario 1	Į.	7.280								Total	57,148	17,642	39,506	3,475	36,031

¹ Values for Pasture and Shrubs

Water Balance Mitigation

Number of Days of Rainfall annually with a rainfall event of at least 5mm

46

Mitigation Infiltration Volume (m³)

Scenario 1 Scenario 2

Scena

3,690 7,165

	Site Area	Pre Infiltration	Post	Required	Capture of	Annual
Scenario		Volume	Infiltration	Compensation	5mm across	Capture of
		volulile	Volume	Volume	site	46 Storms
	(ha)	(m³)	(m ³)	(m ³)	(m³)	(m ³)
1	7.280	7,165	3,475	3,690	364	16,744

² Rolling Land, average slope 2.8m to 3.8m/km

³ Light Cover, less than cultivated land (MOE SWM Planning and Design Manual)

⁴ Mean annual water balance values from NOCSS Table 5.4.2

APPENDIX B

Hydrologic Model

٧ ٧ Ι SSSSS U Α Ι SS U ΑА U V Ι U U AAAAA L SS V V Ι SS U U A VV Ι SSSS UUUUU A LLLLL 000 TTTTT TTTTT H Y Y 000 TM Н Μ YY 0 Τ Н 0 Τ Н MM MM 0 Τ Т Н Υ Μ Т 000 Т Н Н Μ 000 Developed and Distributed by Civica Infrastructure Copyright 2007 - 2013 Civica Infrastructure All rights reserved. ***** DETAILED OUTPUT ***** filename: C:\Program Files\VO Suite 3.0\VO2\voin.dat Input Output filename: C:\Users\bverspagen\AppData\Local\Temp\a87ef0a1-5c36-4da7-a2bb-447f96a8e2 4d\Scenario.out Summary filename: C:\Users\bverspagen\AppData\Local\Temp\a87ef0a1-5c36-4da7-a2bb-447f96a8e2 4d\Scenario.sum DATE: 02-24-2022 TIME: 01:50:11 **USER:** COMMENTS: ********* 1 ** ** SIMULATION NUMBER: ********* CHICAGO STORM IDF curve parameters: A= 725.000

4.800

B=

| Ptotal= 33.68 mm |

----- C= 0.810 used in: INTENSITY = A / (t + B)^C

Duration of storm = 4.00 hrs Storm time step = 5.00 min Time to peak ratio = 0.33

DATN	TIME	RAIN	TIME	RAIN '	TIME	RAIN TIME
RAIN	hrs	mm/hr	hrs	mm/hr '	hrs	mm/hr hrs
mm/hr	0.08	1.85	1.08	8.77	2.08	5.42 3.08
2.50	0.17	1.97	1.17	13.83	2.17	4.91 3.17
2.40	0.25	2.10	1.25	33.68	2.25	4.49 3.25
2.30	0.33	2.26	1.33	114.14	2.33	4.15 3.33
2.22	0.42	2.44		43.96		3.85 3.42
2.14	0.50	2.67		·		3.60 3.50
2.07	0.58	2.94	1.58	·		3.38 3.58
2.00	0.67	3.28		11.90		3.19 3.67
1.94		·		·		·
1.88	0.75	3.72		9.56	2.75	3.02 3.75
1.83	0.83	4.31		8.00	2.83	2.87 3.83
1.78	0.92	5.16	1.92	6.89	2.92	2.73 3.92
1.73	1.00	6.47	2.00	6.07	3.00	2.61 4.00

Unit Hyd Qpeak (cms)= 1.390

PEAK FLOW (cms)= 0.177 (i) TIME TO PEAK (hrs)= 1.583

```
(mm) = 8.210
RUNOFF VOLUME
TOTAL RAINFALL
               (mm) = 33.684
RUNOFF COEFFICIENT = 0.244
```

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0100) | Area (ha)= 5.07 |ID= 1 DT= 5.0 min | Total Imp(%)= 60.00 Dir. Conn.(%)= 55.00**IMPERVIOUS** PERVIOUS (i) Surface Area (ha)=2.03 3.04 Dep. Storage (mm) =1.00 1.50 Average Slope (%)= 2.50 2.50 (m)=Length 183.85 20.00 Mannings n 0.250 0.013 114.14 Max.Eff.Inten.(mm/hr)= 30.01 5.00 over (min) 10.00 Storage Coeff. (min)= 2.65 (ii) 6.29 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. peak (cms)= 0.29 0.15 *TOTALS* 0.79 PEAK FLOW (cms)= 0.850 (iii) 0.13 TIME TO PEAK (hrs)= 1.33 1.42 1.33 32.68 RUNOFF VOLUME (mm)= 11.79 23.28 TOTAL RAINFALL (mm) =33.68 33.68 33.68 RUNOFF COEFFICIENT = 0.97 0.35 0.69

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 80.0$ Ia = Dep. Storage (Above)

0.0353

- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR (1100) IN= 2---> OUT= 1 | OUTFLOW OUTFLOW STORAGE **STORAGE** | DT= 5.0 min | (cms) (cms) (ha.m.) (ha.m.) 0.0000 0.0000 0.1059 0.1080 0.1171

0.0160

0.1390

```
0.0611
                           0.0340
                                       0.1273
                                                 0.1720
                  0.0789
                           0.0560
                                       0.1367
                                                 0.2090
                  0.0934
                           0.0800
                                     0.1455
                                                 0.2490
                       AREA
                               QPEAK
                                       TPEAK
                                                 R.V.
                       (ha)
                               (cms)
                                        (hrs)
                                                  (mm)
INFLOW : ID= 2 (0100)
                                 0.850
                                          1.33
                                                  23.28
                       5.070
                       5.070
OUTFLOW: ID= 1 (1100)
                                 0.087
                                          1.92
                                                   23.26
```

PEAK FLOW REDUCTION [Qout/Qin](%)= 10.23 TIME SHIFT OF PEAK FLOW (min)= 35.00 MAXIMUM STORAGE USED (ha.m.)= 0.0694

```
| CALIB
| STANDHYD (0200) |
                   Area (ha) = 2.21
                    Total Imp(%)= 40.00
|ID= 1 DT= 5.0 min |
                                          Dir. Conn.(%)= 35.00
                           IMPERVIOUS
                                        PERVIOUS (i)
    Surface Area
                    (ha)=
                             0.88
                                           1.33
                             1.c
2.50
38
    Dep. Storage
                    (mm) =
                                           1.50
                     (%)=
    Average Slope
                                          2.50
                     (m)=
    Length
                             121.38
                                          20.00
    Mannings n
                             0.013
                                          0.250
                           114.14
    Max.Eff.Inten.(mm/hr)=
                                          28.04
              over (min)
                                          10.00
                              5.00
                            2.07 (ii)
5.00
    Storage Coeff. (min)=
                                          9.31 (ii)
    Unit Hyd. Tpeak (min)=
                                          10.00
    Unit Hyd. peak (cms)=
                             0.31
                                          0.12
                                                      *TOTALS*
                   (cms)=
                                                        0.261 (iii)
    PEAK FLOW
                             0.23
                                          0.06
    TIME TO PEAK
                   (hrs)=
                              1.33
                                                         1.33
                                          1.42
```

32.68

33.68

0.97

11.48

33.68

0.34

18.90

33.68

0.56

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(mm) =

(mm) =

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

.....

RUNOFF VOLUME

TOTAL RAINFALL

RUNOFF COEFFICIENT =

```
| ADD HYD (0011) |
1 + 2 = 3
                     AREA QPEAK TPEAK
                                          R.V.
                      (ha) (cms)
                                           (mm)
                                   (hrs)
       ID1= 1 (1100):
                     5.07
                            0.087
                                    1.92
                                          23.26
     + ID2= 2 (0200): 2.21
                            0.261
                                    1.33
                                          18.90
       ______
       ID = 3 (0011):
                      7.28
                            0.314
                                    1.33
                                          21.93
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR (1200) |
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
                                    OUTFLOW
                   OUTFLOW
                           STORAGE
                                              STORAGE
                   (cms) (ha.m.)
                                    (cms) (ha.m.)
   **** WARNING : FIRST OUTFLOW IS NOT ZERO.
                    0.0125
                                     0.0414
                           0.0070
                                                0.0600
                                    0.1332
                    0.0216
                            0.0150
                                                0.0750
                    0.0279 0.0240
                                    0.1731
                                               0.0910
                    0.0330
                           0.0350
                                               0.1090
                    0.0374
                            0.0470 | 0.2309
                                                0.1280
                              QPEAK TPEAK
                                                R.V.
                        AREA
                              (cms)
                                                (mm)
                                       (hrs)
                         (ha)
                         7.280
                                        1.33
   INFLOW: ID= 2 (0011)
                                0.314
                                                 21.93
                     7.280 0.081
   OUTFLOW: ID= 1 (1200)
                                          3.50
                                                 21.92
              PEAK FLOW REDUCTION [Qout/Qin](%)= 25.73
              TIME SHIFT OF PEAK FLOW
                                       (min)=130.00
              MAXIMUM STORAGE USED
                                     (ha.m.) = 0.0664
 *********
 ** SIMULATION NUMBER: 2 **
 ********
______
| CHICAGO STORM |
                  IDF curve parameters: A=1170.000
| Ptotal= 45.93 mm |
                                    B = 5.800
                                    C= 0.840
                  used in:
                           INTENSITY = A / (t + B)^C
```

Duration of storm = 4.00 hrs Storm time step = 5.00 min

Time to peak ratio = 0.33

	TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME
RAIN	hrs	mm/hr	hrs	mm/hr '	hrs	mm/hr	hrs
mm/hr	0.08	2.21	1.08	•		7.06	3.08
3.05		2.21		•		·	
2.92	0.17	2.36	1.17	19.39	2.17	6.34	3.17
	0.25	2.54	1.25	48.84	2.25	5.76	3.25
2.80	0.33	2.74	1.33	158.53	2.33	5.27	3.33
2.69	0.42	2.98	1.42	63.98	2 42	4.87	3.42
2.59		•					
2.49	0.50	3.27	1.50	33.77	2.50	4.52	3.50
2.41	0.58	3.63	1.58	22.33	2.58	4.23	3.58
	0.67	4.09	1.67	16.51	2.67	3.97	3.67
2.33	0.75	4.69	1.75	13.04	2.75	3.74	3.75
2.25				·		·	
2.18	0.83	5.51	1.83	10.76	2.83	3.54	3.83
2.12	0.92	6.69	1.92	9.16	2.92	3.36	3.92
	1.00	8.55	2.00	7.97	3.00	3.20	4.00
2.06							

Unit Hyd Qpeak (cms)= 1.390

PEAK FLOW (cms)= 0.368 (i)
TIME TO PEAK (hrs)= 1.583
RUNOFF VOLUME (mm)= 15.171
TOTAL RAINFALL (mm)= 45.933
RUNOFF COEFFICIENT = 0.330

⁽i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

:	IB ANDHYD (0100) 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=		Dir.	Conn.(%):	= 55.00	
			IMPERVI(NIS	PERVIOU	S (i)		
	Surface Area	(ha)-			2.03	• •		
		` '	3.04					
	Dep. Storage	• •			1.50			
	Average Slope	• •	2.56		2.50			
	Length	(m)=	183.85	5	20.00			
	Mannings n	=	0.013	3	0.250			
	Max.Eff.Inten.(n	nm/hr)=	158.53	3	53.49			
	•	(min))	10.00			
	Storage Coeff.	• •						
	Unit Hyd. Tpeak	•		• •	10.00	• •		
	•	•						
	Unit Hyd. peak	(CMS)=	0.36)	0.16			
							TOTALS	
	PEAK FLOW	(cms)=	1.13	3	0.24		1.251	(iii)
	TIME TO PEAK	(hrs)=	1.33	3	1.42		1.33	
	RUNOFF VOLUME	(mm)=	44.93	3	19.69		33.57	
	TOTAL RAINFALL	(mm)=		3			45.93	
	RUNOFF COEFFICIE	• •	0.98		0.43		0.73	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

	-	-	

RESERVOIR (1100) IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
·	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.1059	0.1080
	0.0353	0.0160	0.1171	0.1390
	0.0611	0.0340	0.1273	0.1720
	0.0789	0.0560	0.1367	0.2090
	0.0934	0.0800	0.1455	0.2490
	AR	EA QPEAK	TPEAK	R.V.

```
(ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0100) 5.070 1.251 1.33 33.57
OUTFLOW: ID= 1 (1100) 5.070 0.106 2.00 33.55
```

PEAK FLOW REDUCTION [Qout/Qin](%)= 8.46
TIME SHIFT OF PEAK FLOW (min)= 40.00
MAXIMUM STORAGE USED (ha.m.)= 0.1077

CALIB | STANDHYD (0200) | Area (ha)= 2.21 |ID= 1 DT= 5.0 min | Total Imp(%)= 40.00 Dir. Conn.(%)= 35.00IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.88 1.33 Dep. Storage 1.00 2.50 121.38 (mm) =1.50 (%)= Average Slope 2.50 Length (m)=20.00 Mannings n 0.013 0.250 Max.Eff.Inten.(mm/hr)= 158.53 Infinit 5.00 over (min) 10.00 Storage Coeff. (min)= 1.81 (ii)
Unit Hyd. Tpeak (min)= 5.00
Unit Hyd. peak (cms)= 0.32 6.31 (ii) 10.00 0.15 *TOTALS* 0.14 0.397 (iii) PEAK FLOW (cms)= 0.33 TIME TO PEAK (hrs)= 1.33 44.93 1.33 1.42 1.33 19.24 (mm) =RUNOFF VOLUME 28.23 TOTAL RAINFALL (mm) =45.93 45.93 45.93 RUNOFF COEFFICIENT = 0.98 0.42 0.61

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| ADD HYD (0011) |
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
```

```
ID1= 1 (1100): 5.07 0.106 2.00
                          33.55
+ ID2= 2 (0200): 2.21 0.397 1.33
 ______
 ID = 3 (0011):
            7.28
                0.464
                      1.33
                           31.93
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR (1200) | | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW STORAGE -----(cms) (ha.m.) (cms) (ha.m.) **** WARNING : FIRST OUTFLOW IS NOT ZERO. 0.0125 0.0070 0.0414 0.0600

 0.0216
 0.0150

 0.0279
 0.0240

 0.0330
 0.0350

 0.1332 0.0750 0.1731 0.2043 0.0910 0.1090 0.0374 0.0470 | 0.2309 0.1280 AREA QPEAK TPEAK (ha) (cms) (hrs) R.V. (mm) 0.464 1.33 INFLOW : ID= 2 (0011) 7.280 31.93 OUTFLOW: ID= 1 (1200) 7.280 0.118 2.83 31.92 PEAK FLOW REDUCTION [Qout/Qin](%)= 25.44 TIME SHIFT OF PEAK FLOW (min)= 90.00 (ha.m.)= 0.0725 MAXIMUM STORAGE USED

********* ** SIMULATION NUMBER: 3 ** *********

| CHICAGO STORM | IDF curve parameters: A=1400.000 | Ptotal= 52.02 mm | 5.800 B=

C = 0.850

used in: INTENSITY = $A / (t + B)^C$

Duration of storm = 4.00 hrsStorm time step = 5.00 minTime to peak ratio = 0.33

RAIN | TIME RAIN | TIME RAIN | TIME TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs

```
mm/hr
               0.08
                      2.37 | 1.08 | 13.22 | 2.08 | 7.76 | 3.08
3.29
               0.17
                      2.54 | 1.17
                                  21.82 | 2.17
                                                  6.95 | 3.17
3.15
                      2.73 | 1.25 56.04 | 2.25
               0.25
                                                  6.30 | 3.25
3.02
               0.33
                      2.95 | 1.33 185.23 | 2.33
                                                  5.76 | 3.33
2.89
               0.42
                      3.22 | 1.42 73.72 | 2.42
                                                  5.31 | 3.42
2.78
                      3.54 | 1.50
               0.50
                                   38.44 | 2.50
                                                  4.92 | 3.50
2.68
                      3.94 | 1.58
                                                  4.59 | 3.58
               0.58
                                   25.20 | 2.58
2.59
                                                  4.31 | 3.67
               0.67
                      4.44 | 1.67
                                   18.50 | 2.67
2.50
                                                 4.05 | 3.75
               0.75
                   5.11 | 1.75
                                   14.54 | 2.75
2.42
                                                 3.83 | 3.83
                   6.02 | 1.83
                                   11.94 | 2.83
               0.83
2.34
               0.92 7.35 | 1.92
                                   10.13 | 2.92
                                                 3.63 | 3.92
2.27
               1.00 9.44 | 2.00 8.79 | 3.00 3.45 | 4.00
2.20
| CALIB
| NASHYD (0001) |
                    Area
                           (ha)= 7.28 Curve Number
                                                      (CN) = 80.0
                           (mm) = 6.35 \# of Linear Res.(N) = 3.00
|ID= 1 DT= 5.0 min |
                    Ia
                    U.H. Tp(hrs) = 0.20
    Unit Hyd Qpeak (cms)= 1.390
    PEAK FLOW
                  (cms) = 0.482 (i)
    TIME TO PEAK
                  (hrs) = 1.583
```

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(mm) = 19.069

(mm) = 52.019

-----| CALIB |

RUNOFF VOLUME

TOTAL RAINFALL

RUNOFF COEFFICIENT = 0.367

```
STANDHYD (0100)
                    Area (ha) = 5.07
                    Total Imp(\%) = 60.00 Dir. Conn.(\%) = 55.00
|ID= 1 DT= 5.0 min |
_____
                           IMPERVIOUS
                                        PERVIOUS (i)
    Surface Area
                    (ha)=
                              3.04
                                           2.03
    Dep. Storage
                    (mm) =
                              1.00
                                          1.50
                           2.50
                   (%)=
    Average Slope
                                          2.50
    Length
                     (m)=
                             183.85
                                          20.00
    Mannings n
                                          0.250
                             0.013
    Max.Eff.Inten.(mm/hr)=
                                        67.82
                            185.23
              over (min)
                             5.00
                                         10.00
                              2.19 (ii)
    Storage Coeff. (min)=
                                         5.18 (ii)
    Unit Hyd. Tpeak (min)=
                                          10.00
                             5.00
    Unit Hyd. peak (cms)=
                              0.31
                                          0.16
                                                      *TOTALS*
    PEAK FLOW
                  (cms) =
                                         0.32
                              1.33
                                                       1.494 (iii)
    TIME TO PEAK
                   (hrs)=
                              1.33
                                                        1.33
                                          1.42
                           51.02
                                       23.5c
52.02
2 46
    RUNOFF VOLUME
                  (mm)=
                                                       38.85
    TOTAL RAINFALL
                    (mm) =
                             52.02
                                                       52.02
    RUNOFF COEFFICIENT =
                             0.98
                                                        0.75
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR (1100) | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW **STORAGE** (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0000 0.1059 0.1080 0.0353 0.0160 0.1171 0.1390

0.0611 0.0340 0.1273 0.1720 0.0789 0.0560 0.1367 0.2090 0.0934 0.0800 0.1455 0.2490 AREA OPEAK TPEAK R.V. (cms) (ha) (hrs) (mm)

INFLOW: ID= 2 (0100) 5.070 1.494 1.33 38.85 OUTFLOW: ID= 1 (1100) 5.070 0.113 2.00 38.83

PEAK FLOW REDUCTION [Qout/Qin](%)= 7.59

```
| CALIB
| STANDHYD (0200) | Area (ha)= 2.21
|ID= 1 DT= 5.0 min | Total Imp(%)= 40.00 Dir. Conn.(%)= 35.00
                          IMPERVIOUS
                                      PERVIOUS (i)
    Surface Area
                   (ha)=
                           0.88
                                         1.33
    Dep. Storage
                   (mm) =
                             1.00
                                         1.50
                          2.50
                   (%)=
    Average Slope
                                        2.50
                    (m)=
                            121.38
    Length
                                        20.00
    Mannings n
                           0.013
                                        0.250
                          185.23
    Max.Eff.Inten.(mm/hr)=
                                      Infinit
             over (min)
                            5.00
                                        10.00
    Storage Coeff. (min)=
                            1.70 (ii)
                                        5.93 (ii)
    Unit Hyd. Tpeak (min)=
                             5.00
                                        10.00
    Unit Hyd. peak (cms)=
                                         0.15
                          0.32
                                                    *TOTALS*
    PEAK FLOW
                  (cms) =
                            0.38
                                        0.18
                                                      0.477 (iii)
    TIME TO PEAK
                             1.33
                  (hrs)=
                                                      1.33
                                        1.42
                          51.02
    RUNOFF VOLUME
                   (mm) =
                                                     33.11
                                       23.47
    TOTAL RAINFALL
                   (mm) =
                           52.02
                                       52.02
                                                     52.02
    RUNOFF COEFFICIENT =
                            0.98
                                        0.45
                                                     0.64
```

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0011)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
·	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (1100):	5.07	0.113	2.00	38.83
+ ID2= 2 (0200):	2.21	0.477	1.33	33.11
======================================	:====== 7	 0	1 22	27 00
ID1= 1 (1100):	5.07	(cms) 0.113	2.00	38.83

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR (1200) IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
1 2. 3.0		(ha.m.)	(cms)	
**** WARNING : F]	• •	•	(6.113)	(114.111.)
		0.0070	0.0414	0.0600
		0.0150	0.1332	
			0.1731	
		0.0350	0.2043	
		0.0470	0.2309	0.1280
			•	
	AR	EA QPEAK	TPEAK	R.V.
	(h	a) (cms)	(hrs)	(mm)
INFLOW : ID= 2 (6				37.09
OUTFLOW: ID= 1 (1	1200) 7.	280 0.1	34 2.58	37.07
	AK FLOW R			
	ME SHIFT OF P			
MAX	KIMUM STORAG	E USED	(ha.m.)=	0.0754
	ماد ماد ماد ماد ماد ماد ماد			

** SIMULATION NUMBER				
**************************************	`			
CHICAGO STORM	TDF curve	parameters: /	Δ=1680 000	
Ptotal= 62.47 mm		Jai ame eer 3. 1		
1 cocur 02.47			C= 0.850	
	used in:	INTENSITY =)^C
	0.000 =		,, (, , ,	, -
	Duration o	f storm = 4	4.00 hrs	
		step =		
		ak ratio =		
	·			
TIME	RAIN T	IME RAIN	' TIME	RAIN TIME
RAIN				
hrs	mm/hr	nrs mm/hr	' hrs m	m/hr hrs
mm/hr				
	2.84 1	.08 15.73	2.08 9	.24 3.08
3.94				
	3.04 1	.17 25.95	2.17 8	.28 3.17
3.76				

```
0.25 3.26 | 1.25 67.00 | 2.25 7.51 | 3.25
3.60
              0.33 3.53 | 1.33 225.84 | 2.33 6.87 | 3.33
3.46
                    3.84 | 1.42 88.31 | 2.42
                                                6.33 | 3.42
              0.42
3.33
              0.50 4.23 | 1.50 45.79 | 2.50 5.87 | 3.50
3.20
              0.58 4.70 | 1.58 29.96 | 2.58
                                                5.48 | 3.58
3.09
              0.67 5.30 | 1.67 22.00 | 2.67 5.14 | 3.67
2.99
                                                4.84 | 3.75
              0.75 6.09 | 1.75 17.29 | 2.75
2.89
              0.83 7.18 | 1.83
                                  14.21 | 2.83 | 4.57 | 3.83
2.80
                                  12.05 | 2.92
              0.92 8.75 | 1.92
                                                4.34 | 3.92
2.71
              1.00 11.24 | 2.00 10.46 | 3.00 4.13 | 4.00
2.63
| CALIB
| NASHYD (0001) | Area (ha)= 7.28 Curve Number (CN)= 80.0
|ID= 1 DT= 5.0 min |
                   Ia
                          (mm) = 6.35 \# of Linear Res.(N) = 3.00
                  U.H. Tp(hrs) = 0.20
    Unit Hyd Qpeak (cms)= 1.390
    TIME TO PEAK (hrs)= 0.684 (i)
RINOEE VOLUME
                 (mm) = 26.276
    RUNOFF VOLUME
    TOTAL RAINFALL
                  (mm) = 62.466
    RUNOFF COEFFICIENT = 0.421
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| STANDHYD (0100) | Area (ha)= 5.07
```

IMPERVIOUS PERVIOUS (i)
Surface Area (ha)= 3.04 2.03

|ID= 1 DT= 5.0 min | Total Imp(%)= 60.00 Dir. Conn.(%)= 55.00

Dep. Storage	(mm)=	1.00	1.50	
Average Slope	(%)=	2.50	2.50	
Length	(m)=	183.85	20.00	
Mannings n	=	0.013	0.250	
Max.Eff.Inten.(mm/hr)=	225.84	92.05	
over	(min)	5.00	5.00	
Storage Coeff.	(min)=	2.02 (ii)	4.79 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	5.00	
Unit Hyd. peak	(cms)=	0.31	0.22	
				TOTALS
PEAK FLOW	(cms) =	1.64	0.48	2.120 (iii)
TIME TO PEAK	(hrs)=	1.33	1.33	1.33
RUNOFF VOLUME	(mm) =	61.47	31.79	48.11
TOTAL RAINFALL	(mm) =	62.47	62.47	62.47
RUNOFF COEFFICI	ENT =	0.98	0.51	0.77

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

.....

```
RESERVOIR (1100)
| IN= 2---> OUT= 1 |
| DT= 5.0 min
                         OUTFLOW
                                    STORAGE
                                                 OUTFLOW
                                                            STORAGE
                                                  (cms)
                          (cms)
                                    (ha.m.)
                                                            (ha.m.)
                          0.0000
                                     0.0000
                                                              0.1080
                                                  0.1059
                          0.0353
                                                              0.1390
                                     0.0160
                                                  0.1171
                                                  0.1273
                                                              0.1720
                          0.0611
                                     0.0340
                          0.0789
                                     0.0560
                                                  0.1367
                                                              0.2090
                          0.0934
                                     0.0800
                                                  0.1455
                                                              0.2490
```

				AREA	QPEAK		TPEAK	R.V.
				(ha)	(cms)		(hrs)	(mm)
<pre>INFLOW :</pre>	ID=	2	(0100)	5.070	2.120)	1.33	48.11
OUTFLOW:	ID=	1	(1100)	5.070	0.125	;	2.08	48.09

PEAK FLOW REDUCTION [Qout/Qin](%)= 5.89 TIME SHIFT OF PEAK FLOW (min)= 45.00 MAXIMUM STORAGE USED (ha.m.)= 0.1642

_ _ _ _ _

```
| CALIB
| STANDHYD (0200) | Area (ha)= 2.21
|ID= 1 DT= 5.0 min | Total Imp(%)= 40.00 Dir. Conn.(%)= 35.00
                         IMPERVIOUS
                                     PERVIOUS (i)
    Surface Area
                 (ha)=
                            0.88
                                        1.33
    Dep. Storage
                  (mm) =
                            1.00
                                       1.50
                           2.50
    Average Slope
                  (%)=
                                       2.50
                         121.38
    Length
                   (m) =
                                      20.00
    Mannings n
                                     0.250
                           0.013
    Max.Eff.Inten.(mm/hr)= 225.84 Infinit
             over (min)
                            5.00
                                      10.00
                          1.57 (ii)
5.00
    Storage Coeff. (min)=
                                       5.47 (ii)
    Unit Hyd. Tpeak (min)=
                                       10.00
    Unit Hyd. peak (cms)=
                           0.33
                                        0.16
                                                  *TOTALS*
                         0.47
                                      0.26
    PEAK FLOW
                 (cms)=
                                                    0.606 (iii)
                (hrs)=
    TIME TO PEAK
                           1.33
                                       1.42
                                                     1.33
                          61.47
    RUNOFF VOLUME
                 (mm) =
                                                    41.77
                                      31.17
                           62.47
    TOTAL RAINFALL (mm)=
                                                    62.47
                                      62.47
    RUNOFF COEFFICIENT =
                           0.98
                                      0.50
                                                    0.67
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0011)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (1100):	5.07	0.125	2.08	48.09
+ ID2= 2 (0200):	2.21	0.606 	1.33	41.77
ID = 3 (0011):	7.28	0.691	1.33	46.17

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
RESERVOIR (1200)
| IN= 2---> OUT= 1 |
DT= 5.0 min
                     OUTFLOW STORAGE
                                        OUTFLOW
                                                  STORAGE
                      (cms)
                              (ha.m.)
                                          (cms)
                                                  (ha.m.)
    **** WARNING : FIRST OUTFLOW IS NOT ZERO.
                      0.0125
                               0.0070
                                                     0.0600
                                       0.0414
                      0.0216
                               0.0150
                                          0.1332
                                                     0.0750
                      0.0279
                               0.0240
                                         0.1731
                                                     0.0910
                      0.0330
                                         0.2043
                               0.0350
                                                     0.1090
                      0.0374
                               0.0470
                                      0.2309
                                                     0.1280
                           AREA
                                  OPEAK
                                                     R.V.
                                          TPEAK
                           (ha)
                                  (cms)
                                           (hrs)
                                                     (mm)
    INFLOW : ID= 2 (0011)
                           7.280
                                   0.691
                                             1.33
                                                      46.17
                       7.280
    OUTFLOW: ID= 1 (1200)
                                                     46.15
                                     0.156
                                              2.50
                PEAK FLOW REDUCTION [Qout/Qin](%)= 22.61
                TIME SHIFT OF PEAK FLOW
                                           (min) = 70.00
                MAXIMUM STORAGE USED
                                        (ha.m.)= 0.0842
 *********
                      5 **
 ** SIMULATION NUMBER:
 *********
| CHICAGO STORM |
                    IDF curve parameters: A=1960.000
| Ptotal= 68.93 mm |
                                           5.800
                                       B=
                                       C = 0.860
                             INTENSITY = A / (t + B)^C
                    used in:
                    Duration of storm = 4.00 \text{ hrs}
                    Storm time step = 5.00 \text{ min}
                    Time to peak ratio = 0.33
                    RAIN | TIME RAIN | ' TIME RAIN | TIME
              TIME
RAIN
                   mm/hr| hrs
                                  mm/hr | 'hrs
                                                 mm/hr |
               hrs
                                                        hrs
mm/hr
              0.08
                    2.97 | 1.08
                                  17.19 | 2.08
                                                9.96 | 3.08
4.15
              0.17 3.18 | 1.17 28.70 | 2.17 8.90 | 3.17
3.96
              0.25 3.42 | 1.25 75.22 | 2.25 8.05 | 3.25
3.79
              0.33 3.71 | 1.33 253.23 | 2.33 7.34 | 3.33
3.63
              0.42 4.05 | 1.42 99.36 | 2.42 6.75 | 3.42
```

```
3.49
                      4.46 | 1.50
               0.50
                                    51.18 | 2.50
                                                   6.25 | 3.50
3.36
               0.58
                       4.98 | 1.58
                                     33.24
                                             2.58
                                                    5.83 | 3.58
3.24
                       5.63 | 1.67
                                    24.24 | 2.67
                                                    5.45 | 3.67
               0.67
3.13
               0.75
                    6.49 | 1.75
                                     18.94
                                             2.75
                                                    5.13 | 3.75
3.02
                    7.68 | 1.83
                                                    4.84 | 3.83
               0.83
                                    15.49
                                             2.83
2.93
                    9.42 | 1.92
               0.92
                                    13.08 | 2.92
                                                    4.58 | 3.92
2.84
                      12.18 | 2.00
                                     11.31 | 3.00
                                                    4.35 | 4.00
               1.00
2.75
l CALIB
| NASHYD (0001) |
                            (ha) = 7.28 Curve Number (CN) = 80.0
                     Area
                            (mm) =
|ID= 1 DT= 5.0 min |
                     Ia
                                    6.35
                                          # of Linear Res.(N)= 3.00
                     U.H. Tp(hrs)=
                                    0.20
    Unit Hyd Qpeak (cms)=
                           1.390
    PEAK FLOW
                   (cms) = 0.835 (i)
    TIME TO PEAK
                   (hrs)=
                          1.500
    RUNOFF VOLUME
                    (mm) = 31.000
    TOTAL RAINFALL
                    (mm) =
                          68.927
    RUNOFF COEFFICIENT = 0.450
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD (0100) |
                     Area (ha) = 5.07
                     Total Imp(%)= 60.00 Dir. Conn.(%)= 55.00
|ID= 1 DT= 5.0 min |
                           IMPERVIOUS
                                        PERVIOUS (i)
```

3.04

1.00

2.50

183.85

0.013

2.03 1.50

2.50

20.00

0.250

Surface Area

Dep. Storage

Mannings n

Length

Average Slope

(ha)=

(mm) =

(%)=

(m) =

Max.Eff.Inten.(m	m/hr)=	253.23	109.43	
over	(min)	5.00	5.00	
Storage Coeff.	(min)=	1.93 (ii)	4.57 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	5.00	
Unit Hyd. peak	(cms)=	0.31	0.23	
				TOTALS
PEAK FLOW	(cms)=	1.86	0.58	2.438 (iii)
TIME TO PEAK	(hrs)=	1.33	1.33	1.33
RUNOFF VOLUME	(mm) =	67.93	36.83	53.93
TOTAL RAINFALL	(mm) =	68.93	68.93	68.93
RUNOFF COEFFICIE	NT =	0.99	0.53	0.78

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| RESERVOIR (1100) |
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
```

DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.1059	0.1080
	0.0353	0.0160	0.1171	0.1390
	0.0611	0.0340	0.1273	0.1720
	0.0789	0.0560	0.1367	0.2090
	0.0934	0.0800	0.1455	0.2490

	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0100)	5.070	2.438	1.33	53.93
OUTFLOW: ID= 1 (1100)	5.070	0.131	2.08	53.91

PEAK FLOW REDUCTION [Qout/Qin](%)= 5.39 TIME SHIFT OF PEAK FLOW (min)= 45.00 MAXIMUM STORAGE USED (ha.m.)= 0.1885

```
IMPERVIOUS
                                   PERVIOUS (i)
Surface Area
               (ha)=
                                     1.33
                         0.88
                (mm)= 1.00
(%)= 2.50
(m)= 121.38
Dep. Storage
               (mm) =
                                      1.50
               (%)=
Average Slope
                                     2.50
Length
                                     20.00
                        0.013
Mannings n
                                     0.250
Max.Eff.Inten.(mm/hr)= 253.23 Infinit
          over (min)
                         5.00
                                    10.00
                      1.50 (ii) 5.23 (ii) 5.00 10.00
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)=
                        0.33
                                    0.16
                                                 *TOTALS*
PEAK FLOW
              (cms)=
                        0.53
                                    0.32
                                                   0.696 (iii)
                       1.33
67.93
                                   1.42
36.16
TIME TO PEAK (hrs)=
                                                   1.33
RUNOFF VOLUME
              ( mm ) =
                                                   47.28
TOTAL RAINFALL (mm)=
                                   68.93
                        68.93
                                                  68.93
RUNOFF COEFFICIENT = 0.99 0.52
                                                  0.69
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

**** WARNING : FIRST OUTFLOW IS NOT ZERO.

```
0.0125
        0.0070
                0.0414
                             0.0600
0.0216
        0.0150
                  0.1332
                             0.0750
0.0279
                 0.1731
        0.0240
                             0.0910
0.0330
        0.0350
                 0.2043
                             0.1090
        0.0470
              0.2309
0.0374
                             0.1280
```

R.V.

AREA QPEAK TPEAK (cms) (hrs) (mm) (ha) 7.280 INFLOW : ID= 2 (0011) 1.33 51.90 0.786 OUTFLOW: ID= 1 (1200) 7.280 0.172 2.33 51.88

> PEAK FLOW REDUCTION [Qout/Qin](%)= 21.94 TIME SHIFT OF PEAK FLOW (min) = 60.00(ha.m.)= 0.0907 MAXIMUM STORAGE USED

********* ** SIMULATION NUMBER: 6 ** *********

| CHICAGO STORM | | Ptotal = 75.63 mm |

IDF curve parameters: A=2150.000

B = 5.700

C = 0.860

 $INTENSITY = A / (t + B)^C$ used in:

Duration of storm = 4.00 hrsStorm time step = 5.00 min Time to peak ratio = 0.33

	TIME	RAIN	TIME	RAIN '	TIME	RAIN TIME
RAIN						
	hrs	mm/hr	hrs	mm/hr '	hrs	mm/hr hrs
mm/hr	0.00	2 25 1	4 00	40 77 1	2 00	10.00 3.00
4 54	0.08	3.25	1.08	18.//	2.08	10.89 3.08
4.54	0 17	3 /18	1 17	31 3/ I	2 17	9.73 3.17
4.33	0.17	J.40	1.1/	31.34	2.1/	9.75 3.17
4.55	0.25	3.75 l	1.25	82.35	2.25	8.79 3.25
4.15						
	0.33	4.06	1.33	280.01	2.33	8.03 3.33
3.98						
	0.42	4.43	1.42	108.89	2.42	7.38 3.42
3.82						1
2 60	0.50	4.88	1.50	55.93	2.50	6.84 3.50
3.68	Ω Ε0	- 44 l	1 [0	26 20 1	2 50	6 27 2 50
3.55	0.58	5.44	1.58	30.30	2.58	6.37 3.58
در. د						

```
3.42
               0.75 7.10 | 1.75
                                   20.68 | 2.75 5.61 | 3.75
3.31
                   8.40 | 1.83
                                   16.92 | 2.83
                                                  5.29 | 3.83
               0.83
3.20
                   10.29 | 1.92
                                   14.29 | 2.92 5.01 | 3.92
               0.92
3.10
               1.00 13.30 | 2.00 12.36 | 3.00
                                                  4.76 | 4.00
3.01
CALIB
| NASHYD (0001) |
                          (ha)= 7.28 Curve Number (CN)= 80.0
                    Area
|ID= 1 DT= 5.0 min |
                    Ia
                           (mm) = 6.35 \# of Linear Res.(N) = 3.00
                    U.H. Tp(hrs) = 0.20
    Unit Hyd Qpeak (cms)= 1.390
                  (cms) = 0.989 (i)
    PEAK FLOW
    TIME TO PEAK
                  (hrs) = 1.500
                  (mm) = 36.083
    RUNOFF VOLUME
                   (mm) = 75.635
    TOTAL RAINFALL
    RUNOFF COEFFICIENT = 0.477
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD (0100) | Area (ha)= 5.07
|ID= 1 DT= 5.0 min | Total Imp(%)= 60.00 Dir. Conn.(%)= 55.00
                          IMPERVIOUS
                                       PERVIOUS (i)
    Surface Area
                   (ha)=
                              3.04
                                          2.03
    Dep. Storage
                   (mm) =
                              1.00
                                         1.50
    Average Slope
                   (%)=
                              2.50
                                         2.50
                    (m) =
    Length
                            183.85
                                         20.00
                                        0.250
    Mannings n
                            0.013
    Max.Eff.Inten.(mm/hr) = 280.01 126.83
              over (min)
                             5.00
                                         5.00
                          1.85 (ii) 4.39 (ii) 5.00 5.00
    Storage Coeff. (min)=
    Unit Hyd. Tpeak (min)=
    Unit Hyd. peak (cms)=
                            0.32
                                          0.23
```

0.67 6.16 | 1.67 26.47 | 2.67 5.96 | 3.67

```
*TOTALS*
PEAK FLOW
             (cms)=
                                                 2.756 (iii)
                        2.06
                                    0.69
TIME TO PEAK
              (hrs)=
                        1.33
                                    1.33
                                                  1.33
RUNOFF VOLUME
             (mm)=
                       74.63
                                    42.22
                                                 60.05
TOTAL RAINFALL
                       75.63
                                                 75.63
              (mm) =
                                   75.63
RUNOFF COEFFICIENT =
                        0.99
                                   0.56
                                                 0.79
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 80.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR (1100) | | IN= 2---> OUT= 1 | | DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0000 0.1059 0.1080 0.0353 0.0160 0.1171 0.1390 0.1273 0.0611 0.0340 0.1720 0.1367 0.0789 0.0560 0.2090 0.0934 0.0800 | 0.1455 0.2490 QPEAK TPEAK R.V. AREA (hrs) (ha) (cms) (mm) 2.756 1.33 INFLOW : ID= 2 (0100) 5.070 60.05 OUTFLOW: ID= 1 (1100) 5.070 0.137 2.08 60.03

PEAK FLOW REDUCTION [Qout/Qin](%)= 4.99 TIME SHIFT OF PEAK FLOW (min) = 45.00(ha.m.) = 0.2127MAXIMUM STORAGE USED

20.00

CALIB | STANDHYD (0200) | Area (ha)= 2.21 |ID= 1 DT= 5.0 min | Total Imp(%)= 40.00 Dir. Conn.(%)= 35.00______ IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.88 1.33 1.00 2.50 Dep. Storage (mm) =1.50 Average Slope (%)= 2.50

(m) = 121.38

Length

```
Mannings n
                            0.013
                                         0.250
Max.Eff.Inten.(mm/hr)= 280.01 Infinit
over (min) 5.00

Storage Coeff. (min)= 1.44 (ii)

Unit Hyd. Tpeak (min)= 5.00

Unit Hyd. peak (cms)= 0.33
                                        10.00
                                          5.02 (ii)
                                          10.00
                                          0.16
                                                         *TOTALS*
                                          0.37
PEAK FLOW (cms)=
TIME TO PEAK (hrs)=
                            0.59
                                                           0.786 (iii)
                                          1.42
                          1.33
74.63
                             1.33
                                                           1.33
                                        41.49
                (mm) =
RUNOFF VOLUME
                                                           53.09
                            75.63
TOTAL RAINFALL (mm)=
                                         75.63
                                                          75.63
RUNOFF COEFFICIENT =
                             0.99
                                          0.55
                                                           0.70
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
| RESERVOIR (1200) |
| IN= 2---> OUT= 1 |
                                                       OUTFLOW
| DT= 5.0 min |
                                         STORAGE
                                                                      STORAGE
                           OUTFLOW
                             (cms) (ha.m.)
                                                       (cms) (ha.m.)
    **** WARNING : FIRST OUTFLOW IS NOT ZERO.
                                                       0.0414
                              0.0125 0.0070
                                                                          0.0600

      0.0216
      0.0150
      0.1332

      0.0279
      0.0240
      0.1731

      0.0330
      0.0350
      0.2043

                                                                        0.0750
                                                                      0.0910
                                                                        0.1090
                               0.0374 0.0470 | 0.2309
                                                                         0.1280
```

<pre>INFLOW : ID= OUTFLOW: ID=</pre>	· /	AREA (ha) 7.280 7.280	QPEAK (cms) 0.881 0.186		R.V. (mm) 57.92 57.90
	PEAK FLOW TIME SHIFT C MAXIMUM STO	F PEAK FL	OW	in](%)= 21. (min)= 55. ha.m.)= 0.	00
FINISH		:======	=======	========	========