

FUNCTIONAL SERVICING REPORT

Water, Sanitary, and Stormwater Management

PROPOSED MIXED-USE CONDOMINIUM TOWERS DISTRIKT MIDTOWN

590 ARGUS ROAD TOWN OF OAKVILLE

OUR FILE: 1798

PREPARED FOR DISTRIKT DEVELOPMENTS INC.

April 2023

REVISION HISTORY

DATE	REVISION	SUBMISSION	

April 2023 1 Issued for Rezoning/OPA Application

TABLE OF CONTENTS

1.0 INTRO	DUCTION	1
1.2 Site	pe of Functional Servicing Report Location and Description posed Development	1
2.0 ROAD	NETWORK	2
2.1 Sou ⁻	th Service Road	2
2.1.1	Conceptual South Service Road Municipal Services	3
2.1.2	Conceptual South Service Road Stormwater Management	3
2.2 Argu	us Road	4
3.0 MUNIC	CIPAL WATER	5
3.1 Exis	ting Municipal Water	5
3.1.1 3.1.2	Existing Linear Infrastructure Existing Water Demands	
3.2 Prop	oosed Municipal Water	5
3.2.1 3.2.2	Proposed Linear Infrastructure Proposed Water Demands	
4.0 MUNIC	CIPAL WASTEWATER	6
4.1 Exis	ting Municipal Wastewater	7
4.1.1 4.1.2	Existing Linear Infrastructure Existing Wastewater Demands	
4.2 Prop	oosed Municipal Wastewater	7
4.2.1 4.2.2	Proposed Service Connections Proposed Wastewater Demands	
5.0 STORM	/ DRAINAGE AND STORMWATER MANAGEMENT	8
	ting Storm Drainage bosed Storm Drainage	
5.2.1	Proposed Storm Service Connection	8
5.3 Stor	mwater Management	9
5.3.1 5.3.2 5.3.3	Stormwater Quantity Control (Peak Flow Control) Stormwater Runoff Volume Reduction (Water Balance)	1
7.0SITE G8.0EROSI	NDWATER	2 2

TABLES

Table 1: Existing Water Demands (L/min)	5
Table 2: Estimated Water Demands (L/min)	6
Table 3: Estimated Existing Wastewater Flow (L/s)	
Table 4: Estimated Proposed Wastewater Flow (L/s)	
Table 5: Stormwater Flows	.10

APPENDICES

APPENDIX 'A'	 Site Plan, Teeple Architects Inc. Site Statistics, Teeple Architects Inc. Topographic Survey, J.D. Barnes Limited.
APPENDIX 'B'	 Major Drainage Areas (Proposed Conditions), Figure DAP-2, Midtown Oakville EA Growth Area Schedule L3, Liveable Oakville Plan Typical Sections, Dwg 31 of 36, Midtown Oakville EA
APPENDIX 'C'	 Estimated Existing Water Demand Estimated Proposed Water Demand
APPENDIX 'D'	 Existing Estimated Sanitary Flow Proposed Estimated Sanitary Flow Figure 1, Sanitary Drainage Plan
APPENDIX 'E'	 Composite Runoff Coefficient Rational Method Flows Modified Rational Method Storage Water Balance Figure 2, Storm Drainage Plan South Service Road Realignment Composite Runoff Coefficient South Service Road Realignment Modified Rational Method Storage
APPENDIX 'F'	- Record Drawings
APPENDIX 'G'	 Preliminary Servicing Plan, Dwg. S1 Preliminary Grading Plan, Dwg. G1 South Service Road Conceptual Servicing Plan, Dwg. S2

- Typical Road Cross Sections

1.0 INTRODUCTION

1.1 Scope of Functional Servicing Report

This report has been prepared in support of the Rezoning (ZBA) and Official Plan Amendment (OPA) to permit the construction of a three-tower mixed-use condominium located at 590 Argus Road in the Town of Oakville (a copy of the preliminary Site Plan and site statistics are included in Appendix 'A'). This report discusses how the proposed site can be serviced by the existing and future infrastructure for water, wastewater, storm drainage/stormwater management, site grading, and erosion and sediment control. This report also briefly discusses the proposed local roads required as part of the Midtown Oakville EA. This report may be updated and refined as the project moves through the planning process to support the subdivision design.

Information provided in this report is based on our general knowledge of the area as well as information/drawings obtained from the Town of Oakville and the Region of Halton. Additionally, the following documents have been reviewed in support of this application:

- Stormwater Management Report, Oakville Part III Midtown EA, Town of Oakville, Cole Engineering, June 2014 (Midtown EA)
- Water and Wastewater Area Servicing Plan for Midtown Oakville, Final Report, Blue Plan Engineering, September 28, 2017 (ASP)
- Addendum to the Water and Wastewater Area Servicing Plan (ASP) for Midtown Oakville, Blue Pan Engineering, December 2020 (ASP Addendum)

1.2 Site Location and Description

The subject lands consist of 590 Argus Road in the Town of Oakville, having a total area of approximately 1.54 ha. The site currently consists of a six-storey hotel and associated parking. It is bounded to the north by the QEW and South Service Road East, 586 Argus Road to the west, Argus Road and 589 Argus Road to the south, and 226 and 234 South Service Road East to the east. A copy of the topographic survey is provided in Appendix 'A' for reference.

There is an existing 6.10 m wide easement described as Part 11 Plan 20R-15677 subject to a right-of-way as in instrument no. 105451 and 106047 that runs north south through the property. This easement contains a 600 mm diameter wide trunk sanitary sewer, and a 25 mm diameter water service.

1.3 Proposed Development

The development proposal is for three mixed-use condominium towers consisting of 1731 residential units and approximately 2394 m² of non-residential space. The building is to be constructed over six levels of underground parking which extend essentially to the property lines. A copy of the architect's site statistics is included in Appendix 'A' for detail. As this site is adjacent to an MTO corridor, a 14.0 m MTO setback is provided.

There are proposed road widenings and road realignments to Argus Road and South Service Road. As a result, the total developable area is 1.21 ha. Driveway access is provided off the realigned South Service Road at the north of the property.

2.0 ROAD NETWORK

The Midtown Oakville Class EA (approved 2014) and the Liveable Oakville Plan OPA 14 (adopted 2017) identify the local road network for the Midtown growth area. Growth Area Schedule L3 (refer to Appendix 'B') of the Liveable Oakville Plan illustrates the approximate alignments and road allowance widths of various future roads in the Midtown Oakville transportation network.

We understand based on discussions with Town staff that the exact locations of the future roads are flexible and can be fixed through the planning process; however, the proposed locations must meet the intent of both the Midtown EA and OPA 14 and be justified from a traffic and engineering perspective.

This development is impacted by the realignment of South Service Road along the north and east sides of the subject lands, and Argus Road widening to the south.

2.1 South Service Road

South Service Road is to be shifted in a southerly direction to accommodate a proposed QEW off-ramp. Preliminary design of South Service Road was undertaken by Cole Engineering as part of the Midtown EA; however, the Town of Oakville has been in ongoing discussions with MTO regarding the details of the realignment. Town staff provided the consultant team with conceptual drawings that were used to establish a future centreline and consequently the northerly and easterly limits of the development.

Appendix 'K' of the Midtown EA contains several preliminary design details for the Midtown transportation network. One such detail is the typical cross-section of South Service Road. It's worth noting that the EA identifies South Service Road as having a 16.0 m road allowance (see drawing 31 of 36, "Typical Sections", in Appendix 'B') although OPA 14 indicates an 18.0 m road

allowance. Additionally, the South Service Road typical section does not indicate any space between the sidewalk/multi-use trail and the limit of the road allowance. While the Cole Engineering centreline location has been maintained, a 16.0 m cross-section is reimagined. A conceptual road cross-section has been developed and is provided in Appendix 'G'. This road cross-section has been designed in collaboration with the developer's traffic consultant, BA Group.

2.1.1 Conceptual South Service Road Municipal Services

Storm sewers, sanitary sewers, and watermains will be provided in standard locations within the realigned South Service Road. The existing 600 mm diameter trunk sanitary sewer that is within the easement through the property will be relocated to the newly built South Service Road and the easement eliminated. Catchbasins and local storm sewers will be designed to collect and convey runoff from all storm events up to and including the 100-year. Services will connect to existing municipal services at the future intersection of South Service Road and Argus Road. The conceptual design maintains the existing sanitary, water, and stormwater catchment boundaries.

A Conceptual Servicing Design for South Service Road is provided (refer to Drawing S2).

A landowner's consortium and the Town of Oakville have engaged a consultant to prepare an Area Servicing Plan (ASP) which is being prepared for the entire Midtown Area and may evaluate how this proposed servicing design meets the overall servicing strategy for the entire Midtown core. The ASP should consider conceptual designs presented here and coordination should be undertaken refining this design though that process.

2.1.2 Conceptual South Service Road Stormwater Management

The realigned South Service Road will be designed with full stormwater management controls for quantity, quality, and water balance. The Town of Oakville requirements for stormwater management are set out in the Midtown Oakville EA Study (June 2014).

The applicable criteria are as follows:

1. Stormwater quantity Control (Peak Flow Control)

Utilize the Midtown Oakville EA Study hydrology model to demonstrate that the target flows are met for each subwatershed. Per the Midtown EA, the proposed road is to drain to Sixteen Mile Creek (Figure DAP-2). As there are no existing flood concerns for Sixteen Mile Creek in the study area, peak runoff rates from the development are to be controlled to existing rates. In addition to meeting the flows, a minimum storage requirement is 68.2 m^3/ha .

2. <u>Stormwater Runoff Volume Reduction (Water Balance)</u>

Provide retention of 5mm over the entire site area of the proposed development as per City of Toronto's Wet Weather Flow Management Guidelines (November 2006); or,

Retain stormwater onsite to achieve an equivalent annual volume of infiltration as predevelopment conditions, as per Section 3.2 of the MOE Stormwater Management Planning and Design Manual (March 2003)

3. Stormwater Quality Control

Achieve Enhanced Level 1 Protection, as per the Ministry of Environments Stormwater Management Planning and Design Manual (March 2003).

The stormwater management criteria must meet the objectives of the Midtown EA (Appendix J-Stormwater Management Report) as well as any updated Town of Oakville Stormwater Management Requirements.

Preliminary stormwater management calculations estimate a total of 91 m³ of storage is required to control the 100-year post-development runoff to the 5-year pre-development peak flow.

These stormwater management controls can be implemented through a variety of measures within the right-of-way such as underground stormwater chambers, low-impact developments, hydrodynamic separators, and/or membrane filtration devices.

A Conceptual Servicing Design for South Service Road which achieves this drainage pattern and fulfills the necessary criteria is provided (refer to Drawing S2).

2.2 Argus Road

Argus Road is proposed to be widened from a 20 m cross-section to a 27 m cross-section generally along the same centreline. The proposed widening is shared equally, 3.5 m to both the north and south properties.

The Midtown EA previously presented a "swoop" through the bend of Argus, but through discussion with Town staff, the "swoop" is no longer proposed.

A conceptual road cross-section has been developed and is provided in Appendix 'G'. At this time, no changes to the alignment of the existing municipal services are proposed. The municipal servicing design will be progressed and may be modified through the Area Servicing Plan, currently being undertaken through the Town.

3.0 MUNICIPAL WATER

The subject property will be serviced for water through the local water infrastructure on the adjacent roads. The current ASP notes there is sufficient water supply for the 2031 growth scenario, no major infrastructure is required to support development in this timeframe.

3.1 Existing Municipal Water

3.1.1 Existing Linear Infrastructure

There is an existing 900 mm diameter trunk CPP (Concrete Pressure Pipe) along the centreline of Argus Road. There is a 300 mm diameter PVC watermain on the south side of Argus Road. Record drawings (Appendix 'F') indicate a water service connection for the property from the 300 mm diameter watermain in Argus Road. The topographic survey and a field visit confirmed the presence of a valve near the property line.

There is an existing 500 mm diameter CPP trunk watermain along the south side of South Service Road within Pressure Zone 2.

Fire hydrants exist on the north and south sides of Argus Road as well as on South Service Road. Flow tests will be arranged to confirm the capacity of the existing systems and this report will be updated with the results when they are made available.

3.1.2 Existing Water Demands

Using the development area and Region of Halton design criteria (90 persons per ha for commercial), the existing domestic water usage is estimated and summarized below (see Appendix 'C' for supporting calculations).

Table 1: Existing Water Demands (L/min)

Average Daily Demand	26
Minimum Hourly Demand	26
Maximum Hourly Demand	60
Maximum Daily Demand	60

3.2 Proposed Municipal Water

All proposed services must be in accordance with the Ontario Building Code, Town of Oakville, and Region of Halton standards and requirements. A copy of the Preliminary Servicing Plan (S1) is included in Appendix 'G' and should be read in conjunction with this report.

3.2.1 Proposed Linear Infrastructure

Proposed water services consist of a 200 mm diameter fire, 150 mm diameter domestic service for the residential units, and 100 mm diameter domestic for non-residential space. Based on the heights of the buildings, a second fire service is provided as required by the OBC.

There are existing municipal hydrants within 40 m of each tower. The proposed location of the fire department connection (siamese connection) for each tower will need to be located within 45 m of a fire hydrant. Further detailed design will be completed at a later stage.

3.2.2 Proposed Water Demands

Using the development area and Region of Halton design criteria (90 persons per ha for commercial and 285 persons per ha for high-density residential), the domestic water usage is estimated and summarized below (see Appendix 'C' for supporting calculations). The fire flow is estimated for demand purposes only using the Fire Underwriter's Survey methodology and should be confirmed by a sprinkler consultant at the building permit stage.

Table 2: Estimated Water Demands (L/min)

Average Daily Demand	87
Minimum Hourly Demand	87
Maximum Hourly Demand	310
Maximum Daily Demand	195
Estimated Fire Demand (FUS 1999)	12,000
Maximum Daily Plus Fire Demand	12,195

4.0 MUNICIPAL WASTEWATER

The subject property will be serviced for wastewater through the local wastewater infrastructure on Argus Road. The current ASP notes capacity concerns for the 2031 growth scenario, and potentially some required downstream infrastructure upgrades. It is anticipated that the servicing capacity issues will be addressed in the new ASD.

All proposed services must be in accordance with the Ontario Building Code, Town of Oakville and Region of Halton standards and requirements. A copy of the preliminary Servicing Plan is included in Appendix 'B' and should be read in conjunction with this report. Existing and proposed servicing is discussed in further detail below.

4.1 Existing Municipal Wastewater

4.1.1 Existing Linear Infrastructure

There is an existing 750 mm diameter PVC sanitary sewer flowing west along the east west leg of Argus Road. This sewer drains south down Argus Road to a 600 mm PVC sanitary sewer.

The site is currently serviced through a 200 mm diameter service lateral running within an abandoned 600 mm diameter sanitary sewer which connects to the existing 600 mm diameter sanitary sewer running north-south on Argus Road.

There is an existing 600 mm diameter CPP trunk sewer running through the east portion of the site within an easement. This sewer conveys sanitary flows from existing residential lands north of the QEW. The 600 mm diameter sewer conveys flows to the 750 mm diameter sewer on the east west leg of Argus Road.

4.1.2 Existing Wastewater Demands

Using the development area and Region of Halton design criteria for commercial lands (90 persons per hectare), the estimated existing sanitary discharge is determined with 139 persons and 275 m³/cap. day (see Appendix 'D' for supporting calculations).

Table 3: Estimated Existing Wastewater Flow (L/s)Average Daily Dry Weather Flow0.44

Modified Harmon Peaking Factor	4.20
Infiltration Allowance (0.286 L/s-ha)	0.44
Peak Flow	2.25

4.2 Proposed Municipal Wastewater

All proposed services must be in accordance with the Ontario Building Code, Town of Oakville, and Region of Halton standards and requirements. A copy of the Preliminary Servicing Plan is included in Appendix 'G' and should be read in conjunction with this report.

4.2.1 Proposed Service Connections

A new 300 mm diameter PVC sanitary lateral connected to a new property line inspection manhole is proposed to service the development. The lateral will replace the existing 200 mm sanitary lateral within the abandoned 600 mm sanitary sewer and connect to the 600 mm diameter sanitary sewer on Argus Road and drains south to Cross Avenue.

4.2.2 Proposed Wastewater Demands

Using the development area and Region of Halton design criteria for commercial (based on floor area using unit rate, 90 persons per hectare) and high-rise residential (apartments exceeding six-storeys, 285 persons per hectare), the estimated proposed sanitary discharge is determined with 109 persons and 275 m³/cap. day (see Appendix 'D' for supporting calculations).

Table 4: Estimated Proposed Wastewater Flow (L/s)

Average Daily Dry Weather Flow	1.40
Modified Harmon Peaking Factor	4.05
Infiltration Allowance (0.286 L/s-ha)	0.35
Peak Flow	5.15

5.0 STORM DRAINAGE AND STORMWATER MANAGEMENT

5.1 Existing Storm Drainage

The existing site slopes generally from north to south, at an average slope at 0.5%. As mentioned, the site is currently occupied by a hotel and paved parking lot, all of which will be removed as part of the development. The existing parking lot drains using a series of catchbasins, which connect to a manhole near the southeast corner of the property. This manhole is connected to an existing 300 mm diameter storm sewer draining to the 375 mm diameter storm sewer on Argus Road. This sewer travels south through 570 Trafalgar Avenue, west through 571 & 587 Argus Road, and south, down Argus Road to Cross Avenue. The storm sewer along Argus Road drains west and outlets to 16 Mile Creek.

5.1.1 Existing Storm Service Connection

The existing site has a 300 mm diameter storm connection to a property line manhole in the southeast corner of the site. This manhole is connected to an existing 300 mm diameter storm sewer draining to the 375 mm diameter storm sewer on Argus Road. This sewer travels south through 570 Trafalgar Road, west through 571 & 587 Argus Road, and south, down Argus Road to Cross Avenue. The storm sewer along Argus Road drains west and outlets to 16 Mile Creek.

5.2 Proposed Storm Drainage

5.2.1 Proposed Storm Service Connection

A 375 mm diameter PVC storm connection along with property line inspection manhole will connect to the proposed storm sewer in South Service Road. This storm sewer connects to the

existing 375mm diameter storm sewer which services the site under pre-development conditions. The existing property line manhole and 300 mm diameter storm connection will be removed.

5.3 Stormwater Management

The Town of Oakville requirements for stormwater management are set out in the Midtown Oakville EA Study (June 2014).

The applicable criteria are as follows:

1. <u>Stormwater Quantity Control (Peak Flow Control)</u>

Utilize the Midtown Oakville EA Study hydrology model to demonstrate that the target flows are met for each subwatershed. Per the Midtown EA, the proposed development is to drain to Sixteen Mile Creek (Figure DAP-2). As there are no existing flood concerns for Sixteen Mile Creek in the study area, peak runoff rates from the development are to be controlled to existing rates. In addition to meeting the flows, a minimum storage requirement is 68.2 m³/ha.

2. <u>Stormwater Runoff Volume Reduction (Water Balance)</u>

Provide retention of 5 mm over the entire area of the proposed development as per the City of Toronto's Wet Weather Flow Management Guidelines (November 2006); or,

Retain stormwater onsite to achieve an equivalent annual volume of infiltration as perdevelopment conditions, as per Section 3.2 of the MOE Stormwater Management Planning and Design Manual (March 2003).

3. <u>Stormwater Quality Control</u>

Achieve Enhanced Level 1 Protection, as per the Ministry of Environment's Stormwater Management Planning and Design Manual (March 2003).

5.3.1 Stormwater Quantity Control (Peak Flow Control)

Pre-development flow rates are calculated using the Town of Oakville IDF curves, a runoff coefficient of C=0.5, and a development area of 1.21 ha. Post-development flow rates are calculated using the same IDF data, runoff coefficient of C=0.9 and the same area. In the determination of the post-development runoff coefficient, we have not accounted for any landscaping in the interior courtyard, or rooftop amenity space to remain conservative. This will

be refined as detailed design progresses. A conservative value of post-development runoff coefficient ensures adequate sizing of the stormwater management tank during the preliminary design stage.

Runoff from the entire site will outlet to the minor system on South Service Road. Therefore, postdevelopment peak flows must be controlled to the 5-year pre-development peak flow to respect capacity of the minor system.

To control stormwater runoff from the site, an underground stormwater tank system is proposed. The proposed stormwater management tank system will pump stormwater to the storm connection to South Service Road. The maximum pump release rate is the 5-year predevelopment peak flow. A comparison of pre- and post-development flow is provided in the table below.

Table 5: Stormwater Flows

	Pre-Dev Total	Post-Dev Release	Storage Required
Return	(L/s)	(L/s)	(m ³)
5-yr	192	192	102.6
10-yr	226	192	150.0
25-yr	300	192	254.4
50-yr	367	192	314.8
100-yr	421	192	368.2

The minimum storage requirement per the Midtown Oakville EA is 69.6 m³. The post- to predevelopment storage requirements yield a higher storage requirement and therefore govern.

The runoff coefficient and associated tank sizing may be refined as detailed design progresses.

Runoff from the site will be collected through the roof drains and surface drains. Plumbing interior to the building and underground parking structure (designed by the mechanical engineer) will direct runoff to the stormwater tank located in the underground parking structure and must be sized to capture the 100-year event. An emergency overland flow route is provided through the site to Argus Road. An emergency overflow from the tank must be designed in coordination with the mechanical consultant at the detailed design stage but will likely discharge to grade in the general vicinity of the tank.

5.3.2 Stormwater Runoff Volume Reduction (Water Balance)

A retention of 5 mm is required as per the Midtown EA hydrology study. However, in discussions with the Town, staff have recommended using a retention of 25 mm (refer to correspondence in Appendix 'G'). Accordingly, we have estimated a 25 mm retention volume of 302.2 m³ which must be re-used.

The stormwater management tank has been sized to store this volume in addition to the volume required for peak flow control. There are limited opportunities for infiltration, so the re-use water will be used for onsite irrigation or other acceptable best efforts. Additional details will be provided through detailed design.

5.3.3 Stormwater Quality Control

The Town of Oakville requires that the development meet MECP Enhanced protection (80% longterm removal of TSS). A Stormceptor Jellyfish (or approved equivalent) is proposed to treat sediment laden runoff from the vehicular and at-grade pedestrian areas only. Clean roof drainage is to bypass the filtration system. The Jellyfish is to be located upstream of the stormwater management tank and is provided with an outlet pipe and an overflow weir, both directed to the tank. An adequately maintained filtration system provides 80% long-term removal of TSS. Sizing of the Jellyfish will be undertaken as the detailed design progresses.

6.0 **GROUNDWATER**

A Hydrogeological Investigation was performed by B.I.G. Consulting Inc. (dated February 2023) in which the long-term peak groundwater flow rate into the parking garage sub drains after initial dewatering stages was estimated to be 75,000 L/day (0.87 L/s). These flows may be treated and may be to the stormwater management tank system in the underground parking garage before being discharged using the proposed stormwater lateral.

In the event that permanent dewatering is not permitted, the proposed building may be designed and supported by "tanked" water-proofed continuous raft foundation without permanent dewatering.

Refer to the Hydrogeological Investigation prepared by B.I.G. Consulting Inc. (BIGC-ENV-554A) dated February 2023 for details.

7.0 SITE GRADING

The proposed grading must ensure that drainage from the 100-year event is collected by the building's mechanical system and conveyed to the stormwater management tank. All building air intake and exhaust shafts must be protected from overland flow by being set a minimum of 0.2 m above the spill elevation.

The proposed property line elevations adjacent to South Service Road have been set considering the preliminary future road centerline elevations as set out in the Midtown Oakville EA.

Proposed grades along the south limit of the property have been set considering the future road alignment of Argus Road and are generally compatible with the existing grades.

A copy of the Preliminary Grading Plan is provided in Appendix 'G' and should be read in conjunction with this report.

8.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment controls must be installed prior to the commencement of any construction. The erosion and sediment control devices should follow the Erosion and Sediment Control Guidelines for Urban Construction as set out by the Greater Golden Horseshoe Conservation Authority. Erosion and sediment control measures may be implemented as follows:

- Double wrapped catch basins: The proposed storm sewer catch basins and catch basin manholes located within the subject site and adjacent municipal roads shall be double wrapped in a woven geotextile material. Woven geotextile material is to be replaced periodically when accumulated sediments interfere with drainage. The abutting streets should be monitored and if required, swept to mitigate the accumulation of tracked material on the roads on a routine basis in keeping with good construction housekeeping practices.
- Gravel Access Pad: A gravel access (mud) mat will be installed at the entrance to the construction zone to prevent mud tracking from the site to the municipal roads.
- Silt Fencing: Silt fence will be installed along the property line to intercept sheet flow.

A detailed erosion and sediment control plan and phasing plan (if applicable) will be developed through detailed design and provided at the site plan stage.

9.0 CONCLUSION

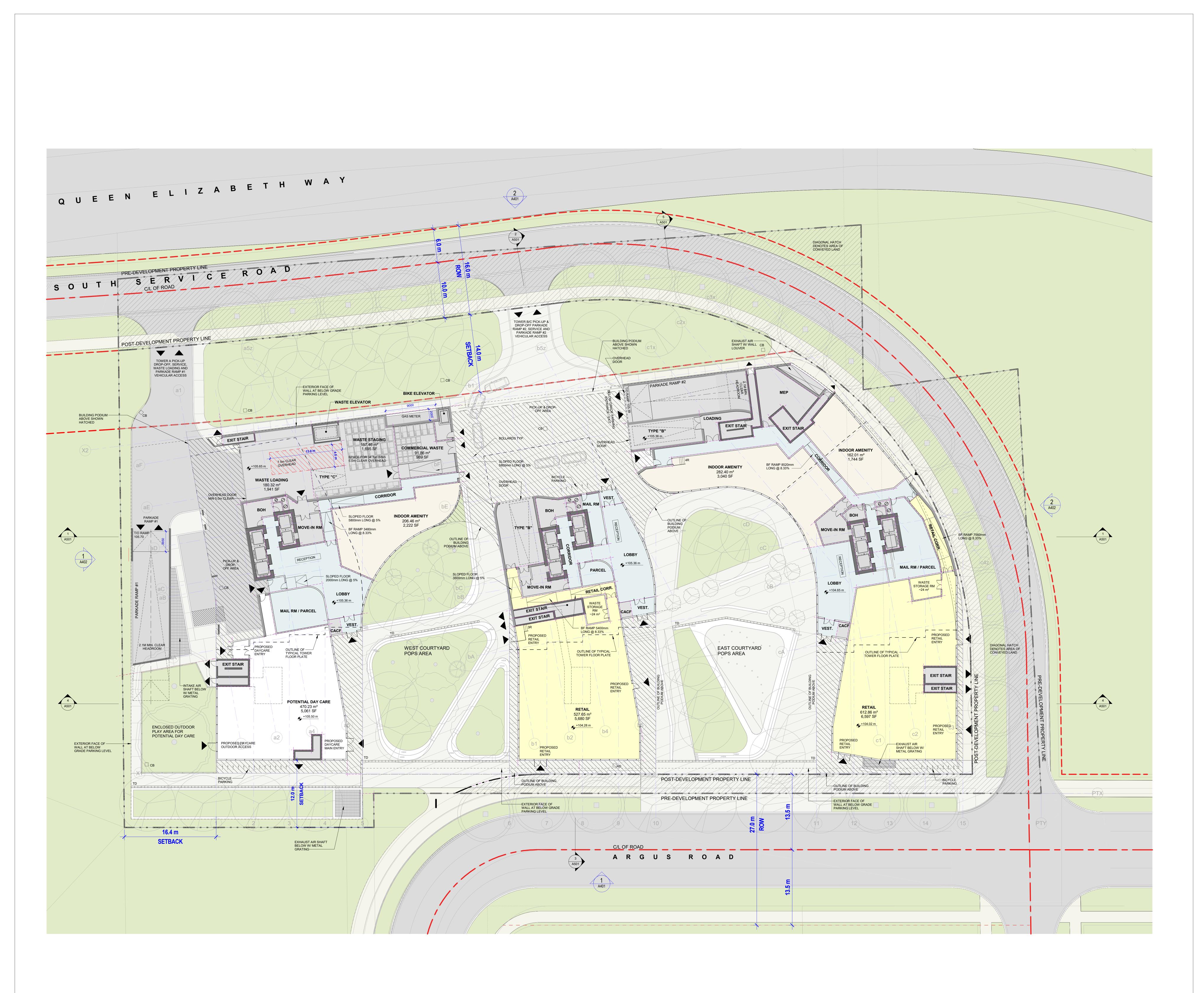
The information presented in this Functional Servicing Report demonstrates that the proposed development can be serviced by the existing and future adjacent infrastructure for water, wastewater, stormwater and can meet the Town of Oakville stormwater management criteria.

The following is a summary of the report findings:

- As part of the Midtown Oakville EA, the Argus Road and South Service Road realignment and dedications are required to develop the property.
- Separate stormwater controls are proposed for runoff from South Service Road.
- There is existing municipal water infrastructure adjacent to the site that can readily service the site. The proposed average daily water demand for the site is 84 L/min with an estimated maximum daily plus fire demand of 12,189 L/min.
- There is existing wastewater infrastructure servicing on Argus Road adjacent to the site. The proposed development will be serviced off this existing infrastructure by way of a 300 mm diameter sanitary lateral. The estimated peak wastewater flow based on Region of Halton criteria is 6.0 L/s for the entire site.
- Stormwater quantity controls will be provided by controlling post development peak flows to the 5-year pre-development peak flow. Storage will be provided in a stormwater tank located in the underground parking structure. Stormwater will be pumped to a maximum release rate of 192 L/s to South Service Road by way of a 375 mm diameter storm sewer connection. The required storage volume is 368.2 m³.
- The water balance criteria of 25 mm is equivalent to 302.2 m³. This water will also be stored in the underground stormwater tank and will be re-used for irrigation and other best efforts to be determined at the detailed design stage.
- The stormwater tank will have a minimum capacity of 670.4 m³, to store the required quantity and water balance requirements.
- Water quality criteria is met by means of a stormwater filtration system (Jellyfish unit), placed upstream of the stormwater tank.
- Grading of the site is designed to ensure runoff from the 100-year event is captured, and there is an emergency overland flow route.

Functional Servicing Report Proposed Mixed-Use Condominium 590 Argus Road, Oakville, ON

• Erosion and sediment controls will be implemented during construction in accordance with the Erosion and Sediment Control Guidelines for Urban Construction as set out by the Greater Golden Horseshoe Conservation Authority.


Based on the above, we support the proposed development from a civil engineering perspective for rezoning and Official Plan Amendment.

PREPARED BY TRAFALGAR ENGINEERING LTD.

Malcolm Wallace, EIT Junior Designer

Nicole Sylvester, P.Eng. Project Manager **APPENDIX 'A'**

Teeple Architects[™]

5 Camden Street, Toronto, ON, Canada, M5V 1V2 T. 416.598.0554 www.teeplearch.com

All drawings, specifications, related documents and design are the copyright property of the architect and must be returned upon request. Reproduction of the drawings, specifications, related documents and design in whole or in part is strictly forbidden without the architect's written permission. This drawing, as an instrument of service, is provided by and is the property of Teeple Architects Inc., and shall be used only for the project named on this drawing and solely for reference purposes only. The contractor is responsible for the coordination and verification of all dimensions contained herein and all measurements and conditions on site as they pertain to these documents. The contractor shall report any discrepancies to the consultant in writing prior to the commencement of

any affected work. DO NOT SCALE THIS DRAWING This drawing shall not be used for construction purposes unless countersigned

Teeple Architects Inc.

NO.	DATE:	ISSUED FOR:	
1	2023-03-20	ISSUED FOR OPA/ZBA	

ARCHITECT **Teeple Architects Inc.** 5 Camden Street, Toronto, ON, Canada, M5V 1V2 T. 416.598.0554

STRUCTURAL --

MECHANICAL --

ELECTRICAL

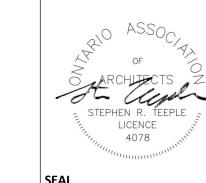
-

LANDSCAPE **Public City Architecture Inc.** 11-600 Clifton Street, Winnpieg, MN, R3G 2X6 T. 204.475.9323

CIVIL **Trafalgar Engineering Limited** 1-481 Morden Road, Oakville, ON, L6K 2W6 T. 905.338.3366

TRAFFIC **BA Consulting Group Limited** 300-45 St. Clair Avenue West, Toronto, ON, M4V 1K9 T. 416.961.7110

SOLID WASTE MANAGEMENT **R.J. Burnside & Asscoiates Limited** 1465 Pickering Parkway, Pickering, ON, L1V 7G7 T. 1.800.265.9662


PLANNING **Bousfields Inc.** 3 Church Street, Toronto, ON, M5E 1M2 T. 416.947.9744

CLIENT **Distrikt Developments** 1-90 Wingold Avenue, Toronto, ON, Canada M6B 1P5 T. 416.628.8038

590 Argus Road, Oakville, ON, Canada

PROJECT NORTH

LEVEL 1 PLAN

Author DRAWN BY 22-106 PROJ NO

CHECKED BY 1:200 ARCH E

FORMAT

SCALE

2023-03-20 PLOT DATE

A204

	GCA BY LEVE	L (BELOW	GRADE)				
	AREA PEI	RLEVEL	NO. OF LEVELS	TOTAL	AREA	LEVELS	(m²)
LEVELS	(SM)	(SF)	TYPICAL	(SM)	(SF)	LEVEL P6	9,755.39
LEVEL P6	9,755.39 m ²	105,006 SF	1	9,755.39 m²	105,006 SF	LEVEL P5	9,755.38
LEVEL P5	9,755.38 m ²	105,006 SF	1	9,755.38 m ²	105,006 SF	LEVEL P4	9,753.51
LEVEL P4	9,753.51 m ²	104,986 SF	1	9,753.51 m²	104,986 SF	LEVEL P3	9,753.19
LEVEL P3	9,753.19 m ²	104,982 SF	1	9,753.19 m ²	104,982 SF	LEVEL P3	9,750.45
LEVEL P2	9,750.45 m ²	104,953 SF	1	9,750.45 m ²	104,953 SF	LEVEL P2	9,734.68
LEVEL P1	9,734.68 m ²	104,783 SF	1	9,734.68 m ²	104,783 SF		9,734.00

LEVELS

(GCA BY LEVE	L (ABOVE	GRADE)			
	AREA PEF	RLEVEL	NO. OF LEVELS	TOTAL	AREA	
LEVELS	(SM)	(SF)	TYPICAL	(SM)	(SF)	LEVEL 01
LEVEL 01	4,761.96 m ²	51,257 SF	1	4,761.96 m ²	51,257 SF	LEVEL 01
LEVEL 02	5,429.62 m ²	58,444 SF	1	5,429.62 m ²	58,444 SF	LEVEL 02
LEVEL 03	5,730.13 m ²	61,679 SF	1	5,730.13 m ²	61,679 SF	LEVEL 04
LEVEL 04	5,473.08 m ²	58,912 SF	1	5,473.08 m ²	58,912 SF	LEVEL 04
LEVEL 05	5,520.60 m ²	59,423 SF	1	5,520.60 m ²	59,423 SF	LEVEL 06
LEVEL 06	5,273.17 m ²	56,760 SF	1	5,273.17 m ²	56,760 SF	LEVEL 00
LEVEL 07	4,167.33 m ²	44,857 SF	1	4,167.33 m ²	44,857 SF	LEVEL 08
LEVEL 08	3,907.42 m ²	42,059 SF	1	3,907.42 m ²	42,059 SF	LEVEL 09
LEVEL 09	3,593.85 m ²	38,684 SF	1	3,593.85 m ²	38,684 SF	LEVEL 10
LEVEL 10	3,328.30 m ²	35,826 SF	1	3,328.30 m ²	35,826 SF	LEVEL 10
LEVEL 11	3,037.95 m ²	32,700 SF	1	3,037.95 m ²	32,700 SF	LEVEL 12
LEVEL 12	2,774.16 m ²	29,861 SF	1	2,774.16 m ²	29,861 SF	LEVEL 12
LEVEL 13	2,551.35 m ²	27,462 SF	1	2,551.35 m ²	27,462 SF	LEVEL 13
LEVEL 14 + ABOVE	2,551.33 m ²	27,462 SF	32 / 46 / 38	96,100.34 m ²	1,034,415 SF	
TOTAL	58,100.23 m ²	625,386 SF		151,649.24 m ²	1,632,339 SF	TOTAL

BUILDING STATISTICS - TOWER A

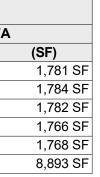
GC	A BY LEVEL (AE	BOVE GRAI	DE) TOWE	R A	
	AREA PEF	RLEVEL	NO. OF	TOTAL A	AREA
LEVELS	(SM)	(SF)	LEVELS TYPICAL	(SM)	(SF)
LEVEL 01	1,538.72 m ²	16,563 SF	1	1,538.72 m ²	16,563 SF
LEVEL 02	1,357.60 m ²	14,613 SF	1	1,357.60 m ²	14,613 SF
LEVEL 03	979.97 m²	10,548 SF	1	979.97 m ²	10,548 SF
LEVEL 04	1,874.73 m ²	20,179 SF	1	1,874.73 m ²	20,179 SF
LEVEL 05	1,899.44 m ²	20,445 SF	1	1,899.44 m ²	20,445 SF
LEVEL 06	1,758.13 m ²	18,924 SF	1	1,758.13 m ²	18,924 SF
LEVEL 07	1,293.85 m ²	13,927 SF	1	1,293.85 m ²	13,927 SF
LEVEL 08	1,222.14 m ²	13,155 SF	1	1,222.14 m ²	13,155 SF
LEVEL 09	1,138.46 m ²	12,254 SF	1	1,138.46 m ²	12,254 SF
LEVEL 10	1,064.41 m ²	11,457 SF	1	1,064.41 m ²	11,457 SF
LEVEL 11	990.32 m ²	10,660 SF	1	990.32 m ²	10,660 SF
LEVEL 12	912.27 m ²	9,820 SF	1	912.27 m ²	9,820 SF
LEVEL 13	850.56 m ²	9,155 SF	1	850.56 m ²	9,155 SF
LEVEL 14 TO 44	850.56 m ²	9,155 SF	31	26,367.35 m ²	283,816 SF
TOTAL	17,731.15 m ²	190,857 SF		43,247.94 m ²	465,517 SF

				AR	EA SUMMA	RY (ABOVE	GRADE) T	OWER A						
	GC	A	DEDUC	ΓΙΟΝ	RESIDENT	TIAL GFA	RETAIL	GFA	INDOOR A	MENITY	OUTDOOR	AMENITY	GF	FA
LEVELS	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	
LEVEL 01	1,538.72 m ²	16,563 SF	541.20 m ²	5,825 SF	527.30 m ²	5,676 SF	470.23 m ²	5,061 SF	206.46 m ²	2,222.29 SF	0.00 m ²	0.00 SF	997.52 m²	
LEVEL 02	1,357.60 m ²	14,613 SF	351.54 m²	3,784 SF	1,006.06 m ²	10,829 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,006.06 m ²	
LEVEL 03	979.97 m²	10,548 SF	73.80 m ²	794 SF	906.16 m ²	9,754 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	906.16 m ²	
LEVEL 04	1,874.73 m ²	20,179 SF	80.10 m ²	862 SF	1,794.64 m ²	19,317 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,794.64 m²	
LEVEL 05	1,899.44 m²	20,445 SF	81.59 m ²	878 SF	1,817.85 m ²	19,567 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,817.85 m²	
LEVEL 06	1,758.13 m ²	18,924 SF	114.75 m ²	1,235 SF	1,643.38 m ²	17,689 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,643.38 m ²	<u> </u>
LEVEL 07	1,293.85 m ²	13,927 SF	84.19 m ²	906 SF	1,209.66 m ²	13,021 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,209.66 m ²	
LEVEL 08	1,222.14 m ²	13,155 SF	76.80 m ²	827 SF	1,145.34 m²	12,328 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,145.34 m²	
LEVEL 09	1,138.46 m ²	12,254 SF	78.05 m ²	840 SF	1,060.41 m ²	11,414 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,060.41 m²	<u> </u>
LEVEL 10	1,064.41 m ²	11,457 SF	117.71 m ²	1,267 SF	946.70 m ²	10,190 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	946.70 m ²	<u> </u>
LEVEL 11	990.32 m ²	10,660 SF	76.56 m ²	824 SF	913.77 m²	9,836 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	913.77 m²	
LEVEL 12	912.27 m ²	9,820 SF	75.15 m²	809 SF	837.11 m ²	9,011 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	837.11 m²	
LEVEL 13	850.56 m ²	9,155 SF	74.33 m ²	800 SF	776.23 m ²	8,355 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	776.23 m²	
LEVEL 14 TO 44	26,367.35 m ²	283,816 SF	2,304.22 m ²	24,802 SF	24,063.13 m ²	259,013 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	24,063.13 m ²	
						I				i				
TOTAL	43,247.94 m ²	465,517 SF	4,130.00 m ²	44,455 SF	38,647.72 m ²	416,001 SF	470.23 m ²	5,061 SF	206.46 m ²	2,222.29 SF	0.00 m ²	0.00 SF	39,117.95 m ²	

 58,502.60 m²
 629,717 SF
 56,851.31 m²
 611,942 SF
 1,651.29 m²
 17,774 SF
 0.00 m²

BUILDING STATISTICS - TOWER B

GC	A BY LEVEL (AE	BOVE GRAI	DE) TOWI	ER B						AR	EA SUMMA	RY (ABOVE	E GRADE) T	OWER B						
	AREA PEI	R LEVEL	NO. OF	TOTAL	AREA		GC	۹	DEDUC	TION	RESIDENT	IAL GFA	RETAIL	GFA	INDOOR A	AMENITY	OUTDOOR	AMENITY	GF	A
	(01.1)		LEVELS	(01.0)		LEVELS	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)
LEVELS	(SM)	(SF)	TYPICAL	(SM)	(SF)	LEVEL 01	1,055.54 m ²	11,362 SF	78.36 m ²	843 SF	378.25 m ²	4,071 SF	598.93 m ²	6,447 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	977.18 m ²	10,518 SF
LEVEL 01	1,055.54 m ²	11,362 SF	1	1,055.54 m ²	11,362 SF	LEVEL 02	1,600.54 m ²	17,228 SF	299.59 m ²	3,225 SF	1,300.95 m ²	14,003 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,300.95 m ²	14,003 SF
LEVEL 02	1,600.54 m ²	17,228 SF	1	1,600.54 m ²	17,228 SF	LEVEL 03	3,045.70 m ²	32,784 SF	2,013.18 m ²	21,670 SF	1,032.51 m ²	11,114 SF	0.00 m ²	0 SF	1,970.46 m ²	21,209.84 SF	386.53 m ²	4,160.61 SF	1,032.51 m ²	11,114 SF
LEVEL 03	3,045.70 m ²	32,784 SF	1	3,045.70 m ²	32,784 SF	LEVEL 04	1,585.69 m ²	17,068 SF	47.13 m ²	507 SF	1,538.55 m ²	16,561 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,538.55 m ²	16,561 SF
LEVEL 04	1,585.69 m ²	17,068 SF	1	1,585.69 m ²	17,068 SF	LEVEL 05	1,809.33 m ²	19,475 SF	45.66 m ²	492 SF	1,763.67 m ²	18,984 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,763.67 m ²	18,984 SF
LEVEL 05	1,809.33 m ²	19,475 SF	1	1,809.33 m ²	19,475 SF	LEVEL 06	1,552.30 m ²	16,709 SF	93.99 m ²	1,012 SF	1,458.31 m ²	15,697 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,458.31 m ²	15,697 SF
LEVEL 06	1,552.30 m ²	16,709 SF	1	1,552.30 m ²	16,709 SF	LEVEL 00	1,293.85 m ²	13,927 SF	84.19 m ²	906 SF	1,209.66 m ²	13,021 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,209.66 m ²	13,021 SF
LEVEL 07	1,293.85 m ²	13,927 SF	1	1,293.85 m ²	13,927 SF	LEVEL 08	1,222.14 m ²	13,155 SF	76.80 m ²	827 SF	1,145.34 m ²	12,328 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	1,145.34 m ²	12,328 SF
LEVEL 08	1,222.14 m ²	13,155 SF	1	1,222.14 m ²	13,155 SF	LEVEL 09	1,138.46 m ²	12,254 SF		840 SF	-	11,414 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF		0.00 SF		12,320 SF 11,414 SF
LEVEL 09	1,138.46 m ²	12,254 SF	1	1,138.46 m ²	12,254 SF		,	-	78.05 m ²		1,060.41 m ²						0.00 m ²		1,060.41 m ²	
LEVEL 10	1,064.41 m ²	11,457 SF	1	1,064.41 m ²	11,457 SF	LEVEL 10	1,064.41 m ²	11,457 SF	117.71 m ²	1,267 SF	946.70 m ²	10,190 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	946.70 m ²	10,190 SF
LEVEL 11	990.32 m ²	10,660 SF	1	990.32 m ²	10,660 SF	LEVEL 11	990.32 m ²	10,660 SF	76.56 m ²	824 SF	913.77 m ²	9,836 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	913.77 m ²	9,836 SF
LEVEL 12	912.27 m ²	9,820 SF	1	912.27 m ²	9,820 SF	LEVEL 12	912.27 m ²	9,820 SF	75.15 m ²	809 SF	837.11 m ²	9,011 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	837.11 m ²	9,011 SF
LEVEL 12	850.56 m ²	9,155 SF	1	850.56 m ²	9,155 SF	LEVEL 13	850.56 m ²	9,155 SF	74.33 m²	800 SF	776.23 m ²	8,355 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	776.23 m²	8,355 SF
		9,155 SF	1	38,275.19 m ²	-	LEVEL 14 TO 58	38,275.19 m ²	411,991 SF	3,344.84 m²	36,004 SF	34,930.35 m²	375,987 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	34,930.35 m ²	375,987 SF
LEVEL 14 TO 58	850.56 m²	9,100 SF	40	50,275.19 III ⁻	411,991 SF															
TOTAL	18,971.66 m ²	204,209 SF		56,396.28 m ²	607,045 SF	TOTAL	56,396.28 m ²	607,045 SF	6,505.55 m ²	70,025 SF	49,291.81 m ²	530,573 SF	598.93 m ²	6.447 SF	1.970.46 m ²	21,209.84 SF	386.53 m ²	4,160.61 SF	49,890.74 m ²	537,019 SF

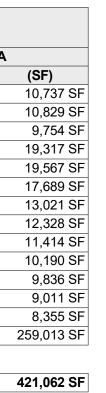

BUILDING STATISTICS - TOWER C

	A BY LEVEL (AB		•	1		
	AREA PER	RLEVEL	NO. OF LEVELS	TOTAL	AREA	
LEVELS	(SM)	(SF)	TYPICAL	(SM)	(SF)	LEVEL 01
LEVEL 01	1,535.61 m ²	16,529 SF	1	1,535.61 m ²	16,529 SF	LEVEL 01
LEVEL 02	2,276.21 m ²	24,501 SF	1	2,276.21 m ²	24,501 SF	LEVEL 02
LEVEL 03	1,534.37 m ²	16,516 SF	1	1,534.37 m ²	16,516 SF	LEVEL 03
LEVEL 04	1,979.72 m ²	21,310 SF	1	1,979.72 m ²	21,310 SF	LEVEL 04
LEVEL 05	1,778.89 m ²	19,148 SF	1	1,778.89 m ²	19,148 SF	LEVEL 06
LEVEL 06	1,827.37 m ²	19,670 SF	1	1,827.37 m ²	19,670 SF	LEVEL 00
LEVEL 07	1,579.63 m ²	17,003 SF	1	1,579.63 m ²	17,003 SF	LEVEL 08
LEVEL 08	1,463.14 m ²	15,749 SF	1	1,463.14 m ²	15,749 SF	LEVEL 00
LEVEL 09	1,316.93 m ²	14,175 SF	1	1,316.93 m ²	14,175 SF	LEVEL 10
LEVEL 10	1,199.48 m ²	12,911 SF	1	1,199.48 m ²	12,911 SF	LEVEL 11
LEVEL 11	1,057.30 m ²	11,381 SF	1	1,057.30 m ²	11,381 SF	LEVEL 12
LEVEL 12	949.62 m ²	10,222 SF	1	949.62 m ²	10,222 SF	LEVEL 12
LEVEL 13	850.23 m ²	9,152 SF	1	850.23 m ²	9,152 SF	LEVEL 14 T
LEVEL 14 TO 50	850.21 m ²	9,152 SF	37	31,457.80 m ²	338,609 SF	
TOTAL	20,198.73 m ²	217,417 SF		50,806.32 m ²	546,875 SF	TOTAL

		•	DEDUO		DEOIDENT		DETAU	054					05
	GC		DEDUC		RESIDENT	IAL GFA	RETAIL	_ GFA	INDOOR A		OUTDOOR	AMENITY	GF
LEVELS	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)
LEVEL 01	1,535.61 m ²	16,529 SF	264.16 m ²	2,843 SF	634.87 m²	6,834 SF	636.58 m²	6,852 SF	162.01 m²	1,743.85 SF	0.00 m²	0.00 SF	1,271.46 m²
LEVEL 02	2,276.21 m ²	24,501 SF	702.75 m ²	7,564 SF	1,573.46 m²	16,937 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,573.46 m²
LEVEL 03	1,534.37 m ²	16,516 SF	39.36 m²	424 SF	1,495.01 m ²	16,092 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,495.01 m²
LEVEL 04	1,979.72 m ²	21,310 SF	71.45 m²	769 SF	1,908.27 m ²	20,540 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,908.27 m ²
LEVEL 05	1,778.89 m ²	19,148 SF	71.45 m²	769 SF	1,707.45 m ²	18,379 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,707.45 m ²
LEVEL 06	1,827.37 m ²	19,670 SF	46.71 m²	503 SF	1,780.67 m ²	19,167 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,780.67 m ²
LEVEL 07	1,579.63 m ²	17,003 SF	82.46 m ²	888 SF	1,497.17 m ²	16,115 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,497.17 m²
LEVEL 08	1,463.14 m ²	15,749 SF	74.94 m²	807 SF	1,388.20 m ²	14,942 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,388.20 m ²
LEVEL 09	1,316.93 m ²	14,175 SF	74.94 m²	807 SF	1,241.98 m ²	13,369 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,241.98 m ²
LEVEL 10	1,199.48 m ²	12,911 SF	161.36 m ²	1,737 SF	1,038.13 m ²	11,174 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	1,038.13 m ²
LEVEL 11	1,057.30 m ²	11,381 SF	73.40 m ²	790 SF	983.90 m ²	10,591 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	983.90 m ²
LEVEL 12	949.62 m ²	10,222 SF	74.24 m²	799 SF	875.38 m²	9,423 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	875.38 m²
LEVEL 13	850.23 m ²	9,152 SF	74.09 m ²	797 SF	776.14 m ²	8,354 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	776.14 m²
LEVEL 14 TO 50	31,457.80 m ²	338,609 SF	2,741.20 m ²	29,506 SF	28,716.60 m ²	309,103 SF	0.00 m ²	0 SF	0.00 m ²	0.00 SF	0.00 m ²	0.00 SF	28,716.60 m ²

					AREA SUM	MMARY (B	ELOW GRA	DE)						
	GC	A	DEDUC	CTION	RESIDENTI	AL GFA	RETAIL	GFA	INDOOR A	MENITY	OUTDOOR	AMENITY	GF	Α
Ī	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	
	9,755.39 m²	105,006 SF	9,589.91 m²	103,225 SF	165.48 m²	1,781 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	165.48 m²	
	9,755.38 m²	105,006 SF	9,589.62 m ²	103,222 SF	165.76 m²	1,784 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	165.76 m²	
	9,753.51 m²	104,986 SF	9,587.93 m²	103,204 SF	165.58 m²	1,782 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	165.58 m²	
	9,753.19 m ²	104,982 SF	9,589.13 m²	103,217 SF	164.06 m ²	1,766 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	164.06 m ²	
	9,750.45 m²	104,953 SF	9,586.21 m²	103,185 SF	164.24 m²	1,768 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	164.24 m²	
	9,734.68 m²	104,783 SF	8,908.51 m²	95,890 SF	826.17 m ²	8,893 SF	0.00 m²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	826.17 m ²	

					AREA SU	IMMARY (A	BOVE GRAI	DE)						
	GC	Α	DEDUC	ΓΙΟΝ	RESIDEN	TIAL GFA	RETAIL	GFA	INDOOR	AMENITY	OUTDOOR	AMENITY	GF	Α
	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)	(m²)	(SF)
	4,761.96 m ²	51,257 SF	1,263.78 m ²	13,603 SF	1,754.52 m²	18,885 SF	1,743.66 m ²	18,769 SF	650.87 m²	7,005.86 SF	0.00 m ²	0.00 SF	3,498.18 m ²	37,654 SF
	5,429.62 m ²	58,444 SF	1,375.42 m ²	14,805 SF	4,054.20 m ²	43,639 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	4,054.20 m ²	43,639 SF
	5,730.13 m ²	61,679 SF	2,192.21 m ²	23,597 SF	3,537.92 m ²	38,082 SF	0.00 m ²	0 SF	1,970.46 m ²	21,209.84 SF	386.53 m²	4,160.61 SF	3,537.92 m ²	38,082 SF
	5,473.08 m ²	58,912 SF	231.63 m ²	2,493 SF	5,241.46 m ²	56,419 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	5,241.46 m ²	56,419 SF
	5,520.60 m ²	59,423 SF	231.64 m²	2,493 SF	5,288.96 m ²	56,930 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	5,288.96 m ²	56,930 SF
	5,273.17 m ²	56,760 SF	390.82 m²	4,207 SF	4,882.35 m ²	52,553 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	4,882.35 m ²	52,553 SF
	4,167.33 m ²	44,857 SF	250.84 m²	2,700 SF	3,916.49 m ²	42,157 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	3,916.49 m ²	42,157 SF
	3,907.42 m ²	42,059 SF	228.53 m ²	2,460 SF	3,678.88 m ²	39,599 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	3,678.88 m ²	39,599 SF
	3,593.85 m ²	38,684 SF	231.04 m ²	2,487 SF	3,362.80 m ²	36,197 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	3,362.80 m ²	36,197 SF
	3,328.30 m ²	35,826 SF	396.78 m ²	4,271 SF	2,931.53 m ²	31,555 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	2,931.53 m ²	31,555 SF
	3,037.95 m ²	32,700 SF	226.52 m ²	2,438 SF	2,811.43 m ²	30,262 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	2,811.43 m ²	30,262 SF
	2,774.16 m ²	29,861 SF	224.55 m ²	2,417 SF	2,549.61 m ²	27,444 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	2,549.61 m ²	27,444 SF
	2,551.35 m ²	27,462 SF	222.75 m ²	2,398 SF	2,328.60 m ²	25,065 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m²	0.00 SF	2,328.60 m ²	25,065 SF
	96,100.34 m ²	1,034,415 SF	8,390.26 m ²	90,312 SF	87,710.08 m ²	944,103 SF	0.00 m ²	0 SF	0.00 m²	0.00 SF	0.00 m ²	0.00 SF	87,710.08 m ²	944,103 SF
_							1	1		1				
	151,649.24 m ²	1,632,339 SF	15,856.75 m ²	170,681 SF	134,048.83 m ²	1,442,890 SF	1,743.66 m ²	18,769 SF	2,621.32 m ²	28,215.70 SF	386.53 m ²	4,160.61 SF	135,792.48 m ²	1,461,658 SF


	UNI	T SUMMA	ARY	
UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT	%
1B	461 SF	1,198 SF	1218	70%
2B	734 SF	1,164 SF	455	26%
3B	659 SF	1,394 SF	77	4%
TOTAL			1750	

0 SF 0.00 m² 0.00 SF 0.00 m² 0.00 SF 1,651.29 m² 17,774 SF

ARFA	BY TYPE	
	TOTAL	AREA
AREA TYPE	(SM)	(SF)
INDOOR AMENITY	2,621.32 m ²	28,216 SF
OTHER	10,615.57 m ²	114,265 SF
OUTDOOR AMENITY	386.53 m ²	4,161 SF
RES. COMMON AREA	15,002.26 m ²	161,483 SF
RES. SERVICE	2,405.90 m ²	25,897 SF
RETAIL LEASABLE	1,656.01 m ²	17,825 SF
RETAIL SERVICE	87.65 m ²	943 SF
SALEABLE	116,640.67 m ²	1,255,510 SF

UNIT SUMMARY (PER LEVEL)	
UNIT SUMMART (FLICEL)	

	UNIT SUM	IMARY (PE)
LEVEL	UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT
LEVEL 02	1B	500 SF	832 SF	28
LEVEL 02	2B	734 SF	1,164 SF	13
LEVEL 02	3B	904 SF	1,349 SF	7
				48
LEVEL 03	1B	527 SF	1,198 SF	28
LEVEL 03	2B	767 SF	908 SF	11
LEVEL 03	3B	904 SF	1.346 SF	5
		••••	.,	44
LEVEL 04	1B	527 SF	832 SF	35
LEVEL 04	2B	767 SF	935 SF	18
LEVEL 04	3B	736 SF	1,346 SF	8
	08	100 01	1,010 01	61
LEVEL 05	1B	529 SF	832 SF	37
LEVEL 05	2B	769 SF	908 SF	11
LEVEL 05	3B	659 SF	1,349 SF	11
	JD	009 5F	1,049 SF	
	40	404.05	000.05	62
LEVEL 06	1B	461 SF	832 SF	42
LEVEL 06	2B	774 SF	924 SF	7
LEVEL 06	3B	904 SF	1,349 SF	9
				58
LEVEL 07	1B	529 SF	850 SF	33
LEVEL 07	2B	786 SF	937 SF	12
LEVEL 07	3B	1,015 SF	1,271 SF	5
				50
LEVEL 08	1B	529 SF	850 SF	34
LEVEL 08	2B	786 SF	905 SF	6
LEVEL 08	3B	1,045 SF	1,394 SF	6
				46
LEVEL 09	1B	529 SF	818 SF	28
LEVEL 09	2B	757 SF	1,020 SF	11
LEVEL 09	3B	1,008 SF	1,175 SF	4
				43
LEVEL 10	1B	529 SF	850 SF	20
LEVEL 10	2B	832 SF	881 SF	4
LEVEL 10	3B	906 SF	1,171 SF	9
			.,	33
LEVEL 11	1B	488 SF	846 SF	24
LEVEL 11	2B	779 SF	998 SF	11
LEVEL 11	3B	1,003 SF	1,053 SF	2
	30	1,003 3F	1,000 OF	37
	40	540 CF	050 CF	-
LEVEL 12	1B	548 SF	852 SF	19
LEVEL 12	2B	886 SF	937 SF	3
LEVEL 12	3B	937 SF	1,179 SF	8
		500.07	0.45.05	30
LEVEL 13	1B	523 SF	815 SF	23
LEVEL 13	2B	813 SF	976 SF	9
				32
LEVEL 14 (TYP)	1B	523 SF	815 SF	867
LEVEL 14 (TYP)	2B	813 SF	976 SF	339
				1206
TOTAL				1750

UNIT

1B

2B 3B

CATEGORY MINIMUM (SF)

461 SF

734 SF 723 SF

UNIT SUMMARY TOWER A									
UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT	%					
1B	523 SF	852 SF	360	70%					
2B	767 SF	1,164 SF	127	25%					
3B	659 SF	1,394 SF	26	5%					
TOTAL			513						

UNIT SUMMARY TOWER B

ΛΑΧΙΜυ

(SF)

985 SF

1,198 SF

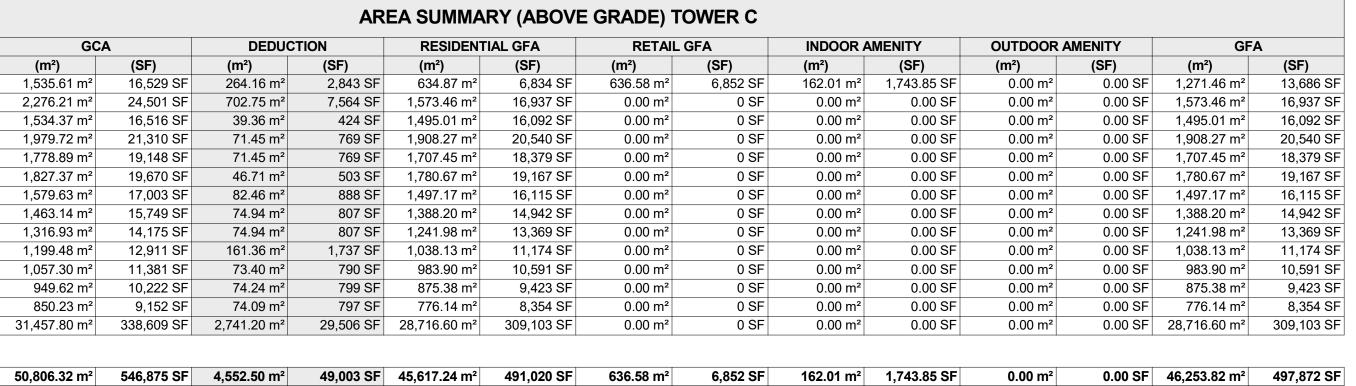
1,394 SF

COUNT

470

164

71%


25%

4%

LEVEL	UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT	
LEVEL 02	1B	531 SF	832 SF	7	
LEVEL 02	2B	773 SF	1,164 SF	4	
LEVEL 02	3B	904 SF	1,073 SF	2	
			,	13	
LEVEL 03	1B	569 SF	832 SF	7	
LEVEL 03	2B	780 SF	869 SF	3	
LEVEL 03	3B	904 SF	1,073 SF	2	
				12	
LEVEL 04	1B	569 SF	832 SF	11	
LEVEL 04	2B	767 SF	869 SF	6	
LEVEL 04	3B	736 SF	1,073 SF	4	
			,	21	
LEVEL 05	1B	569 SF	832 SF	13	
LEVEL 05	2B	837 SF	898 SF	2	
LEVEL 05	3B	659 SF	1,073 SF	7	
				22	
LEVEL 06	1B	569 SF	832 SF	13	
LEVEL 06	2B	837 SF	924 SF	3	
LEVEL 06	3B	904 SF	1,073 SF	2	
				18	
LEVEL 07	1B	534 SF	850 SF	10	
LEVEL 07	2B	832 SF	937 SF	4	
LEVEL 07	3B	1,271 SF	1,271 SF	1	
				15	
LEVEL 08	1B	534 SF	850 SF	11	
LEVEL 08	2B	832 SF	832 SF	1	
LEVEL 08	3B	1,045 SF	1,394 SF	2	
				14	
LEVEL 09	1B	534 SF	818 SF	9	
LEVEL 09	2B	832 SF	860 SF	2	
LEVEL 09	3B	1,008 SF	1,175 SF	2	
				13	
LEVEL 10	1B	534 SF	850 SF	8	
LEVEL 10	2B	832 SF	832 SF	1	
LEVEL 10	3B	925 SF	1,010 SF	2	
				11	
LEVEL 11	1B	541 SF	846 SF	8	
LEVEL 11	2B	870 SF	985 SF	4	
				12	
LEVEL 12	1B	557 SF	852 SF	7	
LEVEL 12	2B	937 SF	937 SF	1	
LEVEL 12	3B	1,093 SF	1,127 SF	2	
				10	
LEVEL 13	1B	523 SF	642 SF	8	
LEVEL 13	2B	813 SF	928 SF	3	
				11	
LEVEL 14 (TO L44)	1B	523 SF	642 SF	248	
LEVEL 14 (TO L44)	2B	813 SF	928 SF	93	
. ,				341	
TOTAL				513	

LEVEL	UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT
LEVEL 02	1B	536 SF	821 SF	9
LEVEL 02	2B	734 SF	860 SF	3
LEVEL 02	3B	911 SF	1,259 SF	3
				15
LEVEL 03	1B	569 SF	1,198 SF	8
LEVEL 03	2B	830 SF	869 SF	2
LEVEL 03	3B	904 SF	1,067 SF	2
			.,	12
LEVEL 04	1B	569 SF	821 SF	8
LEVEL 04	2B	830 SF	935 SF	4
LEVEL 04	3B	904 SF	1,068 SF	3
	50	304 31	1,000 51	15
	40	570.0F	000.05	
LEVEL 05	1B	570 SF	832 SF	9
LEVEL 05	2B	837 SF	898 SF	-
LEVEL 05	3B	723 SF	1,263 SF	6
				18
LEVEL 06	1B	461 SF	832 SF	15
LEVEL 06	2B	837 SF	837 SF	1
LEVEL 06	3B	904 SF	1,092 SF	3
				19
LEVEL 07	1B	534 SF	850 SF	10
LEVEL 07	2B	832 SF	937 SF	4
LEVEL 07	3B	1,271 SF	1,271 SF	1
				15
LEVEL 08	1B	534 SF	850 SF	11
LEVEL 08	2B	832 SF	832 SF	1
LEVEL 08	3B	1,045 SF	1,394 SF	2
		.,	.,	14
LEVEL 09	1B	534 SF	818 SF	9
LEVEL 00	2B	832 SF	860 SF	2
LEVEL 09	3B	1,008 SF	1,175 SF	2
	30	1,000 01	1,175 01	13
LEVEL 10	1B	534 SF	850 SF	8
LEVEL 10	2B		832 SF	1
		832 SF		2
LEVEL 10	3B	925 SF	1,010 SF	
				11
LEVEL 11	1B	541 SF	846 SF	8
LEVEL 11	2B	870 SF	985 SF	4
				12
LEVEL 12	1B	557 SF	852 SF	7
LEVEL 12	2B	937 SF	937 SF	1
LEVEL 12	3B	1,093 SF	1,127 SF	2
				10
LEVEL 13	1B	523 SF	642 SF	8
LEVEL 13	2B	813 SF	928 SF	3
				11
LEVEL 14 (TO L58)	1B	523 SF	642 SF	360
LEVEL 14 (TO L58)	2B	813 SF	928 SF	135
		0.00	020 01	495
TOTAL				660

LEVEL	UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT
LEVEL 02	1B	500 SF	771 SF	12
LEVEL 02	2B	767 SF	932 SF	6
LEVEL 02	3B	1,145 SF	1,349 SF	2
				20
LEVEL 03	1B	527 SF	771 SF	13
LEVEL 03	2B	767 SF	908 SF	6
LEVEL 03	3B	1,346 SF	1,346 SF	1
				20
LEVEL 04	1B	527 SF	771 SF	16
LEVEL 04	2B	769 SF	908 SF	8
LEVEL 04	3B	1,346 SF	1,346 SF	1
		,	,	25
LEVEL 05	1B	529 SF	781 SF	15
LEVEL 05	2B	769 SF	908 SF	6
LEVEL 05	3B	1,349 SF	1,349 SF	1
				22
LEVEL 06	1B	527 SF	807 SF	14
LEVEL 06	2B	774 SF	824 SF	3
LEVEL 06	3B	1,037 SF	1,349 SF	4
		,	,	21
LEVEL 07	1B	529 SF	795 SF	13
LEVEL 07	2B	786 SF	935 SF	4
LEVEL 07	3B	1,015 SF	1,091 SF	3
		,	,	20
LEVEL 08	1B	529 SF	844 SF	12
LEVEL 08	2B	786 SF	905 SF	4
LEVEL 08	3B	1,171 SF	1,229 SF	2
	-	,	, -	18
LEVEL 09	1B	529 SF	708 SF	10
LEVEL 09	2B	757 SF	1,020 SF	7
		-	,	17
LEVEL 10	1B	529 SF	774 SF	4
LEVEL 10	2B	879 SF	881 SF	2
LEVEL 10	3B	906 SF	1,171 SF	5
			,	11
LEVEL 11	1B	488 SF	676 SF	8
LEVEL 11	2B	779 SF	998 SF	3
LEVEL 11	3B	1,003 SF	1,053 SF	2
		,	,	13
LEVEL 12	1B	548 SF	832 SF	5
LEVEL 12	2B	886 SF	886 SF	1
LEVEL 12	3B	937 SF	1,179 SF	4
			.,	10
LEVEL 13	1B	548 SF	815 SF	7
LEVEL 13	2B	882 SF	976 SF	3
			0.00	10
LEVEL 14 (TO L50)	1B	548 SF	815 SF	259
LEVEL 14 (TO L50)	2B	882 SF	976 SF	111
	20		010 01	370
TOTAL		1		577

UNIT SUMMARY TOWER C							
UNIT CATEGORY	MINIMUM (SF)	MAXIMUM (SF)	COUNT	%			
1B	488 SF	844 SF	388	67%			
2B	757 SF	1,020 SF	164	28%			
3B	906 SF	1,349 SF	25	4%			
TOTAL			577				

OVERA	LL VEHICLE PARKING SCHED	ULE
LEVEL	PARKING TYPE	COUNT
LEVEL P1	COMMERCIAL - STANDARD (5700 x 2700)	18
LEVEL P1	VISITOR - ACCESSIBLE A (5700 x 3650)	3
LEVEL P1	VISITOR - ACCESSIBLE B (5700 x 2700)	3
LEVEL P1	VISITOR - STANDARD (5700 x 2700)	139
LEVEL P1		163
LEVEL P2	VISITOR - ACCESSIBLE A (5700 x 3650)	3
LEVEL P2	VISITOR - ACCESSIBLE B (5700 x 2700)	3
LEVEL P2	VISITOR - STANDARD (5700 x 2700)	206
LEVEL P2		212
LEVEL P3	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P3	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P3	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P3		216
LEVEL P4	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P4	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P4	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P4		216
LEVEL P5	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P5	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P5	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P5		216
LEVEL P6	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	1
LEVEL P6	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	1
LEVEL P6	RESIDENTIAL- STANDARD (5700 x 2700)	230
LEVEL P6		232
TOTAL PARKING		1255

RESIDENTIAL VEHICLE PARKING

LEVEL	ТҮРЕ	TOTAL
LEVEL P3	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P3	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P3	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P3		216
LEVEL P4	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P4	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P4	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P4		216
LEVEL P5	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	3
LEVEL P5	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	3
LEVEL P5	RESIDENTIAL- STANDARD (5700 x 2700)	210
LEVEL P5		216
LEVEL P6	RESIDENTIAL - ACCESSIBLE A (5700 x 3650)	1
LEVEL P6	RESIDENTIAL - ACCESSIBLE B (5700 x 2700)	1
LEVEL P6	RESIDENTIAL- STANDARD (5700 x 2700)	230
LEVEL P6		232
TOTAL PARKING		880

VISITOR VEHICLE PARKING						
LEVEL	TYPE	TOTAL				
LEVEL P1	VISITOR - ACCESSIBLE A (5700 x 3650)	3				
LEVEL P1	VISITOR - ACCESSIBLE B (5700 x 2700)	3				
LEVEL P1	VISITOR - STANDARD (5700 x 2700)	139				
LEVEL P1		145				
LEVEL P2	VISITOR - ACCESSIBLE A (5700 x 3650)	3				
LEVEL P2	VISITOR - ACCESSIBLE B (5700 x 2700)	3				
LEVEL P2	VISITOR - STANDARD (5700 x 2700)	206				
LEVEL P2		212				
TOTAL PARKING		357				

COMMERCIAL OR NON-RES. PARKING						
LEVEL	ТҮРЕ	TOTAL				
EL P1	COMMERCIAL - STANDARD (5700 x 2700)	18				
EL P1		18				
AL PARKING		18				

BICYCLE PARKING SCHEDULE							
LEVEL	ТҮРЕ	UNIT TOTAL	TOTAL COUNT				
EL 02	BICYCLE STACKER - LONG-TERM RESIDENTIAL (600x1800)	518	1036				
EL 02		518	1036				
EL P1	BICYCLE STACKER - LONG-TERM RESIDENTIAL (600x1800)	138	276				
EL P1	BICYCLE STACKER - SHORT-TERM VISITOR (600x1800)	219	438				
EL P1		357	714				
AL PARKING		875	1750				

Teeple Architects[™]

5 Camden Street, Toronto, ON, Canada, M5V 1V2 T. 416.598.0554 www.teeplearch.com

All drawings, specifications, related documents and design are the copyright property of the architect and must be returned upon request. Reproduction of the drawings, specifications, related documents and design in whole or in part is strictly forbidden without the architect's written permission. This drawing, as an instrument of service, is provided by and is the property of Teeple Architects Inc., and shall be used only for the project named on this drawing and solely for reference purposes only. The contractor is responsible for the coordination and verification of all dimensions contained herein and all measurements and conditions on site as they pertain to these documents. The contractor shall report any discrepancies to the consultant in writing prior to the commencement of any affected work.

DO NOT SCALE THIS DRAWING This drawing shall not be used for construction purposes unless countersigned

Teeple Architects Inc.

NO.	DATE:	ISSUED FOR:	
1	2023-03-20	ISSUED FOR OPA/ZBA	
	_		
	-		
	-		
	+		

ARCHITECT Teeple Architects Inc. 5 Camden Street, Toronto, ON, Canada, M5V 1V2 T. 416.598.0554

STRUCTURAL --

MECHANICAL -

-ELECTRICAL

--

LANDSCAPE **Public City Architecture Inc.** 11-600 Clifton Street, Winnpieg, MN, R3G 2X6 T. 204.475.9323

CIVIL **Trafalgar Engineering Limited** 1-481 Morden Road, Oakville, ON, L6K 2W6 T. 905.338.3366

TRAFFIC **BA Consulting Group Limited** 300-45 St. Clair Avenue West, Toronto, ON, M4V 1K9 T. 416.961.7110

SOLID WASTE MANAGEMENT **R.J. Burnside & Asscoiates Limited** 1465 Pickering Parkway, Pickering, ON, L1V 7G7 T. 1.800.265.9662

PLANNING Bousfields Inc. 3 Church Street, Toronto, ON, M5E 1M2 T. 416.947.9744

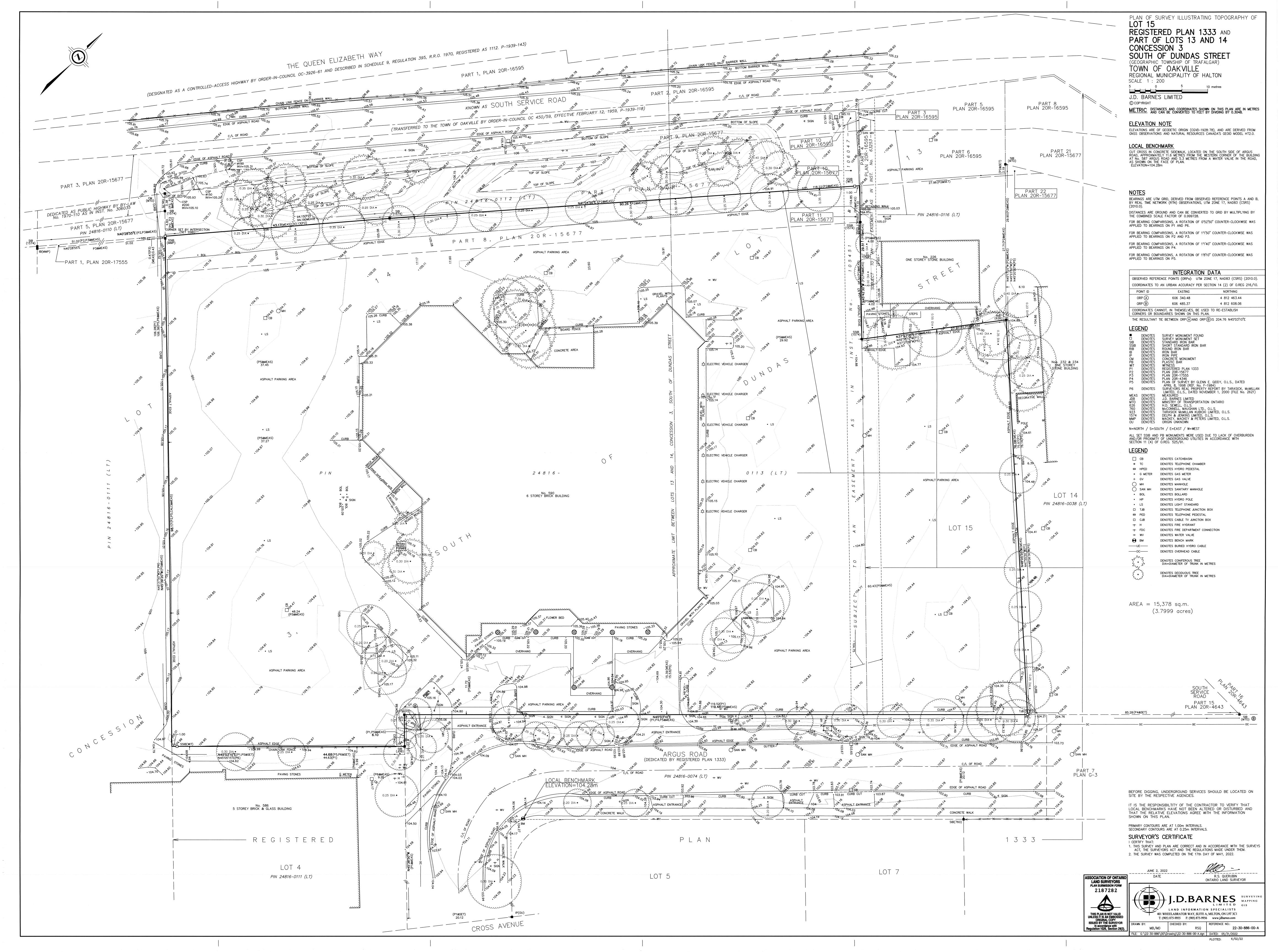
CLIENT **Distrikt Developments** 1-90 Wingold Avenue, Toronto, ON, Canada M6B 1P5 T. 416.628.8038

590 Argus Road, Oakville, ON, Canada

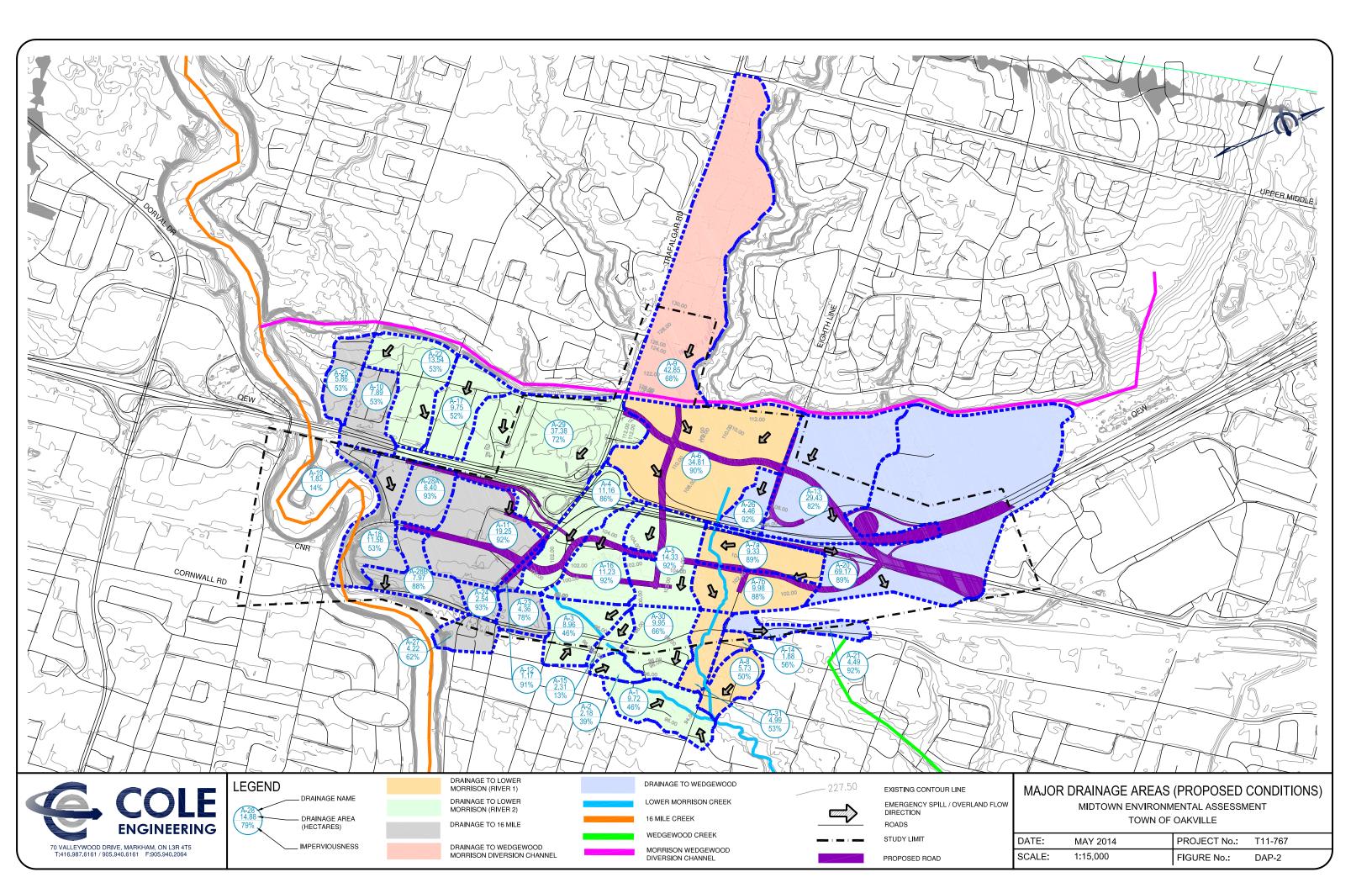
PROJECT NORTH

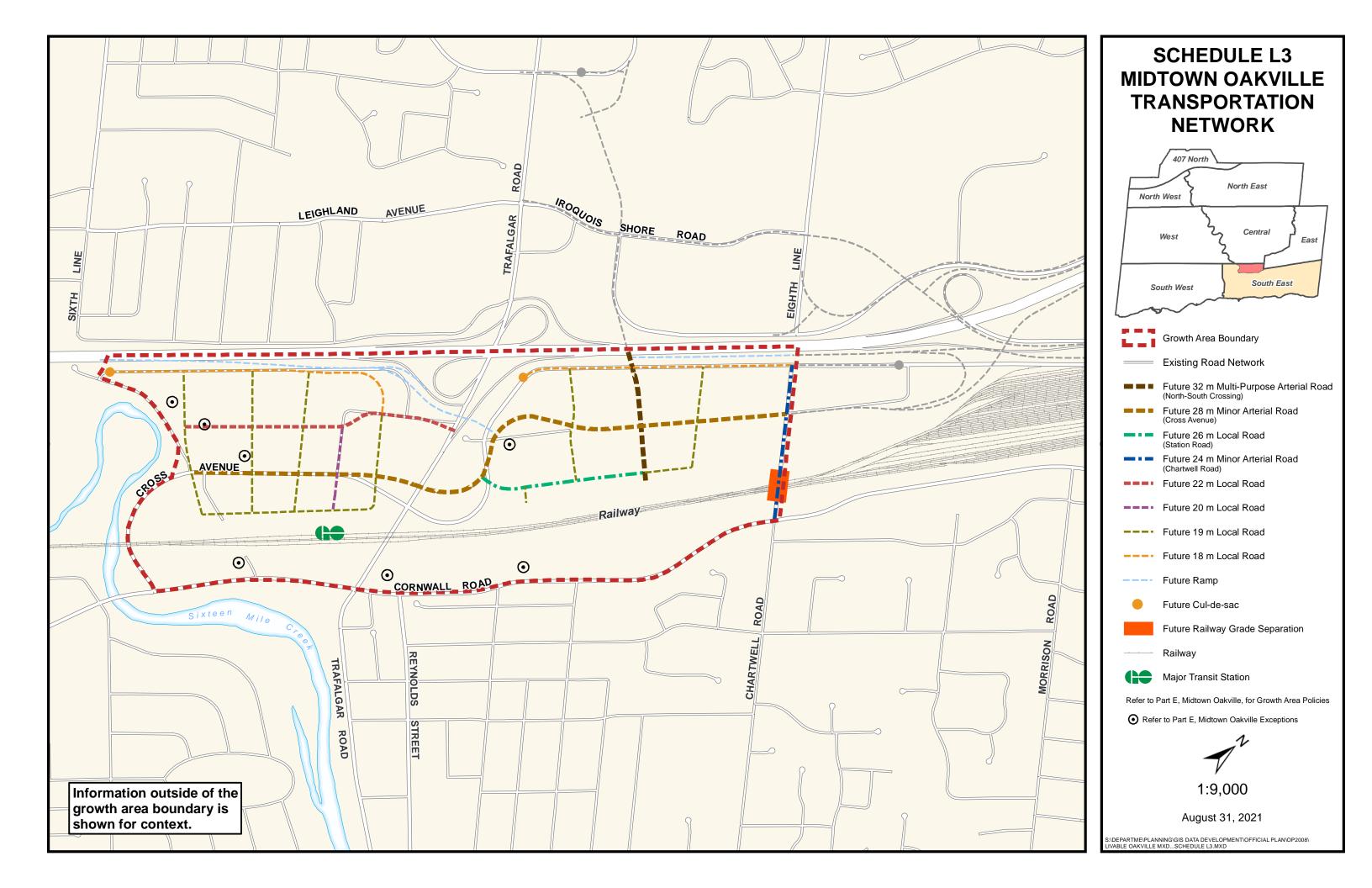
BUILDING STATISTICS

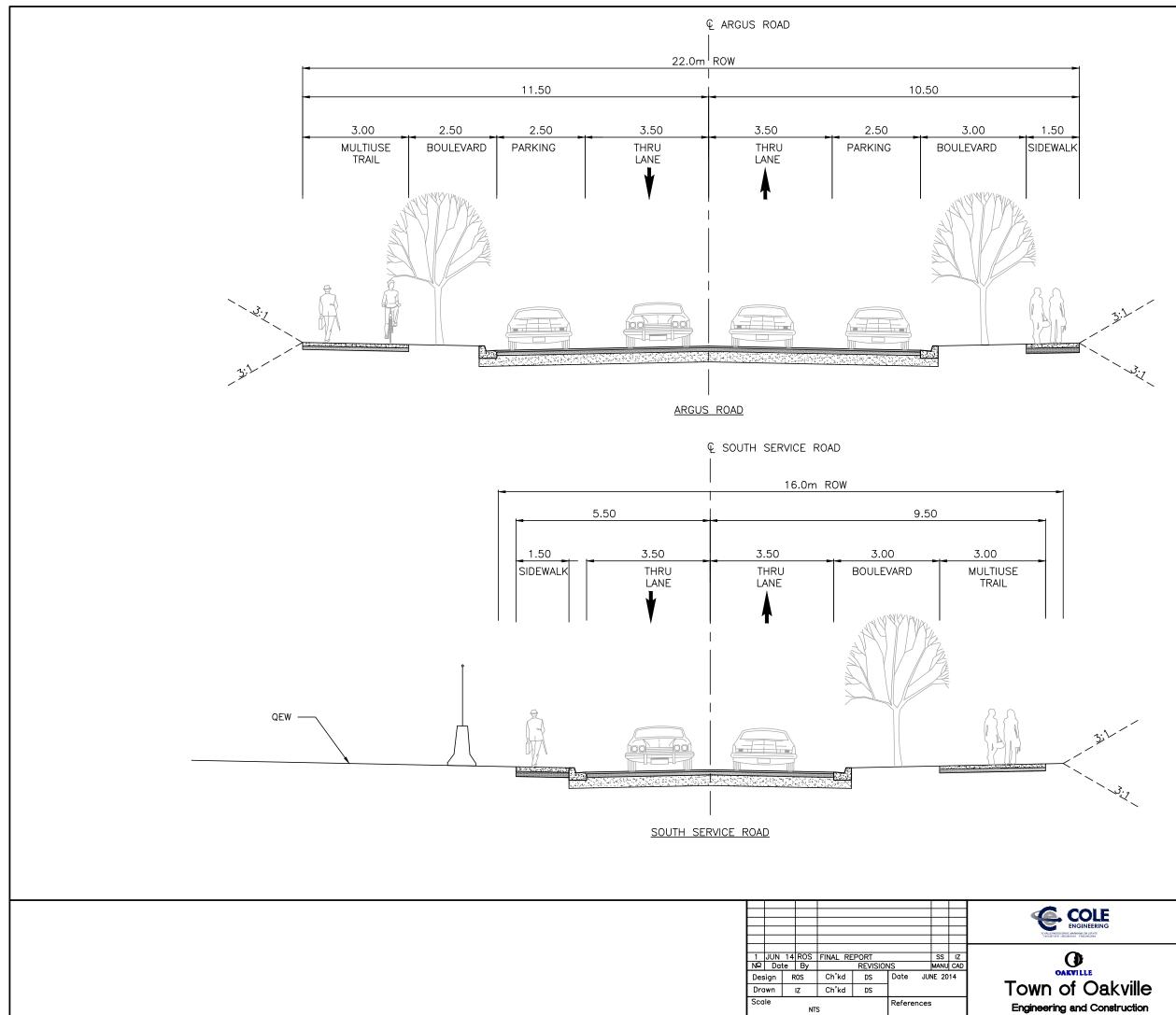
Author DRAWN BY -----22-106 PROJ NO


Checker CHECKED BY ARCH E

FORMAT


00/03/23 PLOT DATE


A002


SCALE

APPENDIX 'B'

COLLE ENGINEERING Water Tabatat	MIDTOWN OAKVILLE EA						
of Oakville	Consultant File № TR11-767	Regional Drawing N2					
and Construction	CONTRACT NΩ	Drawing N2 SHEET 31 OF 36					

APPENDIX 'C'

TRAFALGAR ENGINEERING LTD.

ESTIMATED EXISTING WATER DEMAND

Project:590 Argus RoadDesc:Rezoning/OPA

	0	ccupancy Data				P	eaking Facto	rs		Demand Flow	
	Site Area	Population Density	Eq. Population	Per Cap. Demand	Average Daily Demand (L/min)		Peak Hour	Max Daily	Min. Hour Demand (L/min)	Max. Hour Demand	Max. Daily Demand
Land Use / Occupancy Type Light Commercial	(ha) 1.54	(pers/ha) 90	(cap.) 139	(L/cap. Day) 275	26		2.25	2.25	26	(L/min) 60	(L/min) 60
TOTAL	2		139		26				26	60	60
									Average Da Minimum Hou Maximum Hou Maximum Da	urly Demand:	26 (L/min) 26 (L/min) 60 (L/min) 60 (L/min)

P:\1798 Distrikt 590 Argus\01-Calculations\[2023-01-23 Water and Sanitary Demands.xlsx]PR WATER

VER 2.1

Project No.:1798Prepared By:MW

Checked By: NAS

TRAFALGAR ENGINEERING LTD.

ESTIMATED PROPOSED WATER DEMAND

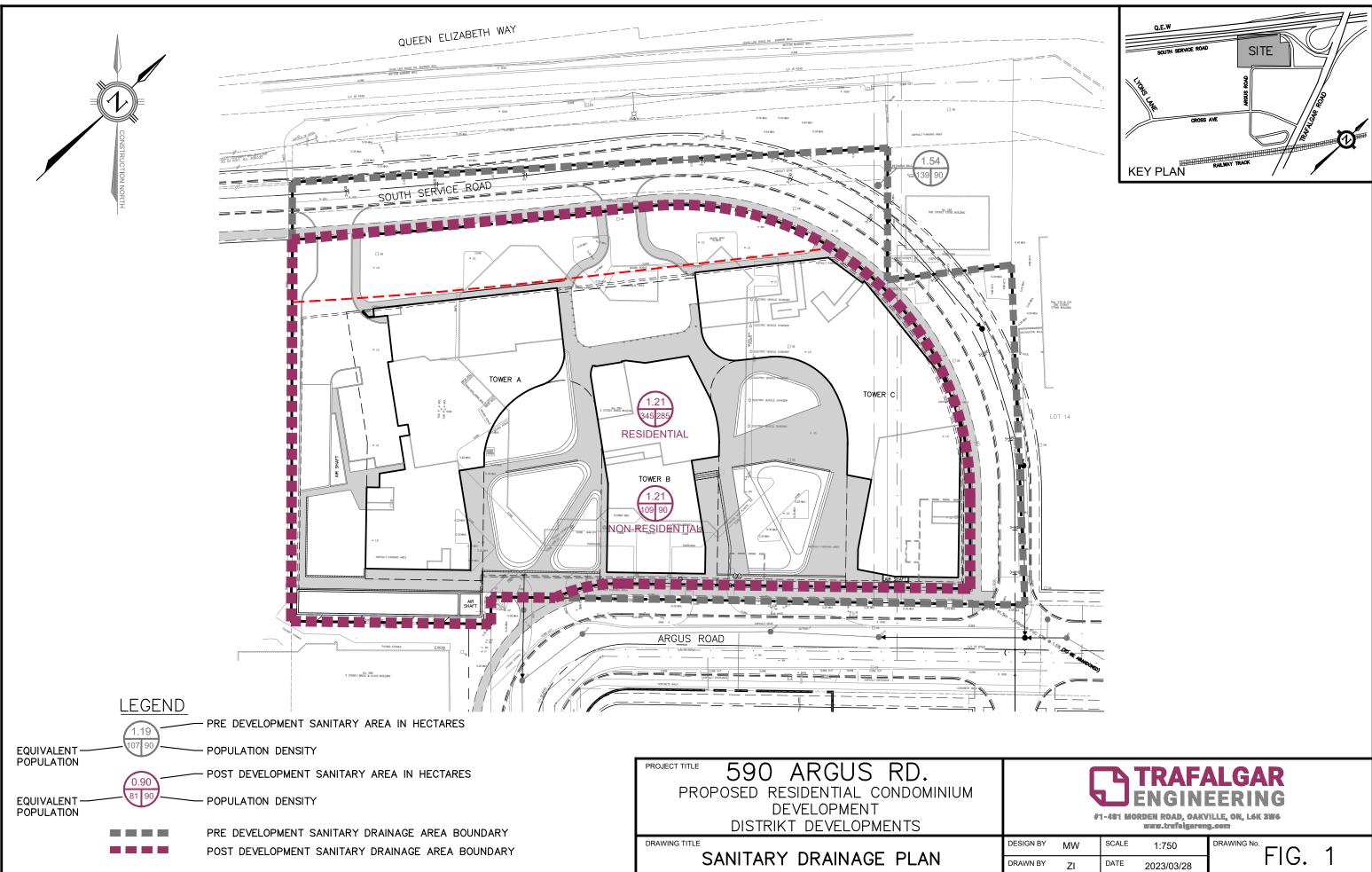
Project: Desc:	590 Argus Road Rezoning/OPA										Project No.: Prepared By: Checked By:	1798 MW NAS
		Oc	cupancy Data				Р	eaking Facto	ors		Demand Flow	1
Landlia	. / O	Site Area	Population Density	•	Per Cap. emand (L/cap. Day)	Average Dail Demand (L/mir	-	Peak Hour	May Daily	Min. Hour Demand (L/min)	Max. Hour Demand (L/min)	Max. Daily Demand
Apartme	e / Occupancy Type	(ha) 1.21	(pers/ha) 285	(cap.) 345		Demand (L/min	/		2.25		263	(L/min) 148
Non Res		1.21	90.0	109	275	2			2.25		47	47
TOTAL		2.42		454		8	7			87	310	195
<u>Fire Flov</u> Using Fi 1.	v re Underwriters Survey Me An estimate of the fire flu Where: F = The required fire C = Coefficient relat	ow is given by the flow in litres per r	ninute	F = 220Cv	/A					Minimum Hou Maximum Hou Maximum Da	urly Demand: aily Demand:	87 (L/min) 87 (L/min) 310 (L/min) 195 (L/min) 12195 (L/min)
	A = The total floor a				•		, ,		Area Noto:	For adequately	, protocted vo	rtical openinge
	Type of Construction:	Fire-Resistive		Coefficient: 0		Total Floor Area		[(m ⁻)	Alea Note.	consider only t		
	F = 12000 (L/mi	,			ately Protected V	Vertical Openings	S: Yes	l		plus 25% of ea	ich of the two	
2.	Adjust the value in No. 1	for occupancy su	rcharge/reduc	tion						adjoining floor	S.	
	Occupancy Contents: F = 12000 (L/mi	Combustible		Factor: 0	%					NOTE: Tower A Fire Flow requi	•	e maximum
3.	Adjust the value in No. 2	for sprinkler			4.	Adjust the value		•				
	NFPA 13 Sprinkler: Standard Water Supply: Fully Supervised:	Yes Yes Yes Tota	Reduction: Reduction: Reduction:	20% 10% 10% 40 %		North East South West	eparation (m) 132 23 16 16 Total Charge:	0% 10% 15% 15%				
		Sprinkle	r Reduction:	4800 (I	L/min)	Ехро	sure Charge:	4800	(L/min)			
5.	Estimated Fire Flow is va	lue in No. 2 less S	Sprinkler Reduc	ction plus Expos	<i>sure Charge</i> , rou	inded to the near	est 1000					

P:\1798 Distrikt 590 Argus\01-Calculations\[2023-01-23 Water and Sanitary Demands.xlsx]PR WATER

F = 12000 (L/min)

APPENDIX 'D'

TRAFALGAR ENGINEERING LTD.


ESTIMATED EXISTING SANITARY FLOW

Project: Desc:	590 Argus Road Rezoning/OPA				Pre	oject No.: 1798 pared By: MW ecked By: NAS
Resident	181		Dopulation	Γ~	Der Con	Average Deily Dry
Land Use	е / Оссирапсу Туре	Site Area (ha)	Population Density (pers/ha)	Eq. Population (cap.) 0	Demand (L/cap. Day)	Average Daily Dry Weather Flow (L/s)
				<u>^</u>		
TOTAL		0.00		0		0.0
Industria	l / Commercial / Institutional					
Land Use	е / Оссирапсу Туре	Site Area (ha)	Population Density (pers/ha)	Eq. Population (cap.)	Unit Sewage Flow (L/Ha. Day)	Average Daily Dry Weather Flow (L/s)
Light Cor		1.54	90.0	139	24750	0.4
TOTAL		1.54		139		0.44
ICI Peaki Include I Tributary Infiltratio	ial Peaking Factor: ng Factor: Cl Peaking? ^ Area: n Allowance: on Drain Allowance:	4.50 4.20 Yes 1.54 0.286 0.00	(ha) (L/s ha) (L/s ha)			
ICI Avera Groundw	on Avg Flow: ge Flow: ater Discharge: erage Flow:	0.44 0.44 0.88	(L/s) (L/s)			
Infiltratio ICI Peak Groundw Total Pe a	Flow: rater Discharge:	0.40 1.85 2.25	(L/s) (L/s)			

TRAFALGAR ENGINEERING LTD.

ESTIMATED PROPOSED SANITARY FLOW

Project: 590 Argus Road Desc: Rezoning/OPA				Pre	roject No.: 1798 epared By: MW ecked By: NAS
Residential		.			
		Population	Eq.		Average Daily Dry
	Site Area	Density	Population	Demand	Weather Flow
Land Use / Occupancy Type	(ha)	(pers/ha)	(cap.)	(L/cap. Day)	(L/s)
Apartments (Over 6 Stories)	1.21	285.0	345	275	1.10
TOTAL	1.21		345		1.10
Industrial / Commercial / Institutiona	1				
		Population	Eq.	Unit Sewage	Average Daily Dry
	Site Area	Density	Population	Flow	Weather Flow
Land Use / Occupancy Type	(ha)	(pers/ha)	(cap.)	(L/Ha. Day)	(L/s)
Non-Residential / Commercial	1.21	90.0	109	24750	0.3
TOTAL	1.21		109		0.35
Desidential Desking Faster					
Residential Peaking Factor:	4.05 4.23				
ICI Peaking Factor: Include ICI Peaking?	4.23				
Tributary Area:	1.21	(ha)			
Infiltration Allowance:	0.286				
Foundation Drain Allowance:		(L/s ha)			
Residential + Infilitration Avg Flow:	1.4 ((L/s)			
ICI Average Flow:	0.3 (
Groundwater Discharge:		(L/s)			
Total Average Flow:	1.8(
Residential Peak Flow:	4.8 ((1/s)			
ICI Peak Flow:	4.8 (0.3 (
Groundwater Discharge:		(L/s)			
Total Peak Flow:	5.15 (
	5.15 ((=/3)			

SIGN BY	MW	SCALE	1:750	
RAWN BY	ZI	DATE	2023/03/28	FIG. I

APPENDIX 'E'

TRAFALGAR ENGINEERING LTD.

COMPOSITE RUNOFF COEFFICIENT

Project: 590 Argus Road Desc: First Submission OPA/RZA				Prep	ject No.: ared By: cked By:	1798 MW NAS		
Pre-Development Composite Runoff Coefficient								
Surface	'A' (m²)	'C'	'AC'	% Imp	'AI'			
Existing building and parking	12089	0.50	6045	100%	12089			
Existing landscaping	0	0.25	-	0%	-			
			-	100%	-			
			-	100%	-			
Totals	12000		-		-			
Totais	12089	C = 'AC'/'A'= 0.5	6045	%I = 'AI'/'A' = 100%	12089			
		C = AC/A = 0.3	50	%I = AI/A = 100%	•			
External Drainage Area Composite R	unoff Coef	ficient						
Surface	'A' (m²)	'C'	'AC'	% Imp	'AI'			
			-		-			
			-		-			
			-		-			
			-		-			
Totals	-		-		-			
Totals	-	C = 'AC'/'A'= -	-	%I = 'AI'/'A' = -	-			
		0-40/4-		λi - Αi/Α -				
Post-Development Controlled Area C	omposite	Runoff Coefficien	<u>it</u>					
Surface	'A' (m ²)	'C'	'AC'	% Imp	'AI'			
Development Site	12089	0.90	10880	100%	12089			
			-		-			
			-		-			
			-		-			
Totals	12089		10880		12089			
Totals	12009	C = 'AC'/'A'= 0.9		%l = 'Al'/'A' = 100%				
		0 - 40, 4 - 0		/// - /// - /00/				
Post-Development Uncontrolled Area Composite Runoff Coefficient								
Surface	'A' (m²)	'C'	'AC'	% Imp	'AI'			
			-	50%	-			
			-		-			
			-		-			
			-		-			
Tatala			-		-			
Totals	-	C = 'AC'/'A'= -	-	%I = 'AI'/'A' = -	-			

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2022-12-19 Rational Flow.xlsm]1.2 FLOWS

TRAFALGAR ENGINEERING LTD.

RATIONAL METHOD FLOWS

Based on Town of Oakville IDF Data

Project: 590 Argus Road Desc: First Submission OPA/RZA

Pre-Development Parameters

	Site	External	Total
'C'	0.500	0.000	0.500
'A' (ha)	1.209	0.000	1.209
'AC'	0.604	0.000	0.604

Pre-Development Flow

	Intensity	Site Flow	External Flow	Total Flow
Return	(mm/hr)	(L/s)	(L/s)	(L/s)
5-yr	114.2	192	0	192
10-yr	134.8	226	0	226
25-yr	162.2	300	0	300
50-yr	182.1	367	0	367
100-yr	200.8	421	0	421

Flows have been adjusted using 25-, 50-, and 100-yr factors of 1.1, 1.2, and 1.25 (To a maximum C of 1.0)

Post-Development Parameters

	Controlled	Uncontrolled	External	Total
'C'	0.900	0.000	0.000	0.900
'A' (ha)	1.209	0.000	0.000	1.209
'AC'	1.088	0.000	0.000	1.088

Post-Development Flow

			Uncontrolled	Peak		
	Intensity		Flow	Rooftop Flow	External Flow	Total Flow
Return	(mm/hr) Peak	Inflow (L/s)	(L/s)	(L/s)	(L/s)	(L/s)
5-yr	114.2	345	0	0	0	345
10-yr	134.8	407	0	0	0	407
25-yr	162.2	539	0	0	0	539
50-yr	182.1	611	0	0	0	611
100-yr	200.8	674	0	0	0	674

Flows have been adjusted using 25-, 50-, and 100-yr factors of 1.1, 1.2, and 1.25 (To a maximum C of 1.0)

Post-to-Pre Comparison*

	Pre-Dev Total	Post-Dev Total	
Return	(L/s)	(L/s) Perce	ent Change
5-yr	192	345	80%
10-yr	226	407	80%
25-yr	300	539	80%
50-yr	367	611	66%
100-yr	421	674	60%

*Storage may be required, refer to Modified Rational Method Storage Calculation and Summary sheets if applicable

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2022-12-19 Rational Flow.xlsm]1.2 FLOWS

Project No.:	1798
Prepared By:	MW
Checked By:	NAS

MODIFIED RATIONAL METHOD STORAGE

Based on Town of Oakville IDF Data

Project:	590 Argus Roa	b	Project No.:	1798		
Desc: First Submission OPA/RZA		n OPA/RZA	Prepared By:	MW		
			Checked By:	NAS		
Pre-Devel	<u>opment</u>					
Catchmen	it Area (ha)	1.2089				
Runoff Co	efficient	0.50				
TC (min) 10		10	Pre-Development Peak Intensity: 11-	Pre-Development Peak Intensity: 114.2 mm/hr		
Control Level 5-Yr		5-Yr	Pre-Development Peak Discharge: 0.	192 (cms)		
Post-Deve	elopment Uncont	rolled	External Drainage			
Catchmen	it Area (ha)	0.0000	Catchment Area (ha)	0		
Runoff Co	efficient	0.00	Runoff Coefficient	0.00		
TC (min)		10	TC (min)	10		

Control Level

External Peak Discharge: 0 (cms)

Runoff Coefficient	0.00
TC (min)	10
Control Level	100-Yr
Uncontrolled Peak Discharge:	0 (cms)

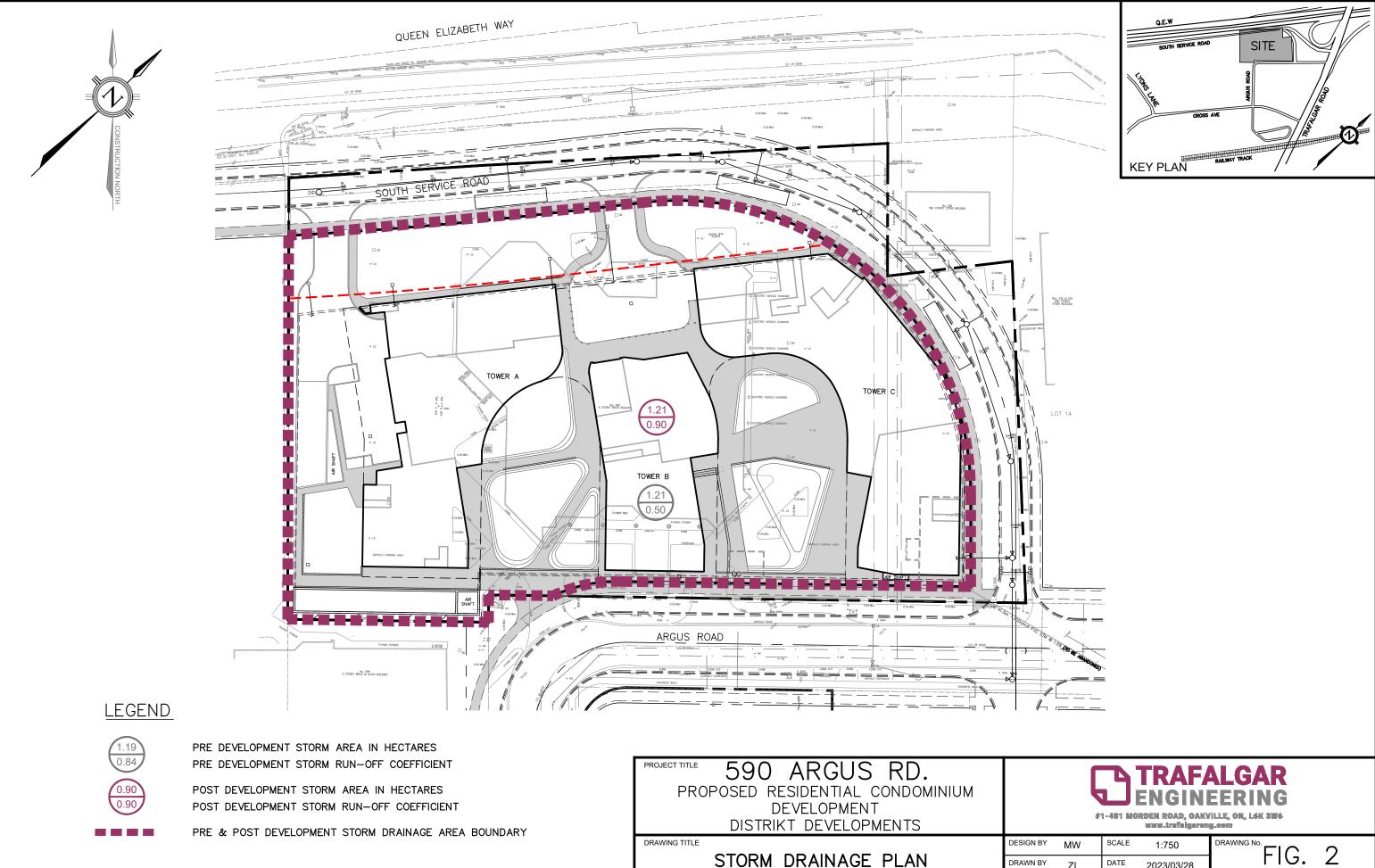
Post-Development Controlled

Catchment Area (ha)	1.2089
Runoff Coefficient	1.00 (1.25 Adj. Factor)
Time of Concentration	10
Control Level	100-Yr

Allowable Release Rate: 0.192 (cms)
Post-Development Peak Discharge: 0.674 (cms)
Post-Development Peak Intensity: 200.8 mm/hr

					. 0.192 (0113)		
Storm			Average	Max. Release	Inflow		O 1
Duration	Intensity	Inflow Rate	Roof	Rate	Volume	Outflow Volume	Storage
TD	$i = A \times T_D^{-C}$	$Q_P = CiA/360$	Discharge	$Q_A = Ci_{2YR}A$	$V_{I} = 60Q_{P}T_{D}$	$V_0 = 30Q_A(T_D + T_C)$	$S = V_1 - V_0$
(min)	(mm/hr)	(m³/s)	(m³/s)	(m³/s)	(m ³)	(m ³)	(m ³)
10	200.80	0.674	0.000	0.192	404.6	115.1	289.5
15	158.27	0.531	0.000	0.192	478.3	143.8	334.5
20	131.37	0.441	0.000	0.192	529.4	172.6	356.8
25	112.72	0.379	0.000	0.192	567.8	201.4	366.4
30	98.99	0.332	0.000	0.192	598.3	230.1	368.2
35	88.43	0.297	0.000	0.192	623.6	258.9	364.7
40	80.03	0.269	0.000	0.192	645.0	287.7	357.3
45	73.19	0.246	0.000	0.192	663.6	316.4	347.1
50	67.49	0.227	0.000	0.192	679.9	345.2	334.8
55	62.68	0.210	0.000	0.192	694.6	373.9	320.6
60	58.55	0.197	0.000	0.192	707.8	402.7	305.1
90	42.35	0.142	0.000	0.192	768.0	575.3	192.7
120	33.49	0.112	0.000	0.192	809.7	747.9	61.8

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2022-12-19 Rational Flow.xlsm]1.2 FLOWS


100-Yr

WATER BALANCE AND WATER QUALITY

Project: Desc:	590 Argus Road First Submission OPA/RZA				Project No.: Prepared By: Checked By:	1798 MW NAS
<u>Water Ba</u> Surface	llance	'A' (m²)	%Total A	IA (mm)	%Total x IA	
Site		12089	100%	0.0	0.0	
Totals		12089		Retention:		(mm)
			Target	Retention: Balance:		(mm) (mm)
			Volume	Required:	25.0 302.2	
						()
Total Su	spended Solids					
<u></u>				Removal		
Surface			'A' (m ²)	Rate, 'R'	AxR	
Jellyfish			12089	80%	9671	
Totals			12089 Effective	Removal:	9671 80%	
			LITECTIVE	incinuval.	00/6	

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2022-12-19 Rational Flow.xlsm]1.2 FLOWS

VER 2.1

PROJECT TITLE 590 ARGUS RD.					
PROPOSED RESIDENTIAL CONDOMINIUM					
DEVELOPMENT					
DISTRIKT DEVELOPMENTS					
DRAWING TITLE					
STORM DRAINAGE PLAN	DRAWN BY				

DATE

2023/03/28

ΖI

COMPOSITE RUNOFF COEFFICIENT

Project: South Service Road Reali Desc: First Submission OPA/R2				Prepa	ctNo.: 17 redBy: N cedBy: N
Pre-Development Composite Runo	ff Coefficien	<u>t</u>			
Surface	'A' (m²)	'C'	'AC'	% Imp	'AI'
Existing Parking Lot and Boulevard	3567	0.50	1784	100%	3567
Existing landscaping			-	0%	-
			-	100%	-
			-	100%	-
			-		-
Totals	3567	C = 'AC'/'A'= 0.	1784 50	%I = 'AI'/'A' = 100%	3567
External Drainage Area Composite					
Surface	'A' (m²)	'C'	'AC'	% Imp	'Al'
			-		-
			-		-
			-		-
			-		-
T-4-1-			-		
Totals	-	C = 'AC'/'A'= -	-	%I = 'AI'/'A' = -	-
Post-Development Controlled Area		Runoff Coefficier	<u>nt</u>		
Surface	'A' (m²)	'C'	'AC'	% Imp	'Al'
Impervious ROW	2503	0.90	2253	100%	2503
Pervious ROW	1251	0.25	313	0%	-
			-		-
Totals	3754		2566		2503
Totals	3754	C = 'AC'/'A'= 0.0	2566 68	%I = 'AI'/'A' = 67%	2503
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 <u>ient</u>		
			68	% Imp	2503 'Al'
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 <u>ient</u>		
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 ient 'AC'	% Imp	
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 ient 'AC' -	% Imp	
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 ient 'AC' -	% Imp	
Post-Development Uncontrolled A	rea Composi	te Runoff Coeffic	68 ient 'AC' -	% Imp	

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2023-03-10 SSR Rational FLow.xlsm]2.2 STORAGE

RATIONAL METHOD FLOWS

Based on Town of Oakville IDF Data

Project:	South Service Road Realignment
Desc:	First Submission OPA/RZA

Pre-Development Parameters

	Site	External	Total
'C'	0.500	0.000	0.500
'A' (ha)	0.357	0.000	0.357
'AC'	0.178	0.000	0.178

Pre-Development Flow

	Intensity	Site Flow	External Flow	Total Flow
Return	(mm/hr)	(L/s)	(L/s)	(L/s)
2-yr	82.2	41	0	41
5-yr	114.2	57	0	57
10-yr	134.8	67	0	67
25-yr	162.2	88	0	88
50-yr	182.1	108	0	108
100-yr	200.8	124	0	124

Flows have been adjusted using 25-, 50-, and 100-yr factors of 1.1, 1.2, and 1.25 (To a maximum C of 1.0)

Post-Development Parameters

	Controlled	Uncontrolled	External	Total
'C'	0.683	0.000	0.000	0.683
'A' (ha)	0.375	0.000	0.000	0.375
'AC'	0.257	0.000	0.000	0.257

Post-Development Flow

			Uncontrolled	Peak		
	Intensity		Flow	Rooftop Flow	External Flow	Total Flow
Return	(mm/hr) Pea	ak Inflow (L/s)	(L/s)	(L/s)	(L/s)	(L/s)
2-yr	82.2	59	0	0	0	59
5-yr	114.2	81	0	0	0	81
10-yr	134.8	96	0	0	0	96
25-yr	162.2	127	0	0	0	127
50-yr	182.1	156	0	0	0	156
100-yr	200.8	179	0	0	0	179

Flows have been adjusted using 25-, 50-, and 100-yr factors of 1.1, 1.2, and 1.25 (To a maximum C of 1.0)

Post-to-Pre Comparison*

	Pre-Dev Total	Post-Dev Total	
Return	(L/s)	(L/s)	Percent Change
2-yr	41	59	44%
5-yr	57	81	42%
10-yr	67	96	43%
25-yr	88	127	44%
50-yr	108	156	44%
100-yr	124	179	44%

Project No.:	1798
Prepared By:	MW
	NIA 0

Prepared By:	MW
Checked By:	NAS

*Storage may be required, refer to Modified Rational Method Storage Calculation and Summary sheets if applicable

P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2023-03-10 SSR Rational FLow.xlsm]1.2 FLOWS

VER 2.2.1

MODIFIED RATIONAL METHOD STORAGE

Based on Town of Oakville IDF Data

Project:	South Service	Road Realignment	Project No.:	1798
Desc:	First Submission OPA/RZA		Prepared By:	MW
			Checked By:	NAS
Pre-Deve	<u>lopment</u>			
Catchmer	nt Area (ha)	0.3567		
Runoff Co	oefficient	0.50		
TC (min)		10	Pre-Development Peak Intensity: 114	1.2 mm/hr
Control Le	evel	5-Yr	Pre-Development Peak Discharge: 0.0)57 (cms)
Post-Dev	elopment Unco	ntrolled	External Drainage	
Catchmer	nt Area (ha)	0.0000	Catchment Area (ha)	0

Catchinent Alea (na)	0.0000
Runoff Coefficient	0.00
TC (min)	10
Control Level	100-Yr
Uncontrolled Peak Discharge:	0 (cms)

Post-Development Controlled

Catchment Area (ha)	0.3754
Runoff Coefficient	0.85 (1.25 Adj. Factor)
Time of Concentration	10
Control Loval	100 Vr

Post-Development Peak Intensity: 2	200.8 mm/hr

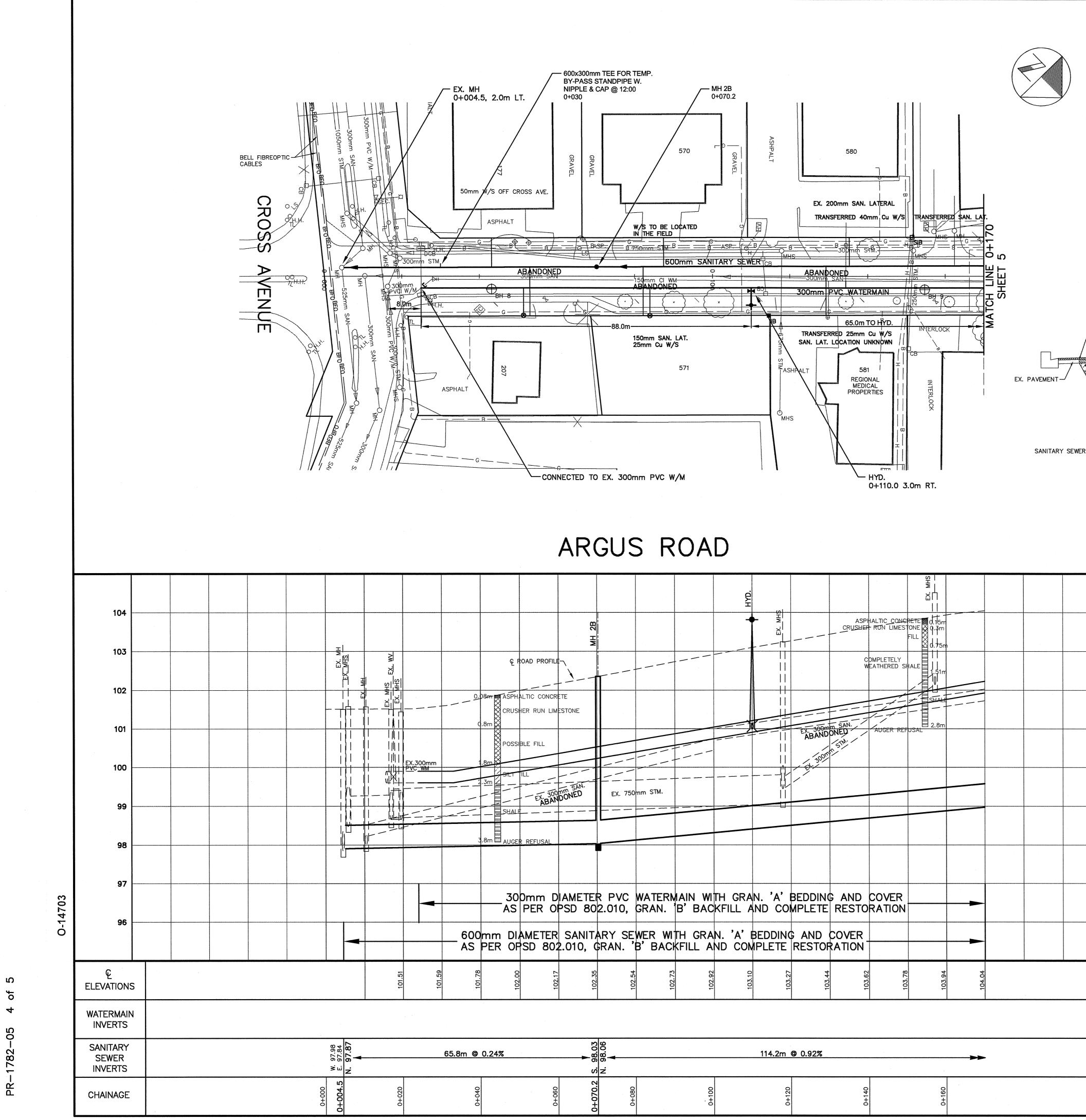
Runoff Coefficient

External Peak Discharge: 0 (cms)

TC (min)

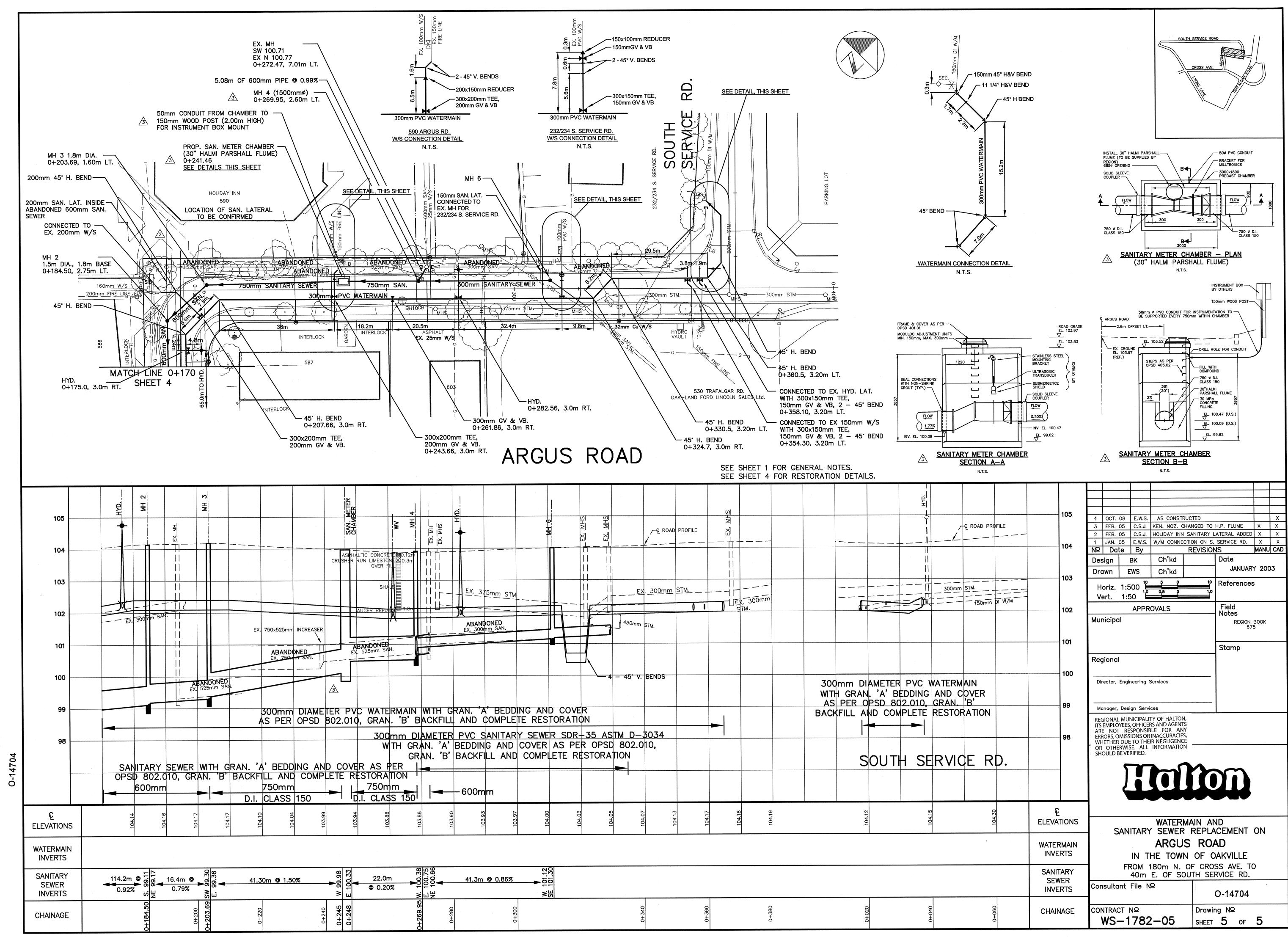
Control Level

Control Lev	/el	100-Yr		Allowable Release Rate: 0.057 (cms)						
Storm			Average	Max. Release	Inflow					
Duration	Intensity	Inflow Rate	Roof	Rate	Volume	Outflow Volume	Storage			
Τ _D	$i = A \times T_D^{-C}$	$Q_P = CiA/360$	Discharge	$Q_A = Ci_{2YR}A$	$V_{I} = 60Q_{P}T_{D}$	$V_0 = 30Q_A(T_D + T_C)$	$S = V_1 - V_0$			
(min)	(mm/hr)	(m³/s)	(m³/s)	(m³/s)	(m ³)	(m ³)	(m ³)			
10	200.80	0.179	0.000	0.057	107.3	34.0	73.4			
15	158.27	0.141	0.000	0.057	126.9	42.4	84.4			
20	131.37	0.117	0.000	0.057	140.4	50.9	89.5			
25	112.72	0.100	0.000	0.057	150.6	59.4	91.2			
30	98.99	0.088	0.000	0.057	158.7	67.9	90.8			
35	88.43	0.079	0.000	0.057	165.4	76.4	89.0			
40	80.03	0.071	0.000	0.057	171.1	84.9	86.2			
45	73.19	0.065	0.000	0.057	176.0	93.4	82.7			
50	67.49	0.060	0.000	0.057	180.4	101.9	78.5			
55	62.68	0.056	0.000	0.057	184.3	110.3	73.9			
60	58.55	0.052	0.000	0.057	187.8	118.8	68.9			
90	42.35	0.038	0.000	0.057	203.7	169.8	34.0			
120	33.49	0.030	0.000	0.057	214.8	220.7	0			


P:\1798 Distrikt 590 Argus\01-Calculations\01-SWM\[2023-03-10 SSR Rational FLow.xlsm]2.2 STORAGE

0.00

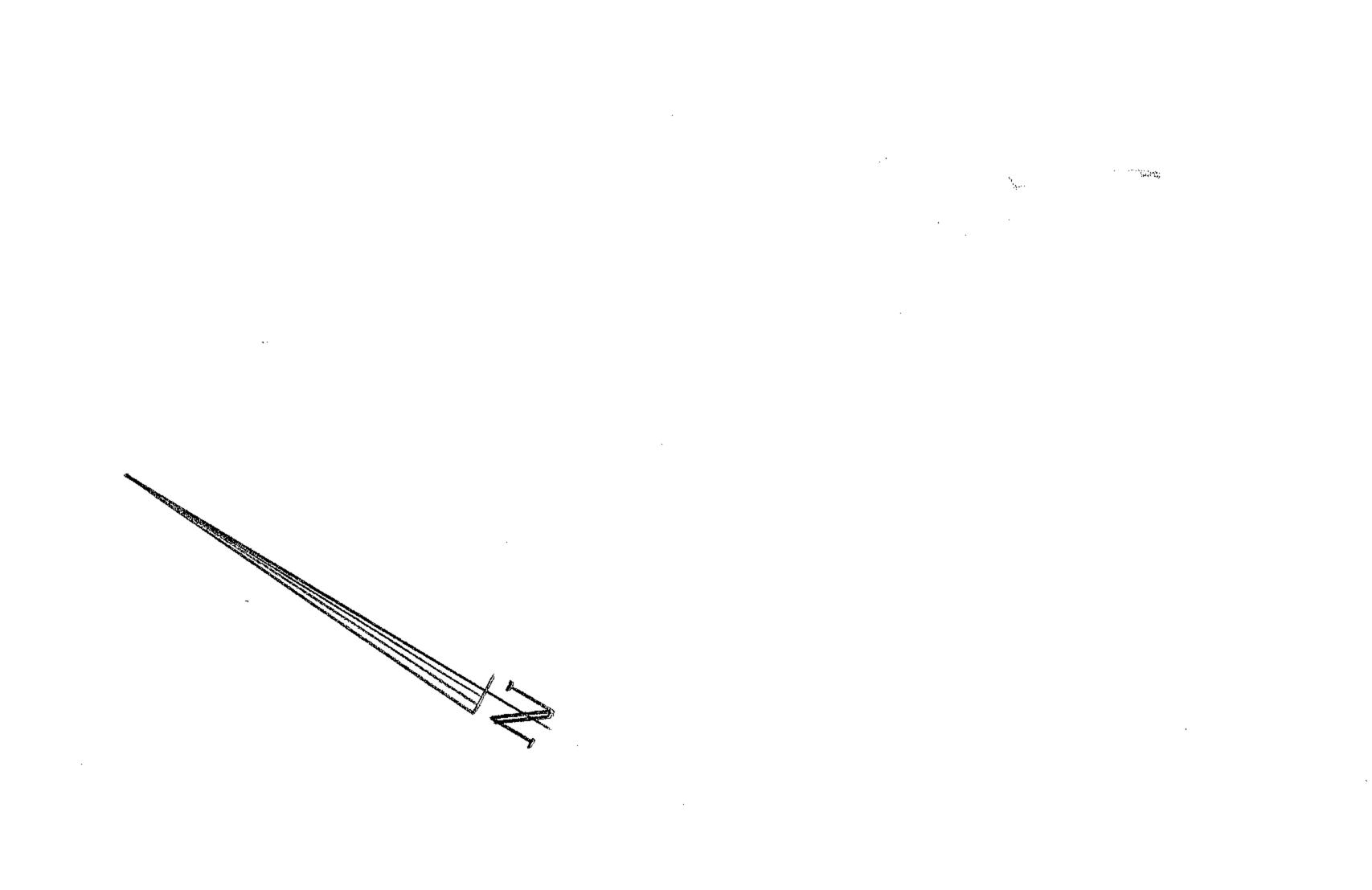
100-Yr

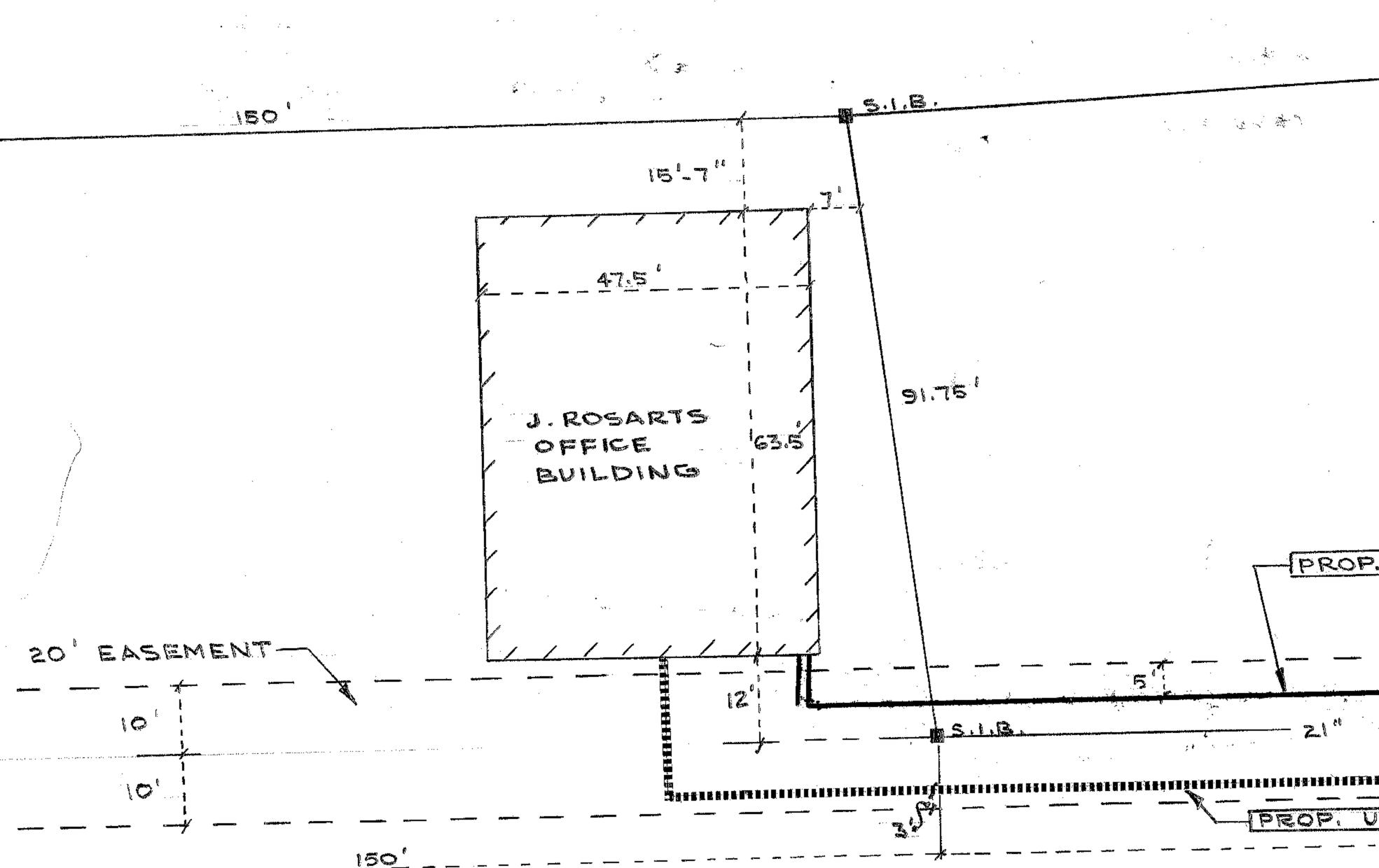

10

APPENDIX 'F'

							HYD.					EX. MHS			
			MH 2B				-					FILL d.75m			
	હ	ROAD PROFIL								C W	OMPLETELY EATHERED SH	IALE			
	×	ALTIC CONCR													- -
Ĩ	Poss	IBLE FILL							EX. 300m ABAND	ONED	~AUGER REF	USAL			
	.3m //	EX. 300 ABAN	ISAN.	EX. 750											
·	.8m AUGE	e	+												
													· .		
	30 AS	Omm D PER O	IAMETE PSD 80	R PVC 2.010,	WATERN GRAN.	IAIN WI B' BAC	TH GRA KFILL A	N. 'A' I ND COI	BEDDIN(MPLETE	G AND RESTO	COVER RATION				
500 AS	mm DI PER Of	AMETER SD 80	SANIT. 2.010, (ARY SE SRAN. '	WER WI B' BACH	TH GRA (FILL A	N. 'A' I ND CON	BEDDING	S AND RESTOF	COVER RATION					
101.78	00 201	102.17	102.35	102.54	102.73	102.92	103.10	103.27	103.44	103.62	103.78	103.94	104.04		

GRAVEL GRAVEL S70 GRAVEL S80	CENTRELINE WITH O.SOM LAP JOINT SAWCUT EX. PAVE (TYPICAL BOTH S EX. PAVEMENT GLASS GRID 8501 nm GRANULAR 'A' JLAR 'B' BACKFILL TARY SEWER		CE ROAD
BB.011 BB.0111 BB.01	WATERMAIN	40mm HL3 SURFACE ASPHAL 80mm HL8 BASE ASPHALT GLASS GRID 8 EX. GRAVEL SHOULDER GRAN. 'A' BEDDING AND COVER AS PER OPSD 802.010. LYONS LANE (NORTH OF ROAD RESTORATION N.T.S. NOTE: ASPHALT DRIVEWAY F IS TO BE FULL WIDTH WITH 50mm HL3A.	EX. PAVEMENT EX. PAVEMENT 150mm GRANULAR 'A' GRANULAR 'B' BACKFILL WATERMAIN CROSS AVE.) DETAIL ESTORATION OF DRIVEWAY
Possele Full P	104 103 102 101 101	SEE SHEET 1 FOR GEN	ERAL NOTES.
3m AUGER REFUSAL EX. 750mm STM. 3m AUGER REFUSAL Image: Comparison of the comparison	99 98 97 96	Regional Director, Engineering Services Manager, Design Services REGIONAL MUNICIPALITY OF HALTON, ITS EMPLOYEES, OFFICERS AND AGENTS ARE NOT RESPONSIBLE FOR ANY ERRORS, OMISSIONS OR INACCURACIES, WHETHER DUE TO THEIR NEGLIGENCE OR OTHERWISE. ALL INFORMATION SHOULD BE VERIFIED.	
No. 1 S	ELEVATIONS WATERMAIN INVERTS SANITARY SEWER	WATERMAIN SANITARY SEWER REF ARGUS R IN THE TOWN OF FROM CROSS A 180m NOF	PLACEMENT ON OAD OAKVILLE WE. TO
0+040 0+1120 0+1120 0+1120 0+1120 0+1120 0+1120 0+1120 0+1120 0+1120 0+1120	INVERTS		? O-14703 wing № ET 4 of 5



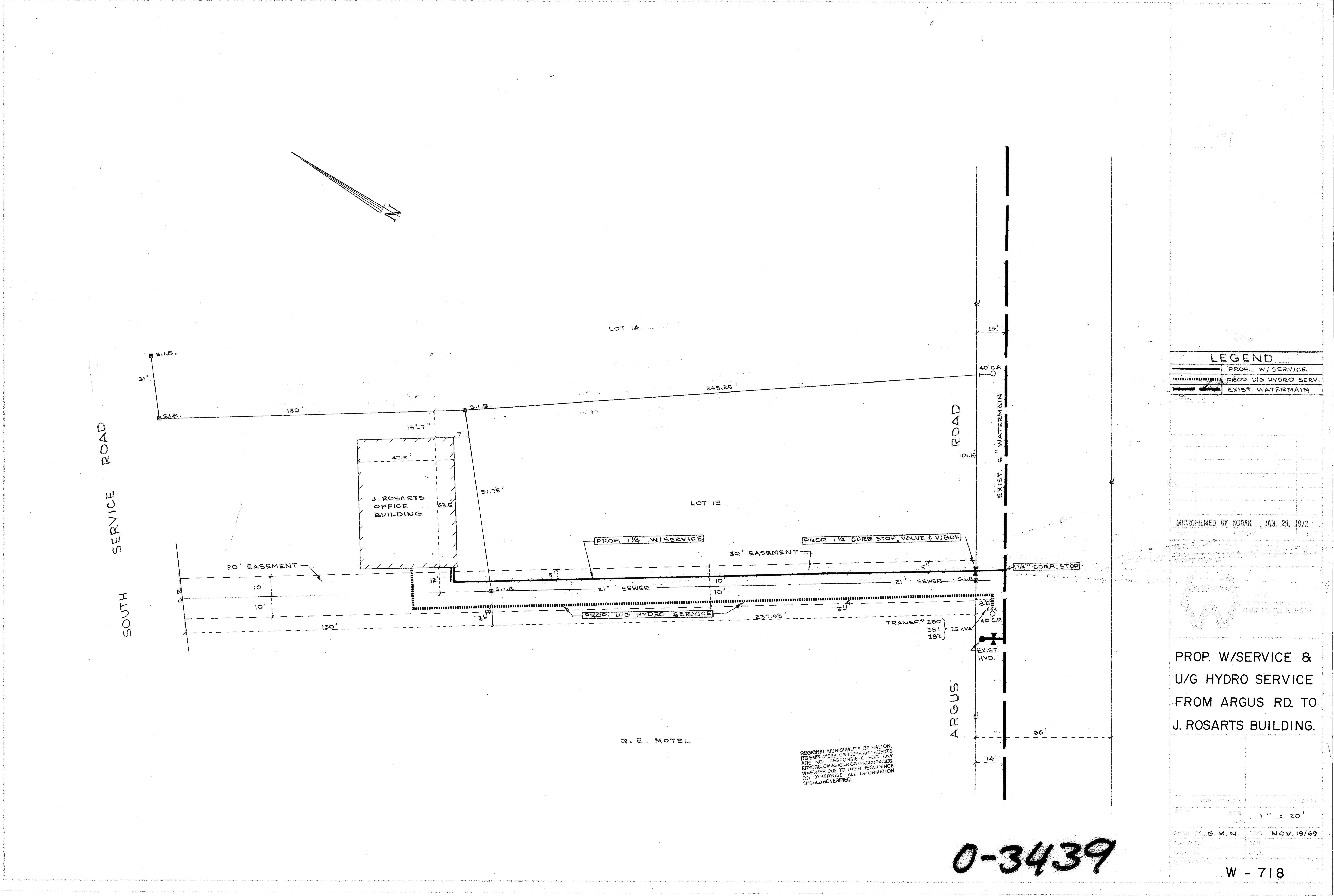

S ð S

E 100.33	22.0m @ 0.20%	W. 100.38 E. 100.75 NE 100.66	41.3m @ 0.86%	₩. 101.12 SE 101.30				
0+248		0+269.95	0+300		0+340	0+360	0+380	

5.1.8.

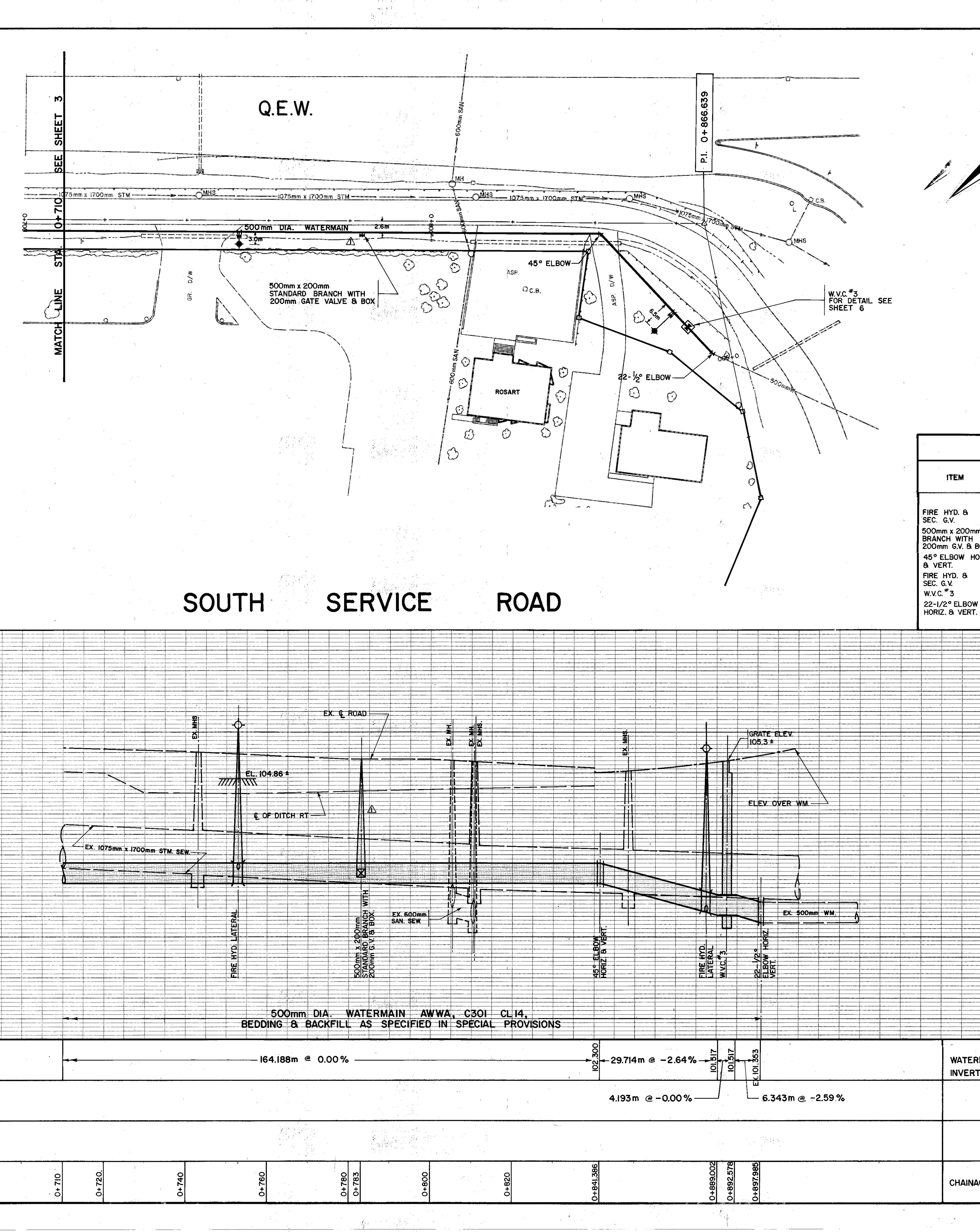
LOT 14

249.25


LOT IS

PROP. 14 WISERVICE 20' EASEMENT-SEWER PROP. UIG HYDRO SERVICE 237.45 -

Q.E. MOTEL


Ł

PROP. 14"CURB STOP, VALVE & VIBON-21" SEWER SILE TRANSF .= 380) 381 } 25 KVA! 382 }

		E												<u>}</u>
												•••••		
	<u>.</u>	······	1		ļ		••••••••••••••••••••••••••••••••••••••	Ĭ	{	······································	······································		······································	-
	:	·					••••••••••••••••••••••••••••••••••••••	<u> </u>			•	+	······································	
				· · · · · · · · · · · · · · · · · · ·									<u>}</u>	
		 		}			F F						<u> </u>	
	·····				······	······	••••••••••••••••••••••••••••••••••••••		5		è		**************************************	
			-			ļ		ļ	<u>(</u>	<u>.</u>	}		<u></u>	
										<u>.</u>				
**********************	• •••••••• •• •• •• •• •• •• •• •• •• •	······································			<u> </u>		······································	· · · · · · · · · · · · · · · · · · ·		*	: ! ! {			
										<u> </u>	 		 	
		·····		<u> </u>		·••		<u></u>	······································	• • •		ļ		···
		·····				<u> </u>		·\$·· ····· ····························		·····		· · · · · · · · · · · · · · · · · · ·	****	
				. <u> </u>		Į		> 	·		<u> </u>		*** <u>*</u> **	<u> </u>
		+ ,				ţ	Í		•	•	*	Į.	÷	·+··
······												<u></u>		
			<u>.</u>	· · · · · · · · · · · · · · · · · · ·		····				· · · · · · · · · · · · · · · · · · ·	<u> </u>	······································		····
				·	•		s 			······································	• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·
» 						, \$	3				ļ. <u></u>		<u> </u>	
	÷				İ								······	-{
						; 		· · · · · · · · · · · · · · · · · · ·		<u> </u>		L		
· · · · · ·									 	1	 	ļ		
		Į	·•	······		······································		· · · · · · · · · · · · · · · · · · ·	₩~~~~ ₩~~~~				<u> </u>	
						·			······	 در				
		ļ		·								<u>+</u> <u>-</u>	<u></u>	
			×			[[[ļ	ļ				
		[ļ	}							<u> </u>	···
+		Ļ		·										<u> </u>
		ş	<u>+</u>			L				······································				
·		<u> </u>								·			<u></u>	
		·											1	
······································				<u> </u>					1 1 1					
			· ·			p		·····		<u> </u>		<u></u>	Į	
		;		·		j	· · · · · · · · · · · · · · · · · · ·			·····		ģ		ļ
	·	<u>~</u>		L	[······································	·				
	······································	(· · · · · · · · · · · · · · · · · · ·			······		·····			\$, -	<u> </u>
· · ·										: ;=			<u></u>	
·		1 1		······································										<u> </u>
·····		·		······································	······································	}			······································			Ļ		
				·		1			§		·····	\$		
	····	•••••••••••••••••			3			······	·····					1
				3 					······································	· · · · · · · · · · · · · · · · · · ·	······································	1		
						······						i 1		<u> </u>
				·····	÷	\$ 	 		······································	\$	 		·	
					····-	····			! 	<u> </u>				
	•								· ·····		}······		· · · · · · · · · · · · · · · · · · ·	
				↓ ≱					·			<u> </u>	`	<u> </u>
								· · · · · · · · · · · · · · · · · · ·	<u> </u>					
				÷,						}	·····			
	,				<u>.</u>					······	·····-		· • · · · · · · · · · · · · · · · · · ·	
			·······	·		 								1
											······	<u> </u>	1	
·					1							1 1 1		1 4 1
				•••••••••••••••••••••••••••••••••••••••	<u> </u>				•		······	······		
								·	<u>.</u>			<u> </u>		
											**************************************		+	• Gran * 1000 to #11000 to #1
							·							<u> </u>
														<u> </u>
		••••••••••••••••••••••••••••••••••••••								······································			ļ	
			÷	······································					······			<u> </u>	1	<u>;</u>
					<u> </u>	\$v 			······································	••••••••••••••••••••••••••••••••••••••				÷

N N

METRIC

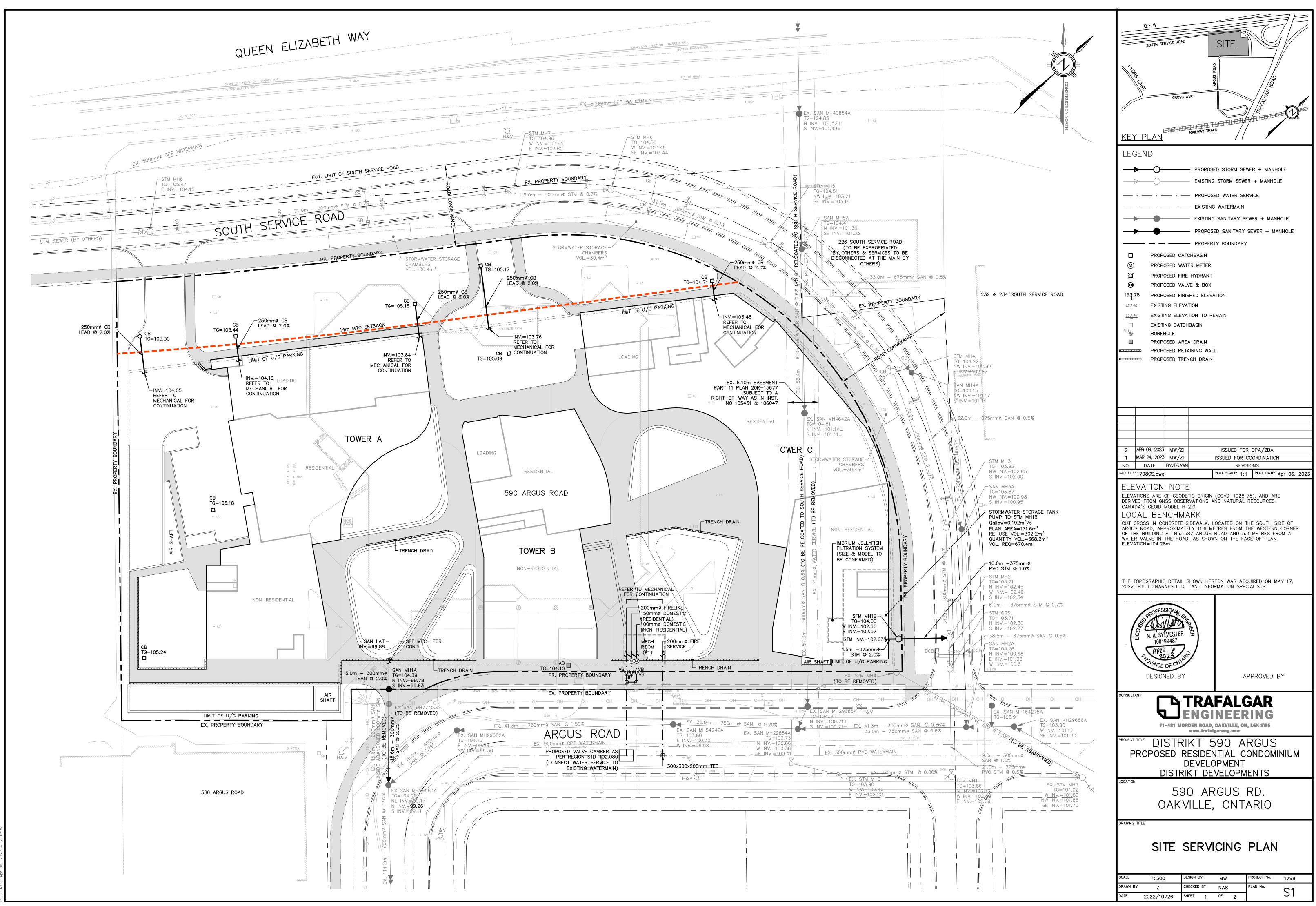
WATERMAIN

DATA

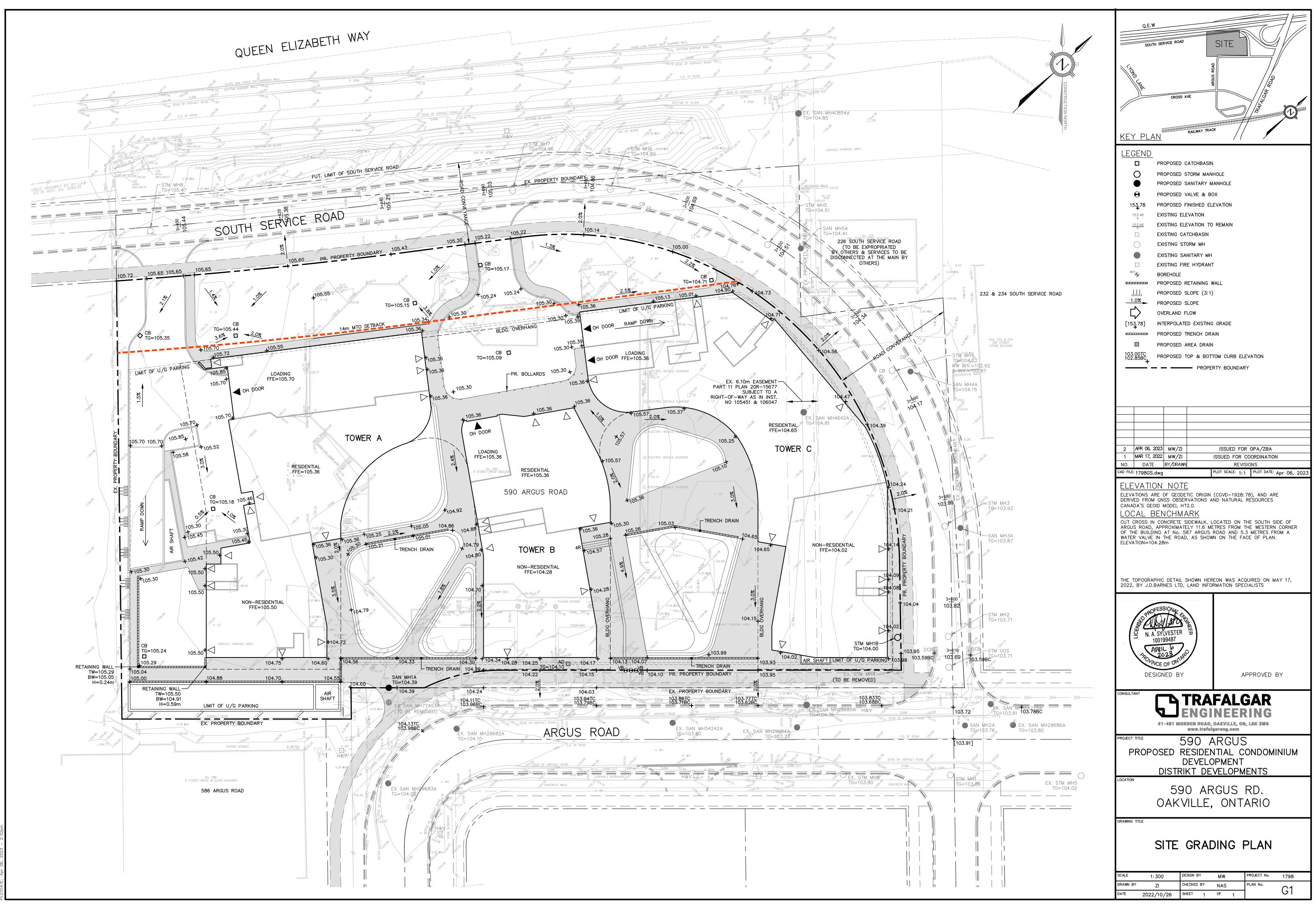
INVERT STATION CONSTR. STD. REMARKS ITEM ELEV. FIRE HYD. 8 SEC. G.V. 0+753.333 2.6m RT. 441 102.300 BRANCH TANGENT TOP 500mm x 200mm BRANCH WITH 200mm G.V. & BOX 0+783.333 2.6m RT. 405 102.300 BRANCH OFF Q 45° ELBOW HORIZ. 8 VERT. 0+841.386 2.6m RT 421 102.300 FIRE HYD. & SEC. G.V. 0+886.468 | II.6m RT | 441 | 101.643 BRANCH TANGENT BOTTOM W.V.C. *****3 0+890.774 8.9 m RT | --- | 101.541 FOR DETAIL SEE SHEET 6 22-1/2° ELBOW HORIZ. & VERT. 0+897.985 4.5 m RT 421 EX.101.353 _____ -----_____

 ▲
 22/02/82
 M.P.S.
 AS
 CONSTRUCTED

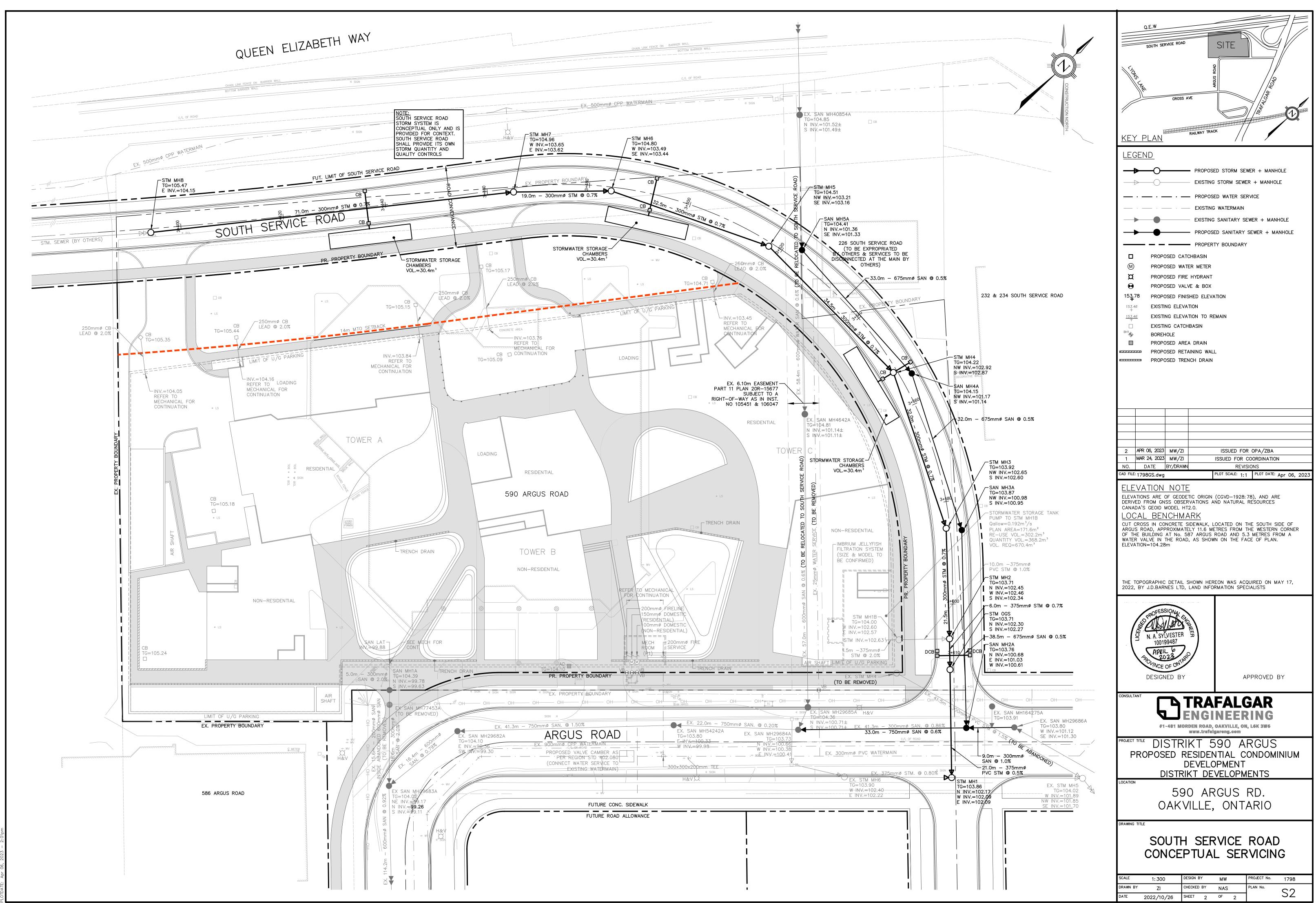
 ▲
 16/03/81
 M.P.S.
 BRANCH
 ADDED
 STA.
 0+783

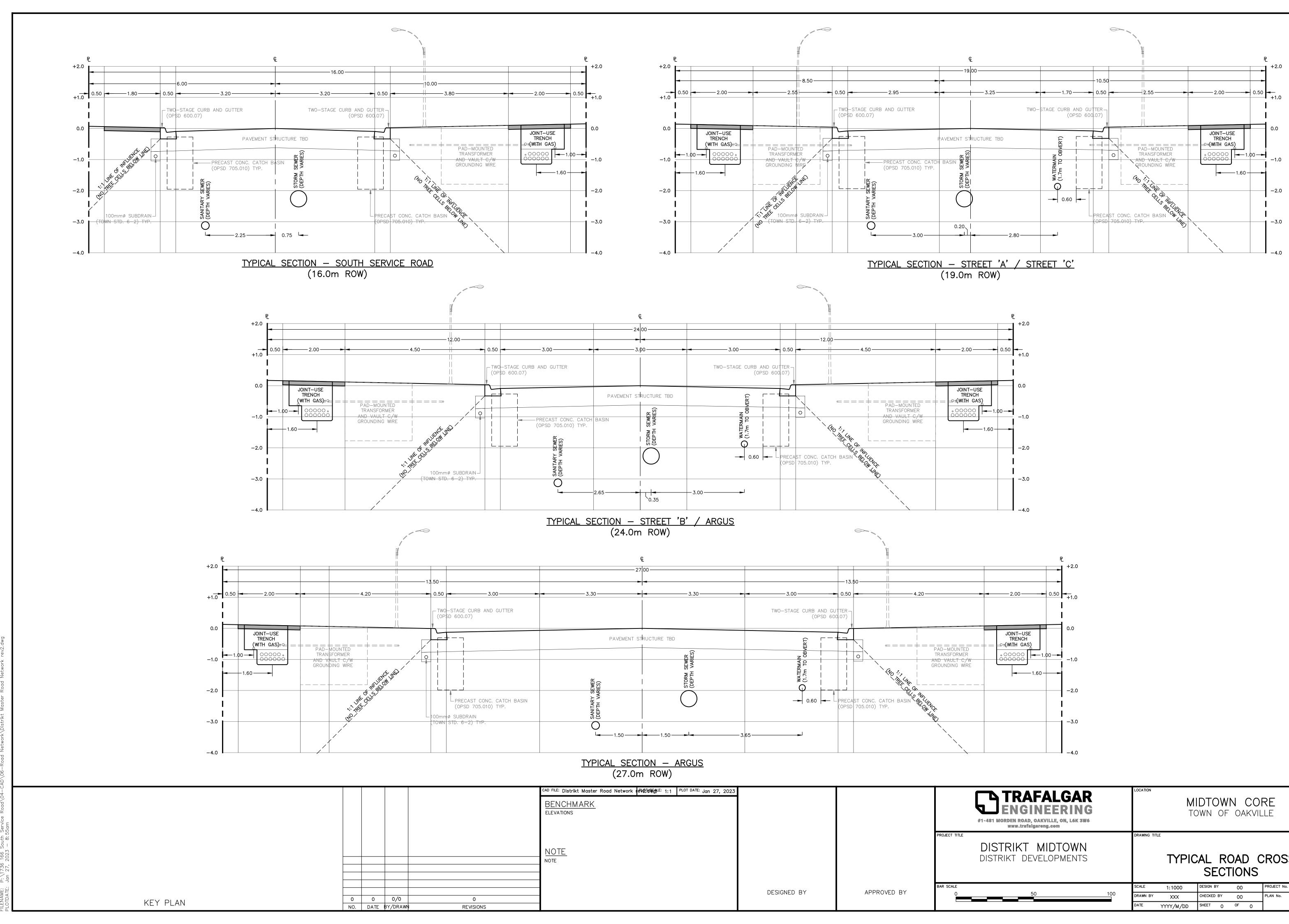

 107 _____ ------REVISIONS Date By G.E.R. Checked Design Date 106 NOV. 1980 M.P.S. Checked Drawn ------REFERENCES Scale VERT 105 ____ FIELD NOTES APPROVALS Municipal 104 STAMP _____ 103 ------______i__________ ······ 81-01-26 _____i ____ 81-01-23 ···· MUNICIPALIT 100 THE REGIONAL ····· _ DEPARTMENT PUBLIC WORKS WATERMAIN TITLE

500mm DIA. WATERMAIN INVERTS SOUTH SERVICE ROAD TOWN OF OAKVILLE STA. 0+710 TO STA. 0+920 REGIONAL DRAWING Nº MUNICIPAL DRAWING Nº 0 - 4221CONTRACT Nº CHAINAGE


W-570-81

SHEET 4


APPENDIX 'G'


E: P:\1798 Distrikt 590 Argus\04-CAD\04-Rezoning_0PA\1798GS.dw

IE: P:\1798 Distrikt 590 Argus\04-CAD\04-Rezoning_0PA\1798GS.d

:: P:\1798 Distrikt 590 Argus\04-CAD\04-Rezoning_0PA\1798GS.c

#1-481 MORDEN ROAD	FALGAR INEERINC , OAKVILLE, ON, L6K 3WC	LOCATION	NIDTOWN CORE TOWN OF OAKVILLE					
2.0	MIDTOWN Evelopments		DRAWING TITI		CAL R SEC	OAD TIONS		S
BAR SCALE O	50	100	SCALE DRAWN BY DATE	1:1000 XXX YYYY/M/DD	DESIGN BY CHECKED BY SHEET O	00 00 ^{0F} 0	PROJECT No.	000