

FUNCTIONAL SERVICING REPORT

Water, Sanitary, and Stormwater Management

PROPOSED SIX-STOREY MIXED-USE CONDOMINIUM

115 TRAFALGAR ROAD TOWN OF OAKVILLE

OUR FILE: 1797

PREPARED FOR HICKS DESIGN STUDIO

July 11, 2023

REVISION HISTORY

DATE	REVISION	SUBMISSION
July 11, 2023	1	Issued for Zoning By-law Amendment and Official Plan Amendment Application

TABLE OF CONTENTS

1.0 1.1		DUCTION1 pe of Functional Servicing Report1	
1.2 1.3	Exis	ting Condition1 posed Condition	
2.0 2.1		CIPAL WATER AND WASTEWATER1 er	
2.2	Was	stewater	}
2	.2.1	Estimated Flows	3
_	.2.2 .2.3	Service Lateral Connection	
3.0		M DRAINAGE AND STORMWATER MANAGEMENT	
3.1		ting Storm Drainage	
3.2 3.3		posed Storm Drainage5 mwater Management5	
3	.3.1	Stormwater Quantity Control (Peak Flow Control)	5
	.3.2	Stormwater Quality Control	
3	.3.3	Water Balance	
4.0 5.0		GRADING	

LIST OF TABLES

Table 1: Estimated Water Demands (L/min)	2
Table 2: Base Hydrant at Trafalgar Road and Lakeshore Road E	
Table 3: Estimated Existing Wastewater Flow (L/s)	
Table 4: Estimated Proposed Wastewater Flow (L/s)	
Table 5: Stormwater Peak Flows	

APPENDICES

- APPENDIX 'A' Architectural Site Plan, Hicks Design Studio - Topographic Survey, Cunningham McConnell Limited
- APPENDIX 'B' Figure 1, Fire Hydrant Plan
 - Estimated Water Demand
 - Estimated Demand Pressure
 - Fire Flow Test
- APPENDIX 'C' Estimated Existing Sanitary Flow
 - Estimated Proposed Sanitary Flow
 - Figure 2, Sanitary Drainage Plan
 - Sanitary Sewer Design Sheet
- APPENDIX 'D' HydroCAD Results Report - Figure 3, Storm Drainage Plan
- APPENDIX 'E' Grading and Servicing Plan

1.0 INTRODUCTION

1.1 Scope of Functional Servicing Report

This report has been prepared in support of a Zoning By-law Amendment (ZBA) and Official Plan Amendment (OPA) for a six-storey, mixed use building located at 115 Trafalgar Road between Church Street and Lakeshore Road E. This report discusses how the site can be serviced by the existing infrastructure for water, wastewater, and stormwater. This report may be updated and refined as the project moves through the planning process to support the Site Plan Application and Building Permit stages. A copy of the preliminary site plan is included in Appendix 'A' for reference.

This report should be read in conjunction with architectural plans and landscape plans prepared for the project.

For the purposes of this report, north is defined as running parallel to Trafalgar Road.

1.2 Existing Condition

The site is surrounded by commercial developments to the south and west, a municipal parking lot the east, and residential houses to the north.

The site area is 683.5 m² and is occupied by a two-storey commercial building containing several businesses. The property has frontage along Trafalgar Road and Church Street.

1.3 **Proposed Condition**

The proposed site includes a six-storey mixed-use building consisting of nine residential units and approximately 230 m² of at-grade retail. The building will also have an underground parking garage with access from Trafalgar Road.

2.0 MUNICIPAL WATER AND WASTEWATER

The location of the existing services was determined through the review of record drawings provided by the Region of Halton and Town of Oakville, and topographic survey completed by Cunningham McConnell Limited.

All proposed services must be in accordance with the Ontario Building Code, Town of Oakville, and Region of Halton standards and requirements. A copy of the Grading and Servicing Plan is

included in Appendix 'E' and should be read in conjunction with this report. Existing and proposed servicing is discussed in further detail in the following sections.

2.1 Water

Record drawings indicate that there is an existing 300 mm diameter PVC watermain that runs along Trafalgar Road and another 300 mm diameter PVC watermain that runs along Church Street. The site is currently serviced from the 300 mm diameter PVC watermain on Trafalgar Road. It should be noted there is a private fire hydrant on the site along Trafalgar Road, which will be removed. There is an existing fire hydrant available in the Trafalgar Road allowance on the north side of the Trafalgar Road and Church Street intersection, within 90 m of the proposed building (refer to Figure 1 in Appendix 'B').

Using the development area and Region of Halton design criteria for a development consisting of a Light Commercial Area (90 persons per hectare) and a Townhouse, Maisonette of six storeys or less (135 persons per hectare), the estimated water demand is determined with approximately two persons for commercial plus approximately nine persons for residential and 275 L/cap. day (see Appendix 'B' for supporting calculations).

The fire flow was estimated for demand purposes only using the Fire Underwriter's Survey methodology. Fire flows should be confirmed at the building permit stage by the sprinkler consultant. The estimated flows are summarized below, with detailed calculations shown in Appendix 'B'.

Table 1: Estimated Water Demands (L/min)

Average Daily Demand	2
Minimum Hourly Demand	2
Maximum Hourly Demand	5
Maximum Daily Demand	3
Estimated Fire Demand (FUS 1999)	4000
Maximum Daily Plus Fire Demand	4003

A flow test was undertaken (December 07, 2022) using the base hydrant at the north-east corner of Trafalgar Road and Lakeshore Road E. The results of the flow test are included in Appendix 'B' and are summarized as follows:

Table 2: Base Hydrant at Trafalgar Road and Lakeshore Road E

Static Pressure	69 psig
Flow 1125 usgpm (71 L/s)	residual 64 psig
Flow 2124 usgpm (134 L/s)	residual 63 psig
Theoretical Flow 14111 usgpm (890 L/s)	residual 20 psig
Estimated Max. Daily Plus Fire Service Pressure	64 psig

The proposed building will be connected to the existing 300 mm diameter PVC watermain on Church Street, with a 200 mm diameter fire, 100 mm diameter domestic for the residential units, and 100 mm diameter domestic for the at-grade retail. The connections are designed per Region Standard RH 409.010; sizing to be confirmed by the mechanical consultant at the building permit stage.

2.2 Wastewater

Record drawings indicate that there is an existing 300 mm diameter sanitary sewer near the centreline of Trafalgar Road. The sanitary sewer drains south towards Lakeshore Road E. There is a single service connection to the site which will be disconnected and abandoned per Region of Halton Standards. Capacity of the local sewer in Trafalgar Road is discussed in Section 2.2.3.

2.2.1 Estimated Flows

Using the development area and Region of Halton design criteria for Light Commercial Areas (90 persons per hectare), the estimated existing sanitary discharge is determined with six persons and 275 L/cap. day (see Appendix 'C' for supporting calculations).

Table 3: Estimated Existing Wastewater Flow (L/s)

Average Daily Dry Weather Flow	0.02
Modified Harmon Peaking Factor	-
Infiltration Allowance (0.26 L/s-ha)	0.02
Peak Daily Flow	0.04

Using the development area and the Region of Halton design criteria for a development consisting of a Light Commercial Area (90 persons per hectare) and a Townhouse, Maisonette of six storeys or less (135 persons per hectare), the estimated sanitary discharge is determined with approximately two persons for commercial plus approximately nine persons for residential and 275 L/cap. day (see Appendix 'C' for supporting calculations).

Table 4: Estimated Proposed Wastewater Flow (L/s)

Average Daily Dry Weather Flow	0.06
Modified Harmon Peaking Factor	4.42
Infiltration Allowance (0.26 L/s-ha)	0.02
Peak Daily Flow	0.16

Although there is an increase over the existing condition, the estimated proposed flows are small in context of the system capacity, which is discussed in Section 2.2.3 below.

2.2.2 Service Lateral Connection

A new 150 mm diameter PVC sanitary service lateral complete with a property line inspection manhole is proposed to service the site. The lateral will connect to the 300 mm diameter sanitary sewer on Trafalgar Road and drain in a southern direction.

The service lateral connection is sized in accordance with Region of Halton standards. Based on nine residential units and 20 FU per unit (according to Table 3-6 of the Region's Linear Design Manual), approximately 180 FU are generated. From Table 3-5 of the Region's Linear Design Manual, a minimum sewer diameter of 125 mm with a slope of 2% is required, however, from previous discussions with the Service Permit group on a similar project it was indicated that a 150 mm diameter sanitary lateral would be required.

2.2.3 Existing Sewer Capacity

Using drainage areas determined by reviewing record drawings, the Region's Wastewater Operating Maps, the Town's Zoning Bylaw, and aerial photography, estimated sanitary flows are analysed for the proposed condition using a Sanitary Sewer Design sheet and Region of Halton criteria. The sanitary sewer was analyzed to the outfall of the southern wastewater main on Trafalgar Road, as we assume the 300 mm diameter sewer has capacity. Refer to Figure 2 and associated design sheet in Appendix 'C' for detail.

Our analysis indicates that the Trafalgar Road local wastewater main is flowing approximately 4% full at the downstream end. There is adequate capacity in the local wastewater main to service the development.

The subject lands are tributary to the Navy Street pumping station which has identified capacity constraints. However, using the Region's demand criteria, the estimated proposed increase in flow to the station is insignificant.

3.0 STORM DRAINAGE AND STORMWATER MANAGEMENT

3.1 Existing Storm Drainage

There is a 525 mm diameter sewer running along Trafalgar Road that runs south and a 375 mm sewer running along Church Street that runs west. The Church Street sewer drains to the Trafalgar Road sewer which continues to run south and discharges to Lake Ontario.

The site is entirely covered by the existing building, meaning there is no overland flow on the site. The topographic survey indicates that the sidewalk along the Church Street drains to existing catch basins in the sidewalk, that are connected to the storm sewer along Church Street.

The site is located within an established urban area with minimal vegetative cover. It is entirely paved in the existing condition resulting in a 100% impervious with a curve number of CN = 98.

3.2 Proposed Storm Drainage

A 150 mm diameter storm connection from the site will be provided to the existing 525 mm storm sewer along Trafalgar Road. Roof drainage is proposed to intercept the 100-year event and direct flow to the stormwater management tank located at the parking garage level (P1). Building mechanical is to be sized to convey the 100-year event. Stormwater management requirements are discussed in further detail in Section 3.3.

The proposed site is 100% impervious with a curve number of CN = 98.

3.3 Stormwater Management

3.3.1 Stormwater Quantity Control (Peak Flow Control)

The Town of Oakville generally requires developments to manage their drainage to the lesser of pre-development levels for each event up to the 100-year (or as otherwise identified by the appropriate sub-watershed study), or the receiving system capacity. In this case, due to the sewer and major system capacity issues identified in the Town's Stormwater Management Master Plan, we propose to control all events to the 5-year pre-development rate. This is generally consistent with developments of this type regardless of sewer constraints.

Pre-development flow rates are calculated based on a 24-hour Chicago storm distribution and the Town of Oakville IDF data. The pre-development curve number is calculated based on the current condition of the site which consists of a two-storey building (CN = 98) covering the entire site.

The post-development flows are calculated based on a 24-hour Chicago Storm distribution and the Town of Oakville IDF data. The post-development curve number (CN = 98) is equal to the predevelopment curve number (CN = 98), therefore; the post-development flows are equal to the predevelopment flows.

A comparison of pre- and post-development flow is provided in the table below.

Return	Pre-Dev Total (L/s)	Post-Dev Tank Inflow (L/s)	Post-Dev Release (L/s)	Storage Required (m ³)
5-yr	30	30	30	3.4
10-yr	35	35	30	4.3
25-yr	43	43	30	5.9
50-yr	48	48	30	8.7
100-yr	53	53	30	9.2

Table 5: Stormwater Peak Flows

In order to control the post-development flow to the pre-development rate of $Q = 0.03 \text{ m}^3/\text{s}$, approximately 9.2 m³ of storage is required to control post-development flows from the 100-year event to the 5-year pre-development event. The proposed tank will be approximately $3.05 \text{ m} \times 3.66 \text{ m} \times 1.12 \text{ m}$ to provide the required storage plus freeboard. Due to the elevation of the storm sewer on Trafalgar Road and the depth of the tank, discharge must be pumped. Pumps shall be designed by the mechanical consultant and the peak discharge must not exceed the allowable rate. An emergency pump complete with back up power is proposed to spill to grade. Due to the lack of the landscaping around the proposed site, it is recommended that the pumps discharge location is placed in the exterior wall to the left of the overhead parking garage door. The emergency discharge would spill into Trafalgar Road and drain south toward the catch basin on the corner of Trafalgar Road and Lakeshore Road E. The routing and location of discharge is to be confirmed by the mechanical consultant. Emergency overflow from the tank must be detailed as designs progress, but generally consists of a mechanism to spill to grade in the driveway and out to Trafalgar Road. Building mechanical systems must be designed to withstand surcharge.

3.3.2 Stormwater Quality Control

The Town of Oakville requires that the development meet MECP Enhanced protection (80% longterm removal of TSS). In this case, the proposed site's drainage area is entirely made up of roof area which is considered to be clean. Therefore, no specific water quality control measures are proposed.

3.3.3 Water Balance

The stormwater management tank has not been sized to accommodate a 25 mm water reuse as there is no increase in impervious area from the existing to proposed condition.

4.0 SITE GRADING

The site is entirely covered by the proposed building, leaving little grading work to be completed on site, however, along the north property line the sidewalk along Church Street has undesirable drainage. The retaining walls and catch basins will be removed, and the grades will be adjusted to ensure that the boulevard grades are between 2 and 4%. The grades along the western property line will be matched to the existing sidewalk to maintain a 2% slope to provide drainage towards Trafalgar Road. Along the east and south property lines the existing grades will be maintained.

A copy of the Preliminary Grading and Servicing Plan is provided in Appendix 'E' and should be read in conjunction with this report.

5.0 CONCLUSION

The information presented in this Functional Servicing Report demonstrates that the proposed development can be serviced by the existing infrastructure for water, wastewater, and stormwater and can meet the Town of Oakville stormwater management criteria. The following is a summary of the report findings:

- 1. Regional services, water and wastewater have sufficient capacity to support the proposed development.
- The site's domestic (100 mm diameter for residential and at-grade retail) and fire service (200 mm diameter) water connection will be connected to the existing 300 mm diameter watermain on Trafalgar Road.
- 3. The site's sanitary lateral (150 mm diameter) will be connected to the existing 300 mm diameter sanitary sewer on Trafalgar Road.
- 4. Stormwater quantity controls are proposed to control post-development flows from the 100-year event to the 5-year pre-development event. Runoff is to be stored within a stormwater management tank at P1 and pumped to a maximum allowable rate of 30 L/s to the storm lateral (150 mm diameter) which is connected to the existing 525 mm diameter storm sewer. An emergency pump is also proposed to spill from the exterior wall to the left of the overhead door; the routing and location of discharge is to be confirmed by the mechanical consultant.

- 5. The stormwater management tank is sized to provide 12.3 m³ of storage. The quantity control storage volume required is 9.2 m³.
- 6. The sidewalk along Church Street needs to be regraded due to an undesirable drainage condition. The stone retaining walls and catch basins will be removed, the trees will remain, and the sidewalk will be graded to a minimum 2% slope.

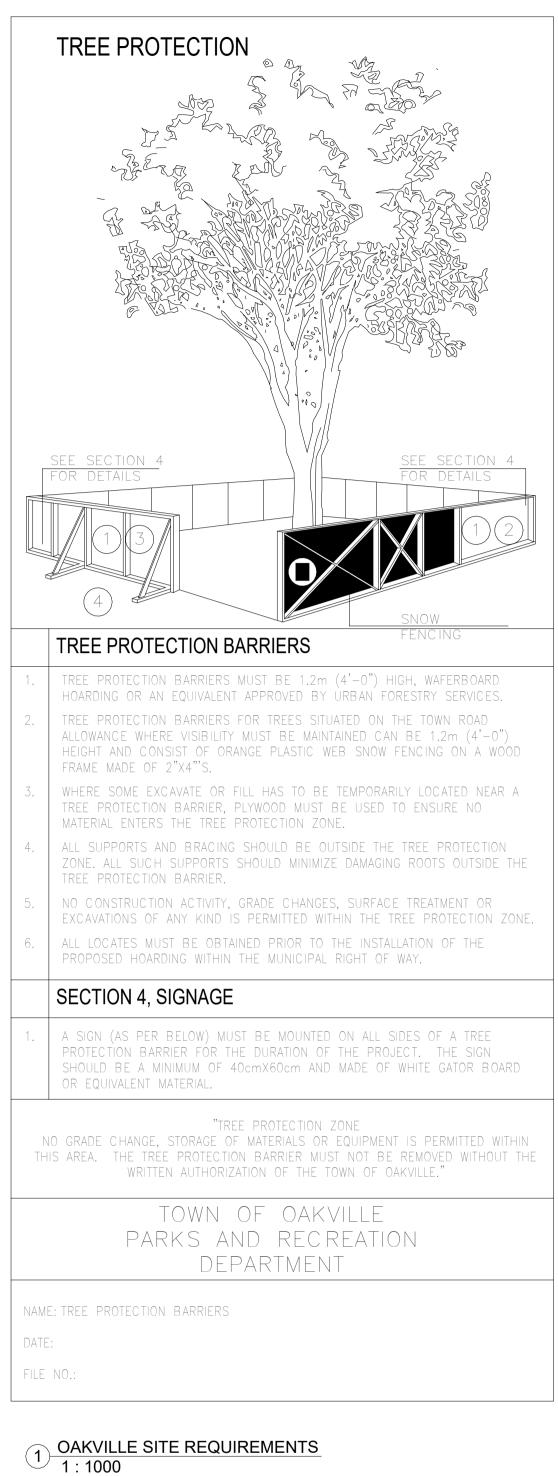
Based on the above, we support the proposed development from a civil engineering perspective for Zoning By-law Amendment and Official Plan Amendment Application.

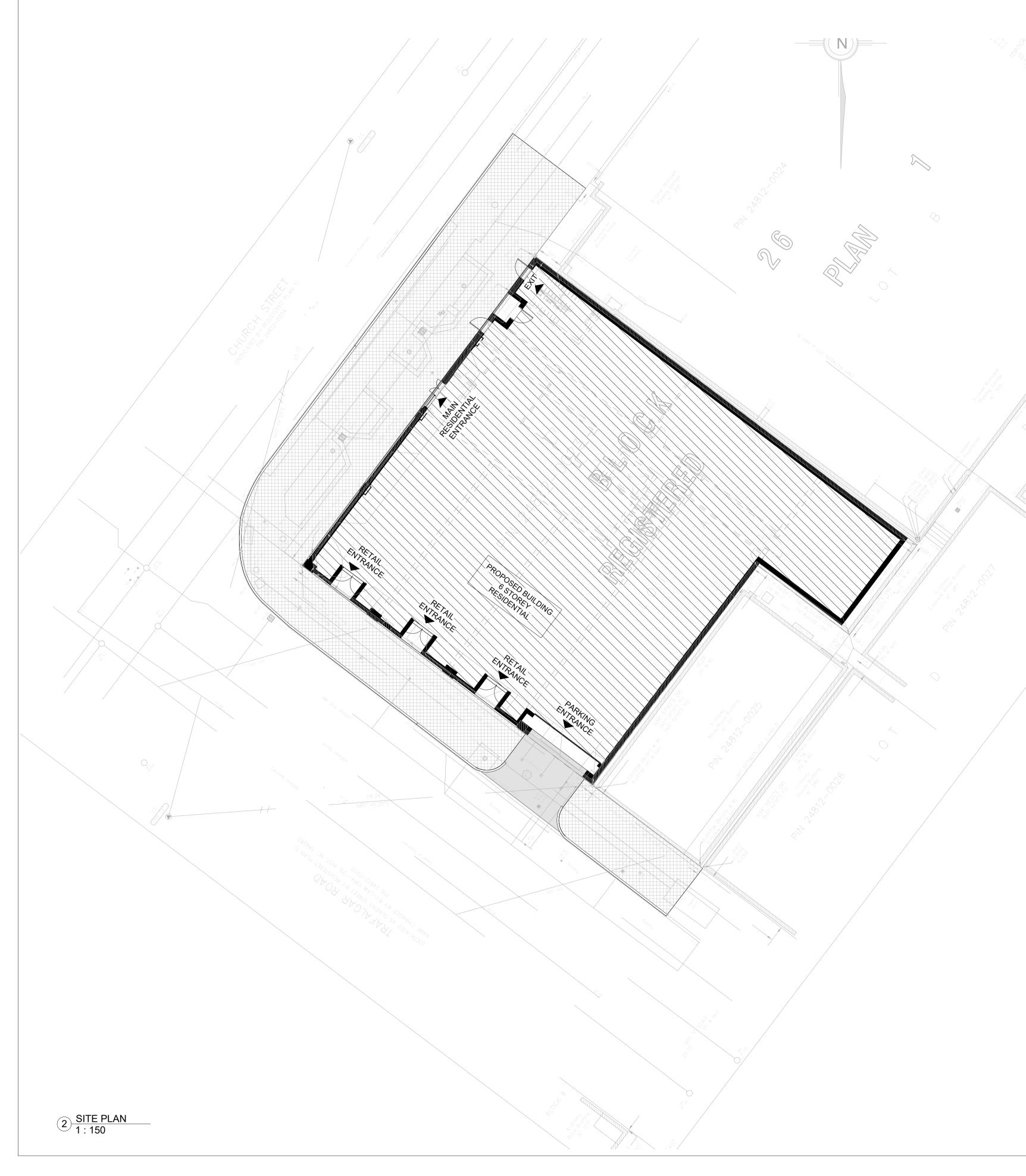
Should you have any questions, do not hesitate to contact the undersigned.

PREPARED BY TRAFALGAR ENGINEERING LTD.

Andy Prejs

Andy Prejs, MASc Junior Designer

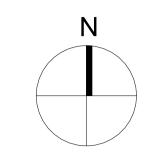

J.T. Nelson, P.Eng. Principal, Design Services



APPENDIX 'A'

Architectural Site Plan, Hicks Design Studio

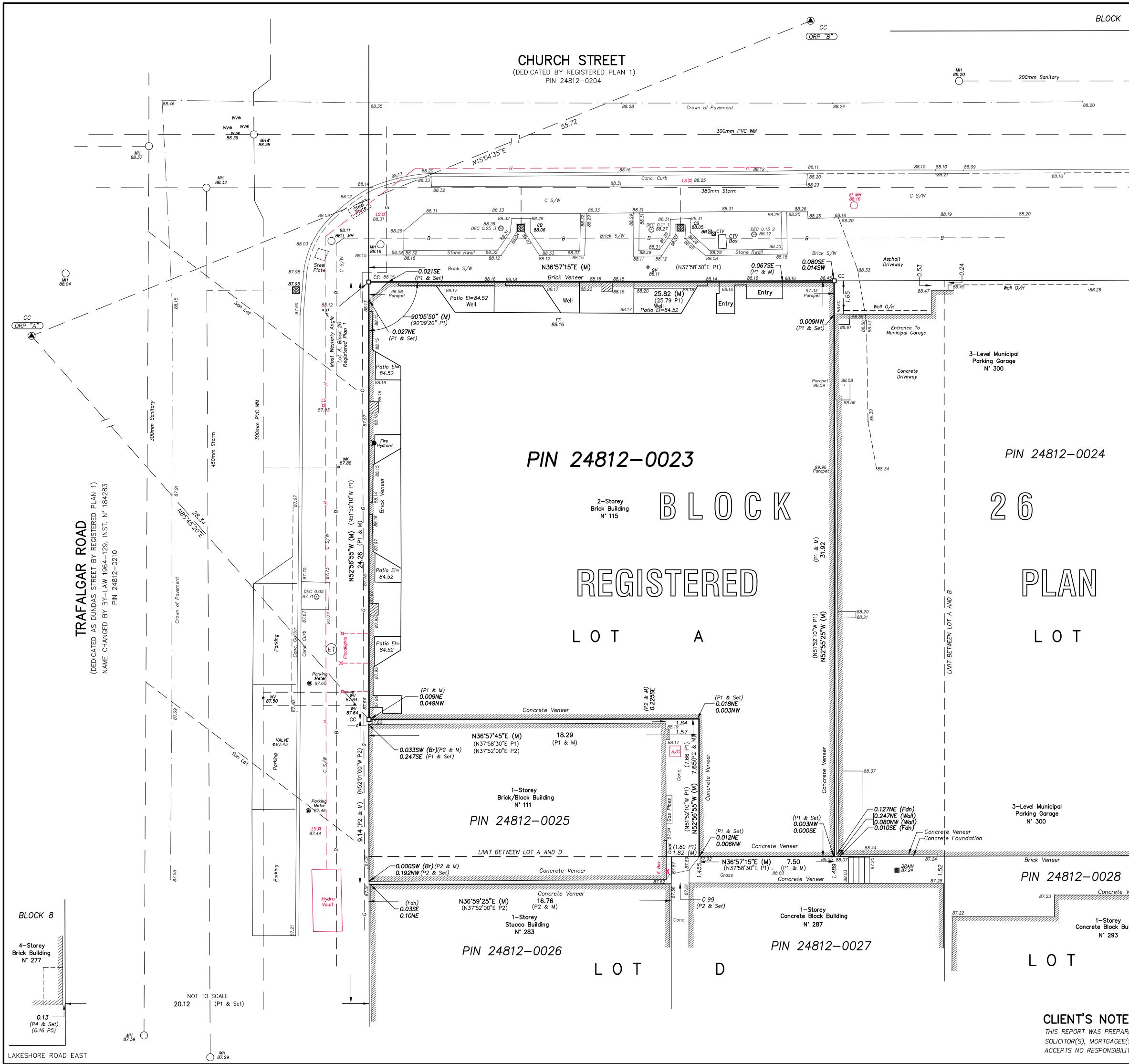
Topographic Survey, Cunningham McConnell Limited



ARCHITECT & APPLICANT: HICKS DESIGN STUDIO 295 ROBINSON STREET, SUITE 200 OAKVILLE, ONTARIO L6J 1G7 ATTENTION: WILLIAM HICKS PH: 905 339 1212 EXT:222

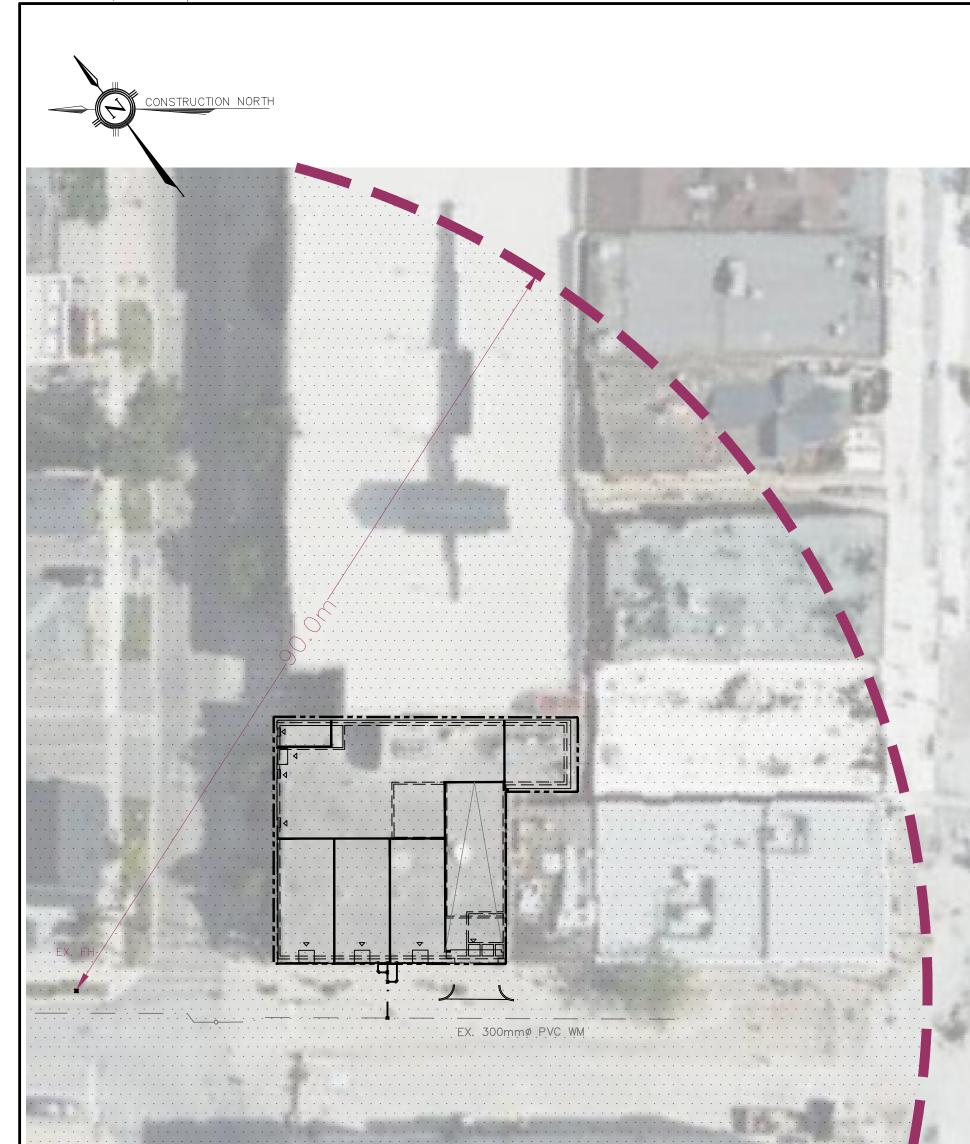
SITE STATISTICS:		
ADDRESS:	115 TRAFALGAR R	OAD
	OAKVILLE, ON. L6J 3G3	
ZONING:	CBD new by-law	2014-14
LEGAL DESCRIPTION:	PART OF LOT A - E REGISTERED PLA	
LOT SIZE:	7,352 SQ FT	
REQUIRED:	PROVIDED:	
LOT COVERAGE:		
BUILDING (GROUND):	660.036 m2	
COVERED GARAGE ENTRY:	7.95 m2	
TOTAL:	667.986 m2	
COVERAGE (%)	91.19%	
LANDSCAPED AREA:	0%	
PAVED AREA:	8.81 m2	
SETBACKS:		
MIN. FRONT YARD 0m	0.00m	
MIN. FLANKAGE YARD 0m	0.10m	
MIN. INTERIOR SIDE YARD 0m	0.10m	
MAX. NUMBER OF STOREYS- 4	6	
MIN. FIRST STOREY HEIGHT 4.5m	4.5m	
MAX. HEIGHT- 15m	22.10m	
GFA (E	XCLUDING PARKING)	
LEVEL	SQ M.	SQ F.
GROUND FLOOR	547 m ²	5887
SECOND FLOOR	574 m²	6182
THIRD FLOOR FOURTH FLOOR	574 m ² 574 m ²	6182 6182
FIFTH FLOOR SIXTH FLOOR	499 m ² 411 m ²	5372 4427
TOTAL	3180 m ²	34232
	RETAIL AREA	
LEVEL	SQ M.	SQ F.
GROUND FLOOR	77 m²	827
GROUND FLOOR GROUND FLOOR	76 m ² 77 m ²	817 831
TOTAL	230 m ²	2475
RESIDE	NTIAL SALABLE AREA	
LEVEL	SQ M.	SQ F.
SECOND FLOOR	238 m²	2566
SECOND FLOOR	245 m²	2637
THIRD FLOOR THIRD FLOOR	238 m² 244 m²	2566 2625
FOURTH FLOOR	238 m²	2566
	245 m ²	2637
FIFTH FLOOR FIFTH FLOOR	185 m ² 223 m ²	1992 2400
SIXTH FLOOR	369 m²	3975
TOTAL	2226 m ²	23963
TERR/	ACES & BALCONIES	
LEVEL	SQ M.	SQ. F
SECOND FLOOR	92 m²	986
	53 m ²	567
FOURTH FLOOR FIFTH FLOOR	53 m² 98 m²	566 1060
SIXTH FLOOR	117 m ²	1256
TOTAL	412 m ²	4436
PAF	RKING PROVIDED	
LEVEL	TYPE	COUNT
UG1 2700X5700- Pa		14
	rking Space with Lift Down	11 25
TOTAL		20

Drawings must **<u>NOT</u>** be scaled. Contractor must check and verify all dimensions, specifications and drawings on site and report any discrepancies to the architect prior to proceeding with any of the work.



SITE LEGEND

F.F.E FINISHED FLOOR ELEVATION


	MAIN ENTRANCE
X	EXISTING TREE TO BE REMOVED
1 2022-08-7 NO DATE REVISIONS/	E: DESCRIPTION
	HICKS DESIGN STUDIO
HICKS DESIGN STU 295 ROBINSON STR WWW.HICKSDESIG	DDIO REET, SUITE 200 OAKVILLE ON, CAN L6J 1G7 NSTUDIO.CA
	RAFALGAR
	ROAD
ADDRESS: CITY: DRAWING T	115 TRAFALGAR ROAD, OAKVILLE ITLE:
S	ITE PLAN
DRAWN: CF DATE: 10/14 JOB NUMBE 22-3	I/21SCALE: As indicatedER:SHEET NUMBER:

	1	
25 ⁸⁸ .2		SURVEYOR'S REAL PROPERTY REPORT PLAN OF SURVEY OF
	CP(950)	PART OF LOT A
		BLOCK 26
		REGISTERED PLAN 1
	ш t)	TOWN OF OAKVILLE REGIONAL MUNICIPALITY OF HALTON
99.07	(P1 & Set) T0 SCALE	SCALE 1 : 100
	20.12 () NOT	2 0 2 4 6 GRAPHIC SCALE – METRES
88.19		GRAFHIC SCALL - MEIRES
		INTEGRATION DATA BEARINGS ARE UTM GRID, DERIVED FROM THE OBSERVED REFERENCE POINTS "A" AND "B" BY REAL TIME NETWORK (RTN) OBSERVATIONS,
		UTM ZONE 17, NAD83 (CSRS-2010.0) OBSERVED REFERENCE POINTS (ORPs): UTM ZONE 17, NAD-83 (CSRS-2010.0).
	- 	CO-ORDINATES TO URBAN ACCÙRACÝ PER SEC. 14(2) OF O.REG. 216/10. POINT N° NORTHING EASTING "A" 4,811,397.15 607,838.22 "B" 4.811.450.94 607.852.71
		"B" 4,811,450.94 607,852.71 CO-ORDINATES CAN NOT, IN THEMSELVES, BE USED TO RE-ESTABLISH CORNERS OR BOUNDARIES SHOWN ON THIS PLAN.
		ALL BEARINGS IN COMPARISONS ARE ASTRONOMIC.
	,	DISTANCE NOTE DISTANCES SHOWN HEREON ARE GROUND DISTANCES AND CAN BE CONVERTED INTO
Υ.		GRID DISTANCES BY MULTIPLYING BY A COMBINE SCALE FACTOE OF 0.99973110.
		ALL DISTANCES SHOWN HEREON ARE IN METRES AND CAN BE CONVERTED INTO FEET BY DIVIDING BY 0.3048.
Stright Me		DIMENSION NOTE ALL BEARINGS AND DISTANCES SHOWN HEREON ARE MEASURED UNLESS OTHERWISE NOTED.
CELINI		ELEVATION NOTE ALL ELEVATIONS SHOWN HEREON ARE GEODETIC AND WERE DERIVED FROM THE TOWN OF OAKVILLE BENCHMARK 0–251 HAVING AN ELEVATION OF 118.729m (CGVD–1928:1978).
	\	■ DENOTES SURVEY MONUMENT FOUND
		SIB DENOTES SURVET MONOMENT SET SIB DENOTES STANDARD IRON BAR SSIB DENOTES SHORT STANDARD IRON PIPE IB DENOTES IRON BAR CC DENOTES CUT CROSS CP DENOTES CONCRETE PIN PB DENOTES PROPERTY IDENTIFICATION NUMBER (E1) DENOTES ENCROACHMENT REFERENCE (NI) DENOTES ENCROACHMENT REFERENCE (NI) DENOTES OUTPUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT
		 (E1) DENOTES ENCROACHMENT REFERENCE (NI) DENOTES NO IDENTIFICATION (950) DENOTES CUNNINGHAM McCONNELL LIMITED (C&S) DENOTES CALCULATED AND SET (Br) DENOTES BRICK
		 (Fdn) DENOTES FOUNDATION (M) DENOTES MEASURE P-1 DENOTES PLAN BY J.D. BARNES JULY 21, 1987 P-2 DENOTES PLAN BY F.G. CUNNINGHAM JUNE 8, 1988
5		P-3 DENOTES PLAN BY P.G. CONNINGRAM JONE 8, 1988 P-3 DENOTES REGISTERED PLAN 1 P-4 DENOTES PLAN BY McCONNELL MAUGHAN NOVEMBER 6, 1980 P-5 DENOTES PLAN BY B. JACOBS FEBRUARY 16, 2006
		TOPOGRAPHIC LEGEND AW DENOTES ANCHOR WIRE(S) BB DENOTES BELL BOX -B- DENOTES U/G BELL CABLE CON-0.20 DENOTES CONFEROUS TREE 0.20 DIA
		FH DENOTES FIRE HYDRANT
B		GW DENOTES GAS METER GV DENOTES GAS VALVE -G- DENOTES U/G GAS MAIN -H- DENOTES U/G HYDRO CABLE LS DENOTES LIGHT STANDARD (LAMP) MH DENOTES MANHOLE -OW- DENOTES OVER HEAD WIRE(S) -SAN- DENOTES SANITARY SEWER -STM- DENOTES SANITARY SEWER
		UP DENOTES UTILITY POLE UPLS DENOTES UTILITY POLE/LIGHT STANDARD WV DENOTES WATER VALVE (KEY) -W- DENOTES U/G WATER MAIN DADT 0 CIUD/EV DEDODT
		PART 2 – SURVEY REPORT 1. DESCRIPTION OF LAND: PART OF LOT A, BLOCK 26, REGISTERED PLAN 1.
		2. REGISTERED EASEMENTS AND/OR RIGHTS-OF-WAY: NONE REGISTERED ON TITLE AND AFFECTING THE SUBJECT LANDS.
		3. BOUNDARY FEATURES: ASIDE FROM FENCING, THE FOLLOWING FEATURES MAY AFFECT THE BOUNDARY: (E1) THREE FLOOD UCHTS ARE EXTENDING FROM THE RUM DING ON THE SUBJECT
		 (E1) THREE FLOODLIGHTS ARE EXTENDING FROM THE BUILDING ON THE SUBJECT LANDS INTO THE PUBLIC ROAD KNOWN AS TRAFALGAR ROAD. 4. MUNICIPAL ZONING COMPLIANCE:
		to be determined by the zoning department of the town of oakville. 5. PARCEL AREA:
		THE TOTAL AREA OF THE SUBJECT LANDS WAS CALCULATED AS 683.5 m2.
88.47		ONLY UNDERGROUND SERVICES VISIBLE ON THE GROUND WERE LOCATED FOR THIS PLAN. THE USER OF THIS PLAN SHALL CONTACT THE LOCAL UTILITY COMPANIES FOR LOCATIONS PRIOR TO COMMENCEMENT OF CONSTRUCTION WORKS.
e Veneer 87.23		SURVEYOR'S CERTIFICATE I CERTIFY THAT: 1. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT,
Building		 THIS SURVET AND FEAR ARE CONNECT AND IN ACCONDANCE WITH THE SURVETS ACT, THE SURVEYORS ACT AND THE REGULATIONS MADE UNDER THEM. MADE UNDER THEM. THE SURVEY WAS COMPLETED ON NOVEMBER 1, 2022.
Building		DATE: NOVEMBER 1, 2022 JARO A. LEGAT, M.Sc. ONTARIO LAND SURVEYOR
E	ASSOCIATION OF ONTARIO LAND SURVEYORS	CUNNINGHAM McCONNELL LIMITED
~4	PLAN SUBMISSION FORM	ONTARIO LAND SURVEYORS
		OAKVILLE, ONTARIO L6L 2X4 MILTON, ONTARIO L9T 1N7 PHONE (905) 845–3497 PHONE (905) 878–7810 FAX (905) 845–3519 FAX (905) 878–6672
E ARED FOR TRAFALGAR LUXURY LIVING, INC. AND ITS	THIS PLAN IS NOT VALID	infooak@cmlsurveyors.camilton.office@cmlsurveyors.caPLOT PAPER SIZE = 914mm BY 609mmPLAN 122-22-1
EE(S) AND (OR) AGENT(S) AND THE UNDERSIGNED ILITY FOR USE BY OTHER PARTIES.	UNLESS IT IS AN EMBOSSED ORIGINAL COPY ISSUED BY THE SURVEYOR In accordance with Regulation 1026 Section 29(3)	© COPYRIGHT NO PERSON MAY COPY, REPRODUCE, DISTRIBUTE OR ALTER THIS PLAN IN WHOLE OR IN PART WITHOUT THE WRITTEN PERMISSION OF CUNNINGHAM McCONNELL LIMITED.
	Regulation 1026, Section 29(3).	

APPENDIX 'B'

Figure 1, Fire Hydrant Plan Estimated Water Demand Estimated Demand Pressure Fire Flow Test

 	 • •	• •		• •		 	• •	 			• •	• •	• •				• •	•		• •	• •	•	•	• •		• •		• •	• •	•		• •	• •		• •	•				r - 7	1.1		• •		•
 	 		• •	• •	/ · · ·	 	• •	 • •	• •	• •		• •	• •	• •	•		• •	• •	• •	•	• •	• •	• •	• •	•	• •	• •	•	• •	• •	• •	•	• •	• •	•	• •	• •	•			• •	. 1		• •	
 	 			• •		 		 					•	• •	• •	• •	• •	•				•	•			• •		• •	• •	•			•		• •	•		• •	•						-
 	 					 		 			•	• •	• •	• •	•				• •						• •		• •	•			• •	•		• •	•	• •	• •	•		. 1				• •	
 	 					 		 					• •																				•						•		•				
 	 					 		 																																				/	
 	 					 /		 																															/						1.0
 	 					 		 																											•			1						- / -	
																																												- 44	

PROJECT TITLE	HICKS TRAFALGAR 115 TRAFALGAR ROAD TOWN OF OAKVILLE		TRAFALGAR ENGINEERING *1-481 MORDEN ROAD, OAKVILLE, ON, L6K 3W6 WWW.trafelgareng.com
DRAWING TITLE	FIRE HYDRANT PLAN	DESIGN BY AJP	SCALE 1:400 DRAWING No. FIC 1
	FIRE HIDRANI PLAN	DRAWN BY AJP	DATE 2022/12/12 FIG I

CAD FILE: 1797FIG.DWG PLOT SCALE: 1:1 PLOT DATE: Dec 13, 2022

TRAFALGAR ENGINEERING LTD.

ESTIMATED WATER DEMAND

	1st Submission ZBA/OPA										Prepared By: Checked By:	AJP JN
		Occ	upancy Data				P	eaking Facto	rs		Demand Flow	
			Population	Eq.	Per Cap.					Min. Hour	Max. Hour	Max. Daily
			Density	Population Dem		Average Daily				Demand	Demand	Demand
	se / Occupancy Type	Area (ha)	(pers/ha)	(cap.)	Day)	Demand (L/min)		Peak Hour		(L/min)	(L/min)	(L/min)
Comme	ent - six stories or less	0.0684 0.0230	135.0 90.0	9 2	275 275	2		2.50 2.50	1.30 1.30	1	4	2
			2010		2.0			2.00				
*Per Ca	p. Demand based on O.B.C. T	Гаble 8.2.1.3.В 0	5 L/1.0m ² Sto	ores 11		2				2	5	3
		-				_				_	-	-
Using F	ire Underwriters Survey Meth	nodology:								Minimum Hou		2 (L/min) 5 (L/min)
1.	An estimate of the fire flow Where: F = The required fire fl C = Coefficient related A = The total floor are	low in litres per m d to the type of co a in square metre	inute Instruction				, ,		Aroa Noto:		aily Demand: ily Plus Fire:	3 (L/min) 4003 (L/min)
1.	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction:	low in litres per m d to the type of co ea in square metre Fire-Resistive	inute Instruction	all storeys but exclu Coefficient: 0.60)	Total Floor Area:	1026	(m²)		Maximum Da	aily Demand: ily Plus Fire: ve buildings, co	3 (L/min) 4003 (L/min) onsider the
1. 2.	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction: F = 4000 (L/min) Adjust the value in No. 1 fe Occupancy Contents:	low in litres per m d to the type of co a in square metre Fire-Resistive) or occupancy sur Limited Comb	inute instruction is (including a charge/reduc	all storeys but exclu Coefficient: 0.60 Adequate	ly Protected V		1026			Maximum Da Max. Da For fire resistiv	aily Demand: ily Plus Fire: joining floors p floors up to eig nadequately pr otected vertica the area of the	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction: F = 4000 (L/min) Adjust the value in No. 1 fe Occupancy Contents: F = 3400 (L/min)	low in litres per m d to the type of cc ea in square metre Fire-Resistive) or occupancy sur Limited Comb	inute instruction is (including a charge/reduc	all storeys but exclu Coefficient: 0.60 Adequate :tion	ly Protected V	Total Floor Area: Vertical Openings:	1026 Yes	(m ²)		Maximum Da Max. Da For fire resistiv two largest ad the remaining openings are in adequately pro consider only t	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction: F = 4000 (L/min) Adjust the value in No. 1 fe Occupancy Contents:	low in litres per m d to the type of cc ea in square metre Fire-Resistive) or occupancy sur Limited Comb	inute instruction is (including a charge/reduc	all storeys but exclu Coefficient: 0.60 Adequate :tion	ly Protected V	Total Floor Area: Vertical Openings: Adjust the value ir	1026 Yes	(m ²)		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction: F = 4000 (L/min) Adjust the value in No. 1 fe Occupancy Contents: F = 3400 (L/min)	low in litres per m d to the type of cc ea in square metre Fire-Resistive) or occupancy sur Limited Comb	inute instruction is (including a charge/reduc	all storeys but exclu Coefficient: 0.60 Adequate :tion	ly Protected V	Total Floor Area: Vertical Openings: Adjust the value ir	1026 Yes No. 2 for ex	(m²) xposure		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: $F =$ The required fire fl $C =$ Coefficient related $A =$ The total floor areType of Construction: $F =$ 4000 (L/min)Adjust the value in No. 1 feOccupancy Contents: $F =$ 3400 (L/min)Adjust the value in No. 2 fe	low in litres per m d to the type of cc a in square metre Fire-Resistive) or occupancy sur Limited Comb) or sprinkler	inute instruction is (including a charge/reduc ustible	all storeys but exclu Coefficient: 0.60 Adequate tion Factor: -15%	ly Protected V	Total Floor Area: Vertical Openings: Adjust the value ir Sep	1026 Yes No. 2 for expansion (m)	(m ²) (posure Charge		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: F = The required fire fl C = Coefficient related A = The total floor are Type of Construction: F = 4000 (L/min) Adjust the value in No. 1 fe Occupancy Contents: F = 3400 (L/min) Adjust the value in No. 2 fe NFPA 13 Sprinkler:	low in litres per m d to the type of cc an in square metre Fire-Resistive) or occupancy sur Limited Comb) or sprinkler Yes	inute instruction is (including a charge/reduc ustible Reduction:	all storeys but exclu Coefficient: 0.60 Adequate tion Factor: -15%	ly Protected V	Total Floor Area: Vertical Openings: Adjust the value ir Sep North	1026 Yes No. 2 for exparation (m) 20 0 0	(m ²) (posure Charge 10%		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: $F =$ The required fire fl $C =$ Coefficient related $A =$ The total floor areType of Construction: $F =$ 4000 (L/min)Adjust the value in No. 1 feOccupancy Contents: $F =$ 3400 (L/min)Adjust the value in No. 2 feNFPA 13 Sprinkler:Standard Water Supply:	low in litres per m d to the type of co ea in square metre Fire-Resistive) or occupancy sur Limited Comb) or sprinkler Yes Yes Yes	inute instruction is (including a charge/reduc ustible Reduction: Reduction: Reduction:	all storeys but exclu Coefficient: 0.60 Adequate tion Factor: -15%	ly Protected V	Total Floor Area: Vertical Openings: Adjust the value ir Sep North East South West	1026 Yes No. 2 for exparation (m) 20 0 20	(m ²) cposure Charge 10% 25% 25% 10%		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor
2.	Where: $F =$ The required fire fl $C =$ Coefficient related $A =$ The total floor areType of Construction: $F =$ 4000 (L/min)Adjust the value in No. 1 feOccupancy Contents: $F =$ 3400 (L/min)Adjust the value in No. 2 feNFPA 13 Sprinkler:Standard Water Supply:	low in litres per m d to the type of co a in square metre Fire-Resistive) or occupancy sur Limited Comb) or sprinkler Yes Yes Yes Yes Total	inute instruction is (including a charge/reduc ustible Reduction: Reduction:	all storeys but exclu Coefficient: 0.60 Adequate tion Factor: -15%	6 4.	Total Floor Area: Vertical Openings: Adjust the value ir Sep North East South West	1026 Yes No. 2 for exparation (m) 20 0 0	(m ²) cposure Charge 10% 25% 25% 10% 70%		Maximum Da Max. Da For fire resistin two largest ad the remaining openings are in adequately pro consider only t plus 25% of ea	aily Demand: ily Plus Fire: ye buildings, co joining floors p floors up to eig nadequately pr otected vertica the area of the uch of the two i	3 (L/min) 4003 (L/min) onsider the olus 50% of ght, when rotected. For I openings largest floor

F = 4000 (L/min)

Project: 115 Trafalgar Road

P:\1797 Hicks Trafalgar\01-Calculations\02-Water\[2022-11-10 Proposed Water Demands.xlsx]WATER DEMAND

Project No.:

1797

TRAFALGAR ENGINEERING LTD.

ESTIMATED DEMAND PRESSURE (AT MAIN)

Project:115 Trafalgar RoadDesc:1st Submission ZBA/OPA			Project No.: Prepared By: Checked By:	1797 AJP JN
Hydrant Residual Flow (Refer to Atta	ched Flow	Test Results)		
Coefficient	C=	0.9		
Port Diameter	D=	2.5 (inch)		
Pitot Pressure	P _{pit} =	45 (psig)		
Residual Flow	$Q_R =$	1126 (us gpm)		
Residual Flow	<i>Q</i> _{<i>R</i>} =	4262 (L/min)		
Hydrant Theoretical Flow (Refer to A	ttached Flo	ow Test Results)		
Static Pressure	P _{stat} =	65 (psig)		
Residual Pressure	P _{res} =			
Theoretical Pressure	P _{theo} =	20 (psig)		
Theoretical Flow		8796 (us gpm)		
Theoretical Flow	Q _T =	33293 (L/min)		
Max. Demand Pressure				
Maximum Demand	Q _D =	4003 (L/min)		
Maximum Demand	$Q_D =$	1058 (us gpm)		
Calculated Pressure	P=	64 (psig)		
Where:				
$Q_R = 29.84 \times C \times D^2 \times P_{pit}^{0.5}$				
$Q_T = Q_R \times [(P_{stat} - P_{theo})/(P_{stat} - P_{theo})]$	$P_{ros})]^{0.54}$			
$P = P_{stat} - (Q_D/Q_R)^{1.852} \times (P_{stat} - P_{res})^{1.852}$				
Notes: Refer to attached hydrant flow test results for December 7, 2022.	300mm mair	n on Trafalgar Road preparec	l by Aquacom Contracting d	ated

81 Todd Road Suite 202 Georgetown Ont. L7G 4R8 (o) 905-467-5853 (c) 905-971-9956 (e) mark@aquacom.ca

December 8, 2022

Andy Prejs **Trafalgar Engineering** #1-481 Morden Road Oakville, Ontario L6K 3W6

Reference: 115 Trafalgar Road Town of Oakville, Region of Halton Hydrant Flow Testing

The flow testing was completed Wednesday 07 December 2022 as scheduled.

We advised the Region of Halton operations staff of this schedule, and they provided an operator to assist with the operation of the municipal hydrants and to assist with the test.

Please find the attached summary of test results. For your information;

the hydrant was flowed from one than two nozzles, using flow diffusers

residual pressures were recorded from an upstream fire hydrant on the municipal system

theoretical flows were produced from the attached chart, using a .90 nozzle coefficient

all discharge water was dechlorinated as per Ministry requirements

the hydrants were not colour coded at the time of the test

If you should require any further information please do not hesitate to contact the undersigned.

Sincerely yours,

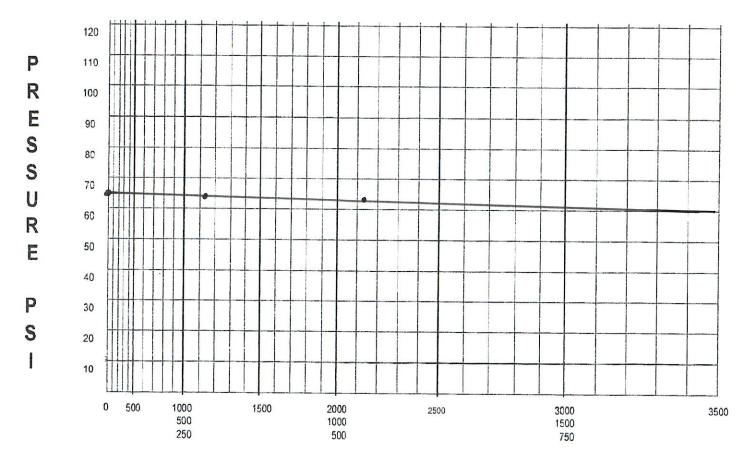
Alale Kil

Aquacom Contracting Mark Kilbourne

81 Todd Road Suite 202 Georgetown Ont. L7G 4R8

(o) 905-467-5853 (C) 905-971-9956 (e) mark@aquacom.ca

SITE NAME	115 TRAFALGAR ROAD
TEST DATE TIME	WENESDAY 7 DECEMBER 2022 @ 11:00
SITE ADDRESS	115 TRAFALGAR ROAD, OAKVILLE
TECHNICIANS	MARC COULTER & PATRICK FORAN
COMMENTS	MUNICIPAL HYDRANTS


LOCATION OF FLOW HYDRANT

123 TRAFALGAR ROAD

LOCATION OF RESIDUAL HYDRANT

284 LAKESHORE ROAD

# OUTLETS	SIZE INCHES	PITO PSI	FLOW USGPM	RESIDUAL PSI	STATIC PSI	PIPE DIA. MM
ONE	2.50	45	1125	64	65	300MM
TWO	2.50	40	2124	63		PVC
		THEORETICAL	14111	20	TEST #	ONE
NOZZLE COEFF.		.90				

FLOW US GPM

HYDRANT FLOW TEST REPORT

81 Todd Road Suite 202 Georgetown Ont. L7G 4R8

(o) 905-467-5853 (c) 905-971-9956 (e) mark@aquacom.ca

		HYDRANT	SEC. VALVE	TECH.	TIME	STATIC	PITO 1-2.50"	FLOW 1-2.50"	RESIDUAL 1-2.50"	PITO 2-2.50"	FLOW 2-2.50"	RESIDUAL 2-2.50"	THEORETICAL FLOW @ 20PSI	- COLOUR
	r	MAKE	CONDITION		T	PSI	PSI	US GPM	PSI	PSI	US GPM	PSI	RESIDUAL	CODE
F1	123 TRAFALGAR ROAD	Mueller	OK/OPEN	MC	11:00		45	1125		40	2124		11411	BLUE
R1	284 LAKESHORE	McAvity	OK/OPEN	PF		65			64			63		
F2														
R2														
F3														
R3														
F4														
R4														
F5														
R5														

CUSTOMER

TRAFALGAR ROAD

SERVICE DATE

07-12-2022

LOCATION

CONTACTS ON SITE

115 TRAFALGAR ROAD

REGION OF HALTON OPERATOR

TOWN OF OAKVILLE

APPENDIX 'C'

Estimated Existing Sanitary Flow Estimated Proposed Sanitary Flow Figure 2, Sanitary Drainage Plan Sanitary Sewer Design Sheet

TRAFALGAR ENGINEERING LTD.

ESTIMATED EXISTING SANITARY FLOW

Project: Desc:	115 Trafalgar Road 1st Submission ZBA/OPA				Pre	oject No.: 1797 pared By: AJP ecked By: JN
Land Use	e / Occupancy Type	Unit Count	Population Density (pers/unit)	Eq. Population (cap.)	Per Cap. Demand (L/cap. Day)	Average Daily Dry Weather Flow (L/s)
TOTAL	l / Commercial / Institutiona	0		0		0.00
Land Use	e / Occupancy Type mmercial Area	Area (ha) 0.0684	Population Density (pers/ha) 90.0	Eq. Population (cap.) 6	Per Cap. Demand (L/cap. Day) 275	Average Daily Dry Weather Flow (L/s) 0.02
TOTAL		0.0684		6		0.02
ICI Peaki Include I Tributary Infiltratio Foundati Infiltratio ICI Avera Groundw	n Allowance: on Drain Allowance: n Average Flow:	0.00 (0.02 (0.02 (L/s ha) (L/s ha) (L/s) (L/s) (L/s)			
ICI Peak	ater Discharge:	0.02 (0.02 (0.00 (0.04 ((L/s) (L/s)			

P:\1797 Hicks Trafalgar\01-Calculations\03-Sanitary\[2022-11-09 Existing Sanitary Demands.xlsx]SANITARY

TRAFALGAR ENGINEERING LTD.

ESTIMATED PROPOSED SANITARY FLOW

Project: Desc: Residenti	115 Trafalgar Road 1st Submission ZBA/OPA ial				Pre	oject No.: pared By: ecked By:	1797 AJP JN
			Population	Eq.	Per Cap.	Average Da	aily Dry
			Density	Population	Demand	Weathe	er Flow
	e / Occupancy Type	Area (ha)	(pers/ha)	(cap.)	(L/cap. Day)		(L/s)
Apartmer	nt - 6 stories or less	0.0684	135.0	9	275		0.03
TOTAL		0		9			0.03
Industria	I / Commercial / Institutiona						
			Population	Eq.	Per Cap. Demand	Average Da Weathe	
l and Lleo	e / Occupancy Type	Area (ha)	Density (pers/ha)	Population (cap.)	(L/cap. Day)	weathe	(L/s)
	mmercial Area	0.0230	90.0	2	<u>(L/Cup. Duy)</u> 275		0.01
TOTAL		0		2			0.01
TOTAL		0		Z			0.01
ICI Peakin Include IC Tributary Infiltratio	ial Peaking Factor: ng Factor: Cl Peaking? Area: n Allowance: on Drain Allowance:		(ha) (L/s ha) (L/s ha)				
ICI Avera Groundw	ial Average Flow: ge Flow: ater Discharge: erage Flow:	0.05 0.01 0.06	(L/s) (L/s)				
ICI Peak I	ater Discharge:	0.15 0.01 0.00 0.16	(L/s) (L/s)				

P:\1797 Hicks Trafalgar\01-Calculations\03-Sanitary\[2022-11-09 Proposed Sanitary Demands.xlsx]SANITARY

FILENAME: P:\1797 Hicks Trafalgar\04-CAD\03-Site Plan\1797FIG.dwg PLOTDATE: Dec 13, 2022 - 1:57pm

(0.49 DRAINAGE AREA IN HECTARES	LIGHT CC	DMMERCIAL AREA
	44 90 POPULATION PER HECTARE EQUIVALENT POPULATION		
-	DRAINAGE AREA BOUNDARY		
PROJECT TITLE	HICKS TRAFALGAR 115 TRAFALGAR ROAD TOWN OF OAKVILLE		TRAFALGAR ENGINEERING RDEN ROAD, OAKVILLE, ON, L6K 3W6 www.trafalgareng.com
DRAWING TITLE	SANITARY DRAINAGE PLAN	DESIGN BY AJP SCALE DRAWN BY AJP DATE	1:1000 DRAWING No. FIG 2

CAD FILE:1797FIG.DWG PLOT SCALE: 1:1 PLOT DATE: Dec 13, 2022

Pre	par	ed By:	AJP

Checked By: JN Project No.: 1797

SANITARY SEWER DESIGN SHEET **Regional Municipality of Halton**

TRIBUTARY AND FLOW DATA Tributary Area Population Tributary Average Demand Residential ICI Peaking Factor Res ICI Total Peak Q, Design Pipe Dia., Incr. Area Density Area Density Flow, Q_D Length, L (L/s) (m) Q_P Infiltr. Total Res ICI Total (L/cap. (L/cap. Avg. Q Avg. Q D Slope, s Manni FROM то (ha) (ppha) (ha) (ppha) M_{avg} LOCATION мн МН (ha) (pers.) (pers.) (pers.) Day) Day) (L/s) (L/s) Kavg (L/s) (L/s) (mm) (%) Coeff 0.8 3.46 Commercial Area - Trafalgar Road | MH2551 | MH12905 0.49 90 0.49 44 44 275 0.1 0.1 0.5 0.1 0.6 48.3 300 2.3 0.01 TRIBUTARY AREA TOTAL 0.00 0.49 **0.49** 0 44 **44** Notes: 1) Pipe diameter is nominal 2) Capacity and velocity are based on Imperial I.D. (Nom. Dia x 25.4/25)

Peaking Factor M = $K_{avg} x (1+14 / (4+P^{1/2}))$ Where P is Total population in thousands $K_{avq} = (A_{R} + 0.8 \times A_{ICI}) / (A_{Total})$ Infiltration = 0.286 L/ha/s

Full Flow Capacity (Manning's Equation), Q_F $Q_{\rm F}$ = (1/n) x A x R^{2/3} x s^{1/2} = $(1/n) \times 311.7 \times D^{8/3} \times s^{1/2}$

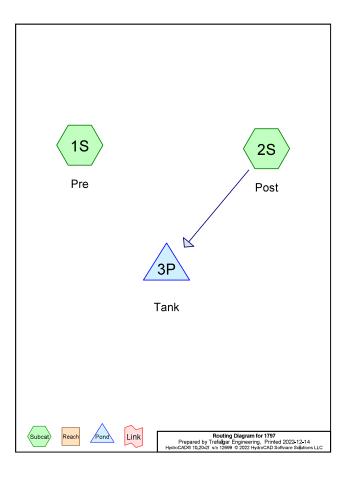
P:\1797 Hicks Trafalgar\01-Calculations\03-Sanitary\[1797 Sanitary Sewer Design Sheet Halton.xlsx]Street Name

Hic	ks 1	[rat	fal	aar

Project Name : Municipal Number:

2022-11-15 1 of 1

Date: Sheet:


		PIPE DA	ΓA				
	Full Flow	Ve	ocity				
	Capacity,			Flaw			
	Capacity,			Flow			
ng's	Q _F	Full	Actual	Depth, d		_	
., n	(L/s)	(m/s)	(m/s)	(mm)	d/D	Туре	Class
14	142.1	1.95	0.64	12	0.04	VC	
						L	
						L	

Functional Servicing Report Proposed Six-Storey Mixed-Use Condominium 115 Trafalgar Road Oakville

APPENDIX 'D'

HydroCAD Results Report

Figure 3, Storm Drainage Plan

1797 Prepared by Trafalgar Engineering HvdroCAD® 10.20-21 s/n 12699 © 2022 HvdroCAD Software Solutions LLC							F	Printed 2	2022-12-14 Page 3
INVIOCAD	y 10.20-21	3/11 12033 @ 2022	Thydrocad o	onware ou					Fage 5
			Rainfall E	Events Lis	sting				
Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC	

	Name				(hours)		(mm)	
1	2-Year	ON Oakville 24hr	2-Year	Default	24.00	1	48	2
2	5-Year	ON Oakville 24hr	5-Year	Default	24.00	1	60	2
3	10-Year	ON Oakville 24hr	10-Year	Default	24.00	1	70	2
4	25-Year	ON Oakville 24hr	25-Year	Default	24.00	1	82	2
5	50-Year	ON Oakville 24hr	50-Year	Default	24.00	1	89	2
6	100-Year	ON Oakville 24hr	100-Year	Default	24.00	1	97	2

1797

1797 Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC

Project Notes

Copied 6 events from ON Oakville 24hr storm Rainfall events imported from "1793.hcp"

Prepared by Tra			Printed 2022-12-14
HydroCAD® 10.20	2fs/n1	2699 © 2022 HydroCAD Software Solutions LLC	Page 4
		Area Listing (all nodes)	
Area	CN	Description	
(hectares)		(subcatchment-numbers)	
0.137	98	Unconnected roofs, HSG A (1S, 2S)	
0.137	98	TOTAL AREA	

1797

0.137

TOTAL AREA

	Prepared by Trafalgar Engineering HydroCAD® 10.20-21 s/n 12699 © 2022 HydroCAD Software Solutions LLC			Printed 2022-12-14 Page 5	Trafalgar Engineering 0.20-2f s/n 12699						Printed 2022-12-14 Page 6		
Soil Listing (all nodes)					Ground Covers (all nodes)								
	Area	Soi	Subcatchment			HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
	(hectares)	Group	Numbers			(hectares)	(hectares)	(hectares)	(hectares)	(hectares)	(hectares)	Cover	Numbers
	0.137	HSG A	1S, 2S			0.137	0.000	0.000	0.000	0.000	0.137	Unconnected roo	ofs 1S, 2S
	0.000	HSG B				0.137	0.000	0.000	0.000	0.000	0.137	TOTAL AREA	
	0.000	HSG C											
	0.000	HSG D											
	0.000	Other											

1797 Prepa

ON Oakville 24hr 2-Year Rainfall=48 mm Printed 2022-12-14 1797 Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC Page 7

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

 Subcatchment 1S: Pre
 Runoff Area=684 m²
 100,00% [mpervious]
 Runoff Depth=43 mm

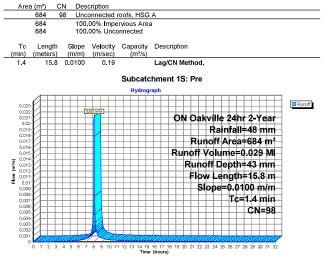
 Flow Length=15.8 m
 Slope=0,0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0,021 m³/s
 0,029 MI

 Subcatchment 2S: Post
 Runoff Area=684 m²
 100.00%
 Impervious
 Runoff Depth=43 mm

 Flow Length=15.8 m
 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.021 m³/s
 0.029 MI

Pond 3P: Tank Peak Elev=86.227 m Storage=3.4 m³ Inflow=0.021 m³/s 0.029 MI Outflow=0.030 m³/s 0.037 MI

Total Runoff Area = 0.137 ha Runoff Volume = 0.058 MI Average Runoff Depth = 43 mm 0.00% Pervious = 0.000 ha 100.00% Impervious = 0.137 ha


1797	ON Oakville 24hr 2-Year Rainfall=48 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20 2f s/n 12699 © 2022 HydroCAD	Software Solutions LLC Page 8

Summary for Subcatchment 1S: Pre

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.021 m³/s @ 8.02 hrs, Volume= 0.029 MI, Depth= 43 mm

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs ON Oakville 24hr 2-Year Rainfall=48 mm

1797 Prepared by Trafalgar Engineering HydroCAD® 10.20-21 s/n 12699 © 2022 HydroCAD Software S	ON Oakville 24hr 2-Year Rainfall=48 mm Printed 2022-12-14 olutions LLC Page 9
Summary for Subcatch	nent 2S: Post
[49] Hint: Tc<2dt may require smaller dt	
Runoff = 0.021 m³/s @ 8.02 hrs, Volume= Routed to Pond 3P : Tank	0.029 MI, Depth= 43 mm
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Tin ON Oakville 24hr 2-Year Rainfall=48 mm	ne Span= 0.00-32.00 hrs, dt= 0.05 hrs
Area (m ²) CN Description	
684 98 Unconnected roofs, HSG A	
684100.00% Impervious Area684100.00% Unconnected	
Tc Length Slope Velocity Capacity Descripti (min) (meters) (m/m) (m/sec) (m³/s)	on
1.4 15.8 0.0100 0.19 Lag/CN	Method,
Subcatchment 2	S: Post
Hydrograph	
0.023	
0.021	N Oakville 24hr 2-Year
0.019	Rainfall=48 mm
0.017	Runoff Area=684 m ²
- 0.0143	unoff Volume=0.029 MI Runoff Depth=43 mm
(i 0.014 (i 0.014 0.012 0.012 0.011 0.0	Flow Length=15.8 m
0.009	Slope=0.0100 m/m
0.007	Tc=1.4 min
0.005	CN=98
0.003	

Inflow Area	= 0.068 h	na.100.00%	mperv	vious. Inflow	Depth =	43	mm	for 2	-Year eve	ent
nflow	= 0.021 m ³	/s@ 8.02	hrs. \	Volume=	0.029	M				
Outflow	 0.030 m³ 	³/s@ 7.96	hrs, N	Volume=	0.03	'MI,	Atten=	= 0%,	Lag= 0.0	ປ mir
Primary	= 0.030 m ³	³/s @ 7.96	hrs, \	Volume=	0.03	M			-	
Routing by	Dyn-Stor-Ind m	ethod, Time \$	Span=	= 0.00-32.00	hrs, dt= 0.	05 hr	5			
	= 86.227 m @ 8.	08 hrs Surf.	Area=	= 9 m ² Stora	age= 3.4 n	13				
Peak Elev	U				0) ³				
Peak Elev	= 86.227 m @ 8. detention time=				0	13				
Peak Elev=	detention time=	(not calculate	ed: out	tflow precede	0	13				
Peak Elev=	U	(not calculate	ed: out	tflow precede	0) ³				
Peak Elev=	detention time= Mass det. time=	(not calculate 50.5 min (61	ed: out 0.5 - {	tflow precede	es inflow)	13				
Peak Elev- Plug-Flow Center-of-I <u>Volume</u>	detention time= Mass det. time=	(not calculate 50.5 min (61	ed: out 0.5 - { Stor	tflow precede 560.0)	es inflow) tion		Lister	d be l c	w (Recal	IC)
Peak Elev- Plug-Flow Center-of-I <u>Volume</u>	detention time= Mass det. time= Invert A	(not calculate 50.5 min (61 vail.Storage	ed: out 0.5 - { Stor	tflow precede 560.0) rage Descript	es inflow) tion		Lister	d be l c	w (Recal	lc)
Peak Elev- Plug-Flow Center-of-I <u>Volume</u>	detention time= Mass det. time= Invert A	(not calculate 50.5 min (61 <u>vail.Storage</u> 16.2 m ³	ed: out 0.5 - { Stor	tflow precede 560.0) rage Descript stom Stage D	es inflow) tion		Lister	d belc	w (Recal	lc)
Peak Elev Plug-Flow Center-of-f <u>Volume</u> #1	detention time= Mass det. time= Invert A 85.850 m	(not calculate 50.5 min (61 <u>vail.Storage</u> 16.2 m ³ Inc.	ed: out 0.5 - { <u>Stor</u> Cus Store	tflow precede 560.0) rage Descript stom Stage D Cum	es inflow) tion Data (Prisr .Store		Lister	d belo	w (Recal	lc)
Peak Elev Plug-Flow Center-of-I <u>Volume</u> #1 Elevation	detention time= Mass det. time= Invert A 85.850 m Surf.Area	(not calculate 50.5 min (61 <u>vail.Storage</u> 16.2 m ³ Inc.	ed: out 0.5 - { <u>Stor</u> Cus Store	tflow precede 560.0) rage Descript tom Stage D tom Stage D tom Cum (cubic-m	es inflow) tion Data (Prisr .Store		Liste	d belc	w (Recal	lc)

ON Oakville 24hr 2-Year Rainfall=48 mm

Printed 2022-12-14 Page 10

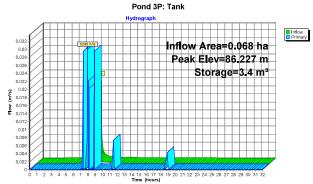
1797 ON Oakvi Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC

#1	Primary	86.200 m	Pump (Everbilt 0.5 hp) X 7.00
			Discharges@87.350 m Turns Off<85.900 m
			150 mm Diam. x 20.00 m Long Discharge, Hazen-Williams C= 130
			Flow (I/min)= 75.7 151.4 201.7 227.1 252.5 264.9
			Head (meters)= 7 500 6.000 4.500 3.000 1.500 0.000
			Loss (meters)= 0.001 0.004 0.007 0.009 0.011 0.012
			=Lift (meters)= 7.499 5.996 4.493 2.991 1.489 -0.012
rimon		Aov=0.020 m3/	a @ 7.06 hrs. HM/=96.012 m. (Erop Discharge)

Primary OutFlow Max=0.030 m³/s @ 7.96 hrs HW=86.012 m (Free Discharge) 1=Pump (Everbilt 0.5 hp) (Pump Controls 0.030 m³/s)

1797	ON Oakville 24hr 5-Year Rainfall=60 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022	HydroCAD Software Solutions LLC Page 12
Runoff by SC	=0.00-32.00 hrs, dt=0.05 hrs, 641 points S TR-20 method, UH=SCS, Weighted-CN rr-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S: Pre	Runoff Area=684 m ² 100.00% Impervious Runoff Depth=55 mm
Flow Length=15.8 m	Slope=0.0100 m/m Tc=1.4 min CN=98 Runoff=0.030 m3/s 0.037 M

 Subcatchment 25: Post
 Runoff Area=684 m²
 100.00% Impervious
 Runoff Depth=55 mm


 Flow Length=15.8 m
 Slope=0.0100 m/m Tc=1.4 min
 CN=98
 Runoff=0.030 m³/s
 0.037 MI

Pond 3P: Tank Peak Elev=86,231 m Storage=3.4 m³ Inflow=0.030 m³/s 0.037 MI Outflow=0.031 m³/s 0.047 MI

> Total Runoff Area = 0.137 ha Runoff Volume = 0.075 MI Average Runoff Depth = 55 mm 0.00% Pervious = 0.000 ha 100.00% Impervious = 0.137 ha

1797	ON Oakville 24hr 2-Year Rainfall=48 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10 20-2f s/n 12699 @ 2022 HydroCAD Software S	olutions LLC Page 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours)

	d by Trafa)® 10.20-2			HydroCAD	Softv	vare Solu			le 241	nr 5-			all=60 mm 022-12-14 Page 13
			Sumn	nary for S	Subc	atchm	ent 1	S: P	re				
49] Hint:	Tc<2dt m	ay require	smaller	it									
Runoff	= C	.030 m³/s	@ 8.0	2 hrs, Voli	ume=		0.037	7 MI,	Depth	=	55 mm		
ON Oakvi	ille 24hr 5	Year Rai	infall=60 r	S, Weight	ed-Cl	N, Time	Span	= 0.00	0-32.0	0 hrs	, dt= 0.0	15 hr	s
Area			cription	roofs, HSG	A A								
	684			rvious Are									
	684	100.0	00% Unco	onnected									
Tc (min)	Length (meters)	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Des	cription							
1.4	15.8	0.0100	0.19		Lag	/CN Me	thod,						
				Subcate	chme	ent 1S:	Pre						
				Hydrog									
0.032 0.03 0.028 0.024 0.022 0.022 (stut) 0.018 0.018 0.016						Run	Rui off ' Rund	Ra noff Volu off E	infa Area Ime= Deptl	11=6 a=6 =0.0 n=5	-Year 0 mm 84 m ² 37 Mi 5 mm		Runoff
0.016 0.014 0.012	¥#						1 1	1 1			5.8 m) m/m		
0.01-									T¢		4 min :N=98		

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours)

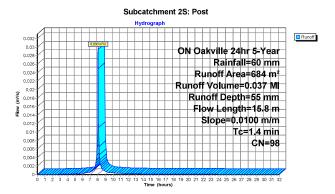
0.006

1797

1797 ON Oakville 24hr 5-Yea	r Rainfall=60 mm
Prepared by Trafalgar Engineering P	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC	Page 14

Summary for Subcatchment 2S: Post

[49] Hint: Tc<2dt may require smaller dt

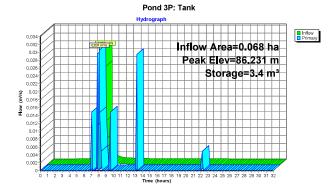

Runoff	=	0.030 m³/s @	8.02 hrs, Volume=	0.037 MI, Depth=	55 mm
Routed	I to Po	nd 3P : Tank			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs ON Oakville 24hr 5-Year Rainfall=60 mm

Area	a (m²)	CN	Description								
	684	98	Unconnected roofs, HSG A								
	684		100.00% Impervious Area								
	684	684 100.00% Unconnected									
Тс	Lengt	h S	Slope Velocity Capacity Description								

 (min)
 (meters)
 (m/m)
 (m/sc)
 (m³/s)

 1.4
 15.8
 0.0100
 0.19
 Lag/CN Method,


Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD	Printed 2022-12-14 Software Solutions LLC Page 15
Summary	for Pond 3P: Tank
Inflow Area = 0.068 ha,100.00% Imperviou Inflow = 0.030 m ³ /s @ 8.02 hrs, Volu	is, Inflow Depth = 55 mm for 5-Year event ume= 0.037 MI
Outflow = 0.031 m ³ /s @ 8.07 hrs, Volu Primary = 0.031 m ³ /s @ 8.07 hrs, Volu	ume= 0.047 MI, Atten= 0%, Lag= 3.4 min
Routing by Dyn-Stor-Ind method, Time Span= 0.0 Peak Elev= 86.231 m @ 8.03 hrs Surf.Area= 9	
Plug-Flow detention time= (not calculated: outflov Center-of-Mass det. time= 75.4 min (620.3 - 545	
Volume Invert Avail.Storage Storage	Description
#1 85.850 m 16.2 m ³ Custon	n Stage Data (Prismatic) Listed below (Recalc)
Elevation Surf.Area Inc.Store	Cum.Store
	(cubic-meters)
85.850 9 0.0	0.0
87.650 9 16.2	16.2
Device Routing Invert Outlet Device	s (Turned on 7 times)
#1 Primary 86.200 m Pump (Everb	ilt 0.5 hp) X 7.00
	87.350 m Turns Off<85.900 m
	n. x 20.00 m Long Discharge, Hazen-Williams C= 130
	75.7 151.4 201.7 227.1 252.5 264.9
	s)= 7.500 6.000 4.500 3.000 1.500 0.000 s)= 0.001 0.004 0.007 0.009 0.011 0.012
	= 7,499 5,996 4,493 2,991 1,489 0,012
	- 7.400 0.000 4.400 2.001 1.400 -0.012

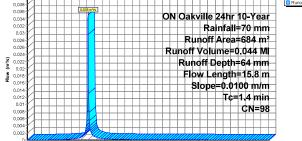
ON Oakville 24hr 5-Year Rainfall=60 mm

 Primary OutFlow
 Max=0.030 m³/s @ 8.07 hrs
 HW=86.094 m
 (Free Discharge)

 1=Pump (Everbilt 0.5 hp)
 (Pump Controls 0.030 m³/s)
 (Free Discharge)

1797	ON Oakville 24hr 5-Year Rainfall=60 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20 2f s/n 12699 @ 2022	HydroCAD Software Solutions LLC Page 16

1797	ON Oakville 24hr 10-Year Rainfall=70 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 @ 202	2 HydroCAD Software Solutions LLC Page 18


[49] Hint: Tc<2dt may require smaller dt

1707

Runoff = 0.035 m3/s @ 8.02 hrs, Volume= 0.044 MI, Depth= 64 mm

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

ON Oak	ON Oakville 24hr 10-Year Rainfall=70 mm									
Are	Area (m ²) CN Description									
	684 98 Unconnected roofs, HSG A									
	684 100.00% Impervious Area									
	684	100.	00% Unco	onnected						
Tc (min)										
1.4	15.8	0.0100	0.19		Lag/CN Method,					
	Subcatchment 1S: Pre									
	Hydrograph									

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours)

ON Oakville 24hr 10-Vear Rainfall=70 mm

ON Oakville 24hr 10-Year Rainfall=70 mm Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC Printed 2022-12-14 Page 17

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Pre Flow Length=15.8 m Slope=0.0100 m/m Tc=1.4 min CN=98 Runoff=0.035 m²/s 0.044 MI

 Subcatchment 2S: Post
 Runoff Area=684 m²
 100.00% Impervious
 Runoff Depth=64 mm

 Flow Length=15.8 m
 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.035 m³s
 0.044 MI

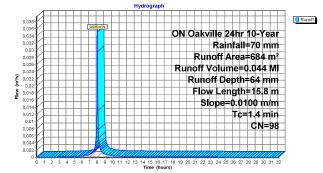
Peak Elev=86.333 m Storage=4.3 m³ Inflow=0.035 m³/s 0.044 MI Outflow=0.030 m³/s 0.054 MI Pond 3P: Tank

Total Runoff Area = 0.137 ha Runoff Volume = 0.087 MI Average Runoff Depth = 64 mm 0.00% Pervious = 0.000 ha 100.00% Impervious = 0.137 ha

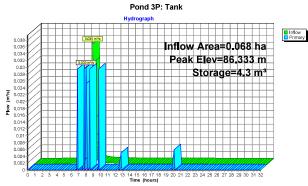
Outflow	- 0.069 bo	Sum	nary for P						
Inflow = Outflow =	- 0.069 ho		nary for f	ond 3P: T	ank				
Primary =	= 0.035 m³/s = 0.030 m³/s	100.00% Imp @ 8.02 hr @ 8.03 hr @ 8.03 hr	s, Volume= s, Volume=	0.04	4 MI	for 10-Yearevent = 15%, Lag= 1.1 mi	in		
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev≂ 86.333 m @ 8.03 hrs Surf.Area≖ 9 m² Storage= 4.3 m²								
	etention time= (n lass det. time= 46			edes inflow;					
Volume		il.Storage S							
#1 8	5.850 m	16.2 m ³ (ustom Stag	je Data (Pris	matic) Liste	d below (Recalc)			
Elevation (meters)	Surf Area (sq-meters)	Inc.St (cubic-mete		um.Store c-meters)					
85.850 87.650	9 9).0 3.2	0.0 16.2					
				rned on 7 tir	nes)				
#1 Pri	imary 86.20	Discha 150 m Flow (Head -Loss (n Diam. x 20 /min)= 75.7 meters)= 7 meters)= 0	0 m Turns (0.00 m Long 151.4 201 500 6.000 001 0.004	7 227 1 25 4 500 3 000 0 007 0 009	Hazen-Williams C=	130		
	tFlow Max=0.03 (Everbilt 0.5 hp)				ree Discharç	ge)			

1797	ON Oakville 24hr 10-Year Rainfall=70 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10 20 2f s/n 12699 @ 2022 HydroCAD Software S	Solutions LLC Page 19
	· · · · ·

Summary for Subcatchment 2S: Post


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.035 m³/s @ 8.02 hrs, Volume= Routed to Pond 3P : Tank 0.044 MI, Depth= 64 mm


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs ON Oakville 24hr 10-Year Rainfall=70 mm

Are	a (m²)	CN	Description						
	684	98	Unco	Unconnected roofs, HSG A					
	684		100.0	00% Impe	rvious Area				
	684		100.0	00% Unco	nnected				
Tc (min)	Length (meters)		ope /m)	Ve l ocity (m/sec)	Capacity (m³/s)	Description			
1.4	15.8	0.0	100	0.19		Lag/CN Method,			

Subcatchment 2S: Post

1797 ON Oak	ville 24hr 25-Year Rainfall=82 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC	C Page 22
Time span=0.00-32.00 hrs, dt=0.05 hrs, 64 Runoff by SCS TR-20 method, UH=SCS, We Reach routino by Dvn-Stor-Ind method - Pond routino b	eighted-CN

 Subcatchment 1S: Pre Flow Length=15.8 m
 Runoff Area=684 m²
 100.00% Impervious
 Runoff Depth=76 mm

 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.043 m³/s
 0.052 MI

 Subcatchment 2S: Post
 Runoff Area=684 m²
 100.00% Impervious
 Runoff Depth=76 mm

 Flow Length=15.8 m
 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.043 m³/s
 0.052 MI

Peak Elev=86.511 m Storage=5.9 m^a Inflow=0.043 m³/s 0.052 MI Outflow=0.030 m³/s 0.065 MI Pond 3P: Tank

Total Runoff Area = 0,137 ha Runoff Volume = 0,104 MI Average Runoff Depth = 76 mm 0.00% Pervious = 0,000 ha 100.00% Impervious = 0,137 ha

1797	ON Oakville 24hr 25-Year Rainfall=82 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Softwar	e Solutions LLC Page 24
Summary for Subcate	chment 2S: Post

[49] Hint: Tc<2dt may require smaller dt

0.004

Runoff = 0.043 m³/s @ 8.02 hrs, Volume= Routed to Pond 3P : Tank 0.052 MI, Depth= 76 mm

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

UN Oak	/1110 24111 2	5-rear P	annan=oz	mm							
Area	a (m²) C	N Des	cription								
	684 98 Unconnected roofs, HSG A										
	684 100.00% Impervious Area										
	684		00% Unco								
Tc				Capacity Description							
(min) 1.4	(meters) 15.8	(m/m) 0.0100	(m/sec) 0.19	(m³/s)	Lag/CN Method,						
1.4	15.0	0.0100	0.19		Lag/CN Method,						
				Subcatcl	hment 2S: Post						
				Hydrogi	aph						
	\mathcal{A}				Runoff						
0.046			1.043 m ⁷ /s								
0.042					ON Oakville 24hr 25-Year						
0.04					Rainfall=82 mm						
0.036											
0.034					Runoff Area=684 m ²						
0.032					Runoff Volume=0.052 M						
(g 0.028)					Runoff Depth=76 mm						
(s, 0.028 0.026 0.024					· · · · · · · · · · · · · · · · · · ·						
3 0.00					Elow Length=15.8 m						

	oubouto	
	Hydrogr	aph
0.046		
0.044	0.043 m ² /s	
0.042		ON Oakville 24hr 25-Year
0.04		Rainfall=82 mm
0.036		
0.034		Runoff Area=684 m ²
0.032		Runoff Volume=0.052 MI
0.026		Runoff Depth=76 mm
		Flow Length=15.8 m
0.022		
0.018		Slope=0.0100 m/m
0.016		Tard Arain
0.014		T¢=1.4 min
0.012		CN=98

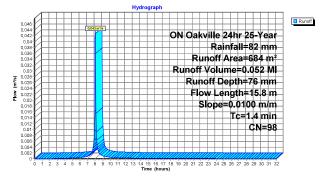
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours)

ON Oakville 24hr 25-Year Rainfall=82 mm Printed 2022-12-14 1797 Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC Page 23

Summary for Subcatchment 1S: Pre

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.043 m³/s @ 8.02 hrs, Volume= 0.052 MI, Depth= 76 mm


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Area (m²) CN Description

ON Oakville 24hr 25-Year Rainfall=82 mm

Ale	a (IIF) i	UN Des	cription			
	684	98 Und	connected	roofs, HSG	A	Ī
	684			rvious Area	a	
	684	100	.00% Unco	onnected		
Tc (min)	Length (meters)		Velocity (m/sec)	Capacity (m³/s)	Description	
1.4	15.8	0.0100	0.19		Lag/CN Method,	

Subcatchment 1S: Pre

1797 Prepared by Trafalgar Engineering HydroCAD® 10,20-21 s/n 12699 © 2022 HydroCAD Software So	ON Oakville 24hr 25-Year Rainfall=82 mm Printed 2022-12-14 lutions LLC Page 25
Summary for Pond 3	BP: Tank
Inflow Area = 0.068 ha,100.00% Impervious, Inflow De Inflow = 0.043 m³/s @ 8.02 hrs, Volume= Outflow = 0.303 m³/s @ 8.05 hrs, Volume= Primary = 0.303 m³/s @ 8.05 hrs, Volume=	epth = 76 mm for 25-Year event 0.052 MI 0.065 MI, Atten= 30%, Lag= 2.0 min 0.065 MI
Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs Peak Elev= 86.511 m @ 8.06 hrs Surf.Area= 9 m² Storage	, dt= 0.05 hrs = 5.9 m³
Plug-Flow detention time= (not calculated: outflow precedes i Center-of-Mass det. time= 71.5 min (609.6 - 538.1) Volume Invert Avail.Storage Storage Description	,
<u> </u>	a (Prismatic) Listed below (Recalc)
Elevation Surf.Area Inc.Store Cum.St (meters) (sq-meters) (cubic-meters) (cubic-meter 85.850 9 0.0	
	6.2
Device Routing Invert Outlet Devices (Turned o	
Flow (l/min)= 75.7 151.4 Head (meters)= 7.500 6 -Loss (meters)= 0.001 0	
Primary OutFlow Max=0.030 m³/s @ 8.05 hrs HW=86.497	m (Free Discharge)

ON Oakville 24hr 25-Year Rainfall=82 mm 1797 Prepared by Trafalgar Engineering HydroCAD® 10.20.2f s/n 12699 @ 2022 HydroCAD Software Solutions LLC Printed 2022-12-14 Page 26 Pond 3P: Tank Hydrograp Inflow
 Primary Inflow Area=0.068 ha 0.042 0.042 0.038 0.036 0.036 0.034 Peak Elev=86.511 m Storage=5.9 m³ Flow (m³/s) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours) 2 3

 1797
 ON Oakville 24hr 50-Year
 Rainfall=89 mm

 Prepared by Trafalgar Engineering
 Printed
 2022-12-14

 HydroCAD® 10.20-21 s/n 12699
 © 2022 HydroCAD Software Solutions LLC
 Page 28

Summary for Subcatchment 1S: Pre

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.048 m³/s @ 8.02 hrs, Volume= 0.057 MI, Depth= 83 mm

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs ON Oakville 24hr 50-Year Rainfall=89 mm

	68		98		_	onr	_	_	_	_	<i>.</i>	_	_																	
	68 68					00°							а																	
	00				100.	.00	/0 C	5110	/011	ne	510	u																		
Tc (min)		ength eters		Slo (m/				city ec)				city ∛s)	1	Des	cri	pti	on													
1.4	(111	15.8		0.01		0		.19				/3/	I	ag	/CI	N	/let	the	od,								-			
										_							~	_												
														me	ent	Т	5:	Р	re											
	Λ						1		_		ну	dro	grap		1	Г	Т	Г	1	Г	1	<u> </u>								
0.05	И		+	+		1048 n	2/8	+		\square	-		+	+	+	┢	+	┢	+	┢	+	\vdash	\vdash				-	H	-	Runol
0.045	И		+	+		ľ	F	+	-	\square	_	+	+	+	C	N	ΗC)a	ik٦	/il	le	24	\$h	r	50)-Y	'e	ar	-	
0.04			+	+			┢	+	_		_	-	+	+	╞	+	+	╞	╀	H	₹a	in	fa	H:	=8	9	m	m	4	
				\square		_	┝	-			_		+	+	+	-	+	1		1						84				
0.035															F	₹ı	-	-	-	-	-	-	-		-)5	-			
(s, 0.03 Mol 0.025	ľ																_	_	_	_	_	_	_	_	_	3	_		_	
0.025	Y																	F					<u>۲</u>			5.				
0.02	Υ			П									Τ	Τ	Γ	Γ	Γ	Γ	S	0	þe	=				Dr				
0.015	И			Π		ľ		1					1	+	T	T	T	t	t	t	T	T	Т	2=		4				
0.01	1		+	+	\square		1	+			-		+	+	+	t	t	t	+	t	\vdash		\vdash		e	IN	=	98	F	
0,005	И		+	+	\vdash			+	\vdash	\vdash	-		+	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	\vdash	-	$\left \right $	-	Η	-	
						P	Q				7																			

 1797
 ON Oakville 24hr 50-Year
 Rainfall=89 mm

 Prepared by Trafalgar Engineering
 Printed
 2022-12-14

 HydroCAD® 10.20-2f s/n 12699
 © 2022 HydroCAD Software Solutions LLC
 Page 27

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

 Subcatchment 1S: Pre
 Runoff Area=684 m²
 100,00% Impervious
 Runoff Depth=83 mm

 Flow Length=15.8 m
 Sippe=0,0100 m/m
 Tc=1.4 min
 CN=98
 Runoff =0,048 m³/s
 0,057 MI

 Subcatchment 2S: Post
 Runoff Area=684 m² 100.00% Impervious
 Runoff Depth=83 mm

 Flow Length=15.8 m
 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.048 m²/s 0.057 MI

Pond 3P: Tank Peak Elev=86,811 m Storage=8,7 m³ Inflow=0,048 m³/s 0,057 MI Outflow=0.030 m³/s 0,066 MI

 Total Runoff Area = 0.137 ha
 Runoff Volume = 0.113 MI
 Average Runoff Depth = 83 mm

 0.00% Pervious = 0.000 ha
 100.00% Impervious = 0.137 ha

1797 Prepared by Trafalgar Engineering HydroCAD® 10.20-21 s/n 12699 © 2022 HydroCAD Softwar	ON Oakville 24hr 50-Year Rainfall=89 mm Printed 2022-12-14 e Solutions LLC Page 29
Summary for Subcate	chment 2S: Post
[49] Hint: Tc<2dt may require smaller dt	
Runoff = 0.048 m³/s @ 8.02 hrs, Volume= Routed to Pond 3P : Tank	0.057 MI, Depth= 83 mm
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, ON Oakville 24hr 50-Year Rainfall=89 mm	Time Span= 0.00-32.00 hrs, dt= 0.05 hrs
Area (m ²) CN Description	
684 98 Unconnected roofs, HSG A	
684 100.00% Impervious Area 684 100.00% Unconnected	
Tc Length Slope Velocity Capacity Descr _ (min) (meters) (m/m) (m/sec) (m³/s)	iption
1.4 15.8 0.0100 0.19 Lag/C	N Method,
Subcatchment Hydrograph	
0.05	
0.045	ON Oakville 24hr 50-Year
0.04	Rainfall=89 mm
	Runoff Area=684 m ²
	Runoff Volume=0.057 Mi
(% 0.03-	Runoff Depth=83 mm
8 0.025 C	Flow Length=15.8 m
0.02	Slope=0.0100 m/m
0.015	Tc=1.4 min
0.01	
0.005	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time (hours)	19 20 21 22 23 24 25 26 27 28 29 30 31 32
·····,	

1797			UN UAKVIIIE 241	r 50-Year Rainfall=89 mm
	rafalgar Enginee			Printed 2022-12-14
HydroCAD® 10.2	20-2f s/n 12699 ©	2022 HydroCAD Software S	Solutions LLC	Page 30
		-		
Inflow Area =	0.068 ba 100	00% Impensious Inflow [Denth = 83 mm	for 50-Vear event
		.00% Impervious, Inflow [8.02 hrs, Volume=	Depth = 83 mm 0.057 MI	for 50-Year event
Inflow Area = Inflow = Outflow =	0.048 m³/s @		0.057 MI	for 50-Year event = 37%, Lag= 2.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 86.811 m @ 8.07 hrs Surf.Area= 9 m² Storage= 8.7 m³

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 7.1 min (541.2 - 534.1)

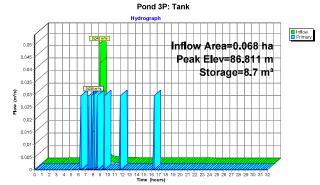
Volume	Invert	Avail.Stor	age Stora	ge Description	
#1	85.850 m	16.2	2 m ³ Custo	om Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (meter	s) (sq-m		Inc.Store	Cum.Store (cubic-meters)	
85.85 87.65		9 9	0.0 16.2	0.0 16.2	
Device	Routing	Invert	Outlet Devic	ces (Turned on 8 times)	
#1	Primary		Discharges(150 mm Dia Flow (I/min) Head (mete Loss (mete	rbitt 0.5 hp) X 7.00 @87.350 m Turns Off<85.900 m am. X 20.00 m Long Discharge, Hazen-Williams C= 130)= 75.7 151.4 201.7 227.1 252.5 264.9 ers)= 7.500 6.000 4.500 3.000 1.500 0.000 ers)= 0.001 0.004 0.007 0.009 0.011 0.012 (s)= 7.499 5.996 4.493 2.991 1.489 -0.012	

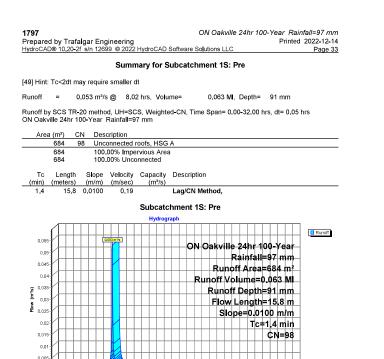
1797	ON Oakville 24hr 100-Year Rainfall=97 m
Prepared by Trafalgar Engineering	Printed 2022-12-1
HydroCAD® 10.20-2f s/n 12699 @ 2022 HydroCAD S	Software Solutions LLC Page 3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

 Subcatchment 1S: Pre
 Runoff Area=684 m²
 100,00%
 Impervious
 Runoff Depth=91 mm

 Flow Length=15.8 m
 Slope=0,0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.053 m²/s
 0,063 MI


 Subcatchment 2S: Post
 Runoff Area=684 m²
 100,00% Impervious
 Runoff Depth=91 mm


 Flow Length=15.8 m
 Slope=0.0100 m/m
 Tc=1.4 min
 CN=98
 Runoff=0.053 m³/s
 0.063 MI

Pond 3P: Tank Peak Elev=86.868 m Storage=9.2 m³ Inflow=0.053 m³/s 0.063 MI Outflow=0.030 m³/s 0.076 MI

Total Runoff Area = 0.137 ha Runoff Volume = 0.125 MI Average Runoff Depth = 91 mm 0.00% Pervious = 0.000 ha 100.00% Impervious = 0.137 ha

1797	ON Oakville 24hr 50-Year Rainfall=89 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 @ 2022 HydroCAD Software S	olutions LLC Page 31

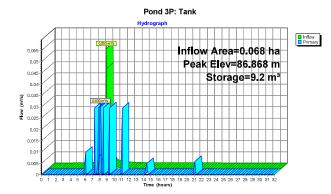
B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Time (hours)

ON Oakville 24hr 100-Year Rainfall=97 mm

1 2 3 4 5 6

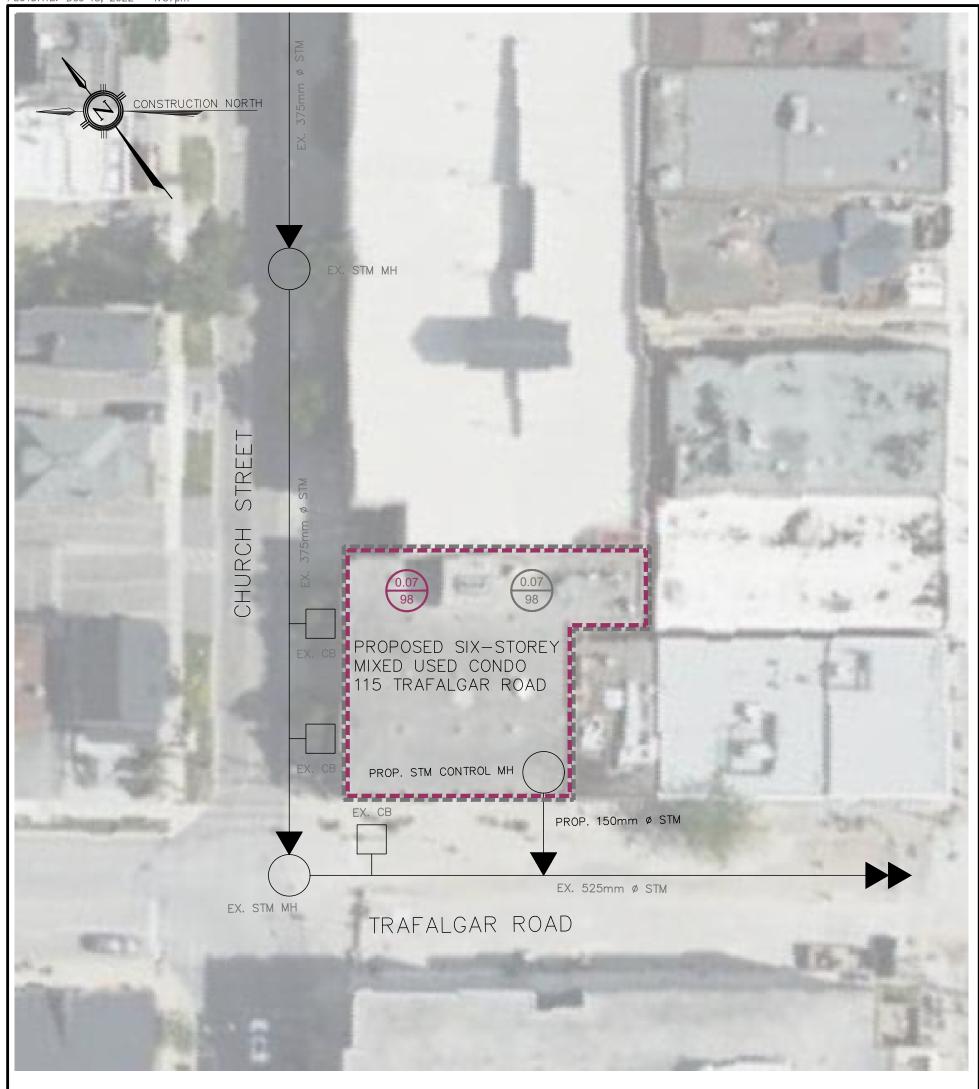
1797

1797 ON Oakville 24hr	100-Year Rainfall=97 mm
Prepared by Trafalgar Engineering	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC	Page 34
Summary for Subcatchment 2S: Post	

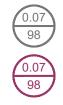

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.053 m³/s @ 8.02 hrs, Volume= Routed to Pond 3P : Tank 0.063 MI, Depth= 91 mm

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs ON Oakville 24hr 100-Year Rainfall=97 mm


	a (n		CN		cripti		• • • • •														
		84	98				roof	, HSC	ΞA												
	-	84	50					us Are													
	6	84					onne														
Tc (min)		.ength		ope 1/m)		ocity /sec)		pacity (m³/s)		escr	iptic	on									
1.4		15.8	0.0	100		0.19			Li	ag/C	ΝM	leti	hod,								
							Su	bcato	chm	ent	25	: F	ost								
								Hydro	graph	<u>ا</u>											
	1																				Runoff
0.05	sΥ			0	0.063 m ¹ /s												40				
0.0	5/									<u>ر</u>	714	М	akv								
0.04	5¥										+	H			Rai						
0.0	V		++	+					+	\vdash	╘	Η			ff/	1 1					
				++					+	\vdash	R		off	1 I		1.1					
50.0 00 (m ³ /s)				+					_	\square	+		Rµr	of	۶Þ	ept	:h⊨'	91	m	m	
- <u>0,0</u>	³											\square	Fic	w	Lei	ngi	:h=	15	.8	m	
₫ 0.02	5-												5	Slo	pė=	0.)	010	0	m/ı	m	
0,0	21										Т				Т	Т	c‡1	.4	mi	in	
0.01	5																	CN	1=9	98	
0.0	1			+	ľ	\vdash			+	\vdash	+	\square	+	\square	+	H	+	f	F	Ŧ	
0.00	1		++	++	X	+			+	$\left \right $	+	\square	-	+	+	+	+			-	
					X																
	0	1 2 3	4 5	67	8 9	9 10	11 12	13 14 1			19 :	20 2	1 22	23 2	4 25	26 2	7 28	29 3	30 31	32	
								Tim	ne (ho	urs)											

ON Oakville 24hr 100-Year Rainfall=97 mm Printed 2022-12-14 1797 1/9/ Prepared by Trafalgar Engineering HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software Solutions LLC Page 36



Prepared by Trafalgar Engineering	ON Oakville 24hr 100-Year Rainfall=97 mm
	Printed 2022-12-14
HydroCAD® 10.20-2f s/n 12699 © 2022 HydroCAD Software S	Solutions LLC Page 35
Summary for Pond	3P: Tank
Inflow Area = 0.068 ha,100.00% Impervious, Inflow I	
Inflow = 0.053 m³/s @ 8.02 hrs, Volume= Outflow = 0.030 m³/s @ 8.08 hrs, Volume=	0.063 MI 0.076 MI, Atten= 43%, Lag= 3.8 min
Primary = 0.030 m ³ /s @ 8.08 hrs, Volume=	0.076 MI, Atten= 43%, Lag= 3.6 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 h Peak Elev= 86.868 m @ 8.08 hrs Surf Area= 9 m ² Storad	
	JC- 0.2 m
Plug-Flow detention time= (not calculated: outflow precede: Center-of-Mass det. time= 42.6 min (575.6 - 533.0)	s inflow)
Volume Invert Avail.Storage Storage Description	on
#1 85.850 m 16.2 m ³ Custom Stage Da	ata (Prismatic) Listed below (Recalc)
	-
Elevation Surf.Area Inc.Store Cum.S	
(meters) (sq-meters) (cubic-meters) (cubic-me	ters)
85.850 9 0.0	
	0.0
87.650 9 16.2	0.0 16.2
	16.2
87.650 9 16.2	16.2 on 9 times)
87.650 9 16.2 Device Routing Invert Outlet Devices (Turned	16.2 on 9 times) X 7.00
87,850 9 16.2 Device Routing Invert Outlet Devices (Turned #1 #1 Primary 86.200 m Pump (Everbilt 0.5 hp) Discharges@87.350 m 150 mm Diam.x 20.001 150	16.2 on 9 times) X 7.00 Turns Off<85.900 m m Long Discharge, Hazen-Williams C= 130
87,650 9 16.2 <u>Device Routing Invert Outlet Devices (Turned</u> #1 Primary 86,200 m Pump (Everbilt 05 hp) Discharges@87,350 m 150 mm Diam. x20.000 Flow (Umin)= 75.7 15'	16.2 on 9 times) X 7.00 Turns Off<85.900 m m Long Discharge, Hazen-Williams C= 130 (4 2017 2271 252.5 264.9
87,650 9 16.2 <u>Device Routing Invert Outlet Devices (Turned</u> #1 Primary 86,200 m Pump (Everbilt 05 hp) Discharges@87,350 m 150 mm Diam. x20.000 Flow (Umin)= 75.7 15'	16.2 on 9 times) X 7.00 Turns Off<85.900 m m Long Discharge, Hazen-Williams C= 130
87,850 9 16.2 <u>Device Routing Invert Outlet Devices (Turned</u> #1 Primary 86.200 m Pump (Everbilt 0,5 hp) Discharge@87,350 m 150 mm Diam. x 20.00 Flow (/min) = 7,7 15' Head (meters) = 7,500	16.2 on 9 times) X 7.00 Turns Off<85.900 m m Long Discharge, Hazen-Williams C= 130 /4 2017. 22.71. 252.5 264.9

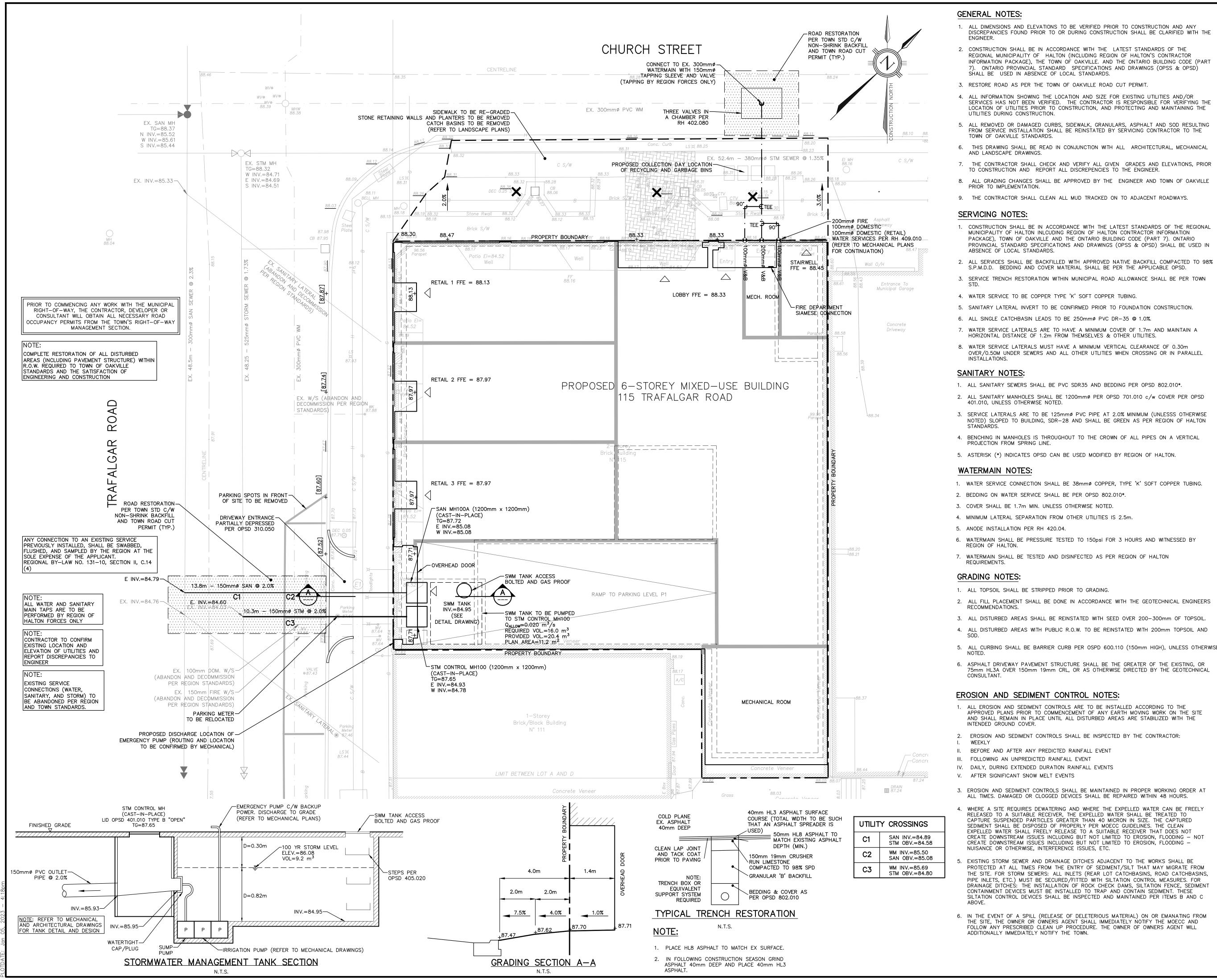
Primary OutFlow Max=0.030 m³/s @ 8.08 hrs HW=86.828 m (Free Discharge) -1=Pump (Everbilt 0.5 hp) (Pump Controls 0.030 m³/s)

FILENAME: P:\1797 Hicks Trafalgar\04-CAD\03-Site Plan\1797FIG.dwg PLOTDATE: Dec 13, 2022 - 1:57pm

PRE DEVELOPMENT DRAINAGE AREA IN HECTARES PRE DEVELOPMENT CURVE NUMBER

POST DEVELOPMENT DRAINAGE AREA IN HECTARES POST DEVELOPMENT CURVE NUMBER

PRE DEVELOPMENT DRAINAGE AREA BOUNDARY POST DEVELOPMENT DRAINAGE AREA BOUNDARY


PROJECT TITLE HICKS TRAFALGAR 115 TRAFALGAR ROAD TOWN OF OAKVILLE			TRAFALGAR ENGINEERING *1-431 MORDEN ROAD, OAKVILLE, ON, LGK 3WG www.trafelgareng.com	
DRAWING TITLE	STORM DRAINAGE PLAN	DESIGN BY AJP		
	STORM DRAINAGE FLAN	DRAWN BY AJP	DATE 2022/11/23	

CAD FILE: 1797FIG.DWG PLOT SCALE: 1:1 PLOT DATE: Dec 13, 2022

Functional Servicing Report Proposed Six-Storey Mixed-Use Condominium 115 Trafalgar Road Oakville

APPENDIX 'E'

Grading and Servicing Plan

GENERAL NOTES:

1. ALL DIMENSIONS AND ELEVATIONS TO BE VERIFIED PRIOR TO CONSTRUCTION AND ANY DISCREPANCIES FOUND PRIOR TO OR DURING CONSTRUCTION SHALL BE CLARIFIED WITH THE

2. CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE LATEST STANDARDS OF THE REGIONAL MUNICIPALITY OF HALTON (INCLUDING REGION OF HALTON'S CONTRACTOR INFORMATION PACKAGE), THE TOWN OF OAKVILLE. AND THE ONTARIO BUILDING CODE (PART 7). ONTARIO PROVINCIAL STANDARD SPECIFICATIONS AND DRAWINGS (OPSS & OPSD) SHALL BE USED IN ABSENCE OF LOCAL STANDARDS.

3. RESTORE ROAD AS PER THE TOWN OF OAKVILLE ROAD CUT PERMIT.

4. ALL INFORMATION SHOWING THE LOCATION AND SIZE FOR EXISTING UTILITIES AND/OR SERVICES HAS NOT BEEN VERIFIED. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING THE LOCATION OF UTILITIES PRIOR TO CONSTRUCTION, AND PROTECTING AND MAINTAINING THE UTILITIES DURING CONSTRUCTION.

5. ALL REMOVED OR DAMAGED CURBS, SIDEWALK, GRANULARS, ASPHALT AND SOD RESULTING FROM SERVICE INSTALLATION SHALL BE REINSTATED BY SERVICING CONTRACTOR TO THE TOWN OF OAKVILLE STANDARDS.

6. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL ARCHITECTURAL, MECHANICAL AND LANDSCAPE DRAWINGS. 7. THE CONTRACTOR SHALL CHECK AND VERIFY ALL GIVEN GRADES AND ELEVATIONS, PRIOR

TO CONSTRUCTION AND REPORT ALL DISCREPENCIES TO THE ENGINEER. 8. ALL GRADING CHANGES SHALL BE APPROVED BY THE ENGINEER AND TOWN OF OAKVILLE PRIOR TO IMPLEMENTATION.

9. THE CONTRACTOR SHALL CLEAN ALL MUD TRACKED ON TO ADJACENT ROADWAYS.

SERVICING NOTES:

1. CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE LATEST STANDARDS OF THE REGIONAL MUNICIPALITY OF HALTON INLCUDING REGION OF HALTON CONTRACTOR INFORMATION PACKAGE), TOWN OF OAKVILLE AND THE ONTARIO BUILDING CODE (PART 7). ONTARIO PROVINCIAL STANDARD SPECIFICATIONS AND DRAWINGS (OPSS & OPSD) SHALL BE USED IN ABSENCE OF LOCAL STANDARDS.

2. ALL SERVICES SHALL BE BACKFILLED WITH APPROVED NATIVE BACKFILL COMPACTED TO 98% S.P.M.D.D. BEDDING AND COVER MATERIAL SHALL BE PER THE APPLICABLE OPSD. 3. SERVICE TRENCH RESTORATION WITHIN MUNICIPAL ROAD ALLOWANCE SHALL BE PER TOWN

4. WATER SERVICE TO BE COPPER TYPE 'K' SOFT COPPER TUBING.

5. SANITARY LATERAL INVERT TO BE CONFIRMED PRIOR TO FOUNDATION CONSTRUCTION. 6. ALL SINGLE CATCHBASIN LEADS TO BE 250mmø PVC DR-35 @ 1.0%.

7. WATER SERVICE LATERALS ARE TO HAVE A MINIMUM COVER OF 1.7m AND MAINTAIN A HORIZONTAL DISTANCE OF 1.2m FROM THEMSELVES & OTHER UTILITIES.

8. WATER SERVICE LATERALS MUST HAVE A MINIMUM VERTICAL CLEARANCE OF 0.30m OVER/0.50M UNDER SEWERS AND ALL OTHER UTLITIES WHEN CROSSING OR IN PARALLEL INSTÁLLATIONS.

SANITARY NOTES:

1. ALL SANITARY SEWERS SHALL BE PVC SDR35 AND BEDDING PER OPSD 802.010*.

2. ALL SANITARY MANHOLES SHALL BE 1200mmø PER OPSD 701.010 c/w COVER PER OPSD 401.010, UNLESS OTHERWISE NOTED.

3. SERVICE LATERALS ARE TO BE 125mmø PVC PIPE AT 2.0% MINIMUM (UNLESSS OTHERWISE NOTED) SLOPED TO BUILDING, SDR-28 AND SHALL BE GREEN AS PER REGION OF HALTON

4. BENCHING IN MANHOLES IS THROUGHOUT TO THE CROWN OF ALL PIPES ON A VERTICAL PROJECTION FROM SPRING LINE.

5. ASTERISK (*) INDICATES OPSD CAN BE USED MODIFIED BY REGION OF HALTON.

WATERMAIN NOTES:

1. WATER SERVICE CONNECTION SHALL BE 38mmø COPPER, TYPE 'K' SOFT COPPER TUBING. 2. BEDDING ON WATER SERVICE SHALL BE PER OPSD 802.010*.

3. COVER SHALL BE 1.7m MIN. UNLESS OTHERWISE NOTED.

4. MINIMUM LATERAL SEPARATION FROM OTHER UTILITIES IS 2.5m.

5. ANODE INSTALLATION PER RH 420.04.

6. WATERMAIN SHALL BE PRESSURE TESTED TO 150psi FOR 3 HOURS AND WITNESSED BY REGION OF HALTON.

7. WATERMAIN SHALL BE TESTED AND DISINFECTED AS PER REGION OF HALTON

GRADING NOTES:

1. ALL TOPSOIL SHALL BE STRIPPED PRIOR TO GRADING.

2. ALL FILL PLACEMENT SHALL BE DONE IN ACCORDANCE WITH THE GEOTECHNICAL ENGINEERS

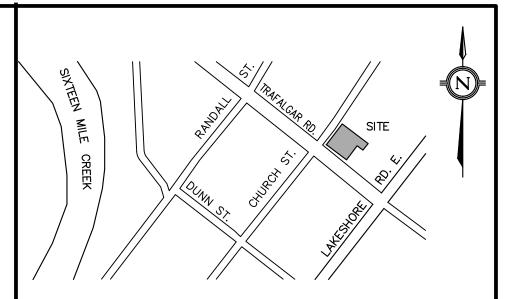
3. ALL DISTURBED AREAS SHALL BE REINSTATED WITH SEED OVER 200-300mm OF TOPSOIL. 4. ALL DISTURBED AREAS WITH PUBLIC R.O.W. TO BE REINSTATED WITH 200mm TOPSOIL AND

6. ASPHALT DRIVEWAY PAVEMENT STRUCTURE SHALL BE THE GREATER OF THE EXISTING, OR 75mm HL3A OVER 150mm 19mm CRL, OR AS OTHERWISE DIRECTED BY THE GEOTECHNICAL

EROSION AND SEDIMENT CONTROL NOTES:

1. ALL EROSION AND SEDIMENT CONTROLS ARE TO BE INSTALLED ACCORDING TO THE APPROVED PLANS PRIOR TO COMMENCEMENT OF ANY EARTH MOVING WORK ON THE SITE AND SHALL REMAIN IN PLACE UNTIL ALL DISTURBED AREAS ARE STABILIZED WITH THE INTENDED GROUND COVER.

2. EROSION AND SEDIMENT CONTROLS SHALL BE INSPECTED BY THE CONTRACTOR:


II. BEFORE AND AFTER ANY PREDICTED RAINFALL EVENT III. FOLLOWING AN UNPREDICTED RAINFALL EVENT IV. DAILY, DURING EXTENDED DURATION RAINFALL EVENTS V. AFTER SIGNIFICANT SNOW MELT EVENTS

3. EROSION AND SEDIMENT CONTROLS SHALL BE MAINTAINED IN PROPER WORKING ORDER AT

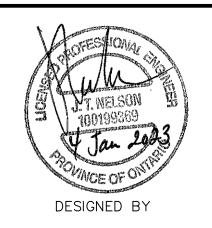
4. WHERE A SITE REQUIRES DEWATERING AND WHERE THE EXPELLED WATER CAN BE FREELY RELEASED TO A SUITABLE RECEIVER, THE EXPELLED WATER SHALL BE TREATED TO CAPTURE SUSPENDED PARTICLES GREATER THAN 40 MICRON IN SIZE. THE CAPTURED SEDIMENT SHALL BE DISPOSED OF PROPERLY PER MOECC GUIDELINES. THE CLEAN EXPELLED WATER SHALL FREELY RELEASE TO A SUITABLE RECEIVER THAT DOES NOT CREATE DOWNSTREAM ISSUES INCLUDING BUT NOT LIMITED TO EROSION, FLOODING - NOT CREATE DOWNSTREAM ISSUES INCLUDING BUT NOT LIMITED TO EROSION, FLOODING -NUISANCE OR OTHERWISE, INTERFERENCE ISSUES, ETC.

EXISTING STORM SEWER AND DRAINAGE DITCHES ADJACENT TO THE WORKS SHALL BE PROTECTED AT ALL TIMES FROM THE ENTRY OF SEDIMENT/SILT THAT MAY MIGRATE FROM THE SITE. FOR STORM SEWERS: ALL INLETS (REAR LOT CATCHBASINS, ROAD CATCHBASINS, PIPE INLETS, ETC.) MUST BE SECURED/FITTED WITH SILTATION CONTROL MEASURES. FOR DRAINAGE DITCHES: THE INSTALLATION OF ROCK CHECK DAMS, SILTATION FENCE, SEDIMENT CONTAINMENT DEVICES MUST BE INSTALLED TO TRAP AND CONTAIN SEDIMENT. THESE SILTATION CONTROL DEVICES SHALL BE INSPECTED AND MAINTAINED PER ITEMS B AND C

6. IN THE EVENT OF A SPILL (RELEASE OF DELETERIOUS MATERIAL) ON OR EMANATING FROM THE SITE, THE OWNER OR OWNERS AGENT SHALL IMMEDIATELY NOTIFY THE MOECC AND FOLLOW ANY PRESCRIBED CLEAN UP PROCEDURE. THE OWNER OF OWNERS AGENT WILL ADDITIONALLY IMMEDIATELY NOTIFY THE TOWN.

KEY PLAN

LEGEND			
81.71	EXISTING ELEVATION		
83.41	EXISTING ELEVATION TO REMAIN		
82.77 +	PROPOSED FINISHED ELEVATION		
[<u>83.23]</u> +	INTERPOLATED EXISTING GRADE TO REMAIN		
0	PROPOSED STORM MANHOLE		
	PROPOSED SANITARY MANHOLE		
¤	PROPOSED FIRE HYDRANT		
$\mathbf{\Theta}$	PROPOSED VALVE & BOX		
	PROPOSED STORM SEWER		
—	PROPOSED SANITARY SEWER		
<u> </u>	PROPOSED WATERMAIN		
\boxtimes	PROPOSED WATER METER		
BP	PROPOSED BACKFLOW PREVENTER		


1 22/12/22 AJP ISSUED FOR ZBA/OPA NO. | DATE |BY/DRAWN REVISIONS CAD FILE: 1797GS.dwg PLOT SCALE: 1:1 PLOT DATE: Jan

BENCHMARK

ALL ELEVATIONS SHOWN HEREON ARE GEODETIC AND WERE DERIVED FROM THE TOWN OF OAKVILLE BENCHMARK 0-251 HAVING AN ELEVATION OF 118.729m (CGVD-1928:1978).

SURVEY CREDIT

THE TOPOGRAPHIC DETAIL SHOWN HEREON IS OBTAINED FROM CUNNINGHAM McCONNELL LIMITED, ONTARIO LAND SURVEYORS PLAN 122-22-1, COMPLETED ON THE 1ST OF NOVEMBER 2022

ROJECT TITLE

AWING TITLE

APPROVED BY

፞፝፝፝፝፝ TRAFALGAR #1-481 MORDEN ROAD, OAKVILLE, ON, L6K 3W6 www.trafalgareng.com

HICKS TRAFALGAR

115 TRAFALGAR ROAD TOWN OF OAKVILLE

GRADING AND SERVICING PLAN

PROJECT No. 1797 DESIGN BY 1:100 AJP PLAN No AJP HECKED BY JN GS1 2022/11/14 OF SHEET 1